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Abstract 
Using dynamic programming, this work develops a one-class-at-a-time removal sequence planning method to 
decompose a multiclass classification problem into a series of two-class problems. Compared with previous 
decomposition methods, the approach has the following distinct features. First, under the one-class-at-a-time 
framework, the approach guarantees the optimality of the decomposition. Second, for a 𝐾𝐾class problem, the 
number of binary classifiers required by the method is only 𝐾𝐾 − 1. Third, to achieve higher classification 
accuracy, the approach can easily be adapted to form a committee machine. A drawback of the approach is that 
its computational burden increases rapidly with the number of classes. To resolve this difficulty, a partial 
decomposition technique is introduced that reduces the computational cost by generating a suboptimal 
solution. Experimental results demonstrate that the proposed approach consistently outperforms two 
conventional decomposition methods 
 

SECTION I. Introduction 
A classification problem deals with objects or events to be classified. Such a problem assumes the existence of a 
known set of 𝐾𝐾 classes 
 

𝑪𝑪 = {𝐶𝐶1𝐶𝐶2 …𝐶𝐶𝐾𝐾}  

where 𝐶𝐶 is the set of known classes and the elements 𝐶𝐶𝑘𝑘 of 𝐶𝐶 are called classes. A class can be defined as a pair 
of variables 
 

Pattern = [𝒙𝒙,𝐶𝐶𝑘𝑘]  

 
where 𝒙𝒙 is the feature vector that characterizes the property of  𝐶𝐶𝑘𝑘. The goal of classification is to find a decision 
boundary in the feature space in order to recognize the class 𝐶𝐶𝑘𝑘when a feature vector 𝒙𝒙is present. This mapping 
can be constructed by a learning-from-example approach where samples with known classes are given. A 
classifier can then be designed to find the decision boundary in order to infer the class of unknown samples. 
 
A direct approach for multiclass classification problems is to use a single classifier to try to distinguish all classes 
simultaneously. To adapt neural networks to such problems, an approach is to assign a binary string to each 
class as the target output. To enhance its performance, these binary strings can be designed with error-
correction [1]–[2][3], so that errors by a few of the binary numbers can be recovered. Nevertheless, separating 
many classes at one time is still a very challenging task since the complexity of the decision boundary often 
increases with the number of classes. In responding to this difficulty, two decomposition methods have been 
proposed. The basic idea of these methods is to convert a multiclass problem (𝐾𝐾 ≥ 3) into a number of two-
class problems (𝐾𝐾 = 2). In this work, the two classes associated with a two-class problem are referred to as the 
true and the false classes, respectively. 
 
The one-against-all (1-a-a) method (e.g., [4]) converts a 𝐾𝐾-class problem into 𝐾𝐾two-class problems. In particular, 
the 𝑖𝑖th binary classifier used by the 1-a-a method is designed by choosing 𝐶𝐶𝑖𝑖 as the true class, whereas the union 
of the remaining classes (denoted as 𝐶𝐶𝑖𝑖) is the false class. A sample is assigned to 𝐶𝐶𝑖𝑖when the 𝑖𝑖th binary classifier 
has the largest true class output. Despite the fact that the 1-a-a method only needs to solve two-class problems 
one at a time, the training sets of all these two-class problems still come from the union of the same large 
number of classes associated with the original multiclass problem. As a result, many of the converted two-class 
problems can still be very difficult to solve. 
 



By trying to distinguish every set of 𝐶𝐶𝑖𝑖from 𝐶𝐶𝑗𝑗 for 𝑖𝑖, 𝑗𝑗 = 1 … ,𝐾𝐾 and 𝑖𝑖 > 𝑗𝑗, the one-against-one (1-a-1) method 
(e.g., [5]) splits a 𝐾𝐾class problem into 𝐾𝐾(𝐾𝐾 − 1)/2 two-class problems. In performing a classification, the 1-a-1 
method assigns a sample to the class that has won the largest number of true class votes. Compared with the 
two-class problems of the 1-a-a method, the two-class problems of the 1-a-1 method are often easier to solve 
since the decision boundary between 𝐶𝐶𝑖𝑖and𝐶𝐶𝑗𝑗 is expected to be less complex than the decision boundary that 
separates 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑖𝑖 (which contains𝐶𝐶𝑗𝑗 as well as all the remaining classes). This observation is supported by 
several experimental results (e.g., [3], [6]). A tradeoff of this improvement is that the number of classifiers 
increases from 𝐾𝐾to 𝐾𝐾(𝐾𝐾 − 1)/2. Another problem of the 1-a-1 method comes from the ineffective results 
produced by some of its classifiers. Specifically, a binary classifier trained by samples from 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑗𝑗 can produce 
unreliable classification results if it is used to determine the membership of 𝐶𝐶𝑘𝑘 samples for 𝑘𝑘 ≠ 𝑗𝑗 and 𝑘𝑘 ≠ 𝑖𝑖. This 
“ineffective decision” problem will be addressed again in Section III. 
 
A goal of this work is to develop an alternative decomposition method that requires fewer classifiers than the 1-
a-a method and achieves higher classification accuracy than the 1-a-1 method. The paper is organized as follows. 
The basic idea of the proposed approach is presented in Section II. To reduce the computational cost and 
improve the classification accuracy, two variations of the approach are introduced in Section III. Section IV 
presents experimental results that demonstrate the efficiency and accuracy of the methods, and conclusions are 
given in Section V. 

SECTION II. One-Class-at-a-Time Approach 
To perform the decomposition, in the proposed approach, a binary classifier is first designed for 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑖𝑖 for 
every 𝐶𝐶𝑖𝑖. Next, for every 𝐶𝐶𝑖𝑖, a binary classifier is developed to classify 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑖𝑖𝑗𝑗 for every 𝑗𝑗 ≠ 𝑖𝑖. Note that 𝐶𝐶𝑖𝑖𝑗𝑗 
represents a class obtained by removing 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑗𝑗 from 𝐶𝐶. This one-class-at-a-time removal procedure is 
continued until all classes have been classified. This procedure requires only 𝐾𝐾 − 1 binary classifiers. 
 
The critical issue of this one-class-at-a-time approach is the planning of the removal sequence. It is very likely 
that a cleverly arranged sequence can simplify the classification problem. To illustrate this possibility, an artificial 
problem of separating five classes based on two features, as shown in Fig. 1, is considered. To tackle this 
problem, it is assumed that 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3, and 𝐶𝐶4 can be removed one-at-a-time from the training set, as illustrated 
in Fig. 2. For simplicity, this work uses a sequence of 12345→2345→345→45 to represent the removal sequence 
of Fig. 2. From Fig. 1, it is easy to see that the four two-class problems associated with this removal sequence are 
all linearly separable and thus easy to solve. In contrast, a nonlinear decision boundary is required in trying to 
perform an operation of 12345→1245 to separate 𝐶𝐶3 and 𝐶𝐶3.  
 

 

Fig. 1. Artificial five-class problem. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/72/4012015/4012052/4012052-fig-1-source-large.gif


 

 

Fig. 2. One-class-at-a-time removal sequence for a five-class problem. 
 
Searching an optimal removal sequence for this problem can be formulated as a multistage decision-making 
problem (e.g., [7]). In particular, a 𝐾𝐾class problem can be decomposed into a decision-making problem of 𝐾𝐾 − 1 
stages. Fig. 3 depicts such a multistage decision-making problem for a five-class problem. Essentially, each path 
that connects the starting and ending nodes of Fig. 3 represents a possible one-class-at-a-time solution for the 
given multiclass problem. In addition, the tree structure (also called version space in machine learning literature) 
of Fig. 3 contains all such possible solutions. For each stage, the decision that must be made is which class to be 
removed from the remaining training set so that the cost function can be minimized. Since the goal is to 
minimize the classification error, this work specifies the cost function as the number of misclassified samples.  
 

 

Fig. 3. Tree structure containing all possible one-class-at-a-time solutions for a five-class problem. 

Based on the principle of optimality, dynamic programming (DP) can be used to find the global optimal solution 
for the multistage decision-making problem. For the multiclass classification problem under consideration, the 
principle of optimality yields the following recurrence relation: 
 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/72/4012015/4012052/4012052-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/72/4012015/4012052/4012052-fig-3-source-large.gif


𝐽𝐽∗(𝑪𝑪𝑝𝑝𝑀𝑀) = 𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞

[𝐽𝐽(𝑪𝑪𝑝𝑝𝑀𝑀 → (𝑪𝑪𝑝𝑝𝑀𝑀 − 𝑪𝑪𝑝𝑝𝑞𝑞𝑀𝑀 ))

+𝐽𝐽∗(𝑪𝑪𝑝𝑝𝑀𝑀 − 𝑪𝑪𝑝𝑝𝑞𝑞𝑀𝑀 )](1)
  (1) 

 
for 𝑀𝑀 = 3,4, …𝐾𝐾. Here, the asterisk indicates that the function has been optimized and thus has the optimal 
value. In addition, 𝐶𝐶𝑝𝑝𝑀𝑀 represents the 𝑝𝑝th combination of 𝑀𝑀classes from the 𝐾𝐾classes of 𝐶𝐶,𝐶𝐶𝑝𝑝𝑞𝑞𝑀𝑀  is the 𝑞𝑞th 
member class of 𝐶𝐶𝑝𝑝𝑀𝑀, and 𝐽𝐽∗(𝐶𝐶𝑝𝑝𝑀𝑀) and 𝐽𝐽∗(𝐶𝐶𝑝𝑝𝑀𝑀 − 𝐶𝐶𝑝𝑝𝑞𝑞𝑀𝑀 ) are the costs associated with the optimal one-class-at-a-
time removal sequences for 𝐶𝐶𝑝𝑝𝑀𝑀 and 𝐶𝐶𝑝𝑝𝑀𝑀 − 𝐶𝐶𝑝𝑝𝑞𝑞𝑀𝑀 , respectively. Also, the term 𝐽𝐽(𝐶𝐶𝑝𝑝𝑀𝑀 → (𝐶𝐶𝑝𝑝𝑀𝑀 − 𝐶𝐶𝑝𝑝𝑞𝑞𝑀𝑀 )) is the cost 
associated with the operation of classifying 𝐶𝐶𝑝𝑝𝑀𝑀 into 𝐶𝐶𝑝𝑝𝑀𝑀 − 𝐶𝐶𝑝𝑝𝑞𝑞𝑀𝑀  and 𝐶𝐶𝑝𝑝𝑞𝑞𝑀𝑀 . Since the last decision for the proposed 
one-class-at-a-time approach is to remove a class from a three-class problem, the solution process is initiated by 
setting 𝑀𝑀 equal to 3. As a result, (1) can be written as 
 

𝐽𝐽∗(𝑪𝑪𝑝𝑝3) = 𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞

[𝐽𝐽(𝑪𝑪𝑝𝑝3 → (𝑪𝑪𝑝𝑝3 − 𝑪𝑪𝑝𝑝𝑞𝑞3 )) + 𝐽𝐽∗(𝑪𝑪𝑝𝑝3 − 𝑪𝑪𝑝𝑝𝑞𝑞3 )].
 (2) 

 
After removing 𝐶𝐶𝑝𝑝𝑞𝑞3  from 𝐶𝐶𝑝𝑝3,𝐶𝐶𝑝𝑝3 − 𝐶𝐶𝑝𝑝𝑞𝑞3  contains only two classes. As a result, 𝐽𝐽∗(𝐶𝐶𝑝𝑝3 − 𝐶𝐶𝑝𝑝𝑞𝑞3 ) can be determined by 
separating every possible set of 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑗𝑗 for 𝑖𝑖, 𝑗𝑗 = 1 … ,𝐾𝐾 and 𝑖𝑖 > 𝑗𝑗. Note that the 1-a-1 method also solves the 
same classification problems. 
 
By applying the recurrence relation recursively, the solution procedure is continued until 𝑀𝑀 = 𝐾𝐾. When 𝑀𝑀 = 𝐾𝐾, 
(1) can be written as 
 

𝐽𝐽∗(𝑪𝑪𝑝𝑝𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞

[𝐽𝐽(𝑪𝑪𝑝𝑝𝐾𝐾 → (𝑪𝑪𝑝𝑝𝐾𝐾 − 𝑪𝑪𝑝𝑝𝑞𝑞𝐾𝐾 ))

+𝐽𝐽∗(𝑪𝑪𝑝𝑝𝐾𝐾 − 𝑪𝑪𝑝𝑝𝑞𝑞𝐾𝐾 )].
 (3) 

 

Note that there is only one possible 𝑪𝑪𝑝𝑝𝐾𝐾 , which is the union of all classes, that is, 𝑪𝑪. Therefore, (3) can be 
rewritten as 

𝐽𝐽∗(𝑪𝑪) = 𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞

[𝐽𝐽(𝑪𝑪 → 𝑪𝑪𝑞𝑞) + 𝐽𝐽∗(𝑪𝑪𝑞𝑞)]  (4) 

 

with 𝑞𝑞 = 1, … ,𝐾𝐾. Note that the binary classifiers associated with 𝐽𝐽(𝑪𝑪 → 𝑪𝑪𝑞𝑞) are identical to those 
employed by the 1-a-a method. 
 
The results demonstrate that the binary classifiers developed by the conventional 1-a-a and 1-a-1 methods are 
only a subset of the classifiers used by the proposed approach. For example, for the five-class problem of Fig. 3, 
the classifiers employed by the 1-a-1 correspond to the rightmost arrows, whereas the leftmost arrows 
represent the binary classifiers used by the 1-a-a method. 
 
A distinct advantage of DP, compared with other optimization strategies such as a genetic algorithm, is that it 
guarantees a global optimal solution. Therefore, if the one-class-at-a-time requirement is relaxed, DP can find 
better solutions. The tradeoff is that the number of possible solutions increases dramatically with the number of 
classes and the problem then may become computationally too intensive to solve. The proposed approach 
represents a compromise between computational cost and classification accuracy. 

https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn3


SECTION III. Two Variations of the Proposed Approach 
A. A Suboptimal Version of the Proposed Approach 
By searching the entire solution space systematically, DP guarantees global optimality for the one-class-at-a-
time removal sequence. However, to perform such a search, it can be shown that the number of converted two-

class problems is � ( 𝐾𝐾
𝐾𝐾−𝑖𝑖)

𝐾𝐾−3

𝑖𝑖=0
(𝐾𝐾 − 𝑖𝑖) + (𝐾𝐾2). This number increases rapidly with the number of 

classes 𝐾𝐾hindering the application of the proposed approach to problems with a large number of classes. 
 
To address this “curse of dimensionality” difficulty, this work proposes a suboptimal approach by applying the 
one-class-at-a-time decomposition only to a subset of 𝐶𝐶 and uses the conventional 1-a-1 method to classify the 
remaining classes. The specific steps of this suboptimal approach are as follows.  
 

1. Based upon the available computing power, determine the number of classes that is computationally 
feasible for the proposed approach. Let this number be 𝑀𝑀. 

2. Apply the 1-a-1 method to the given 𝐾𝐾-class problem. 
3. For every 𝑀𝑀 -class subset of the given 𝐾𝐾 classes, determine the number of internal classification errors, 

which is the number of training samples that are incorrectly assigned to a class that belongs to the same 
𝑀𝑀-class subset. 

4. Find the 𝑀𝑀-class subset that has the largest number of internal classification errors. Denote this set of 𝑀𝑀 

classes as 𝐶𝐶
~
𝑀𝑀. The union of the remaining classes is, therefore, 𝐶𝐶 − 𝐶𝐶

~
𝑀𝑀. 

5. Apply the proposed one-class-at-a-time approach to decompose C˜M. 
6. To classify a sample, the 1-a-1 method is used first. The classification result is accepted provided that the 

sample is assigned to one of the classes of 𝐶𝐶 − 𝐶𝐶
~
𝑀𝑀. Otherwise, the sample is classified again by using the 

one-class-at-a-time removal sequence developed in step 5). 
 

This technique does not guarantee a true optimal solution since it disregards the errors of assigning 𝐶𝐶
~
𝑀𝑀 samples 

to 𝐶𝐶 − 𝐶𝐶
~
𝑀𝑀 and the errors of misclassifying 𝐶𝐶 − 𝐶𝐶

~
𝑀𝑀 samples to 𝐶𝐶

~
𝑀𝑀. However, by replacing the 1-a-1 method with 

the proposed decomposition approach for classifying 𝐶𝐶
~
𝑀𝑀 (which has the largest internal classification error 

among all the 𝑀𝑀 -class subset), it is expected that the number of internal classification errors of 𝐶𝐶
~
𝑀𝑀 can be 

reduced, thus effectively improving the overall classification accuracy. 
 

B. Building a Committee Machine 
Based on the fusion of multiple classifiers, it has been shown that a committee machine can provide higher 
classification accuracy than an individual classifier (e.g., [8] and [9]). As an example, the 1-a-1 method is 
essentially a committee machine with 𝐾𝐾(𝐾𝐾 − 1)/2 binary classifier members. Thereafter, the symbol 𝐵𝐵(𝑖𝑖, 𝑗𝑗) is 
used to represent such a binary classifier that is trained to classify 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑗𝑗. 
 
As described in Section I, one weakness of the 1-a-1 method is the ineffective decision problem, which occurs 
when trying to use a classifier 𝐵𝐵(𝑖𝑖, 𝑗𝑗) to classify samples that do not belong to 𝐶𝐶𝑖𝑖or 𝐶𝐶𝑗𝑗. The goal of this 
subsection is to introduce a new committee machine to resolve the ineffective decision problem by using the 
one-class-at-at-a-time technique. 
 
Let 𝑆𝑆𝑖𝑖𝑗𝑗 represent the one-class-at-a-time removal sequence that has 𝐵𝐵(𝑖𝑖, 𝑗𝑗) as its final classifier. The basic idea of 
this new committee machine is to use the first 𝐾𝐾 − 2 binary classifiers of 𝑆𝑆𝑖𝑖𝑗𝑗 to “filter out” samples that do not 
belong to 𝐶𝐶𝑖𝑖or 𝐶𝐶𝑗𝑗. By requiring 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑗𝑗 to be the last two classes to be processed, the removal sequence 𝑆𝑆𝑖𝑖𝑗𝑗 can 
be determined by rewriting the recurrence relation of (1) as 
 

https://ieeexplore.ieee.org/document/#deqn1


𝐽𝐽∗(𝑪𝑪𝑝𝑝
𝑀𝑀(𝑖𝑖,𝑗𝑗)) = 𝑚𝑚𝑖𝑖𝑚𝑚

𝑞𝑞
[𝐽𝐽(𝑪𝑪𝑝𝑝

𝑀𝑀(𝑖𝑖,𝑗𝑗) → (𝑪𝑪𝑝𝑝
𝑀𝑀(𝑖𝑖,𝑗𝑗) − 𝑪𝑪𝑝𝑝𝑞𝑞

𝑀𝑀(𝑖𝑖,𝑗𝑗)))

+𝐽𝐽∗(𝑪𝑪𝑝𝑝
𝑀𝑀(𝑖𝑖,𝑗𝑗) − 𝑪𝑪𝑝𝑝𝑞𝑞

𝑀𝑀(𝑖𝑖,𝑗𝑗))]
  (5) 

 
for 𝑀𝑀 = 4, …𝐾𝐾. The definition of 𝐶𝐶𝑝𝑝

𝑀𝑀(𝑖𝑖,𝑗𝑗) is similar to 𝑪𝑪𝑝𝑝𝑀𝑀 except that 𝐶𝐶𝑝𝑝
𝑀𝑀(𝑖𝑖,𝑗𝑗) must contain 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑗𝑗. Similarly, 

𝐶𝐶𝑝𝑝
𝑀𝑀(𝑖𝑖,𝑗𝑗) is the 𝑞𝑞th member class of 𝐶𝐶𝑝𝑝

𝑀𝑀(𝑖𝑖,𝑗𝑗). Note that 𝐶𝐶𝑝𝑝
𝑀𝑀(𝑖𝑖,𝑗𝑗) ≠ 𝐶𝐶𝑖𝑖 or 𝐶𝐶𝑗𝑗 since 𝐶𝐶𝑖𝑖and 𝐶𝐶𝑗𝑗 have to be the last two 

classes to be classified. 
 
To initiate the recurrence relation of (5) for a particular set of 𝑖𝑖 and 𝑗𝑗, the following results are first set up for 
𝑘𝑘 = 1 … ,𝐾𝐾,𝑘𝑘 ≠ 𝑗𝑗, and 𝑘𝑘 ≠ 𝑖𝑖: 
 

𝐽𝐽∗((𝑪𝑪𝑖𝑖 ∪ 𝑪𝑪𝑗𝑗 ∪ 𝑪𝑪𝑘𝑘)) = 𝐽𝐽((𝑪𝑪𝑖𝑖 ∪ 𝑪𝑪𝑗𝑗 ∪ 𝑪𝑪𝑘𝑘) → (𝑪𝑪𝑖𝑖 ∪ 𝑪𝑪𝑗𝑗))
+𝐽𝐽(𝑪𝑪𝑖𝑖 ∪ 𝑪𝑪𝑗𝑗).  (6) 

 
This yields 𝐽𝐽∗(𝐶𝐶𝑝𝑝

𝑀𝑀(𝑖𝑖,𝑗𝑗) − 𝐶𝐶𝑝𝑝𝑞𝑞
𝑀𝑀(𝑖𝑖,𝑗𝑗)) for 𝑀𝑀 = 4. Relation (5) can then be applied recursively until 𝑀𝑀 = 𝐾𝐾. 

 
The proposed committee machine uses the same set of classifiers 𝐵𝐵(𝑖𝑖, 𝑗𝑗) as the 1-a-1 method. However, instead 
of using 𝐵𝐵(𝑖𝑖, 𝑗𝑗) directly, the committee machine uses 𝑆𝑆𝑖𝑖𝑗𝑗 to determine the “effectiveness” of 𝐵𝐵(𝑖𝑖, 𝑗𝑗)'s decision. In 
particular, the first 𝐾𝐾 − 2 classifiers of 𝑆𝑆𝑖𝑖𝑗𝑗 can be viewed as a 𝐶𝐶𝑖𝑖𝑗𝑗 sample filter, which can prevent 𝐵𝐵(𝑖𝑖, 𝑗𝑗) from 
processing 𝐶𝐶𝑖𝑖𝑗𝑗 samples. Therefore, in this committee machine, the classifier 𝐵𝐵(𝑖𝑖, 𝑗𝑗) attends voting only when the 
sample is not assigned to other classes by 𝑆𝑆𝑖𝑖𝑗𝑗 before reaching classifier 𝐵𝐵(𝑖𝑖, 𝑗𝑗). Apparently, the reliability of this 
voting depends on the efficacy of 𝑆𝑆𝑖𝑖𝑗𝑗 in filtering 𝐶𝐶𝑖𝑖𝑗𝑗 samples. To evaluate its performance, 𝑆𝑆𝑖𝑖𝑗𝑗 is used to classify 
the entire training set and count the samples that actually enter the final classification stage of 𝑆𝑆𝑖𝑖𝑗𝑗. Among these 
samples, the ratio of 𝐶𝐶𝑖𝑖𝑗𝑗 samples is computed and denoted as wij. Since this ratio characterizes the likelihood of 
an “ineffective decision”, the weighting coefficient for 𝐵𝐵(𝑖𝑖, 𝑗𝑗)'s voting is chosen as 1−wij. Finally, the 
membership of a sample is determined by counting the weighted votes from all the binary classifiers of 𝐵𝐵(𝑖𝑖, 𝑗𝑗). 
 
In performing a classification, the basic version of the proposed approach uses 𝐾𝐾 − 1 binary classifiers. In 
contrast, with 𝐾𝐾(𝐾𝐾 − 1)/2 members, the committee machine version of the proposed approach uses 𝐾𝐾(𝐾𝐾 −
1)2/2 binary classifiers. As a result, the computational requirement will increase proportionally. This factor 
should be taken into consideration when implementing the proposed committee machine approach for real-
time classification tasks. 

SECTION IV. Experimental Results 
The first part of this section compares the approach developed in Section II with three conventional methods by 
using them to solve ten real-world problems obtained from the University of California at Irvine, Irvine, 
repository of machine learning databases and domain theories [10]. The contents of these ten data sets are 
summarized in Table I.  
 
Table I Summary of the Tested Data Sets 
 

Dataset Number of Samples Number of Classes Number of Features 
Iris 150 3 4 
Balance-scale 625 3 4 
Lymphography 148 4 18 
Hypothyroid 3372 4 28 
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Vehicle 846 4 18 
Car-evaluation 1728 4 6 
Satimage 6435 6 36 
Glass 214 6 9 
Segmentation 2310 7 18 
Yeast 1484 10 8 
Pendigits 10992 10 16 
Vowel 990 11 10 
Krk 28056 18 6 

 

Table II Classification Accuracy and Computational Cost of the Single Classifier 
 

Dataset Classification Accuracy Computing Time (sec) 
Iris 96.67±4.43 2.2 
Balance-scale 90.64±3.47 13.5 
Lymphography 82.50±8.94 3.5 
Hypothyroid 96.50±1.13 188.8 
Vehicle 80.52±4.10 40.5 
Car-evaluation 92.30±1.77 54.9 
Satimage 86.21±1.29 232.2 
Glass 64.33±10.05 6.4 
Segmentation 93.13±1.73 117.0 
Yeast 56.22±3.57 65.2 
Pendigits 94.66±0.70 513.9 
Vowel 73.18±3.97 128.7 
Krk 39.61±0.93 2462.8 

 

In testing these methods, the multilayered perceptron (MLP) is chosen as the base classifier [11]–[12][13]. The 
numbers of hidden layers and units are chosen as one and five, respectively. No effort has been made to 
optimize the structure of the MLP. The initial weights are generated randomly from a uniform distribution 
between 0–0.1. The MLP error measure is chosen as the conventional mean square error with the error defined 
as the difference between the desired and actual outputs. In this study, the MLP is trained by adaptive boosting 
(AdaBoost) [14]. The reason for using AdaBoost is that many empirical studies have shown that it can 
significantly improve the performance of the neural classifiers and is relatively insensitive to overfitting (e.g., 
[15]). 
 
In comparing the tested methods, the data set is divided into training, validation and testing subsets with an 
8:1:1 ratio. The training subset is used to adjust the connection weights of the MLP. The validation subset is used 
by the early-stop technique to avoid overfitting. The testing subset is used to characterize the generalization 
accuracy of the MLP. For the sake of reliability, the training process is repeated 100 times by using randomly 
partitioned training, validation, and testing subsets. This paper reports the average of the testing subset 
classification accuracy. 
 
The experimental studies were performed using an AMD XP 1700+ based PC. To set up the basis for 
comparisons, the problems were first solved using a single MLP. Table II presents the means of the classification 
accuracy and the computing times averaged from 100 trials for each data set. Here, the classification accuracy is 
defined as the percentage of the correctly classified testing samples. Table III summarizes the means and the 
standard deviations of the classification accuracy associated with the three decomposition methods. By 



comparing these results with the results of the single classifier of Table II, it can be seen that the 1-a-a method 
achieves higher accuracy in six of the ten tested problems and the 1-a-1 method gives a smaller classification 
error in seven of the ten problems. In contrast, the proposed approach outperforms the single classifier method 
in all of the tested problems. In addition, the proposed approach has the smallest classification error in all but 
the last tested problem. 
 
Table III Summary of Classification Accuracy for the Tested Classification Problem (𝐾𝐾 = 10) 
 

Data set Tested Methods   
 1-a-a 1-a-1 1-at-a-time 
Iris 95.81±5.23 95.53±5.59 96.67±4.43 
Balance-scale 94.42±3.06 95.21±2.98 95.89±2.76 
Lymphography 83.18±8.71 82.54±8.82 83.21±9.05 
Hypothyroid 94.93±1.01 96.13±1.39 96.88±0.81 
Vehicle 81.02±3.86 81.93±3.71 82.43±4.14 
Car-evaluation 97.82±1.11 97.62±1.36 98.05±1.06 
Satimage 89.85±1.27 90.81±1.11 90.95±1.17 
Glass 45.64±12.29 61.33±10.04 66.00±9.41 
Segmentation 96.50±1.13 96.39±1.33 97.01±1.14 
Yeast 50.86±1.42 57.41±2.95 56.38±5.78 

 
To compare the computational cost, Table IV summarizes the computing time ratio of the three decomposition 
methods. Here, the computing time ratio is defined as the ratio of computing time of the tested decomposition 
method to the computing time of the single MLP. As expected, among the four tested methods, the proposed 
approach is computationally least efficient. In addition, as shown in Table IV, the computational cost of the 
proposed approach increases rapidly with the dimension of the classification problem. For example, for the ten-
class yeast problem, the computing time of the proposed approach is three orders of magnitude larger than that 
of the single classifier. In contrast, computationally, the 1-a-a and 1-a-1 methods are only about four times 
slower than the single classifier.  
 
Table IV Summary of Computing Time Ratio with Respect to Single Classifier Approach (𝐾𝐾 = 10) 
 

Data set Tested Methods   
 1-a-a 1-a-1 1-at-a-time 
Iris 1.5 2.9 4.3 
Balance-scale 5.2 3.6 8.7 
Lymphography 3.1 6.6 16.2 
Hypothyroid 2.1 2.6 10.7 
Vehicle 2.3 3.6 14.3 
Car-evaluation 2.9 7.3 24.6 
Satimage 6.0 21.0 197.0 
Glass 2.1 2.7 50.1 
Segmentation 3.0 7.3 210.5 
Yeast 3.7 4.0 1180.9 

 
In responding to this difficulty, the partial decomposition technique is tested on the last four problems of Table I 
for which the number of classes is ten or greater. In applying the technique, the number of classes to be 
decomposed 𝑀𝑀 is chosen as 3, 4, 5, and 6. In addition, since the basic version of the proposed approach is less 
accurate than the 1-a-1 method in dealing with the ten-class yeast problem, the proposed committee machine 



method is employed in this part of the experiments. The resulting classification accuracies and computing time 
ratios are summarized in Tables V and VI, respectively. 
 
As shown in Table V, even with partial decomposition, the proposed suboptimal one-class-at-a-time approach 
outperforms the 1-a-1 method in all four problems. As 𝑀𝑀 increases, the classification accuracy improves. Also, as 
shown in Table VI, the computational cost also increases with M. However, with the partial decomposition, this 
cost has been reduced significantly. For example, for the ten-class yeast problem, the partial decomposition 
reduces the computing time ratio from 1180.9 to 36.15 (for M=6 or better), demonstrating the effectiveness of 
the partial decomposition. 

SECTION V. Conclusion 
Table V Summary of Classification Accuracy for the Tested Classification Problem (𝐾𝐾 = 10) 
 

Dataset   Method   
 1-a-1 One-class-at-a-time  Committee Machine  
  M=3 M=4 M=5 M=6 
Yeast 58.09±3.85 58.10±3.82 58.24±3.86 58.42±3.69 58.58±3.72 
Pendigit 98.55±0.39 98.57±0.38 98.78±0.34 98.95±0.30 99.07±0.29 
Vowel 84.74±4.57 85.08±4.60 87.19±4.17 88.59±3.74 90.23±3.43 
Krk 50.50±0.77 50.36±0.76 50.70±0.75 50.84±0.79 51.06±0.80 

 
Table VI Summary of Computing Time Ratio with Respect to Single Classifier Approach (𝐾𝐾 = 10) 
 

Dataset   Method   
 1-a-1 One-class-at-a-time  Committee Machine  
  M=3 M=4 M=5 M=6 
Yeast 2.67 3.43 7.45 16.60 36.15 
Pendigit 2.44 3.67 6.19 14.73 37.91 
Vowel 3.30 3.65 6.4 12.95 38.14 
Krk 2.88 3.20 4.32 6.98 13.56 

 

This paper proposes a one-class-at-a-time method to decompose a multiclass problem into a number of two-
class problems. In particular, the basic version of the proposed approach splits a 𝐾𝐾class problem into 𝐾𝐾 − 1 two-
class problems. The planning of the one-class-at-a-time removal sequence is formulated as a multistage 
decision-making problem, which is then solved using dynamic programming. 
 
To reduce the computational cost of the proposed approach, which increases rapidly with the number of 
classes, a partial decomposition technique is introduced to determine the suboptimal solution. By using the one-
class-at-a-time removal sequence to alleviate the ineffective decision problem, this paper also develops a 
committee machine framework to improve the classification accuracy. 
 
Experimental results show that the proposed approach consistently provides higher classification accuracy than 
the conventional single classifier 1-a-a and 1-a-1 methods when the number of classes is less than ten. However, 
for a tested ten-class problem, the computational cost of the proposed approach is three orders of magnitude 
larger than that of the single classifier method. By applying the partial decomposition technique, this 
computational cost can be reduced by a factor of about 30 or better. In addition, with the assistance of the 
proposed committee machine framework, the suboptimal solution produced by the partial decomposition 
technique provides better classification accuracy than conventional methods. 
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