
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Civil and Environmental Engineering Faculty 
Research and Publications 

Civil, Construction, and Environmental 
Engineering, Department of 

11-10-2018 

Axial Compressive Behavior of Square Ice Filled Steel Tubular Axial Compressive Behavior of Square Ice Filled Steel Tubular 

Stub Columns Stub Columns 

Yanlei Wang 
Dalian University of Technology 

Guipeng Chen 
Dalian University of Technology 

Baolin Wan 
Marquette University, baolin.wan@marquette.edu 

Hao Lin 
Dalian University of Technology 

Follow this and additional works at: https://epublications.marquette.edu/civengin_fac 

 Part of the Civil Engineering Commons 

Recommended Citation Recommended Citation 
Wang, Yanlei; Chen, Guipeng; Wan, Baolin; and Lin, Hao, "Axial Compressive Behavior of Square Ice Filled 
Steel Tubular Stub Columns" (2018). Civil and Environmental Engineering Faculty Research and 
Publications. 232. 
https://epublications.marquette.edu/civengin_fac/232 

https://epublications.marquette.edu/
https://epublications.marquette.edu/civengin_fac
https://epublications.marquette.edu/civengin_fac
https://epublications.marquette.edu/civengin
https://epublications.marquette.edu/civengin
https://epublications.marquette.edu/civengin_fac?utm_source=epublications.marquette.edu%2Fcivengin_fac%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=epublications.marquette.edu%2Fcivengin_fac%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/civengin_fac/232?utm_source=epublications.marquette.edu%2Fcivengin_fac%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Civil, Construction and Environmental Engineering Faculty Research and 
Publications/College of Engineering 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

Construction and Building Materials, Vol. 188 (November 10, 2018): 198-209. DOI. This article is © 
Elsevier and permission has been granted for this version to appear in e-Publications@Marquette. 
Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere 
without the express permission from Elsevier.  

 

Axial Compressive Behavior of Square Ice 
Filled Steel Tubular Stub Columns 
 

Yanlei Wang 
State Key Laboratory of Coastal and Offshore Engineering, School of Civil Engineering, Dalian University 
of Technology, Dalian 116024, China 

Guipeng Chen 
State Key Laboratory of Coastal and Offshore Engineering, School of Civil Engineering, Dalian University 
of Technology, Dalian 116024, China 

Baolin Wan 
Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, 
WI 

Hao Lin 
State Key Laboratory of Coastal and Offshore Engineering, School of Civil Engineering, Dalian University 
of Technology, Dalian 116024, China 
 

https://doi.org/10.1016/j.conbuildmat.2018.08.111
http://epublications.marquette.edu/


Highlights 
• Square IFT column is proposed to combine the advantages of ice and steel tube. 
• Influence of width-to-thickness ratio of steel tubes on square IFT is analyzed. 
• Bearing capacity of IFT increases with the decrease of width-to-thickness ratio. 
• Good composite action between outer steel tube and ice core is achieved. 
• Equations for predicting bearing capacity of square IFT columns are proposed. 

 

Abstract 
Concrete has many limitations in the building construction in cold areas. However, there is abundant ice in those 
regions. Therefore, using ice as a substitute for concrete has been explored by researchers. Inspired by the idea 
of square concrete filled steel tube (CFT), a new column form termed square ice filled steel tubular (IFT) column 
is proposed in this study. It consists of a square outer steel tube with the inner space filled with ice. A total of 
eighteen stub columns were made and tested under axial compression, including three circular plain ice 
specimens, nine square IFT specimens and six hollow square steel tubes, to demonstrate the advantages of the 
composite column. The width-to-thickness (B/t) ratio of the steel tubes varies from 39.5 to 77. The test results 
confirmed that the ice core is effectively confined by the steel tube, and the inward local buckling of the steel 
tube is suppressed by the inner ice, leading to higher strength and better ductility of the square IFT specimens 
compared with hollow steel tubes and plain ice columns. A simplified axial bearing capacity equation for square 
IFT stub columns is proposed and it provides reasonable and accurate predictions of the test results. 

Keywords 
Ice, Steel tube, Ice filled steel tube, Axial compression, Stub column 

1. Introduction 
It is difficult to mix, pour and cure concrete in cold regions such as Arctic areas, where the temperature is below 
0 °C throughout the year. It is also very expensive to transport component materials of concrete to such areas. 
The idea of using ice as building materials was successfully achieved by Inuit people living near the North 
Pole [1]. The ongoing freezing and refreezing processes harden their igloos made of ice blocks, which confirms 
that the utilization of ice as a substitute for traditional building material (i.e., concrete) is feasible. 

In the 1990’s, many researches [2], [3], [4], [5], [6], [7], [8] were performed to study the compressive strength of 
ice. The impetus behind the research on ice was the development of the oil and gas industry in Arctic areas, the 
construction of hydropower infrastructures, and the design of icebreaker and lighthouse. Ice load is usually the 
predominant design criterion for hydro-structures used in cold regions, and the compressive strength of ice is a 
key parameter in the calculation of ice load [9]. In recent years, the research on the compressive behavior of ice 
is still ongoing. Ice is a material which is strong in compression and weak in tension, especially at colder 
temperatures well below the freezing point [10]. The mechanical properties of ice and snow were reviewed by 
Petrovic [11]. The tensile strength of ice was 0.7–3.1 MPa and the compressive strength was 5–25 MPa over the 
temperature range from −10 °C to −20 °C. The ice compressive strength increased with decreasing 
temperature and increasing strain rate, but the tensile strength was relatively insensitive to these variables. Ice 
strength depends on many variables such as temperature, strain rate, test specimen volume, and ice grain 
size [11]. Barrette and Jordaan [12] investigated the compressive behavior of freshwater ice (i.e., laboratory-
grown ice and iceberg ice) subjected to a nominally constant compressive stress of 15 MPa while under 
confining pressures ranging from 10 to 65 MPa. Test temperature varied from about −5 to −26 °C. The iceberg 
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ice tended to show a higher scatter than the laboratory ice. Their results were consistent with those of other 
investigators [13], [14], [15], [16] obtained from constant strain rate experiments. The peak stresses of ice 
reported in the work by Dutta et al. [17] were 6.53 ± 1.44 MPa and 6.77 ± 3.23 MPa at −10 °C under quasi-static 
and dynamic loading conditions, respectively. Tests of uniaxial compression strength of columnar sea ice were 
conducted by Moslet [18] in field in Svalbard, Norway. Both horizontal and vertical samples were tested and the 
relationship between the strength and sample directions seemed not to be constant. However, the strength of 
sea ice was dependent on temperature [18]. Shazly et al. [19] studied the dynamic response of ice under uniaxial 
compression in the range of strain rates from 60 to 1400 s−1 and at initial test temperatures of −10 and −30 °C. 
According to the test results, the compressive strength of ice showed positive strain rate sensitivity over the 
employed range of strain rates. Moreover, unlike in the case of uniaxial quasi-static compression of ice, the 
effect of specimen end-constraint during the high rate compression was found to be negligible. Zhang et 
al. [9] investigated the strength of artificial freshwater ice under uniaxial compression with test parameters 
including temperature and strain rate. The results showed that the compressive strength of ice was very 
sensitive to the strain rate. The uniaxial compressive strength of ice increased with the decrease of experimental 
temperature at the same strain rate. More than 340 experiments were conducted by Zhang et al. [20] to study 
the compressive strength of reservoir ice at different temperatures and strain rates. The relationship among the 
uniaxial compressive strength of ice, strain rate and temperature was established. All aforementioned 
researches indicated that ice is a weak material and its mechanical properties are strongly dependent on 
temperature and strain rate. Therefore, plain ice is not a reliable material used for structural members subjected 
to large or explosive loads. Owing to its brittleness it was dangerous to regard any reasonable stresses as safe 
for constructional purposes [21]. 

In order to improve the behavior of plain ice, many methods have been tried to reinforce it. The Inuit people 
have traditionally reinforced the snow blocks for their igloos with lichen, and many ice roads across the northern 
Baltic built in the period of Soviet Union used sawdust as a reinforcing agent [22]. Nixon and Smith [22] tested a 
number of ice composites reinforced by some wood-based materials (i.e., newspaper, wood pulp, sawdust, 
blotting paper and crushed bark) to determine the fracture toughness of such composites. The test results 
showed that the fracture toughness of freshwater ice increased by 5–20 times after introducing 5–
20% reinforcing materials in weight, and it was concluded that reinforced ice could be used as a construction 
material in Arctic regions [22]. Considering that it is expensive to transport reinforcing materials to Arctic areas, 
Nixon [23] suggested using alluvium as an alternative reinforcing agent, which is readily available either in the 
form of seabed silt in the Arctic offshore or from various onshore deposits. Test results showed that ice could be 
significantly strengthened by the addition of alluvium. The degree of strengthening was found to be dependent 
on both type and amount of the alluvium used. The bending strength of reinforced ice tended to increase with 
the decreasing particle size, and there existed one critical percentage of reinforcement, above which value 
considerably higher bending strength was obtained [23]. Vasiliev [24] studied the strength of ice strengthened 
by fiberglass net and fiberglass cloth. Specimens of reinforced and plain ice cubes with the dimension of 
70 × 70 × 70 mm3 were tested under uniaxial compression while the reinforced and plain ice beams with the 
dimension of 40 × 40 × 160 mm3 were subjected to three-point bending. It was found that crack propagation in 
the reinforced ice was prevented by the reinforcing agents. Both the compressive and flexural strengths of ice 
were effectively increased after introducing fiberglass into ice. Nowadays there is a growing interest in the ice-
soil composites created by the method of cryotropic gel formation (CGF) [25], [26], [27]. In the CGF method, 
strong hydrogels are formed from an aqueous polymer solution such as PVA; and other hydrogels are formed by 
means of a freezing and thawing process in which PVA solutions are frozen at −5 to −20 °C and then allowed to 
thaw at a positive temperature. Materials created by CGF method have low permeability, which has been used 
as a reliable material for building weirs and other hydraulic engineering constructions in cold regions [25]. 
According to the test results of Vasiliev et al. [26], the strength of the ice-soil composites depends on many 
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different factors, including the quality and quantity of PVA used, time of thawing, number of freezing-thawing 
cycles, soil characteristics, and water content of the soils with gel. Pykrete is another popular form of reinforced 
ice composites, which is a mixture of sawdust or some other form of wood pulp (such as paper) and ice. In view 
of the similarity to concrete and in honor of Mr. Geoffrey Pyke who firstly proposed the construction of aircraft 
carriers using ice, the mixture was given the code name of pykrete (Pyke's concrete) [21]. A total of 50 cylinders 
and 50 beams made of pykrete were manufactured and tested by Vasiliev et al. [28] to investigate both the 
compressive and flexural strengths of such composites. The compressive and flexural strengths of pykrete with 
10% sawdust were 12 MPa and 3.7 MPa, respectively, which were three times as large as those of plain ice. 

As shown in the previous discussion, the mechanical properties of plain ice can be improved with the 
introduction of some reinforcing materials into ice. However, the extent of improvement in the compressive 
strength of ice by this means is limited. The strength of reinforced ice is still lower than that of normal concrete 
and can not be used for structural members subjected to larger loads. Therefore, it is necessary to find 
alternative ways to help ice to achieve higher strength and better ductility. Recently, concrete filled steel tubular 
(CFT) members have been widely used in routine structural design as piles, building columns and bridge 
piers [29]. These columns have demonstrated excellent earthquake-resistant properties, namely high stiffness, 
high strength, high ductility, and large energy-absorption capacity [30]. The enhancement of structural 
properties of CFT columns is mainly due to the composite action of steel hollow section and concrete core. The 
confining effect from the steel hollow section causes the concrete core to behave in a triaxial stress state while 
the concrete core prevents the wall of the steel hollow section from buckling inward [31]. It should be noted 
that the circular cross-section provides the strongest confinement to the concrete core, and the local buckling is 
more likely to occur in square or rectangular cross-sections [32]. However, square and rectangular CFT columns 
are still increasingly used in civil engineering due to easier construction in beam-to-column connection, high 
cross-sectional bending stiffness and aesthetic reasons [32]. A lot of researches have been carried out on the 
behavior of square CFT columns under axial compression [33], [34], [35], [36] or bending 
load [37], [38], [39], [40]. Inspired by the idea of circular CFT columns, the authors innovatively proposed a new 
type of structural member termed circular ice filled steel tubular (IFT) column in which the concrete was 
replaced by ice [41]. The test results demonstrated that the circular steel tube worked well with the inner ice, 
leading to higher strength and better ductility of circular IFT columns than those of hollow steel tubes and plain 
ice columns. 

Based on the existing studies on circular IFT columns [41] and square CFT columns [29], [32], an exploratory 
experimental study was designed to investigate the behavior of square IFT stub columns under axial 
compression. This study aimed to check whether the outer square steel tube could work well with the inner ice 
and to identify whether there is notable composite action between the two parts. An equation for predicting the 
ultimate bearing capacity of square IFT stub columns is also proposed in this paper. 

2. Experimental program 
2.1. Specimens 
A total of eighteen specimens, including three circular plain ice columns, nine square IFT columns and six hollow 
square steel tubes, were prepared and tested under uniaxial compression. The main parameter investigated in 
this study was the width-to-thickness (B/t) ratio which varied from 39.5 to 77. The diameter and height of the 
three circular plain ice specimens were 150 mm and 300 mm, respectively. This size is similar to that of 
standardized cylindrical concrete specimens (diameter of 6 in. and height of 12 in.) for compression test. It 
should be noted that there is no code for designing ice structures and the results of nominally similar tests might 
vary greatly because different research groups use different samples and testing methods. In the ice engineering 
field, the Working Group of the IAHR Section on Ice Problems proposed its recommendations for standardized 
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testing methods to measure the mechanical properties of ice in 1981 [42]. The initial purpose of this guideline 
was not to use ice as a building material and some of its details do not meet the current requirements. It is 
difficult to control the strain rate by using the recommended method to test ice under uniaxial compression. 
However, the compressive strength of ice is very sensitive to the strain rate as discussed previously. Therefore, 
this guide was not used directly in this study. The three plain ice specimens were labeled as C01, C02 and C03, 
respectively. The letter C represented circular plain ice columns. 

The nine square IFT specimens were divided into three series (i.e., b, c and d) and each series consisted of three 
identical IFT columns with the same thickness of steel tubes. The thicknesses of steel tube in series b, c and d 
were 2 mm, 3 mm and 4 mm, respectively. The square steel tube used in each square IFT specimen had the 
same inner side width of 150 mm, measured at the outer surface of the ice core, and a height of 300 mm. 
Therefore, all the square IFT specimens were stub columns with little influence from end effect and overall 
buckling. Each IFT specimen was given a name, which started with letter S standing for square IFT columns, 
followed by a number representing the thickness of steel tubes in mm, and the specimen number within the 
same series. 

For each type of hollow steel tubes, two identical hollow steel tubes, which had the same dimensions as those in 
the corresponding square IFT specimens, were made and tested under uniaxial compression. According to a 
naming rule, each hollow steel tube was given a name. For example, in specimen H32, the letter H stood for 
hollow steel tubes, followed by a number of 3 representing that the thickness of the steel tube was 3 mm, and 
the last digit depicted that it was the second specimen tested among the two identical steel tubes. Details of all 
specimens are reported in Table 1. 

Table 1. Details of specimens and test results. 
Series Specimen B t B/t Es fy fu Ne Nu  Nu/Ne   

mm mm 
 

GPa MPa MPa kN kN 
 

a C01 – – – – – – 60.7 – –  
C02 – – – – – – 60.6 – –  
C03 – – – – – – 61.8 – – 

b S21 154 2 77 206 274 402 412.1 408.5 0.99  
S22 

      
412.6 408.5 0.99  

S23 
      

404.9 408.5 1.01  
H21 

      
330.1 – –  

H22 
      

328.0 – – 
c S31 156 3 52 207 251 380 563.0 570.6 1.01  

S32 
      

560.3 570.6 1.02  
S33 

      
565.9 570.6 1.01  

H31 
      

462.4 – –  
H32 

      
465.7 – – 

d S41 158 4 39.5 209 230 351 724.3 709.3 0.98  
S42 

      
706.4 709.3 1.00  

S43 
      

720.9 709.3 0.98  
H41 

      
590.2 – –  

H42 
      

581.7 – – 
Note: In this table, B is the width of square steel tube, t is the thickness of steel tube, Ne is the experimental results, 
and Nu is the calculated results. 
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2.2. Preparation of specimens 
Each square steel tube was manufactured from two mild steel plates with the same thickness. The two plates 
were firstly rolled up into U shape, and then welded together. The corner radius of all square steel tubes was 
8 mm. In addition, a 200 mm by 200 mm square steel end-plate with 10 mm thickness was welded to the 
bottom of each square steel tube (Fig. 1a). Waterproofness was checked by pouring some water into the 
finished tubes. For the hollow square steel tube specimens without inner ice, both ends were welded to a steel 
end-plate. 

 
Fig. 1. Preparation of square IFT specimens: (a) steel formwork; (b) placement of PVC hoses; (c) schematic of IFT specimen; 
and (d) IFT specimen. 
 

In contrast to traditional building materials such as normal concrete, ice has a unique feature that its volume 
expands by about 11% during the phase of water freezing. This natural law was ignored in our initial tests, 
leading to many cracks found in the trial specimens. It can be explained by the fact that the volume expansion of 
the ice core is firmly confined by the outer square steel tube and thus the expansive pressure can not be 
released. This problem was solved by trial and error. Eight flexible hollow PVC hoses with an inner diameter of 
8 mm were placed symmetrically and uniformly in the internal space of each square steel tube (Fig. 1b). The 
bottom of each PVC hose was melted by fire and then squeezed together to seal. During the process of freezing, 
the air in the hollow PVC hoses was extruded out by the surrounding pressure resulted from the continuous 
expansion of the ice volume. In this way, the expansive pressure was released by the deformation of the PVC 
hoses, and the number of cracks in the ice core was greatly reduced. It should be admitted that the introduction 
of PVC hoses in ice could affect the mechanical properties of ice. However, it was assumed that this influence 
was small and compensated by the decrease of cracks in ice. 

The bottoms of all PVC hoses in a specimen were connected to an iron wire ring, which held the PVC hoses to 
the bottom of the steel tube. Another ring, parallel to the bottom one, was attached to the top surface of the 
steel tube within the same plane to the hold the tops of the PVC hoses. When the eight PVC hoses were in place, 
adequate water was poured slowly into the steel tubes. It was carefully operated to avoid pouring water into the 
hollow space of PVC hoses. Otherwise, the function of PVC hoses would be lost. Then the square IFT specimens 
were placed in GDJS Temperature and Humidity Chamber to freeze for 48 h at −15 °C. After the specimens were 
taken from GDJS chamber, the top surface of them was ground to be smooth and flat using a grinding 
wheel with diamond cutters (Fig. 1d). It was found that the air in the hollow PVC hoses was totally squeezed out 
and the number of cracks in the ice core of square IFT specimens was greatly reduced. The preparation of square 
IFT specimens is illustrated in Fig. 1. 

The manufacturing procedure of the circular plain ice specimens was almost identical to that of the square IFT 
columns. The square steel tube was replaced by a circular PVC tube with a height of 300 mm and an inner 
diameter of 150 mm. A 200 mm by 200 mm square waterproof board with a thickness of 10 mm was adhered to 
the bottom of the circular PVC tube as the bottom end-plate. Then the processes, including the placement of 
PVC hoses, water pouring, the freezing process in GDJS chamber and the grinding of specimens’ upper surfaces, 
were identical to those of square IFT specimens. The PVC tube and the board were removed from each plain ice 
specimen prior to testing. Fig. 2 presents the preparation process of plain ice specimens. 
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Fig. 2. Preparation of circular plain ice columns: (a) PVC formwork; (b) placement of PVC hoses; (c) ice specimen with 
formwork; and (d) ice specimen. 
 

2.3. Material properties 
Three tension coupons were cut from each type of steel tubes with thickness of 2 mm, 3 mm and 4 mm, 
respectively, to obtain the mechanical properties of the steel used in this study. All the tension coupons were 
made and tested in accordance with ASTM E8/E8M-15a [43]. Measured material properties of steel coupons 
with three different thicknesses, including the average values of elastic modulus Es, yield strength fy and tensile 
strength fu, are reported in Table 1. 

2.4. Instrumentation and testing 
Layout of strain gauges for square IFT specimens is shown in Fig. 3. Two strain gauges perpendicular to each 
other in the longitudinal and transverse directions were glued at the mid-height of each side of the specimens to 
monitor the axial and hoop strains. Two pairs of strain gauges were installed away from the weld seams to avoid 
the complex stress state in these locations. The measured strains especially in the hoop directions might be 
influenced by this eccentric arrangement of strain gauges, but the eccentricity was so small that this influence 
was ignored. Glass cement was applied on the surface of each strain gauge for waterproof protection. 

 
Fig. 3. Layout of strain gauges on square IFT specimens (Units in mm). 
 

The experiments were conducted using a 3000 kN capacity compression machine under displacement control. 
Special attention was paid to the loading rate during the test. Artificial freshwater ice samples with a dimension 
of 7 cm × 7 cm × 17.5 cm were made and tested by Zhang et al [9] in 2011. The relationship between the uniaxial 
compressive strength and the strain rate at different temperatures was investigated. Three regions were 
observed corresponding to different strain rate. In the brittle region, the uniaxial compressive strength 
decreased with the increasing strain rate. In the ductile-brittle transition region, there was a change point of 
ductile-brittle, and the uniaxial compressive strength reached the maximum value. In the ductile region, the 
uniaxial compressive strength increased gradually with the increasing strain rate. The largest uniaxial 
compressive strength was reached under a strain rate between 10−4 s−1 and 10−2 s−1 at −5 °C. Based on their 
achievements, all specimens in this study were tested at a displacement control rate of 2 mm/min (i.e., strain 
rate of 1.11 × 10−4 s−1). Two linear variable displacement transducers (LVDTs) were placed on opposite sides of 
each column to monitor the overall axial deformation. The schematic of the test setup is shown in Fig. 4. The 

https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818320440#b0215
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/measured-material
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/youngs-modulus
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/tensile-strength
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/tensile-strength
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818320440#t0005
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818320440#f0015
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/axial-strain
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/complex-stress-state
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/measured-strain
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/eccentricity
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/strain-gauge
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818320440#b0045
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/increasing-strain
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/rates-of-strain
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/rates-of-strain
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/linear-variable-displacement-transducer
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/engineering/axial-deformation
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S0950061818320440#f0020


data of load, strains, and displacements of the specimen were recorded simultaneously by a data logger during 
the test. 

 
Fig. 4. Schematic of the test setup. 
 

All the compression tests were conducted in January 2016 in Dalian, China, where the daily lowest temperature 
is normally below 0 °C in winter. Prior to and during the tests, all doors and windows of the laboratory were kept 
open. The tests were carried out when the temperature in the laboratory dropped to around −2 °C. An insulating 
plate was placed on the bottom of each plain ice or IFT specimen to achieve heat insulation between the 
specimen and the testing machine. The insulating plate was substituted by a piece of insulating cloth on the top 
of each IFT specimen because the upper insulating plate would get pierced by the steel tube of IFT columns 
without end-plate. For the plain ice columns, both ends of each specimen were wrapped by five layers of duct 
tape with a width of 5 cm to avoid premature damage in these regions. 

3. Experimental results and discussion 
3.1. Failure mode 
The typical failure process of circular plain ice specimens subjected to uniaxial compression is shown in Fig. 5, 
which can be divided into three stages as following. First, minor cracks occurred randomly on the surface of the 
ice column. Second, the number of cracks increased with the increase of the load, and the cracks gradually 
developed towards the mid-height and inner of the specimens until the formation of major longitudinal cracks, 
which was accompanied by the sound of ice splitting. Third, plenty of cracks were observed and a big dilatation 
was found in the mid-height of each specimen in the ultimate stage. The ice was crushed due to lack of lateral 
confinement. 

 
Fig. 5. Typical failure process of circular plain ice specimens: (a) slow development of cracks; (b) fast development of cracks; 
and (c) ultimate state of specimens. 
 

The typical failure modes are shown in Fig. 6, Fig. 7 for hollow steel tubes and IFT columns, respectively. It can 
be seen in Fig. 6 that alternate inward and outward buckling deformations took place in the unfilled square steel 
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tubes, while all circular hollow steel tubes failed as outward local buckling occurring near the bottom end, 
termed elephant foot buckling [41]. For the IFT composite columns, the presence of the ice core prevented the 
occurrence of the inward buckling of the square steel tubes, resulting in only outward local buckling on the steel 
tubes’ surfaces, as shown in Fig. 7. Outward local buckling was observed near the top end of all square IFT 
specimens, which was identical to that of the circular IFT columns due to lack of confinement from the steel end-
plate at this location [41]. However, unlike circular composite columns, additional outward buckling was found 
at about 2/3 (Fig. 7d) or 1/3 height (Fig. 7h and 7i) of square IFT columns. In addition, the half-
wavelengths produced by local buckling for the square IFT sections were considerably smaller than those for the 
hollow square steel tubes without the help of ice. This phenomenon was also found in square CFT columns [33]. 
The reduced wavelength was a major factor for the increase in load bearing capacity at which local buckling 
occurs. It was an interesting phenomenon that some of the cracks observed in the top surface of the ice core 
achieved self-healing after the compression test at −2 °C. This feature would have a positive effect on the long-
term performance of the IFT columns. Unfortunately, the failure mode of the ice core could not be checked by 
removing the outer steel tubes with flame cutting because the ice would be disturbed or even destroyed during 
this process. 

 
Fig. 6. Typical buckling modes observed for hollow steel tubes. 
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Fig. 7. Failure modes observed for square IFT specimens. 
 

3.2. Load vs. deformation response 
The axial load vs. shortening curves of circular plain ice specimens under axial compression are shown in Fig. 8. 
The load increased linearly with the axial deformation before reaching approximately 70% of the peak load. 
Then the ice specimens entered plastic state and a descending branch occurred after the peak load. It is 
interesting that the descending branch of the axial load vs. shortening curve for ice is not very steep compared 
with that of concrete. Therefore, the ice exhibited some level of ductile behavior under the conditions with test 
temperature of −2 °C and loading rate of 2 mm/min in this study. The compressive strength of unconfined ice 
was 3.45 MPa calculated by averaging the strength values of the three plain ice specimens. 

 
Fig. 8. Axial load vs. shortening curves of plain ice specimens. 
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In order to better compare the responses of identical steel sections with and without ice core, the axial load vs. 
shortening results of each series for the hollow square steel tubes and the IFT specimens are presented in Fig. 9. 
It was observed that the initial stiffness of the square IFT specimens was almost the same as that of the hollow 
steel tubes with the same dimensions because the elastic modulus of the steel (around 200 GPa) is much larger 
than that of the ice (around 0.5 GPa obtained from Fig. 8), which was also found in the compression test of the 
circular IFT columns [41]. By contrast, the initial stiffness of the traditional CFT columns is much larger than that 
of the steel tubes without inner concrete [32]. Within the same series of specimens, the peak load of an ice-
filled section was obviously higher than that observed for the corresponding steel tube. The average load 
bearing capacity of IFT specimens with 2 mm thick steel tubes was 24.6% higher than the one measured from 
the hollow steel tubes within the same series. For specimens in series c and d, the enhancements were 21.3% 
and 22.4%, respectively. 

 
Fig. 9. Axial load vs. shortening curves of hollow square steel tubes and IFT specimens under axial compression: (a) 2-mm-
thick tube; (b) 3-mm-thick tube; and (c) 4-mm-thick tube. 
 

Three typical square IFT specimens (i.e., S23, S33 and S41) were selected to investigate the influence of width-
to-thickness (B/t) ratio of the steel tubes on the axial load vs. deformation curves, as shown in Fig. 10. The initial 
stiffness and peak load increased with the decrease of B/t ratio. The IFT specimen with a smaller B/t ratio had 
higher strength and better ductility. There was even a platform branch observed for the axial load vs. 
deformation curve of specimen S41 (B/t = 39.5), where the axial load remained about 700 kN while the axial 
deformation increased from 2 mm to 4 mm. 

 
Fig. 10. The influence of B/t ratio on axial load vs. deformation curves of IFT specimens. 
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Axial load vs. deformation curves of plain ice specimens, hollow steel tubes, IFT specimens, and 
the superposition of the first two are plotted in Fig. 11. In fact, the axial load vs. deformation responses of the 
hollow steel tubes with the same thickness are very close to each other (Fig. 9). Therefore, the experimental 
results of H22, H32 and H41 were selected as representatives for those of hollow steel tubes with a thickness of 
2 mm, 3 mm and 4 mm, respectively. Similarly, the test result of C02 was chosen as a representative constitutive 
curve for plain ice. By keeping the stress identical between square and circular plain ice columns, the load values 
of C02 were changed proportionally to the areas between square and circular columns to obtain the axial load 
vs. deformation curve of a square plain ice column shown in Fig. 11. The superposition results of plain ice 
columns and hollow steel tubes were obtained by simple summation of the axial load of ice and steel 
corresponding to the same deformations. The peak load carried by steel tube was much larger than that carried 
by ice. The initial stiffness of steel tubes, IFT columns, and the superposition of ice and steel was very close to 
each other. The peak loads of the square IFT columns with tube thickness of 2 mm, 3 mm and 4 mm were 1.06, 
1.07 and 1.10 times, respectively, as large as the summations of the strengths of the inner ice and steel tubes. It 
confirmed that there existed more remarkable composite actions between the inner ice and the outer square 
steel tubes with a smaller B/t ratio. However, a slightly downward trend of the composite action was observed 
in the circular IFT columns with the increasing tube thickness [41]. The bearing capacities of circular IFT columns 
were 1.10, 1.06 and 1.04 times as large as the superposition results of the two parts alone [41]. It is believed 
that the difference in the composite action between square and circular IFT columns is related to the cross-
sectional properties as well as the material properties. It should be noted that there was not steel end-plate 
welded to the top of IFT specimens to avoid disturbing or even destroying the ice in the process of welding. 
However, the hollow steel tubes had end-plates welded to both ends, which should help hollow steel tubes to 
obtain a better behavior than that of hollow tubes with one end-plate. Therefore, the difference between the 
capacities of IFT specimens and superposition results of plain ice and steel hollow tubes would be larger if the 
hollow tubes were welded only one end-plate. The square IFT specimens tested in this study exhibited higher 
bearing capacity and better ductility than those of the summation of ice and steel tube, which can be explained 
by the following two reasons. Firstly, the bucking modes of the outer steel tubes in IFT specimens were greatly 
influenced by the ice core and the inward local buckling was delayed or suppressed. Secondly, the ice core was 
in triaxial compression stress state due to the confinement from the outer steel tube, leading to a great increase 
in strength. 

 
Fig. 11. Comparisons of axial load vs. shortening curves between plain ice columns, steel tubes, IFT columns, and the 
summation of ice and steel. 
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3.3. Load vs. strain behavior of IFT columns 
The axial load vs. strain curves of the square IFT specimens are shown in Fig. 12. Both the hoop and axial 
strains were obtained by averaging the readings of the strain gauges installed at the mid-height of the IFT 
specimens. In the initial stage (i.e., elastic branch), both the axial and hoop strains increased approximately in a 
linear manner with the increase of the load, and the growth rates of axial strains were obviously faster than 
those of hoop strains. The confinement effect was very small at this stage because the Poisson’s ratio of ice 
(around 0.3 [11], [44]) is close to that of steel (around 0.3 for low-carbon steel [45]). There was almost no 
interaction between ice and steel tubes in this stage, and therefore the ice was under uniaxial compression 
stress state. As the load increased, the lateral expansion of the ice gradually became greater than that of the 
outer steel tube due to cracking of the ice which accelerated the deformation of ice in hoop direction, and 
therefore a radial pressure developed at the ice-steel interface. The confinement to the ice core was achieved 
and the ice core was in triaxial compression stress state. The outer steel tube was subjected to axial compressive 
and hoop tensile stresses. In this stage (i.e., plastic branch), the axial load vs. strain curves featured a gentle 
ascending branch and the measured hoop strains started to increase quickly as shown in Fig. 12, which was 
roughly corresponding to the peak load stage of the plain ice. In the last stage (i.e., descending branch), the 
inner ice was crushed and the composite action between ice and steel tube was reduced, which caused the 
slower increase in hoop strains while the axial strains continued to increase until failure. On the whole, the axial 
load vs. strain responses of the square IFT columns were similar to those of the circular IFT columns [41], which 
can be divided into three stages corresponding to elastic branch, plastic branch and descending branch, 
respectively. The key difference between the square and circular IFT columns [41] was observed in the plastic 
branch. The axial load increased slowly with the increasing axial strain for the square IFT columns. By contrast, 
the axial load of the circular IFT columns remained almost constant with the increasing axial strain. 

 
Fig. 12. Axial load vs. strain curves of IFT specimens: (a) 2-mm-thick tube; (b) 3-mm-thick tube; and (c) 4-mm thick tube. 
 

4. Axial bearing capacity of IFT stub columns 
One calculation method is proposed in this study to predict the axial bearing capacity of square IFT stub 
columns. In the composite column, the force along the thickness direction of the wall of the hollow tube is so 
small that it can be neglected because the wall is thin. Therefore, the steel can be considered under the state 
of plane-stress [45]. The occurrence of hoop tension in steel results in the decrease of the maximum value of the 
axial compressive stress. Two major assumptions are made in this theoretical study for simplification. One is that 
the stresses in the cross-sections of both steel and ice are uniformly distributed. The other is that the steel tube 
yields when the IFT specimen reaches its peak load. The axial bearing capacity of square IFT stub columns Nu can 
be predicted by 
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(1) 𝑁𝑁𝑢𝑢 = 𝑓𝑓𝑣𝑣𝐴𝐴𝑠𝑠 + 𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐 

where Ai and As are the cross-sectional areas of ice and steel section, respectively; fv is the axial compressive 
stress of the steel tube corresponding to the peak load; fci is the compressive strength of confined ice and its 
calculation is based on the equation proposed by Mander et al. [46] for confined concrete: 

(2) 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐 �−1.254+2.254�1 + 7.94 𝑓𝑓𝑟𝑟
𝑓𝑓𝑖𝑖
− 2 𝑓𝑓𝑟𝑟

𝑓𝑓𝑖𝑖
� 

where fi is the compressive strength of unconfined ice and its value is 3.45 MPa obtained from the average test 
results of three plain ice specimens in this study; fr is the confining stress of the square steel tube on the ice and 
it can be calculated as following based on static equilibrium: 

(3) 𝑓𝑓𝑟𝑟 = 2𝑓𝑓ℎ𝑡𝑡
𝐷𝐷−2𝑡𝑡

 

where fh is the hoop stress of the steel tube corresponding to the peak load. 

It is assumed that the steel yields when the IFT specimen reaches the peak load. The yield of steel tube follows 
the Von Mises criterion in the following form: 

(4) 𝑓𝑓𝑣𝑣2 + 𝑓𝑓ℎ2 − 𝑓𝑓𝑣𝑣𝑓𝑓ℎ = 𝑓𝑓𝑦𝑦2 

Based on Eq. (4), the hoop stress of the steel tube can be calculated by 

(5) 𝑓𝑓ℎ = −𝑓𝑓𝑣𝑣
2

+ �𝑓𝑓𝑦𝑦2 −
3
4
𝑓𝑓𝑣𝑣2 

The analysis method proposed by Zhang et al. [47] was adopted to obtain the compressive strength of the steel 
tube when the IFT specimen reached its ultimate bearing capacity, which is given as 

(6) 𝑓𝑓𝑣𝑣
𝑓𝑓𝑦𝑦

= 𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 

(7) 𝛽𝛽 = 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠
𝑓𝑓𝑖𝑖𝐴𝐴𝑖𝑖

 

where α and β are two coefficients obtained after trials and analysis. ξ is the confinement ratio initially proposed 
for CFT columns and hereon it is used for the IFT specimens. It should be noted that the value of ξ for the IFT 
specimens is general larger than 1.0 while its value is smaller than 1.0 in concrete filled steel tube because the 
ice is so weak compared with concrete. 

If the values of α and β were given, the axial bearing capacity of square IFT columns could be obtained by using 
Eqs. (1), (2), (3), (4), (5), (6), (7). To find the best values of α and β, an evaluation coefficient r was introduced 
and given by 

(8) 𝑟𝑟 = �� �𝑁𝑁𝑒𝑒(𝑛𝑛)−𝑁𝑁𝑢𝑢(𝑛𝑛)

𝑁𝑁𝑒𝑒(𝑛𝑛)
�
29

𝑛𝑛=1

 

where Nu(n) and Ne(n) are the bearing capacities of the nth IFT specimen obtained from calculation and 
experiment, respectively. The values of n ranged from one to nine because there are nine square IFT specimens 
tested in this study. A smaller value of r indicated that the calculated results are closer to the experimental ones. 
After plenty of trials and analysis, the coefficient r reached its minimum value when the values of α and β were 
taken as −1.17 and 0.90, respectively. 
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The comparison between experimental and calculated results is reported in Table 1 and Fig. 13. The values of 
calculated axial load strength Nu using Eq. (1) are very close to those of the axial load strength Ne obtained from 
experimental results. Therefore, the values of Nu/Ne are close to 1, which indicates that the proposed axial 
bearing capacity equation for square IFT stub columns can provide accurate predictions of the test results. The 
relative errors are within ±2%. The applicable range for the proposed method to calculate the axial load strength 
of square IFT stub columns is 39.5 ≤ B/t ≤ 77. It should be admitted that the number of IFT specimens tested in 
this study is very small, and more parameters such as the temperature and loading rate need to be investigated. 
In addition of ice, the mechanical properties of steel are also influenced by the Arctic low temperature. The 
results of tensile tests conducted at −80 °C, −60 °C, −40 °C, −20 °C, 0 °C, and 30 °C revealed that the mechanical 
properties of steel including yield strength, ultimate strength, and elastic modulus increased as the temperature 
decreased [48], [49]. Therefore, the composite interaction and strength of the square IFT columns might be 
affected by additional variables such as temperature, and it is worth to take more test variable into 
consideration. However, it is beyond the scope of the current study (developing and validating square IFT as a 
new construction component). This will be studied in future by the authors or other interested researchers. The 
proposed equation will also be further refined by experimental and analytical results of more specimens with 
more parameters in further research. 

 
Fig. 13. Comparisons between experimental and calculated results. 
 

5. Conclusions 
The innovative square ice filled steel tube (IFT) column was proposed in this study, which effectively combined 
the advantages of ice and steel tubes. When the square IFT column is subjected to axial compression, the load is 
carried by both the ice core and the outer steel tube simultaneously. The enhancement of structural properties 
of square IFT columns is mainly due to the composite action of steel hollow section and ice core. The confining 
effect from the steel hollow section causes the ice core to behave in a triaxial stress state while the ice core 
prevents the wall of the steel hollow section from buckling inward. Therefore, there is a great improvement in 
the bearing capacity and the ductility of IFT columns. Other advantages of IFT columns include: (a) More 
economical construction in the cold regions: plain ice is easily acquired in these regions and only shipping hollow 
steel tubes is much cheaper than shipping steel and components of concrete to these regions; (b) Greater ease 
for construction: the construction process is easy and fast due to the elimination of formwork. Therefore, the 
proposed IFT columns have potential to be widely used in the building constructions in cold regions. 

In this study, the axial compressive behavior of the proposed IFT stub columns was experimentally investigated. 
The influence of width-to-thickness (B/t) ratio of steel tube on the behavior of square IFT stub columns was 
analyzed. Based on the present experimental and theoretical investigation, the following conclusions can be 
drawn: 
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1. The IFT columns exhibited higher strength and better ductility than those of the summation of hollow 
steel tubes and plain ice columns, which confirms the remarkable composite action between the ice 
core and the outer steel tube. 

2. The initial stiffness of IFT columns was similar to that of hollow steel tubes. 
3. The initial stiffness and ultimate bearing capacity of the IFT stub columns increased with the decrease 

of B/t ratio (varying from 39.5 to 77). 
4. A simplified equation for predicting the axial bearing capacity of IFT stub columns was proposed and it 

agreed well with the experimental results. 
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