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Abstract 
Key points 

• Knee-extensors demonstrate greater fatigue resistance in females compared to males during single-limb 
and whole-body exercise. For single-limb exercise, the intensity–duration relationship is different 
between sexes, with females sustaining a greater relative intensity of exercise. 

• This study established the power–duration relationship during cycling, then assessed fatigability during 
critical power-matched exercise within the heavy and severe intensity domains. 

• When critical power and the curvature constant were expressed relative to maximal ramp test power, 
no sex difference was observed. No sex difference in time to task failure was observed in either trial. 

• During heavy and severe intensity cycling, females experienced lesser muscle de-oxygenation. Following 
both trials, females experienced lesser reductions in knee-extensor contractile function, and following 
heavy intensity exercise, females experienced less reduction in voluntary activation. 

• These data demonstrate that whilst the relative power–duration relationship is not different between 
males and females, the mechanisms of fatigability during critical power-matched exercise are mediated 
by sex. 

Abstract 
Due to morphological differences, females demonstrate greater fatigue resistance of locomotor muscle during 
single-limb and whole-body exercise modalities. Whilst females sustain a greater relative intensity of single-limb, 
isometric exercise than males, limited investigation has been performed during whole-body exercise. 
Accordingly, this study established the power–duration relationship during cycling in 18 trained participants 
(eight females). Subsequently, constant-load exercise was performed at critical power (CP)-matched intensities 
within the heavy and severe domains, with the mechanisms of fatigability assessed via non-invasive 
neurostimulation, near-infrared spectroscopy and pulmonary gas exchange during and following exercise. 
Relative CP (72 ± 5 vs. 74 ± 2% Pmax, P = 0.210) and curvature constant (51 ± 11 vs. 52 ± 10 J Pmax

−1, P = 0.733) of 
the power–duration relationship were similar between males and females. Subsequent heavy (P = 0.758) and 
severe intensity (P = 0.645) exercise time to task failures were not different between sexes. However, females 
experienced lesser reductions in contractile function at task failure (P ≤ 0.020), and greater vastus lateralis 
oxygenation (P ≤ 0.039) during both trials. Reductions in voluntary activation occurred following both trials 



(P < 0.001), but were less in females following the heavy trial (P = 0.036). Furthermore, during the heavy 
intensity trial only, corticospinal excitability was reduced at the cortical (P = 0.020) and spinal (P = 0.036) levels, 
but these reductions were not sex-dependent. Other than a lower respiratory exchange ratio in the heavy trial 
for females (P = 0.039), no gas exchange variables differed between sexes (P ≥ 0.052). Collectively, these data 
demonstrate that whilst the relative power–duration relationship is not different between males and females, 
the mechanisms of fatigability during CP-matched exercise above and below CP are mediated by sex. 

Introduction 
The exercise intensity–duration relationship is a phenomenon that permits mechanistic insight into the 
metabolic demands and physiological consequences of exercise within distinct intensity domains 
(Jones et al. 2010; Poole et al. 2016; Burnley & Jones, 2018). The relationship between exercise intensity and 
maximal sustainable duration is hyperbolic at severe intensities, with the asymptote of the curve, the so-called 
critical power (CP), representing the threshold between exercise that is sustainable via a steady state of 
substrate utilisation and re-synthesis, and exercise that requires ATP re-synthesis from substrate-level 
phosphorylation (Poole et al. 2016). Exercising above CP therefore leads to a progressive loss of intramuscular 
homeostasis, and impairment of the contractile apparatus (Vanhatalo et al. 2010; Schäfer et al. 2019). Below the 
CP, substrate-level phosphorylation and the associated accumulation of metabolites are maintained at a steady 
rate, permitting a 4–5 times slower rate of fatigability (Burnley et al. 2012; Thomas et al. 2016). 

Recent evidence has shown that the power–duration relationship differs between males and females for 
intermittent, isometric knee-extensor exercise (Ansdell et al. 2019a). The mechanism for this is probably a result 
of morphological differences within the exercising musculature in comparison to males. For instance, within the 
vastus lateralis (VL) the proportional area of type I muscle fibres is greater in females (Simoneau & 
Bouchard, 1989; Staron et al. 2000; Roepstorff et al. 2006), and differences in sarcoplasmic reticulum calcium 
activity in response to fatiguing exercise, are evident between sexes (Harmer et al. 2014). Furthermore, the 
female VL has a greater capillary density per unit of skeletal muscle (Roepstorff et al. 2006), and an augmented 
vasodilatory response of the femoral artery to exercise (Parker et al. 2007); collectively, these physiological 
differences could augment the delivery of oxygen to the working muscle. Indeed, VL type I fibre proportion 
(Vanhatalo et al. 2016) and capillarisation (Mitchell et al. 2018a) are positively correlated with aerobic exercise 
performance indices such as CP during cycling in males and mixed-sex samples, providing a potential explanation 
for why females are able to sustain a greater relative exercise intensity than males during an isometric exercise 
paradigm (Ansdell et al. 2019a). 

Whilst the data from Ansdell et al. (2019a) provide mechanistic insight into the sex difference in fatigability 
during single-limb exercise (e.g. Hunter et al. 2006; Yoon et al. 2007b; Russ et al. 2008; Ansdell et al. 2017), it 
does not fully explain why a similar sex difference is demonstrated during whole-body exercise 
(Glace et al. 2013; Temesi et al. 2015). To date, it remains unclear whether the power–duration relationship is 
different between sexes, and whether a sex difference in fatigability exists if exercise to exhaustion is performed 
relative to CP for whole-body exercise. Sundberg et al. (2016) provided an initial investigation into this topic, 
assessing the power–duration relationship during bouts ranging from 8 to 283 s, and average power during a 
3 min all-out test. The authors suggested no sex difference in the time constant of ‘performance loss’, or 
maximum sustainable power. However, exercise bouts spanned both the severe and the extreme intensity 
domains, with the latter being defined by the attainment of task failure prior to the attainment of maximal 
oxygen uptake (�̇�𝑉O2max, Burnley & Jones, 2018). Therefore, limited conclusions can be drawn regarding 
fatigability within and between the heavy and severe exercise intensity domains. 

It is well established that the mechanisms of fatigability differ for whole-body and single-limb exercise 
(Hureau et al. 2018; Thomas et al. 2018). Indeed, Poole et al. (2016) suggested that parameters of the intensity–



duration relationship, such as the curvature constant (W′), are probably influenced by different factors in the 
two modalities of exercise. For example, termination of whole-body exercise above CP coincides with the 
attainment maximal cardiopulmonary responses (e.g. Vanhatalo et al. 2010; Murgatroyd et al. 2011), whereas 
for single-limb exercise, equivalent variables do not reach maximal values (e.g. Goodall et al. 2010; 
Ansdell et al. 2019a). Collectively, this evidence suggested that in healthy humans, whole-body severe intensity 
exercise performance is limited by a combination of convective and diffusive factors, whereas equivalent 
intensities of single-limb exercise are solely limited by diffusive factors. As described by Hureau et al. (2018) and 
Thomas et al. (2018), during whole-body exercise afferent feedback from other physiological systems (e.g. 
respiratory) contribute to the attainment of a ‘sensory tolerance limit’, in addition to accumulation of 
intramuscular metabolites and depletion of energy stores (Broxterman et al. 2015b). Therefore, conclusions 
based on data from single-limb exercise (Ansdell et al. 2019a) are limited in explaining exercise tolerance in a 
whole-body model. 

The fact that females have more fatigue-resistant locomotor (Hunter et al. 2006; Yoon et al. 2007b; 
Russ et al. 2008; Ansdell et al. 2017) and respiratory musculature (Guenette et al. 2010; Welch et al. 2018) might 
lead to the hypothesis that females are able to sustain a greater relative work rate during cycling compared to 
males. However, morphological sex differences within the respiratory system have the potential to reduce high-
intensity exercise tolerance in females. For example, when height-matched, females have smaller lung volumes 
and airway size, weaker respiratory muscles, and smaller alveolar surface area for gas exchange compared to 
males (Mead, 1980; Crapo et al. 1982; Martin et al. 1987; Sheel et al. 2009). Combined, these factors elicit a 
greater expiratory flow limitation in females at near-maximal ventilatory capacity during cycling 
(Guenette et al. 2007). Furthermore, females demonstrate a greater work of breathing (Wb) than males 
(Witt et al. 2007), and at peak exercise, the oxygen cost of breathing (expressed at a fraction of whole-
body �̇�𝑉O2), is greater compared to males; 14 vs. 9%, respectively (Dominelli et al. 2015). Additionally, females 
typically demonstrate a lower haemoglobin mass compared to males (Murphy, 2014), which is considered to 
limit endurance exercise performance (Joyner, 2017). Collectively, these potentially deleterious factors could 
counteract the greater fatigue resistance of locomotor and respiratory muscles during whole-body exercise, and 
negate the sex difference in critical torque demonstrated in single-limb exercise, where central factors are not a 
limitation to exercise (Ansdell et al. 2019a). Additionally, these physiological sex differences could lead to 
different contributing mechanisms to exercise intolerance, or the so-called sensory tolerance limit 
(Hureau et al. 2018; Thomas et al. 2018). 

Accordingly, the present study had two primary aims: (1) to compare the power–duration relationship between 
males and females during cycling; and (2) to determine whether a sex difference in fatigability (time to task 
failure, TTF), and the mechanisms (neuromuscular fatigue, muscle oxygenation and pulmonary gas exchange), 
existed when exercise intensity was normalised to the power–duration relationship. To do so, non-invasive 
neurostimulation was used to quantify the neural and contractile adjustments to cycling exercise, and near-
infrared spectroscopy (NIRS) was recorded during exercise to monitor changes in knee-extensor oxygenation. It 
was hypothesised that: (1) due to the poorer convective aspects of oxygen transport negating the superior 
diffusive aspects that females demonstrate, no sex difference in the power–duration relationship would exist 
when expressed relative to maximum exercise performance, and (2) when exercise was CP-matched, TTF would 
not differ, but females would exhibit greater fatigue resistance, and lesser deoxygenation of the knee-extensors 
compared to males in both heavy and severe intensity domains. 



Methods 
Ethical approval 
The study received institutional ethical approval from the Northumbria University Health and Life Sciences 
Research Ethics Committee (submission reference: 12,241) and was conducted according to all aspect of 
the Declaration of Helsinki, apart from registration in a database. Participants provided written informed 
consent to volunteer for the study. 

Participants 
Using the effect size from Ansdell et al. (2017) for the sex difference in fatigability during isometric exercise, a 
power calculation (alpha = 0.05, power = 0.80) determined that a sample size of 16 participants was required. 
Thus, 10 males (mean ± SD age: 25 ± 5 years, stature: 178 ± 9 cm, mass: 67.0 ± 8.8 kg) and eight females (age: 
25 ± 6 years, stature: 169 ± 9 cm, mass: 63.3 ± 7.2 kg) gave written informed consent to participate. The females 
who volunteered were all using monophasic hormonal contraceptives (>6 months), and those using combined 
contraceptive pills were tested in the 21 day consumption period of the pill cycle in order to negate the effects 
of endogenous hormones on neuromuscular function and fatigability (Ansdell et al. 2019c). To ensure 
homogeneity in the training status of participants, minimum criteria were set for relative �̇�𝑉O2max and maximal 
ramp test power (Pmax) attained in the first visit (see below). These values were based upon recommendations 
by De Pauw et al. (2013) for males, and Decroix et al. (2016) for females and were as follows: 
minimum �̇�𝑉O2max of 55 and 48 ml kg−1 min−1, and Pmax of 4.6 and 3.8 W kg−1 for males and females, respectively, 
and a minimum weekly training duration of ≥5 h week−1. Participants had to achieve one of the aforementioned 
criteria in order to proceed to the subsequent experimental visits. In total, 18 males and 16 females were 
screened to achieve the resultant sample size. 

Experimental design 
All participants visited the laboratory six or seven times, completing a familiarisation visit, three or four constant 
intensity trials to estimate CP, then subsequent trials 10% above and below CP. Testing took place over a 3–
5 week period, with a minimum of 48 h between visits to allow recovery (Carroll et al. 2016). The time of day for 
each testing session was controlled (± 1 h) to account for diurnal variations in maximal force-generating capacity 
and corticospinal excitability (Tamm et al. 2009). All visits were conducted in an environmentally controlled 
laboratory facility (TIS Services, Environmental Control Specialists, Alton, UK), where the conditions were pre-set 
to 20°C and 40% relative humidity. 

Experimental protocol 
Familiarisation and incremental exercise test 
Upon providing written informed consent, participants performed a 5 min warm up (80–100 W) on a cycle 
ergometer (Velotron Pro, RacerMate Inc., Seattle, WA, USA) at a self-selected cadence (60–100 rpm). 
Participants were then given 2 min of rest, during which they remained stationary on the cycle ergometer, 
before an incremental exercise test began. For both sexes, the test started at 100 W, then for males the 
intensity increased gradually by 25 W min−1 (0.416͘ W s−1), and for females by 20 W min−1 (0.333 W s−1). The 
different rate of intensity increase was intended to produce ramp tests of similar duration in both sexes, due to 
lower absolute power outputs demonstrated in females (Sundberg et al. 2016), in an attempt to negate the 
effects of test duration on cardiopulmonary outcomes (Yoon et al. 2007a). Mean ramp test duration was not 
different between males and females (10.5 ± 1.2 vs. 9.1 ± 2.1 min, P = 0.103, respectively). The test was 
terminated once the participant's self-selected cadence decreased by 10 rpm, despite strong verbal 
encouragement. During the test, expired gas was analysed breath-by-breath using an online system (Vyntus CPX, 
Jaeger, CareFusion, Germany). The outcome variables from the ramp test were �̇�𝑉O2max (ml kg−1 min−1) and 



Pmax (W). Following the incremental exercise test, participants rested for 15 min, before a neuromuscular 
familiarisation was performed, including all forms of non-invasive neurostimulation and a full neuromuscular 
function assessment and maximal respiratory pressure assessments (see below). 

Critical power estimation trials 
To estimate CP, participants completed a minimum of three constant-load exercise trials to task failure. The 
intensities for the initial three trials were set at 110, 90 and 80% of Pmax and were performed on separate days 
(minimum 24 h between trials) in a randomised order, designed to elicit task failure within 2–15 min 
(Poole et al. 1988). TTF (s) was recorded as the first time at which participants’ cadence fell by 10 rpm. Although 
strong verbal encouragement was provided throughout the test, no feedback was provided to participants 
about the power output and time elapsed during the trials. Gas exchange was recorded continuously throughout 
each trial, and a criterion of an end-exercise �̇�𝑉O2 of >95% �̇�𝑉O2max was set; all trials used for estimation achieved 
this. The parameters of the power–duration relationship (CP and W′) were estimated using the inverse linear 
model (eqn 1), the linear work–time model (eqn 2) and the hyperbolic model (eqn 3). The equation with the 
highest r2 and lowest standard error (SE) was selected for each individual and used for all further analysis 
(Mitchell et al. 2018a). The hyperbolic fit was used for 10 participants, the linear fit for 5, and the 1/time fit for 
3: 

P = 𝑊𝑊′ ⋅ �
1
𝑡𝑡
� + CP 

(1) 

𝑊𝑊 = CP ⋅ 𝑡𝑡 + 𝑊𝑊′ 

(2) 

𝑡𝑡 +𝑊𝑊′/(P − CP) 

(3) 

where t is time to task failure, P is power output and W is total work done. If three estimation trials resulted in a 
large SE for CP (>5% of the mean) and W′ (>10%), a fourth trial was performed (Mitchell et al. 2018a). This 
occurred for three out of the 18 participants (two males, one female). 

Severe and heavy intensity trials 
Once CP and W′ were estimated, severe (110% CP) and heavy (90% CP) intensity trials were performed on 
separate days in a randomised order. Each session began with electrical nerve stimulation and transcranial 
magnetic stimulation (TMS) thresholds being determined. Participants then completed a standardised isometric 
warm up (Gruet et al. 2014), before a baseline assessment of neuromuscular function. Following this, NIRS 
optodes were affixed over the VL and baseline measures were recorded for 5 min on the cycle ergometer with 
the right leg relaxed in the fully extended position (crank angle 180° from top dead centre). Resting measures of 
gas exchange were also recorded in this period, then both NIRS and gas exchange were continuously sampled 
until task failure. Participants completed a 5 min warm up (80–100 W), followed by 1 min of seated rest on the 
ergometer. In the 5–10 s before the trial, participants were instructed to obtain their self-selected cadence 
against no resistance, then when achieved, the resistance was applied in a square wave fashion. TTF was 
recorded for the severe intensity trial, whereas for the heavy intensity trial participants cycled to task failure, or 
for 60 min, whichever occurred sooner. Immediately upon task failure (<20 s) participants transitioned from the 
cycle ergometer to the dynamometer and commenced a neuromuscular assessment which was completed 
within 2.5 min after exercise (described below). 



Experimental procedures 
Pulmonary gas exchange 
Breath-by-breath pulmonary gas exchange and ventilation were measured continuously during all trials. With 
minute ventilation (�̇�𝑉E), oxygen consumption (�̇�𝑉O2), carbon dioxide production (�̇�𝑉CO2) and respiratory exchange 
ratio (RER) were quantified. Prior to each visit, the Vyntus CPX was calibrated for oxygen (O2) and carbon dioxide 
(CO2) with gas of known concentration (16% O2 and 4.97% CO2) using an electrochemical fuel cell and non-
dispersive infrared cell, respectively. Ventilatory volumes were calibrated using a digital turbine transducer at 
high (2 l s−1) and low (0.2 l s−1) flow rates. 

Neuromuscular function assessments 
Measures of neuromuscular function were assessed before and after exercise, starting within 30 s of task failure. 
Pre-exercise neuromuscular assessments began with two practice maximal voluntary contractions (MVCs) to 
ensure potentiation of subsequent evoked measures, followed by three ∼3 s MVCs, all separated by 30 s. During 
these three MVCs, motor nerve stimulation (MNS) was delivered when peak force plateaued, and then ∼2 s 
after the MVC to measure voluntary activation (VAMNS) and quadriceps potentiated twitch amplitude (Qtw.pot) of 
the knee-extensors. Single-pulse TMS was subsequently delivered during two sets of five 3–5 s contractions at 
100, 87.5, 75, 62.5 and 50% MVC, with 5 s rest between contractions and 10 s rest between sets, to determine 
VATMS (Dekerle et al. 2019b). Finally, 10 single- and 10 paired-pulse TMS stimulations were delivered during a 
10% MVC contraction in an alternate order to determine corticospinal excitability and short-interval cortical 
inhibition (SICI), respectively. Measures of neuromuscular function (MVC, Qtw.pot, VAMNS) were measured within 
30 s of task failure, and VATMS was measured within 2–2.5 min, in an attempt to minimise the dissipation of 
fatigue (Gruet et al. 2014). 

Transcranial magnetic stimulation 
Single- and paired-pulse stimuli (1 ms duration) were delivered to the contralateral (left) motor cortex via a 
concave double cone coil oriented to induce a posterior-to-anterior cortical current (110 mm diameter, 
maximum output 1.4 T) powered by two linked monopulse stimulators (Magstim Bistim and Magstim200, The 
Magstim Company, Whitland, UK). Optimal coil placement was determined as the position that elicited the 
greatest rectus femoris (RF) motor evoked potential (MEP) with concomitant smallest antagonist (biceps 
femoris, BF) MEP during a 10% MVC at 50–70% stimulator output. This position was marked on the scalp with an 
indelible marker to ensure consistent placement during trials. Stimulator intensity for VATMS was determined as 
the intensity that elicited the greatest superimposed twitch (SIT) during a 50% MVC. Stimulator intensity was 
increased in 5% intervals from 50% stimulator output and two stimuli were delivered during an ∼5 s isometric 
contraction, with the mean of two SITs recorded (Dekerle et al. 2019a). Mean stimulator intensity was not 
different between males and females (65 ± 6 vs. 64 ± 5%, P = 0.791) or between visits (66 ± 6 vs. 
64 ± 6%, P = 0.100). The intensities used, activated a large proportion of the motoneuron pool for the RF with no 
difference in the RF MEPs between trials at baseline (51 ± 15 vs. 53 ± 11% Mmax, P = 0.314). The TMS pulse also 
avoided substantial activation of the antagonist (BF), with small MEPs recorded at baseline (0.44 ± 0.23 vs. 
0.47 ± 0.23 mV, P = 0.476). 

Active motor threshold (AMT) was determined as the stimulator intensity that elicited an MEP of > 200 μV in 
three out of five stimulations during a 10% MVC contraction. Stimulator intensity was increased in 5% steps 
from 35% of stimulator output until a consistent MEP amplitude >200 µV was found. Thereafter, stimulus 
intensity was reduced in 1% steps until the lowest intensity to elicit an MEP of >200 µV was found. Mean AMT 
was not different between males and females (43 ± 6 vs. 40 ± 5%, P = 0.392), or between visits (42 ± 5 vs. 
43 ± 7%, P = 0.245). SICI was assessed with 10 paired- and 10 single-pulse stimulations delivered. Paired-pulse 
TMS consisted of a conditioning pulse at 70% of AMT, and a test pulse at 120% AMT, with an inter-stimulus 



interval of 2 ms. Two sets of 10 stimuli were used, with a 10 s rest between contractions. All stimuli were 
delivered during a 10% contraction. This stimulus paradigm has previously been demonstrated as the optimal 
configuration for measuring SICI in the RF (Brownstein et al. 2018). 

Lumbar electrical stimulation 
To assess spinal motoneuron excitability, lumbar-evoked potentials (LEPs) were measured with a constant-
current stimulator (1 ms pulse duration; Digitimer DS7AH, Welwyn Garden City, UK). The cathode was centred 
over the first lumbar spinous process (5 × 9 cm; Nidd Valley Medical Ltd, Bordon, UK) with the electrode aligned 
to the centre of the vertebral column. The surface area of the cathode covered two spinous processes above 
and below the centre point (T11–L3). A cathode of large area was chosen as it produced less discomfort and 
greater tolerance by participants (Ugawa et al. 1995; Kuhn et al. 2010). The anode (2.5 cm2) was placed 5 cm 
above the upper edge of the cathode (Ugawa et al. 1995), corresponding to the level of the eighth thoracic 
spinous process (T8) as this stimulating site has recently been shown to activate corticospinal axons at the level 
of lumbar spinal segments (Škarabot et al. 2019a). The pre-exercise LEP was standardised to 15–25% of Mmax. 
Lumbar stimulation was performed during a 10% MVC contraction alone (unconditioned), and 100 ms into a 
200 ms silent period (SP; conditioned) to determine excitability of the spinal cord without the presence of 
background neural drive (Finn et al. 2018). The mean stimulus intensity for unconditioned LEPs was 172 ± 47 mA 
for males and 166 ± 24 mA for females (P = 0.732). For conditioned LEPs (SP-LEPs), the TMS intensity to produce 
an SP of 200 ms was not different between males and females (49 ± 8 vs. 51 ± 6%, P = 0.605), and likewise the 
intensity of subsequent lumbar stimulation was not different (176 ± 46 vs. 172 ± 22 mA, P = 0.747). 

Motor nerve stimulation 
Single electrical stimuli (200 µs duration) were delivered to the right femoral nerve using a constant current 
stimulator (DS7AH Digitimer Ltd) via adhesive surface electrodes (CF3200; Nidd Valley Medical Ltd, Harrogate, 
UK). The cathode was placed over the nerve, high in the femoral triangle, in the position that elicited the 
greatest twitch amplitude (Qtw) and M-wave in the RF at rest. The anode was placed halfway between the 
greater trochanter and iliac crest. Optimum stimulus intensity was determined as the minimum current that 
elicited maximum values of Qtw and M-wave (Mmax) at rest and then subsequently multiplied by 1.3 to ensure a 
supra-maximal stimulus was delivered. Mean stimulus intensity was not different between sexes (189 ± 62 vs. 
210 ± 57 mA, P = 0.438) or between visits (194 ± 61 vs. 202 ± 61 mA, P = 0.620). 

Force and electromyography 
During assessments of neuromuscular function, participants were seated on a custom-built chair with knee and 
hip angles kept constant (both 90° flexion). A calibrated load cell (MuscleLab force sensor 300, Ergotest 
technology, Langesund, Norway) was attached via a non-compliant cuff positioned 2 cm superior to the ankle 
malleoli on the participants’ right leg, to measure knee extensor force (N). EMG signals were recorded 
continuously throughout the final two trials using wireless sensors (10 mm inter-electrode distance; Trigno 
Avanti, Delsys, MA, USA). Sensors were placed over the right RF, VL and BF, consistent with SENIAM guidelines 
(Hermens et al. 2000), as well as the sternocleidomastoid (SCM), and seventh intercostal space (IC). Prior to 
placement, the skin–electrode contact area was shaved, abraded and cleaned using a 70% IPA alcohol wipe 
(FastAid, Robinson Healthcare, Worksop, UK). Signals were amplified: gain × 100 for EMG (Delsys Trigno Wireless 
EMG systems, Boston, MA, USA) and × 300 for force (CED 1902; Cambridge Electronic Design, Cambridge, UK), 
bandpass filtered (EMG only: 20–450 Hz), digitized (EMG: 2 kHz; force: 5 kHz; CED 1401, Cambridge Electronic 
Design), and analysed offline (Spike2 v8, Cambridge Electronic Design). 

Near infrared spectroscopy 
A multi-distance, continuous-wave, single channel NIRS system (NIRO-200NX, Hamamatsu, Hamamatsu City, 
Japan) evaluated changes in VL oxy- (HbO2) and deoxy- (HHb) haemoglobin concentrations (µmol l−1), as well as 



tissue oxygenation index (TOI = HbO2 ÷ [HbO2 + HHb] × 100), sampled at a rate of 1 Hz. The light-emitting probe 
consisted of diodes operating at three wavelengths (735, 810 and 850 nm), and an emitter–detector distance of 
3 cm. The probe was placed over the VL, 20 cm above the fibular head lateral side of the patella 
(Keane et al. 2018). Optodes were held in place by an elasticised, tensor bandage and covered by an opaque, 
dark material to avoid motion and ambient light influences. During the fatiguing tasks, the 30 s window around 
25, 50 and 75% of the task, as well as the final 30 s of the task (100%) were analysed. 

Maximal inspiratory and expiratory pressure measurement 
Maximum static inspiratory mouth pressure (MaxInsp) was measured from residual lung volume, while 
maximum static expiratory mouth pressure (MaxExp) was measured from total lung volume. Manoeuvres were 
performed using a handheld device (MicroRPM, CareFusion, Hampshire, UK) attached to a phlanged mouthpiece 
with a 1 mm leak to prevent glottic closure during the MaxInsp manoeuvre, and to reduce the use of buccal 
muscles during the MaxExp manoeuvre (American Thoracic Society/European Respiratory Society, 2002). 
Measures were taken while participants were seated, with strong verbal encouragement given to maintain a 
maximal effort for ∼3 s, and participants were given 30 s rest between efforts. Post-exercise values were taken 
immediately after the neuromuscular function assessments (∼2.5 min after task termination). The largest of 
three values within 5% variability was used for analysis (Wen et al. 1997). The coefficient of variation (CV = [SD ÷ 
mean] × 100) between baseline assessments in the severe and heavy trials for MaxInsp was 3.7 and 4.6%, and 
the CV for MaxExp was 7.9 and 3.3% for males and females, respectively. 

Data analysis 
One female participant did not complete any assessment incorporating TMS (e.g. VATMS, MEP, SP-LEP or SICI) 
due to a contraindication (metal object in the skull), but she did complete all other measures. Voluntary 
activation using MNS was determined using the twitch interpolation method (Merton, 1954) by comparing the 
amplitude of the superimposed twitch (SIT) with the amplitude of the potentiated resting twitch (Qtw.pot) using 
the following formula: VAMNS (%) = (1 – [SIT ÷ Qtw.pot]) × 100. Voluntary activation using TMS (VATMS) was assessed 
during two sets of contractions at 100, 87.5, 75, 62.5 and 50% MVC (Dekerle et al. 2019b). Single-pulse TMS was 
delivered during each contraction, and the linear regression between SIT amplitude and contraction intensity 
was extrapolated to the y intercept to obtain an estimated resting twitch (ERT; Todd et al. 2003). To achieve 
significant linearity (r2 > 0.80, P < 0.05), a total of three out of 720 SITs across all trials were excluded (0.4%), 
which led to three regressions containing nine data points rather than 10 (all after exercise). As a result, 
mean r2 values for ERTs were linear throughout the study (0.92 ± 0.07). The SIT during 100% MVC was compared 
with the ERT using the following formula: VATMS (%) = (1 – [SIT ÷ ERT]) × 100. 

Short-interval intracortical inhibition was quantified as the percentage ratio between the amplitude of 
conditioned MEPs to the amplitude of unconditioned MEPs. Corticospinal excitability was determined by 
expressing the mean MEP amplitude during the 10% MVC as a percentage of Mmax (MEP/Mmax). The rmsEMG 
was recorded for the 50 ms before each stimulation and compared before and after exercise to measure 
background muscle activity. The NIRS (O2Hb, HHb and TOI) and gas exchange (�̇�𝑉O2 , �̇�𝑉CO2, �̇�𝑉E  and RER) data were 
expressed as a percentage of baseline, and the 30 s epochs throughout exercise are presented as ∆%. Gas 
exchange data were also expressed as a percentage of final ramp test values, to facilitate comparisons between 
sexes. 

Statistical analysis 
Data are presented as mean ± SD within the text and figures. A normal Gaussian distribution of data was 
confirmed using the Kolmogorov–Smirnov test. The significance level for all statistical tests was set at P < 0.05. 
For variables assessed before and during exercise (NIRS and gas exchange) a two-way (2 × 5) repeated-measures 
ANOVA was used to assess differences between sex (male vs. female) and over time (Pre, 25, 50, 75 and 100% 



TTF). For variables assessed only during exercise (rmsEMG) a two-way (2 × 5) repeated-measures ANOVA was 
used to assess differences between sex (male vs. female) and over time (Start, 25, 50, 75 and 100% TTF). For 
variables that were assessed before and after exercise (neuromuscular function) a two-way (2 × 2) repeated-
measures ANOVA was used to assess differences between sex (male vs. female) and over time (Pre vs. Post). If 
significant main or interaction effects were observed, these were followed up by post hoc Tukey's pairwise 
comparisons. Paired-samples t tests were performed to compare end-exercise �̇�𝑉O2 to �̇�𝑉O2max in both exercise 
intensity domains. 

Results 
Incremental ramp test 
The variables recorded during the ramp test are displayed in Table 1. As shown, males recorded greater values 
for �̇�𝑉O2max, and Pmax when expressed in absolute units and also when normalised to body mass (all P < 0.001). 
The average performance level (De Pauw et al. 2013, Decroix et al. 2016) was similar between males and 
females (3.4 ± 0.7 vs. 3.3 ± 0.5, P = 0.609). 

Table 1. Participant demographics, comparison of the results from the incremental exercise test, and power–
duration relationship modelling in males and females 

 
Males Females P value 

N 10 8 n/a 
Age (years) 25 ± 5 25 ± 6 0.836 
Stature (cm) 178 ± 9 169 ± 9 0.054 
Mass (kg) 67.0 ± 8.8 63.3 ± 7.2 0.325 
Training (h.week−1) 9 ± 3 10 ± 5 0.581 
Incremental test    
�̇�𝑉O2max (l min−1) 4.02 ± 0.47 2.85 ± 0.51 <0.001 
�̇�𝑉O2max (ml kg−1 min−1) 60.5 ± 8.2 45.1 ± 6.3 <0.001 
Pmax (W) 362 ± 29 241 ± 42 <0.001 
Pmax (W·kg−1) 5.5 ± 0.6 3.8 ± 0.5 <0.001 
Power–duration relationship    
CP (W) 260 ± 28 179 ± 32 <0.001 
CP (W·kg body mass) 3.9 ± 0.7 2.8 ± 0.5 <0.001 
CP (% Pmax) 72 ± 5 74 ± 2 0.210 
W′ (J) 18,515 ± 4831 12,684 ± 3155 0.009 
W′ (J·kg body mass−1) 276 ± 65 197 ± 41 0.009 
W′ (J·Pmax

−1) 51 ± 11 52 ± 10 0.733     
r2 0.98 ± 0.02 0.96 ± 0.02 

 

CP SE (%) 2 ± 1 3 ± 2 
 

W′ SE (%) 7 ± 4 8 ± 3 
 

Abbreviations: CP, critical power; Pmax, maximal power; SE, standard error; �̇�𝑉O2max, maximal oxygen uptake; W′, 
curvature constant. 

Power–duration relationship 
The parameter estimates for the power–duration relationship are presented in Table 1. The range of TTF for the 
shortest estimation trial was 105–185 s, while the range for the longest trial was 568–1192 s. When data were 
expressed in absolute units, males demonstrated greater values than females (P ≤ 0.009), but when CP and W′ 
were normalised to Pmax, no differences between the sexes were observed (P ≥ 0.210). 



Severe intensity exercise 
Fatigability 
All participants reached task failure, and there was no difference in TTF between sexes during the trial at 110% 
CP (males: 752 ± 329 vs. females: 681 ± 277 s, P = 0.645). The power–duration relationship accurately predicted 
TTF for both males and females, with no difference between predicted values (719 ± 213 vs. 
713 ± 146 s, P ≥ 0.678). 

The changes in neuromuscular variables are displayed in Fig. 1. MVC, Qtw.pot, VAMNS and VATMS decreased after 
exercise at 110% CP (P ≤ 0.002), and this decrease was less in females compared to males for Qtw.pot (sex × time 
interaction: −36 ± 17 vs. −15 ± 10%, F1,16 = 8.4, P = 0.010, ηp² = 0.344). When the percentage change 
in Qtw.pot was normalised to W′, no sex difference was observed (−2.1 ± 1.3% decline per kJ vs. −1.2 ± 0.8% 
decline per kJ, P = 0.119). 

 
Figure 1. Neuromuscular function before and after exercise at 110% CP 
A, maximum voluntary contraction (MVC); B, potentiated quadriceps twitch (Qtw.pot); C, voluntary activation with 
motor nerve stimulation (VAMNS); D, voluntary activation with transcranial magnetic stimulation (VATMS). *A 
greater decrease in males than females (P < 0.05). Male data are presented in blue and female data in red. 
Dashed lines indicate individual participants and the solid lines indicate the group mean.  
 

No other variables demonstrated sex × time interaction effects (P ≥ 0.058). The amplitude of MEPs, LEPs and SP-
LEPs did not change from before to after exercise (P ≥ 0.094, Fig. 2), and similarly, Mmax did not change 
(P = 0.980). Maximum inspiratory and expiratory pressures decreased after exercise (P ≤ 0.005), with no sex 
difference in the magnitude of decrease (P ≥ 0.565, Table 2). 

https://physoc.onlinelibrary.wiley.com/cms/asset/00e55c3b-d919-4916-b17d-6405848c1f59/tjp14375-fig-0001-m.jpg


 
Figure 2. Indices of neural excitability before and after exercise at 110% CP 
A, motor evoked potential (MEP) amplitude normalised to maximal compound action potential amplitude 
(MEP/Mmax); B, lumbar evoked potential (LEP) amplitude normalised to Mmax (LEP/Mmax); C, conditioned lumbar 
evoked potential (SP-LEP); D, short-interval intracortical inhibition (SICI). Male data are presented in blue and 
female data in red. Dashed lines indicate individual participants and the solid lines indicate the group mean.  

https://physoc.onlinelibrary.wiley.com/cms/asset/99657c96-d912-4589-99ba-a72c2324211a/tjp14375-fig-0002-m.jpg


Table 2. Changes throughout exercise above critical power for pulmonary gas exchange, EMG and pulmonary function variables 
      Severe 

intensity 
    Heavy 

intensity 
  

Time to task failure/termination (s) Males   752 ± 329     3073 ± 835    
Females   681 ± 277     2937 ± 964     

Pulmonary 
gas 
exchange 

         

  
Pre-
exercise 

25% TTF 50% TTF 75% TTF 100% TTF Pre-exercise 25% TTF 50% TTF 75% TTF 100% TTF 

�̇�𝑉O2 (%�̇�𝑉O2max) Males 19 ± 4 87 ± 6* 93 ± 5* 95 ± 7* 98 ± 4* 17 ± 3 76 ± 6* 78 ± 6* 78 ± 5* 81 ± 5*  
Females 18 ± 3 82 ± 6* 87 ± 5* 93 ± 6* 98 ± 4* 18 ± 3 76 ± 7* 79 ± 7* 81 ± 7* 84 ± 6* 

�̇�𝑉CO2 (%�̇�𝑉CO2max) Males 15 ± 2 76 ± 12* 78 ± 12* 79 ± 12* 81 ± 12* 15 ± 2* 64 ± 9* 63 ± 9* 64 ± 9* 65 ± 9*  
Females 16 ± 2 77 ± 6* 82 ± 6* 84 ± 7* 86 ± 6* 16 ± 4* 63 ± 8* 63 ± 6* 66 ± 6* 68 ± 6* 

�̇�𝑉E (%�̇�𝑉𝐸𝐸max) Males 15 ± 3 76 ± 12* 78 ± 12* 79 ± 12* 81 ± 12* 14 ± 3 52 ± 8* 56 ± 8* 59 ± 7* 64 ± 10*  
Females 16 ± 2 77 ± 6* 82 ± 6* 84 ± 7* 86 ± 6* 20 ± 2 66 ± 5* 68 ± 8* 72 ± 7* 77 ± 7* 

RER (�̇�𝑉CO2/�̇�𝑉O2) Males 0.92 ± 0.04 1.01 ± 0.11 0.98 ± 0.09 0.95 ± 0.06 0.95 ± 0.07 1.00 ± 0.10 0.96 ± 0.05$ 0.94 ± 0.07 0.95 ± 0.07 0.93 ± 0.05$  
Females 0.95 ± 0.06 1.02 ± 0.06 1.00 ± 0.05 0.97 ± 0.06 0.94 ± 0.05 0.97 ± 0.14 0.90 ± 0.05 0.88 ± 0.06 0.89 ± 0.05 0.88 ± 0.05   

Muscle 
activation 

         
  

Start 
exercise 

25% TTF 50% TTF 75% TTF 100% TTF Start 
exercise 

25% TTF 50% TTF 75% TTF 100% TTF 

(rmsEMG·Mmax
−1) Males 3.3 ± 1.6 4.2 ± 2.0* 4.5 ± 2.2* 5.2 ± 2.0* 5.7 ± 1.9* 4.3 ± 3.8 4.7 ± 3.8 4.6 ± 3.3 5.3 ± 4.2* 5.1 ± 3.7*  

Females 3.7 ± 1.4 4.5 ± 1.6* 5.0 ± 1.6* 5.0 ± 1.7* 5.2 ± 1.9* 2.9 ± 1.1 3.2 ± 1.2 3.4 ± 1.2 3.4 ± 1.5 3.4 ± 1.4 
(% rmsMaxInsp) Males 11.6 ± 8.8 18.4 ± 9.4 26.2 ± 14.1 33.3 ± 16.0 44.5 ± 22.2 10.6 ± 8.0 11.6 ± 8.2 11.9 ± 8.8 15.1 ± 13.6 15.1 ± 11.1  

Females 16.9 ± 10.5 23.4 ± 12.3 24.9 ± 10.0 28.4 ± 11.7 36.2 ± 11.7 12.9 ± 5.0 19.9 ± 12.8 19.9 ± 12.3 17.9 ± 9.4 19.5 ± 10.8 
External intercostal (% 
rmsMaxExp) 

Males 19.5 ± 9.9 27.9 ± 13.4 34.4 ± 16.3 37.1 ± 17.9 49.6 ± 26.1 10.3 ± 6.5 12.6 ± 13.5 13.5 ± 6.5 13.6 ± 7.8 15.2 ± 7.1 
 

Females 38.5 ± 18.4 55.5 ± 38.9 54.9 ± 38.9 62.15 ± 38.6 61.0 ± 34.7 24.9 ± 8.3 31.0 ± 11.7 30.2 ± 12.5 29.5 ± 14.2 33.9 ± 17.6  
 Maximal 

pulmonary 
pressures 

 
        

 
 

 
Pre-
exercise 

  Post-exercise   Pre-
exercise 

 Post-
exercise 



Maximum expiratory pressure 
(mmHg) 

Males  197 ± 52   171 ± 48*   174 ± 39  157 ± 31 
 

Females  143 ± 37   129 ± 38*   138 ± 34  136 ± 40 
Maximum inspiratory pressure 
(mmHg) 

Males  130 ± 37   118 ± 33*   140 ± 53  135 ± 50* 
 

Females  113 ± 29   104 ± 25*   138 ± 34  136 ± 40 
*Significantly different from before exercise (P < 0.05). $significantly different from females. Abbreviations: MaxExP, maximal expiratory pressure; MaxInsP, maximal inspiratory pressure; RER, 
respiratory exchange ratio; rmsEMG·Mmax

−1, root-mean-square EMG activity normalised to maximal compound action potential amplitude; TTF, time to task failure; �̇�𝑉𝐸𝐸, minute ventilation; �̇�𝑉O2, 
respiratory oxygen uptake; �̇�𝑉CO2, carbon dioxide production. 

 



Oxygenation 
Both HbO2 and TOI decreased throughout severe intensity exercise (Fig. 3, time effect P < 0.001), whilst HHb 
increased (P = 0.017). A lesser decrease in TOI (sex × time interaction: F1.3,21.1 = 16.6, P < 0.001, ηp² = 0.509) was 
observed for females compared to males, as well as a reduced increase in HHb (sex × time 
interaction: F1.7,26.5 = 5,3, P = 0.024, ηp² = 0.254). 

 
Figure 3. Indices of muscle oxygenation throughout exercise at 110% CP 
A, oxyhaemoglobin (O2Hb); B, deoxyhaemoglobin (HHb); C, tissue oxygenation index (TOI). *Greater in males 
than in females (P < 0.05). Male data are presented in blue and female data in red. Dashed lines indicate 
individual participants and the solid lines indicate the group mean.  
 

Respiratory and locomotor muscle electromyography 
The rmsEMG for VL, SCM and IC all increased throughout the task (Table 2, all time effects P < 0.001). Females 
demonstrated a lesser increase in rmsEMG for the VL (sex × time interaction: F4,64 = 2.7, P = 0.041, ηp² = 0.142), 
but not for the SCM (P = 0.079) or IC (P = 0.255). 

Pulmonary gas exchange 
Oxygen consumption, �̇�𝑉CO2 and �̇�𝑉E increased while RER decreased throughout the task (Table 2, P < 0.001). The 
sex × time interaction effect for �̇�𝑉E was not significant (P = 0.052), and no other sex differences were observed 
(P ≥ 0.114). End-exercise �̇�𝑉O2 was not significantly different from the �̇�𝑉O2max measured during the incremental 
test (P = 0.442). 

Heavy intensity 
Fatigability 
Three males (1843 ± 498 s) and three females (1831 ± 568 s) reached task failure prior to the 60 min (3600 s) 
cut-off and were included in subsequent analyses (whole group mean duration, 3073 ± 835 vs. 
2937 ± 964 s, P = 0.758). 

There were significant decreases in MVC, Qtw.pot, VAMNS, VATMS, MEP and SP-LEP following exercise at 90% CP 
(P ≤ 0.039, Figs 4 and 5). Females demonstrated less of a decrease in Qtw.pot (sex × time interaction: −10 ± 11 vs. 
−24 ± 11%, F1,16 = 31.8, P = 0.020, ηp² = 0.655) and VAMNS (sex × time interaction: −4 ± 3 vs. 
−9 ± 6%, F1,16 = 5.2, P = 0.036, ηp² = 0.246) compared to males, but no sex difference was demonstrated for 
VATMS, MEP and SP-LEP (P ≥ 0.051). No change in Mmax was observed following exercise (P = 0.980). Maximum 
inspiratory pressure decreased after exercise (P = 0.001), whereas maximum expiratory pressure did not 
(P = 0.063, Table 2). No sex × time interaction in the magnitude of decrease for the former was observed 
(P = 1.000). 

https://physoc.onlinelibrary.wiley.com/cms/asset/622f02b4-576f-4871-afd7-312dc9255d97/tjp14375-fig-0003-m.jpg


 
Figure 4. Neuromuscular function changes relative to baseline for exercise at 90% CP 
A, maximum voluntary contraction (MVC); B, potentiated quadriceps twitch (Qtw.pot); C, voluntary activation with 
motor nerve stimulation (VAMNS); D, voluntary activation with transcranial magnetic stimulation (VATMS). *Greater 
decrease in males than in females (P < 0.05). Male data are presented in blue and female data in red. Dashed 
lines indicate individual participants and the solid lines indicate the group mean.  

 
Figure 5. Indices of neural excitability before and after exercise at 90% CP 
A, motor evoked potential (MEP) amplitude normalised to maximal compound action potential amplitude 
(MEP/Mmax); B, lumbar evoked potential amplitude normalised to Mmax amplitude (LEP/Mmax); C, conditioned 
lumbar evoked potential amplitude (SP-LEP); D, short-interval intracortical inhibition (SICI). Male data are 
presented in blue and female data in red. Dashed lines indicate individual participants and the solid lines 
indicate the group mean.  
 
Oxygenation 
Decreases in HbO2 (P < 0.019) and TOI (P < 0.001) were observed during heavy exercise, with females 
demonstrating less of a decrease for TOI (sex × time interaction: F1.7,26.9 = 41.0, P < 0.001, ηp² = 0.719). An 
increase in HHb was observed for both sexes (P = 0.008), with females demonstrating less of an increase than 
males (Fig. 6, sex × time interaction: F1.4,22.8 = 20.8, P < 0.001, ηp² = 0.565). 

 

https://physoc.onlinelibrary.wiley.com/cms/asset/3f43bcc1-b38c-4ec1-8709-a4f4b85042aa/tjp14375-fig-0004-m.jpg
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Figure 6. Indices of muscle oxygenation throughout exercise at 90% CP 
A, oxyhaemoglobin (O2Hb); B, deoxyhaemoglobin (HHb); C, tissue oxygenation index (TOI). *Greater in males 
than in females (P < 0.05). Male data are presented in blue and female data in red. Dashed lines indicate 
individual participants and the solid lines indicate the group mean.  
 

Respiratory and locomotor muscle electromyography 
The rmsEMG signal from the VL, SCM and IC all increased throughout the task (Table 2, all time 
effects P ≤ 0.033). However, there were no sex differences in the rate of increase for any muscle (sex × time 
interactions: P ≥ 0.063). 

Pulmonary gas exchange 
Oxygen consumption, �̇�𝑉O2 and �̇�𝑉E all increased throughout the heavy intensity exercise task (P < 0.001, Table 2) 
while RER decreased (P = 0.001). A sex × time interaction was not observed for �̇�𝑉E (P = 0.052), but was for RER 
(F1,16 = 5.08, P = 0.039, ηp² = 0.241; see Table 2). Post hoc tests indicated that females had a lower RER (mean 
difference: −0.05) throughout the trial. End-exercise �̇�𝑉O2 was 19 ± 5% lower than �̇�𝑉O2max (P < 0.001). 

Discussion 
The present study explored the sex difference in fatigability during locomotor exercise by comparing the power–
duration relationship, then muscle oxygenation and neuromuscular responses to CP-matched exercise 
intensities. The novel findings were that, while males demonstrated a greater absolute critical power and W′, 
there was no sex difference when these parameters were normalised to the absolute maximal power (Pmax). 
Time to task failure/completion was not different in either heavy or severe exercise intensity domains, but 
females demonstrated lesser reductions in knee-extensor contractile function (Qtw.pot) immediately after 
exercise. These sex differences are probably related to differences in skeletal muscle size and composition 
influencing the physiological response to exercise in both intensity domains. The change in corticospinal 
excitability appeared to be domain- but not sex-specific, with a decrease in MEP and SP-LEP amplitude observed 
in the heavy domain for both males and females. Together, this integrative data set suggests that the 
mechanism(s) for greater resistance to neuromuscular fatigue in females reside within the musculature. 

Incremental test and power–duration relationship 
As expected, males produced greater absolute power outputs during cycling for variables such as Pmax and CP. 
Female Pmax was 66% of male values, similar to previous reports (68%; Sundberg et al. 2016). This sex difference 
in maximum power was still evident when Pmax was normalised to body mass (W kg−1), probably a result of 
differences in body composition (Pate & O'Neill, 2007). A similar sex difference was observed for �̇�𝑉O2max, with 
males having greater absolute values and values relative to body weight (Pate & O'Neill, 2007). However, 
allometric scaling of �̇�𝑉O2max to fat-free mass typically eliminates some of this sex difference, with differences in 
haemoglobin mass explaining the remainder of the sex differences (Joyner, 2017). The normalisation of CP with 
Pmax presents a method of making inter-individual comparisons of the power–duration relationship. Indeed, 
when relative CP (% Pmax) was compared, no sex difference was demonstrated. Previously, Sundberg et al. (2016) 
demonstrated no sex difference when profiling the power–duration relationship during cycling bouts across the 
extreme and severe intensity domains (bout durations: 8–283 s), as well as the 3 min ‘all-out’ test. The present 
study corroborates this evidence and extends the conclusion to when CP is assessed using multiple severe 
intensity exercise trials to exhaustion. Collectively, these data obtained from cycling assessments conflict with 
equivalent data obtained in an isometric exercise setting where females had a ∼7% greater critical torque 
compared to males (Ansdell et al. 2019a,b). This discrepancy is probably explained by the modality of exercise. 



Critical power during cycling is considered to be limited by oxygen delivery to the working muscle, a result of 
convective and diffusive capacity (Vanhatalo et al. 2010; Dekerle et al. 2012; Broxterman et al. 2015a; 
Goulding et al. 2017), and therefore, during single-limb exercise, where convective factors are not a limiting 
factor (i.e. Ansdell et al. 2019a), the sex difference in critical torque could be a result of greater diffusive 
capacity of female muscle. For example, it is well established that females have greater capillarisation and type I 
fibre proportional area of the knee-extensors (Roepstorff et al. 2006), which could permit a greater rate of 
oxygen extraction and utilisation, and a greater relative critical torque. Whereas during locomotor exercise in 
the present study, knee-extensor blood flow is limited due to the modality of exercise (Calbet, 2000), and 
therefore convective capacity becomes the primary determinant of CP, rather than diffusive capacity of the 
muscle, leading to the lack of sex difference in relative CP. Other contributing factors to the lack of sex 
difference in CP could be that haemoglobin concentrations are typically ∼12% lower (Murphy, 2014), and lung 
volumes are smaller (Schwartz et al. 1988) in females than in males. The negative consequence of these factors 
is that females are more prone to exercise-induced arterial hypoxaemia (Harms et al. 1998), meaning that when 
cardiac output is near maximal (i.e. at task failure within the severe intensity domain), there is no possibility for 
increased oxygen extraction. This leads to a reduced arterio-venous oxygen difference, which has been 
suggested to negate the sex difference in muscle fatigability (Dominelli et al. 2017) and could conceivably 
oppose the positive aspects of greater type I muscle fibre proportion on CP (Mitchell et al. 2018a), leading to a 
lack of sex difference. 

Severe intensity exercise 
The power–duration relationship successfully predicted TTF in the exercise trial at 110% CP (Table 2), and 
the �̇�𝑉O2 response to exercise confirmed that exercise was indeed in the severe intensity domain. The end-
exercise �̇�𝑉O2 was equivalent with �̇�𝑉O2max and demonstrated a gradual increase throughout exercise, indicating 
the presence of a considerable slow component. Fatigability within the severe intensity domain is consistently 
associated with depletion of high energy phosphates and an accumulation of metabolites within the exercising 
musculature (Jones et al. 2008; Black et al. 2016; Vanhatalo et al. 2016), which may reduce the contractile 
capacity of exercised musculature until the attainment of a limiting degree of disruption (Amann, 2011; Burnley 
& Jones, 2018). In contrast to our hypothesis, and despite no difference in TTF when exercise intensity was CP-
matched, females demonstrated greater fatigue resistance of the knee-extensors compared to males 
immediately after the exercise (21% difference in Qtw.pot reduction). There are multiple factors that could explain 
this sex difference from the present study and previous data. For example, as previously mentioned, females 
typically have a greater proportional area of type I muscle fibres (Staron et al. 2000; Roepstorff et al. 2006), and 
whilst in the context of this study it might not contribute to differences in the power–duration relationship, it 
could provide females with the capacity to tolerate deleterious metabolites when exercising above CP. Similarly, 
previous studies using 31PMRS during ‘all-out’ exercise have shown lower decreases in muscle pH, 
phosphocreatine and attenuated increases in ADP (Russ et al. 2005; Willcocks et al. 2010). Currently, it is 
unknown whether a lesser accumulation of metabolites occurs in the severe intensity domain for females, or 
whether the sex differences in contractile properties allows lesser peripheral fatigue for equivalent metabolic 
stress. Slower sarcoplasmic reticulum calcium ATPase and uptake activity in females (Harmer et al. 2014) could 
reflect a more fatigue-resistant contractile apparatus. Additionally, females demonstrated a smaller increase in 
rmsEMG during the severe intensity task, and while this has some limitations as a measure of neural activity 
(Farina et al. 2004), it could represent a reduced rate of increase in neural drive because of less fatigue within 
the already recruited motor units than males (Vigotsky et al. 2018). Indeed, this finding mirrors previous data 
(Ansdell et al. 2019a), and exists when rmsEMG is normalised to Mmax to negate the influence of subcutaneous 
fat on the EMG signal (Lanza et al. 2018). 



Another potential explanation of the lesser degree of Qtw.pot decrease in females could be unearthed when 
exercise is considered using absolute (i.e. 286 vs. 197 W), rather than relative (110% CP) values, given that the 
power–duration relationship was not different between sexes (i.e. similar relative values, Table 1). The power 
output for CP, and W′ values were both ∼30% lower for females compared to males, and therefore TTF was not 
different, despite the lower amount of work done for females. Evidence suggests that W′ is positively related to 
the cross-sectional area (CSA) of the exercising muscle (Miura et al. 2002; Kordi et al. 2018), and whilst the 
present study did not measure CSA of the thigh musculature, it is established that females have 25–30% smaller 
knee extensors and flexors (Behan et al. 2018). Similarly, Schäfer et al. (2019) demonstrated a positive 
relationship between W′ and Qtw.pot decrease following severe intensity exercise. Therefore, in the present study, 
it is possible that the larger muscle CSA in males probably permitted a greater absolute W′, which consequently 
elicited a greater decrease in Qtw.pot when severe intensity exercise was performed to task failure. Indeed, when 
the decrease in Qtw.pot was normalised to W′, no sex difference was observed, providing some support to the 
possibility that the sex difference in Qtw.pot decrease was a result of the greater absolute workload performed by 
males. 

A final potential factor contributing to the sex difference observed in Qtw.pot decline could be the greater 
oxygenation within the VL for females during exercise (Fig. 3). In both Ansdell et al.’s (2019a) and the present 
study, this manifested predominantly as a lesser rise in HHb concentration for females during both heavy and 
severe intensity cycling, which could be a result of the fibre type difference between males and females. 
Specifically, the greater HHb increase in males could be a result of greater oxygen extraction (Grassi et al. 2003), 
which could be related to a greater oxygen cost within the muscle (m�̇�𝑉O2) compared to females. Indeed, when 
assessed at a pulmonary level, individuals with greater type I fibre proportion of the VL demonstrate a 
lower �̇�𝑉O2 for a given exercise intensity (Coyle et al. 1992). This is speculative, although potentially fertile ground 
for future research as m �̇�𝑉O2 can be non-invasively quantified with a combination of NIRS and muscle occlusion 
(Ryan et al. 2012); a combined approach to pulmonary and muscle �̇�𝑉O2 kinetics could permit further insight into 
the integrative response to exercise in males and females (Poole & Jones, 2012). One might expect 
pulmonary �̇�𝑉O2 to reflect a potential sex difference in m�̇�𝑉O2; however, females experienced a similar �̇�𝑉E to males 
during severe intensity cycling, which has previously been linked to a greater oxygen cost of breathing in females 
(Witt et al. 2007). When measured at the pulmonary level, the �̇�𝑉O2 response to exercise is an amalgamation of 
all physiological systems, so the elevated Wb might have counterbalanced the reduced m�̇�𝑉O2 in females, leading 
to no sex difference in pulmonary �̇�𝑉O2  values attained in the present study. Together, the aforementioned data 
present evidence that whilst exercise performance (TTF) in the severe intensity domain is not affected by sex, 
the integrative response differs between males and females. Females experience a lesser decline in Qtw.pot, 
potentially because of differences in muscle oxygenation and Ca2+ kinetics. Despite this, females probably have a 
greater Wb when exercise intensity is CP-matched. Collectively, these data imply that even though TTF was not 
different, the mechanisms underpinning severe intensity exercise tolerance might differ between males and 
females. 

Although a reduction in voluntary activation occurred during this trial for both sexes, excitability of the 
corticospinal tract was unaltered at the cortical and spinal level, suggesting that responsiveness of descending 
neurons did not change after exercise (Weavil & Amann, 2018). Therefore, the CNS adjustments might have 
been a result of impaired neural drive, or synaptic input into the corticospinal tract (Amann, 2011). Regardless, 
these central adjustments are not considered to be the limiting factor to exercise within the severe intensity 
domain during cycling (Burnley & Jones, 2018). One caveat of the present study and other locomotor 
neuromuscular fatigue studies is that responses were assessed after exercise during an isometric contraction 
(Sidhu et al. 2013; Place & Millet, 2020). Responses evoked during exercise could elucidate further details about 
the time-course and magnitude of fatigue-related changes in activation. 



Heavy intensity domain 
The �̇�𝑉O2 response to exercise at 90% CP was typical of heavy intensity exercise. The �̇�𝑉O2  response exhibited a 
slow component, but only reached ∼83% �̇�𝑉O2max at task termination, indicating that energy provision from 
aerobic sources was not maximal (i.e. exercise intensity was less than CP). In terms of the before to after 
exercise change in neuromuscular function, the fatigue observed was not due to an accumulation of disruptive 
metabolites, or an exhaustion of high-energy phosphates as substrate-level phosphorylation reaches a steady-
state (Black et al. 2016; Vanhatalo et al. 2016). Rather, neuromuscular fatigue in the heavy intensity domain is a 
result of both central and peripheral adjustments, with the latter occurring in response to depletion of 
intramuscular glycogen concentration and the associated negative consequences for excitation–contraction 
coupling (Ørtenblad et al. 2013). Furthermore, reactive oxygen species generation and extracellular 
accumulation of K+ might also impair contractile function (Allen et al. 2008). The net result in the present study 
is a decrease in Qtw.pot (Fig. 4B), which was less profound in females. Given that the mechanisms of peripheral 
adjustments differ above and below CP, this greater fatigue resistance of female knee-extensors below CP must 
be a result of different physiological processes as well. One explanation could be that, given RER was lower in 
females compared to males during the 90% CP trial, the rate of fatty acid utilisation as a substrate was greater, 
eliciting a glycogen-sparing effect. This notion is supported by previous evidence demonstrating that males 
utilise ∼25% more muscle glycogen at exercise intensities matched below CP (Tarnopolsky et al. 1990; 
Roepstorff et al. 2002, 2006; Devries et al. 2006). The greater reliance on fat oxidation in females (RER), yet 
similar exercise economy (�̇�𝑉O2) between males and females also implies a lower oxygen cost of exercise, as fat 
oxidation is less efficient compared to carbohydrate oxidation. To further support this, and similar to 110% CP, 
the decrease in muscle oxygenation was less in females at 90% CP, potentially reflecting a lower oxygen cost of 
contraction as a result of greater type I muscle fibre proportion. 

The CNS adjustments occurring below CP are thought not to be a result of group III/IV afferent feedback, as 
there is no progressive metabolite accumulation (Burnley & Jones, 2018); instead, repetitive activation of 
motoneurons can alter their intrinsic properties, rendering them less responsive to activation 
(Carpentier et al. 2001). This phenomenon is reflected in the present study as a decrease in VAMNS and VATMS, 
with a greater decline in VAMNS only for males. This discrepancy might indirectly suggest that the aetiology of the 
sex difference in central fatigue would be located at a sub-cortical level. Indeed, a decrease in MEP and SP-LEP 
was observed (Fig. 5) and is probably a result of reduced strength of persistent inward currents 
(Heckman et al. 2008). However, the sex × time interaction for these evoked variables was not significant 
(P ≥ 0.132). Multiple studies have provided evidence to show reduced motoneuronal excitability with fatigue in 
single-limb (Kennedy et al. 2016; Finn et al. 2018) and whole-body exercise modalities (Weavil et al. 2016; 
Sidhu et al. 2017), but the present study is the first to match exercise intensity to CP and assess the neural 
response. Interestingly, the decrease in LEP was only evident during the SP, with no change in unconditioned LEP 
(Fig. 5). Finn et al. (2018) demonstrated a similar phenomenon in an isometric modality and suggested that SP-
LEPs were more sensitive to intrinsic changes in motoneuronal properties, as inhibiting descending drive from 
the motor cortex (i.e. the TMS-SP; Škarabot et al. 2019b) removes a confound of excitatory synaptic input to the 
motoneuron. The present data support this notion, as the unconditioned LEPs did not change, due to the 
compensatory effects of neural drive (rmsEMG in Table 2) on net motoneuronal output. Therefore, as only SP-
LEPs changed, the central fatigue observed at 90% CP in the present study is likely to be a result of a change in 
intrinsic properties of motoneurons, rendering them less responsive to synaptic input. As mentioned above, this 
occurred independent of sex for any evoked responses. It is possible that due to far smaller measurement error 
for VAMNS compared to evoked potentials (Ansdell et al. 2019c), a sex difference in motoneuronal excitability 
was not discernible due to a lack of statistical power. Collectively, these data suggested that the neuromuscular 
response to cycling at 90% CP is underpinned by decreases in CNS function and contractile impairment. Similar 
to severe intensity exercise, there was no sex difference in exercise duration, but the neuromuscular 



adjustments were different between males and females, with greater oxygenation and less contractile 
dysfunction observed in females. 

Further considerations 
Fatigability of both inspiratory and expiratory muscle groups was demonstrated above CP, which was not sex-
dependent. This contrasts with previous evidence suggesting that the diaphragm is a more fatigue-resistant 
muscle in females (Guenette et al. 2010; Welch et al. 2018), although the assessment modality employed in the 
present study was not able to provide information on the individual muscles or mechanisms responsible for the 
reduced pressures observed after exercise. The rise in rmsEMG for respiratory musculature was similar between 
sexes in both trials, which also contradicts previous findings suggesting females activate ‘accessory’ respiratory 
muscle such as the SCM to reduce the diaphragmatic load (Mitchell et al. 2018b). Whilst no sex differences in 
respiratory muscle fatigability or gas exchange were observed in the present study, the similar �̇�𝑉E values 
attained in the present study in males and females during both severe and heavy intensity cycling probably led 
to females experiencing a greater relative work of breathing during both trials (Dominelli et al. 2015), which 
could contribute to greater exertional dyspnoea (Schaeffer et al. 2014; Cory et al. 2015). When taken into 
consideration with the lesser degree of peripheral adjustments in locomotor muscles in females, it could 
conceivably be suggested that the ‘sensory tolerance limit’ consists of different magnitudes of afferent feedback 
from different physiological systems in males and females (Hureau et al. 2018; Thomas et al. 2018), such that 
the locomotor muscle component is less, but the respiratory component is greater in females (Cory et al. 2015). 

To compare fatigability in different populations, it is necessary to match both the intensity of exercise and the 
training status of the populations. The former was addressed in the present study by normalising exercise 
intensity to CP. Attempts were made to recruit populations of males and females of equivalent training status 
(De Pauw et al. 2013; Decroix et al. 2016), which resulted in similar average performance levels between groups. 
However, the sex difference in relative �̇�𝑉O2max was ∼25%. This is larger than the sex difference suggested for 
sexes of equivalent training status (∼10%, Joyner 2017), although this was based on a mixture of studies and a 
small sample of n = 8 male and 15 female elite distance runners (Pate & O'Neill, 2007). Other sources have 
previously described larger magnitudes in this sex difference (e.g. 17%, Froberg & Pedersen, 1984), although 
similarly rely on small sample sizes (n = 6 females and n = 7 males). Indeed, a meta-analysis of 440 male and 381 
female participants demonstrated an average sex difference of 28% in �̇�𝑉O2max when expressed relative to body 
mass; this difference remained in trained vs. untrained populations when body composition was accounted for 
(Sparling, 1980). Nevertheless, there appears to be a discrepancy in what researchers deem to be an appropriate 
magnitude for the sex difference in �̇�𝑉O2max. The present study used a minimum performance level (De 
Pauw et al. 2013; Decroix et al. 2016) to account for �̇�𝑉O2max, relative Pmax, as well as training history 
(hours week−1), and the sex differences demonstrated are therefore assumed to be independent of training 
status. However, as is well established, training status influences aerobic fitness, so this discrepancy in the 
appropriate magnitude of sex difference in �̇�𝑉O2max highlights a potential limitation in the present study, if the 
differences in indices of aerobic fitness are considered to be of too great a magnitude. The precise measurement 
of, and normalisation of values to, fat-free mass could be an area for future research in order to uncouple the 
effects of sex and muscle mass in the field of integrative exercise physiology. 

Finally, NIRS signals can be influenced by subcutaneous adipose tissue thickness, which manifests as a reduction 
in the concentration of haeme compounds (Van Beekvelt et al. 2001; Bopp et al. 2011; Bowen et al. 2013). It is 
well established that females typically have a greater amount of subcutaneous adipose tissue 
(Westerbacka et al. 2004). The system used in the present study was a spatially resolved spectroscopy one, 
which enhances the signal from deeper tissues, whilst reducing the contribution from superficial tissues (i.e. skin 
and subcutaneous fat; Messere & Roatta, 2013). Additionally, this form of NIRS system provides a relative index 



of tissue oxygenation (TOI), in which both the numerator (HbO2) and denominator (HbO2 + HHb) are equally 
affected by adipose tissue thickness, and therefore a correction might not be necessary (Barstow, 2019). Despite 
adipose tissue's established effects on HbO2 and HHb values, it is currently unknown whether this also affects 
the sensitivity of the technique to changes induced by exercise. Therefore, the NIRS data presented in this study 
must be considered within this context. 

Conclusions 
This study demonstrated that the power–duration relationship for cycling did not differ between males and 
females when expressed relative to Pmax. Subsequent exercise performance in the severe and heavy intensity 
domains was not different, but the integrative response of cardiopulmonary, respiratory and neuromuscular 
systems differed. Specifically, muscle de-oxygenation and contractile impairment was less in females during 
both tasks, potentially related to skeletal muscle size and composition. Additionally, the decline in CNS function 
was attenuated for females in the heavy intensity domain. Collectively, the present data show that the 
integrative response of physiological systems differs between males and females, which has important 
implications for acute and chronic exercise prescription. 
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