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Robust PI controller design satisfying 
sensitivity and uncertainty specifications 
 
Obed Yaniv  

Department of Electrical. Engineering Systems, Tel Aviv University, Israel 

Mark Nagurka  

Department of Mechanical Engineering, Marquette University 
 

ABSTRACT 
This paper presents a control design method for determining proportional-integral-type controllers satisfying 
specifications on gain margin, phase margin, and an upper bound on the (complementary) sensitivity for a finite 
set of plants. The approach can be applied to plants that are stable or unstable, plants given by a model or 
measured data, and plants of any order, including plants with delays. The algorithm is efficient and fast, and as 
such can be used in near real-time to determine controller parameters (for online modification of the plant 
model including its uncertainty and/or the specifications). The method gives an optimal controller for a practical 
definition of optimality. Furthermore, it enables the graphical portrayal of design tradeoffs in a single plot, 
highlighting the effects of the gain margin, complementary sensitivity bound, low frequency sensitivity and high 
frequency sensor noise amplification. 
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SECTION I. INTRODUCTION 
Although many methods for tuning proportional–integral (PI) and proportional–integral-derivative (PID) 
controllers exist, extensive research in design techniques continues, driven by the strong use of such controllers 
in industry. Depending on the types of specifications that the design must satisfy, the tuning methods reported 
in the literature can be summarized as falling into one of two categories. 
 
One class of methods considers gain and phase margin specifications. Ho et al. [1], [2] developed simple 
analytical formulae to tune PI and PID controllers for commonly used first-order and second-order plus dead-
time plant models to meet gain and phase margin specifications. Ho et al. [3], [4] reported tuning formulae for 
the design of PID controllers that satisfy both robustness and performance requirements. Crowe and Johnson [5] 
presented an automatic PI control design algorithm to satisfy gain and phase margin based on a converging 
algorithm. Suchomoski [6] developed a tuning method for PI and PID controllers that can shape the nominal 
stability, transient performance, and control signal to meet gain and phase margins. 
 
A second class of design methods focuses on sensitivity specifications, and is based on the premise that gain and 
phase margin specifications may fail to guarantee a reasonable bound on the sensitivity. Ogawa [7] used the 
QFT-framework to propose a PI design technique that satisfies a bound on the sensitivity for an uncertain plant. 
Poulin and Pomerleau [8] developed a PI design methodology for integrating processes that bounds the 
maximum peak resonance of the closed loop. The peak resonance constraint is equivalent to bounding the 
complementary sensitivity, which can be converted to bounding the sensitivity. Cavicchi [9] described a design 
method for bounding the sensitivity while achieving desired steady-state performance. The method can also be 
applied to measured data. However, plant uncertainty is not considered, and the procedure fits a simple 
compensation structure. Crowe and Johnson [10] reported a design approach to find a PI/PID controller that 
bounds the sensitivity while satisfying a phase margin condition. Kristiansson and Lennartson [11] emphasized 
the need to bound the sensitivity and complementary sensitivity. They suggested the use of an optimization 
routine to design PI and PID controllers with low-pass filters on the derivative gain to optimize for control 
efforts, disturbance rejection and bound on the sensitivity. They also provided tuning rules for nonoscillatory 
stable plants and plants with a single integrator. Astrom et al. [12] described a numerical method for designing 
PI controllers based on optimization of load disturbance rejection with constraints on sensitivity and weighting 
of set point response. 
 
Other investigators have pursued research into tuning methods. For example, Yeung et al. [13] presented a 
nontrial and error graphical design technique for controller design of the lead-lag structure that enables 
simultaneous fulfillment of gain margin, phase margin and crossover frequency. 
 
These papers and many others apply gain and phase margin constraints in finding PI and PID controller designs. 
Some add limitations on the (complementary) sensitivity. However, there are several differences between 
approaches reported in the literature and the idea proposed here. First, the approach here bounds the 
sensitivity of the closed-loop transfer function for all frequencies, not just at the crossover frequencies where 
the gain and phase margins are satisfied. Second, the approach developed here accounts for plant uncertainty, 
in that the controller design must satisfy the specifications for a set of plants. Third, the approach presented 
provides explicit equations to determine the set of all possible controllers. Fourth, with this method it is possible 
to extract the optimal control design solution for many practical optimization criteria. Fifth, the algorithm can be 
applied to many types of plants, including continuous and discrete plants, plants with pure delay, nonminimum 
phase plants, and stable and unstable plants. Sixth, since the algorithm uses explicit equations, and not 
optimization routines, it is very fast. 
 



SECTION II. PROBLEM STATEMENT 
Consider an open-loop transfer function, 𝐿𝐿(𝑠𝑠) 
 

𝐿𝐿(𝑠𝑠) = 𝐶𝐶(𝑠𝑠)𝑃𝑃(𝑠𝑠) (1) 
 
where 𝑃𝑃(𝑠𝑠) is a member of a finite set of plants, 𝑃𝑃1(𝑠𝑠), … ,𝑃𝑃𝑛𝑛(𝑠𝑠), and 𝐶𝐶(𝑠𝑠) is a PI controller 

 

𝐶𝐶(𝑠𝑠) = 𝑎𝑎(1+𝑏𝑏𝑏𝑏)
𝑏𝑏

. (2) 

 
The gain and phase margin conditions, the typical measures of robustness, are replaced by a condition on the 
closed-loop sensitivity inequality 
 

| 1
1+𝑘𝑘𝑘𝑘(𝑏𝑏)

| ≤ 𝑀𝑀for𝑠𝑠 = 𝑗𝑗𝑗𝑗,∀𝑗𝑗 ≥ 0,𝑘𝑘 ∈ [1,𝐾𝐾] (3) 

where the sensitivity bound 𝑀𝑀 > 1 and the gain uncertainty of the plant, 𝑘𝑘, is in the interval [1 𝐾𝐾,]. It can be 
shown [14] that when arg 𝐿𝐿(𝑗𝑗𝑗𝑗) = −𝜋𝜋rad, then (3) requires |𝐿𝐿(𝑗𝑗𝑗𝑗)| ≤ (𝑀𝑀− 1)/𝑀𝑀 for 𝐾𝐾 = 1 and, thus, the 
gain margin for a given 𝐾𝐾 is at least 

 

𝐺𝐺𝑀𝑀 = 20log10 (𝐾𝐾) + 20log10 ( 𝑀𝑀
𝑀𝑀−1

).  (4) 
 
Similarly, when |𝐿𝐿(𝑗𝑗𝑗𝑗)| = 1, (3) requires arg 𝐿𝐿(𝑗𝑗𝑗𝑗) > −𝜋𝜋 + 2arcsin [(2𝑀𝑀)−1] and, thus, the phase margin is at 
least 
 

𝑃𝑃𝑀𝑀 = 2arcsin ( 1
2𝑀𝑀

). (5) 
 
Inequality (3) is a more encompassing measure of robustness than gain and phase margin. It places a bound on 
the sensitivity at all frequencies, not just at the two frequencies associated with the gain and phase margins. 
 
The design problem of interest is to find all (𝑎𝑎, 𝑏𝑏) pairs that satisfy (3) for all 𝑃𝑃(𝑠𝑠) ∈ [𝑃𝑃1(𝑠𝑠), … ,𝑃𝑃𝑛𝑛(𝑠𝑠)]. For plants 
that include at least one integrator, the sensitivity is proportional to 1/𝑎𝑎 at low frequencies, and for any plant 
the sensor noise at the plant input is amplified by 𝑎𝑎𝑏𝑏 at high frequencies. As such, it is of particular interest to 
find the pair (𝑎𝑎, 𝑏𝑏) for which 𝑎𝑎 is maximum and its associated 𝑎𝑎𝑏𝑏 is smallest. 

SECTION III. MAIN RESULTS 
To determine the (𝑎𝑎, 𝑏𝑏) values for which the closed-loop system is stable and (3) is satisfied, consider first the 
special case of no gain uncertainty, i.e., 𝐾𝐾 = 1, and a single plant 𝑃𝑃(𝑠𝑠). Splitting 𝑃𝑃(𝑠𝑠) for 𝑠𝑠 = 𝑗𝑗𝑗𝑗 into its real and 
imaginary parts, 𝑃𝑃(𝑗𝑗𝑗𝑗) = 𝐴𝐴(𝑗𝑗) + 𝑗𝑗𝑗𝑗(𝑗𝑗), and substituting it and (2) into (3) gives 
 

𝐷𝐷𝑎𝑎2(1 + 𝑏𝑏2𝑗𝑗2) + 2𝑎𝑎𝐴𝐴 − 2𝑎𝑎𝑏𝑏𝑗𝑗𝑗𝑗 + 1 −𝑀𝑀−2 ≥ 0∀𝑗𝑗 ≥ 0 (6) 
 
where 𝐷𝐷 = 𝐴𝐴2 + 𝑗𝑗2. For an (𝑎𝑎, 𝑏𝑏) pair which is on the boundary region of the allowed (𝑎𝑎, 𝑏𝑏) values, there exists 
𝑗𝑗  such that (6) is an equality. Moreover, since at that particular 𝑗𝑗, (6) is minimum, its derivative (with respect 
to 𝑗𝑗) at the same 𝑗𝑗 is zero. Thus 
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[2𝐸𝐸(1 + 𝑏𝑏2𝑗𝑗2) + 2𝐷𝐷𝑗𝑗𝑏𝑏2]𝑎𝑎 + 2𝐴𝐴
˙
− 2𝑏𝑏(𝑗𝑗𝑗𝑗

˙
+ 𝑗𝑗) = 0  (7) 

 

where 𝐸𝐸 = 𝐴𝐴𝐴𝐴
˙

+ 𝑗𝑗𝑗𝑗
˙
 and the dot indicates derivative with respect to 𝑗𝑗. From (7) 

 

𝑎𝑎 = −𝐴𝐴
˙
+𝑏𝑏𝑏𝑏𝐵𝐵

˙
+𝑏𝑏𝐵𝐵

𝐸𝐸+𝐸𝐸𝑏𝑏2𝑏𝑏2+𝐷𝐷𝑏𝑏𝑏𝑏2
. (8) 

 
Substituting (8) into the equality of (6) gives a fourth-order equation for 𝑏𝑏 
 

𝑥𝑥4𝑏𝑏4 + 𝑥𝑥3𝑏𝑏3 + 𝑥𝑥2𝑏𝑏2 + 𝑥𝑥1𝑏𝑏 + 𝑥𝑥0 = 0 (9) 
 

where 𝑄𝑄 = 1 −𝑀𝑀2 and  
 

𝑥𝑥4 = (𝑄𝑄𝐸𝐸2 − 2𝑗𝑗𝑗𝑗
˙
𝐸𝐸 + 𝐷𝐷𝑗𝑗

˙
2)𝑗𝑗4 + (−2𝑗𝑗2𝐸𝐸 + 2𝑄𝑄𝐸𝐸𝐷𝐷)𝑗𝑗3

+(−𝐷𝐷𝑗𝑗2 + 𝑄𝑄𝐷𝐷2)𝑗𝑗2

𝑥𝑥3 = (2𝑗𝑗𝐴𝐴
˙
𝐸𝐸 + 2𝐴𝐴𝑗𝑗

˙
𝐸𝐸 − 2𝐷𝐷𝐴𝐴

˙
𝑗𝑗
˙
)𝑗𝑗3

+(2𝐴𝐴𝑗𝑗𝐸𝐸 + 2𝐴𝐴𝑗𝑗
˙
𝐷𝐷)𝑗𝑗2 + 2𝐴𝐴𝑗𝑗𝐷𝐷𝑗𝑗

𝑥𝑥2 = (𝐷𝐷𝑗𝑗
˙
2 + 𝐷𝐷𝐴𝐴

˙
2 + 2𝑄𝑄𝐸𝐸2 − 2𝐴𝐴𝐴𝐴

˙
𝐸𝐸 − 2𝑗𝑗𝑗𝑗

˙
𝐸𝐸)𝑗𝑗2

+(2𝑄𝑄𝐸𝐸𝐷𝐷 − 2𝐴𝐴𝐴𝐴
˙
𝐷𝐷 − 2𝑗𝑗2𝐸𝐸 + 2𝐷𝐷𝑗𝑗

˙
𝑗𝑗)𝑗𝑗 + 𝐷𝐷𝑗𝑗2

𝑥𝑥1 = (2𝑗𝑗𝐴𝐴
˙
𝐸𝐸 + 2𝐴𝐴𝑗𝑗

˙
𝐸𝐸 − 2𝐷𝐷𝐴𝐴

˙
𝑗𝑗
˙
)𝑗𝑗 − 2𝐷𝐷𝐴𝐴

˙
𝑗𝑗 + 2𝐴𝐴𝑗𝑗𝐸𝐸

𝑥𝑥0 = −2𝐴𝐴𝐴𝐴
˙
𝐸𝐸 + 𝐷𝐷𝐴𝐴

˙
2 + 𝑄𝑄𝐸𝐸2

.  
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Fig. 1. Region of (𝑎𝑎, 𝑏𝑏) values for 𝑀𝑀 = 1.46, equivalent to 40° phase margin (𝑃𝑃𝑀𝑀) or greater and 10-dB-gain 
margin or greater (𝐺𝐺𝑀𝑀 for 𝐾𝐾 = 1) for Example 1. Lower shaded region is for 𝑀𝑀 = 1.46 with additional 6-dB-
plant gain uncertainty (𝐾𝐾 = 2) for a total of 16-dB or greater 
 
The allowed (𝑎𝑎, 𝑏𝑏) region for a given 𝑀𝑀 value can be calculated as follows: For a given 𝑗𝑗 solve (9) for 𝑏𝑏 Noting 
that 𝑏𝑏 has four solutions (for a given 𝑗𝑗), select the positive real solution for which the resulting closed-loop 
system is stable and (3) is satisfied for 𝐾𝐾 = 1. Then, use (8) to find its corresponding 𝑎𝑎. Searching over a range of 
frequencies 𝑗𝑗 enables the boundary of the (𝑎𝑎, 𝑏𝑏) region to be identified.  
 

 

Fig. 2. Boundary curves of (𝑎𝑎, 𝑏𝑏) region that satisfy |(1/1 + 𝐿𝐿)| < 𝑀𝑀 for Example 1. Marked on the right of each 
curve is its 𝑀𝑀 value, minimal phase margin (𝑃𝑃𝑀𝑀) and minimal gain margin (𝐺𝐺𝑀𝑀 in dB for 𝐾𝐾 = 1) according to (4) 
and (5) 
 
Remark 3.1 
A PI controller exists if and only if there exists a frequency for which an (𝑎𝑎, 𝑏𝑏) pair solving (9) can be found for 
which the resulting closed-loop system is stable and (3) for 𝐾𝐾 = 1 is satisfied. If a PI controller does not exist and 
is required, try increasing 𝑀𝑀. 
 

A. Example 1: Simplified dc Motor 
Consider the plant 
 

𝑃𝑃(𝑠𝑠) = 1
𝑏𝑏(1+ 𝑠𝑠

10) (10) 

 
which can represent a simplified model of an armature-controlled dc motor with the input being motor current 
and the output being speed. For this plant  
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𝐴𝐴(𝑗𝑗) =
−10

(100 + 𝑗𝑗2)
𝐴𝐴
˙
(𝑗𝑗) =

20𝑗𝑗
(100 + 𝑗𝑗2)2

𝑗𝑗(𝑗𝑗) =
−100

𝑗𝑗(100 + 𝑗𝑗2)
𝑗𝑗
˙
(𝑗𝑗) =

100(100 + 3𝑗𝑗2)
𝑗𝑗2(100 + 𝑗𝑗2)2

.
 

 
Fig. 1 depicts the (𝑎𝑎, 𝑏𝑏) values for the particular case of 𝑀𝑀 = 1.46, which is equivalent to a 40° phase margin or 
greater and a 10-dB-gain margin or greater. [The (𝑎𝑎, 𝑏𝑏) values fall in both shaded regions.] Fig. 1 can also be 
used to find the (𝑎𝑎, 𝑏𝑏) values which satisfy any gain margin constraint. For example, if 6-dB-gain margin 
uncertainty is desired (i.e., 𝐾𝐾 = 2), then for any 𝑏𝑏, the allowed 𝑎𝑎 values should be 6-dB less in order to cope with 
the increase in uncertainty. The (𝑎𝑎, 𝑏𝑏) region will, therefore, be the lower shaded region depicted in Fig. 1 where 
the upper curve is shifted down by 6 dB. The maximum a for 𝐾𝐾 = 1 occurs at (𝑎𝑎, 𝑏𝑏) = (18.2dB, 0.67) and 
maximum 𝑎𝑎 for 𝐾𝐾 = 2 occurs at (𝑎𝑎, 𝑏𝑏) = (12.2dB, 0.67), giving the controller designs corresponding to lowest 
sensitivity at low frequencies. Note that if gain uncertainty 𝐾𝐾 is required then a solution is guaranteed only if 
there exists at least a single 𝑏𝑏 corresponding to a range of 𝑎𝑎 values in an interval [𝑎𝑎1,𝑎𝑎2] such that 𝑎𝑎2/𝑎𝑎1 ≥ 𝐾𝐾. 
 
The solution for several 𝑀𝑀 values for plant (10) is depicted in Fig. 2. Each curve is the boundary of the allowed 
(𝑎𝑎, 𝑏𝑏) values for a given 𝑀𝑀. The corresponding 𝑃𝑃𝑀𝑀 and 𝐺𝐺𝑀𝑀 values indicated are the minimum values along the 
boundary curve, i.e., the 𝑃𝑃𝑀𝑀 and 𝐺𝐺𝑀𝑀 are equal or greater along the curve. 
 

B. Extension to Complementary Sensitivity 
Replacing the sensitivity margin constraint (3) by the complementary sensitivity 
 

| 𝑘𝑘𝑘𝑘(𝑗𝑗𝑏𝑏)
1+𝑘𝑘𝑘𝑘(𝑗𝑗𝑏𝑏)

| ≤ 𝑀𝑀∀𝑗𝑗 ≥ 0,𝑘𝑘 ∈ [1,𝐾𝐾] (11) 

 

it can be shown that 𝐿𝐿 = 𝐿𝐿0satisfies (3) if and only if 𝐿𝐿 = (𝑀𝑀2/𝑀𝑀2 − 1)𝐿𝐿0satisfies (11). This leads to the 
following corollary: If (𝑎𝑎, 𝑏𝑏) is a pair that solves the problem stated in Section II, then the pair  
 

�
𝑀𝑀2 − 1
𝑀𝑀2 𝑎𝑎, 𝑏𝑏� 

 
solves the same problem where (3) is replaced by (11). 

SECTION IV. OPTIMIZATION 
The answer to the question “Which is the best (𝑎𝑎, 𝑏𝑏) pair?” of course depends on the optimization criterion. 
Seron and Goodwin [15] note that “In general, the process noise spectrum is typically concentrated at low 
frequencies, while the measurement noise spectrum is typically more significant at high frequencies.” It follows 
that an optimal controller can be found by weighting the performance at low frequencies and noise at high 
frequencies. Since the high frequency noise is proportional to 𝑎𝑎𝑏𝑏 and the low frequency performance to 𝑎𝑎, the 
optimal solution must lie on the boundary of the (𝑎𝑎, 𝑏𝑏) curve. Moreover, if there exists more than one boundary 
pair for the same 𝑎𝑎, the one with the lowest 𝑎𝑎𝑏𝑏 will be the best. The same condition appears in Kristiansson and 
Lennartson [11] who proposed several evaluation criteria, one being the ability of the system to handle low 
frequency load disturbance, represented here by parameter 𝑎𝑎. 
 
Note that if the open-loop system does not include an integrator, the maximum gain may not correspond to a 
practical optimal choice. 
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SECTION V. EXTENSION TO UNCERTAIN PLANTS 
Assume that the plant, 𝑃𝑃(𝑠𝑠), is known to be one of a finite set of plants, 𝑃𝑃1(𝑠𝑠), … ,𝑃𝑃𝑛𝑛(𝑠𝑠). The controller design 
challenge here is to find all (𝑎𝑎, 𝑏𝑏) pairs that solve the problem stated in Section II where 𝑃𝑃(𝑠𝑠) can be any 
member of the set. This (𝑎𝑎, 𝑏𝑏) region will be the intersection of all (𝑎𝑎, 𝑏𝑏) regions of members of the set (if this 
intersection region is empty, then there exists no PI solution). As an example, consider the plant set  
 

𝑃𝑃(𝑠𝑠) =
gain

𝑠𝑠 �1 + 𝑠𝑠
pole�

for gain = [1,3]

                                                                      and pole = [10,12,14,16,18,20]

 

where 𝑀𝑀 = 1.46 as before. Fig. 3 shows the intersection as the shaded region. The pair corresponding to 
maximum 𝑎𝑎 is (𝑎𝑎, 𝑏𝑏) = (8.6dB, 0.62). 

 

 

Fig. 3. Boundary curves of (𝑎𝑎, 𝑏𝑏) region that satisfy |(1/1 + 𝐿𝐿)| < 𝑀𝑀 for 𝑀𝑀 = 1.46 for a set of plants. The 
intersection of all regions is the allowed region. 𝑀𝑀 = 1.46 is equivalent to 40° phase margin (𝑃𝑃𝑀𝑀) or greater 
and 10-dB-gain margin or greater 

SECTION VI. DISCRETE PI CONTROLLERS 
The problem can be recast in its discrete form, where the plant is 𝑃𝑃(𝑧𝑧)and the controller (2) is replaced by its 
discrete equivalent  
 

𝐶𝐶(𝑧𝑧) = 𝑎𝑎𝑑𝑑�1 + 𝑏𝑏𝑑𝑑(1− 𝑧𝑧−1)�. 
 

Using the bilinear transformation, 𝑧𝑧 = ((1 + 𝑗𝑗Ω)/(1 − 𝑗𝑗Ω)) where Ω = 𝑗𝑗𝑗𝑗𝑗𝑗/2, the plant can be written in the 
form 𝑃𝑃((1 + 𝑗𝑗Ω)/(1 − 𝑗𝑗Ω)), the controller in the form  
 

𝐶𝐶(Ω) =
𝑎𝑎𝑑𝑑(1 + (2𝑏𝑏𝑑𝑑 + 1)𝑗𝑗Ω)

1 + 𝑗𝑗Ω  

 

and the open-loop transfer function in the form  

https://ieeexplore.ieee.org/document/#deqn2
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9/27897/1245205/1245205-fig-3-source-large.gif


 

𝐿𝐿(Ω) = 𝑎𝑎𝑑𝑑(1 + (2𝑏𝑏𝑑𝑑 + 1)𝑗𝑗Ω)
𝑃𝑃((1 + 𝑗𝑗Ω)

(1 − 𝑗𝑗Ω))

1 + 𝑗𝑗Ω . 

 
The latter three equations translate the discrete problem into the one previously defined for finding the (ad, bd) 
region. The procedure is as follows: Solve the problem defined in Section II where 𝑃𝑃(𝑧𝑧) at frequencies on the 
unit circle is replaced by 𝑃𝑃((1 + 𝑗𝑗Ω)/(1 − 𝑗𝑗Ω))/(1 + 𝑗𝑗Ω) to determine the (𝑎𝑎, 𝑏𝑏) region. Then, (𝑎𝑎𝑑𝑑, 𝑏𝑏𝑑𝑑) will be 
the region defined by (𝑎𝑎, (𝑏𝑏 − 1)/2). 
 

SECTION VII. CONCLUSION 
The note presents explicit equations for calculating PI controllers that simultaneously stabilize a given set of 
plants and satisfy design specifications, namely gain margin and phase margin constraints and a bound on the 
(complementary) sensitivity, for continuous as well as discrete-time systems. The algorithm fits any plant 
dimension including pure delay. Moreover, the algorithm answers the question if a solution whose bandwidth is 
in a given interval exists or not. 
 
The two parameters of PI controllers satisfying the constraints correspond to a domain in a plane whose 
boundary is a curve given explicitly. For a practical optimization criterion presented here, the optimal controller 
lies on the curve. By inspection, the design plot enables identification of the PI controller for desired robustness 
conditions, and in particular, gives the PI controller for lowest sensitivity. Tradeoffs among high-frequency 
sensor noise, low frequency sensitivity, and gain and phase margin constraints are also directly available. 
 
The algorithm can be executed very fast for highly uncertain plants, and as such the controller design can be 
updated in near real-time to reflect changes in plant uncertainty and/or closed-loop specifications. 
 
Work on extending the PI algorithm proposed here to the important class of PID controllers and to controllers 
based on extended PID structures, such as PID controllers with filtered D-terms, is now in progress. 
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