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Abstract 
In this paper, a geometric approach to the passive realization of any planar compliance with a redundant 

compliant mechanism is presented. The mechanisms considered are either simple serial mechanisms consisting 

of five elastic joints or simple parallel mechanisms consisting of five springs. For each type of mechanism, 

realization conditions to achieve a given compliance are derived. The physical significance of each condition is 

identified and graphically interpreted. Geometry based synthesis procedures to achieve any given compliance 

are developed for both types of mechanisms. Since each realization condition imposes restrictions solely on the 
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mechanism geometry, the procedures allow one to choose the geometric properties of each component (from a 

set of admissible options) independently from the selection of the elastic properties of each component. 

Keywords 
Compliance synthesis, Passive realization of compliance, Redundant compliant mechanisms 

1. Introduction 
In robotic manipulation, compliance is a common means of providing force regulation and stable positioning 

relative to constraints [1], [2]. For small, quasi-static elastic deformations from equilibrium, a linear relationship 

exists between a twist (the displacement and rotation in Cartesian space) and a wrench (force and moment in 

Cartesian space). This relationship can be represented by a symmetric positive semidefinite (PSD) matrix, 

the compliance matrix 𝐂, or the stiffness matrix 𝐊, the inverse of 𝐂. 

A rigid body suspended by a compliant mechanism can achieve a general elastic behavior. A compliant 

mechanism consists of elastic components connected in different ways. Fig. 1 illustrates two types of simple 

compliant mechanisms. In a serial mechanism (Fig. 1a), each joint is loaded with a joint compliance; in a parallel 

mechanism (Fig. 1b), each spring is connected independently to the suspended body. For both types of 

mechanisms, each joint compliance/stiffness can be obtained with a conventional torsional/translational spring 

or can be controlled in real-time using variable stiffness actuation (VSA) [3]. Thus, mechanisms considered are 

compliant mechanisms with lumped compliances. The elastic behavior of a compliant mechanism depends on its 

configuration and the value of compliance/stiffness of each joint/spring. As such, Cartesian compliance synthesis 

(or realization) requires identification of both the mechanism configuration and the compliance/stiffness of each 

joint/spring. In many robotic tasks, the configuration of the manipulator is an important concern due to physical 

constraints. Identification of the compliance realization conditions (both on the configuration and on the elastic 

component properties) is the primary motivation for this work. In addition, a better understanding and 

interpretation of these conditions for relatively simple compliant mechanisms yields a new means of compliant 

mechanism synthesis and provides insight into the design of hybrid serial/parallel compliant mechanisms. 

 
Fig. 1. Simple redundant compliant mechanisms with five components. (a) A 5-joint serial mechanism with joint 
compliances 𝑐𝑖   ≥  0. The location of each joint 𝐽𝑖  is presented by a position vector 𝒓i. (b) A 5-spring parallel mechanism 
with spring rates 𝑘𝑖   ≥  0. The axis of each spring is represented by wrench 𝒘i and 𝒓i is the perpendicular vector from the 
frame to 𝒘i. 

 

In the design of a compliant mechanism, the space of realizable compliances with the mechanism is an 

important consideration. Since variable stiffness actuators enable joint stiffness to vary in real-time, the 

realizable space of compliances is significantly increased. However, as shown in [4], [5], [6], an arbitrary 

compliance cannot be achieved by varying the joint compliance/stiffness alone. The realizable space of 

compliant behaviors is highly restricted by the mobility of the mechanism. In order to further increase the 

mechanism mobility and enlarge the realizable space, mechanisms with kinematic redundancy can be used. Due 

to the increase in degrees of freedom, a redundant serial manipulator can reach an even larger space of 

compliances because the configuration of the mechanism can vary without affecting the pose of the end-

effector. 
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1.1. Related work 
Many researchers have studied general spatial compliant behaviors. Screw theory [7], [8], [9], [10], [11] and Lie 

groups [12] have been widely used in spatial compliance analysis. 

In previous work in spatial compliance realization, the conditions on stiffness/compliance that can be passively 

realized by simple parallel/serial compliant mechanisms have been identified [13], [14]. Synthesis procedures for 

any stiffness/compliance that is realizable with a simple compliant mechanism have been developed and 

refined [13], [14], [15], [16]. The realization of an arbitrary spatial compliance/stiffness using more complicated 

compliant components (helical joints in a serial mechanism or screw springs in a parallel mechanism) has also 

been addressed [17], [18], [19], [20]. In these approaches, the compliant behavior realization depends on a 

compliance/stiffness matrix decomposition into rank-1 components. In each process, mechanism geometry was 

not considered or constrained. 

In more recent research, spatial compliance realization procedures that take into account some mechanism 

geometric properties have been developed [21], [22], [23], [24]. In our most recent work in spatial compliance 

realization [25], a geometry-based approach to realizing an arbitrary compliance was presented. In the synthesis 

procedure, each elastic component is selected from a restricted space based on its location, direction, and/or 

pitch. 

In recent work on the realization of planar compliance, achieving a specified planar translational compliance 

(point compliance in Euclidean space E(2)) using a 3R serial mechanism having given geometry has been 

addressed [26]. In the approach, an optimization was used. In [27], [28], methods to achieve 

an isotropic compliance in 2- and 3-dimensional Euclidean spaces with a simple serial mechanism were 

presented. In [4], conditions on mechanism geometry to attain every point compliance in E(2) were identified, 

and synthesis procedures to achieve any given compliance in E(2) using a 3 revolute-joint mechanism with 

given link lengths were developed. In [5], the results for 3R mechanisms [4] were extended to general 3-joint 

mechanism (containing revolute and prismatic joints) having given (constrained) geometry. 

In [29], a general 3 × 3 planar compliance (in SE(2)) synthesis procedure for the design of a 4-spring parallel 

mechanism having a specific symmetric structure was developed. In [6], a geometric synthesis procedure for a 

general planar compliance with a 3-component (non-redundant) compliant mechanism was presented. Most 

recently, compliance realization with a redundant mechanism consisting of 4 compliant components was 

addressed [30]. Realization conditions on the mechanism configuration to achieve a given compliance was 

identified. Synthesis procedures based on the mechanism geometry were developed. 

1.2. Contributions of the paper 
The limitations of prior work are best expressed in terms of serial mechanisms. The main limitation of previous 

work for 3J and 4J mechanisms is that the realizable space of compliant behaviors achieved in each mechanism 

is very limited. It is known that the space of all passive planar compliances is a 6-dimensional cone (the 3 × 3 PSD 

cone). The space of compliances that can be achieved at a configuration of a n-joint mechanism is a n-

dimensional polyhedral subcone. Although an arbitrary compliance can be realized with a 3J or 4J mechanism by 

properly choosing the joint locations, the set of acceptable joint locations is highly constrained. 

When a 3R mechanism is considered for the realization of a compliance, the realization conditions impose three 

equality constraints on the mechanism configuration [6], i.e., a wrench passing through any two joint locations 

must yield a twist centered at the location of the third joint [6]. Because a 3R mechanism does not have 

redundancy, there is a unique mechanism configuration when the locations of the mechanism base and end-

effector are specified. Since the realization conditions on 3J mechanism are extremely restrictive [6], it is highly 
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unlikely (if not impossible) that a desired compliance can be achieved at a specified endpoint pose, even with 

infinite variability in joint elastic behavior. 

When a redundant mechanism consisting of 4 compliant components is considered (which increases the 

dimension of the realizable compliance space at a configuration by one), the realization conditions are still highly 

restrictive. Geometrically, the realization conditions require that a wrench passing through two joints yields a 

twist centered on a line segment connecting the other two joints. If the base location of the mechanism and 

pose of end-effector are specified, the remaining two joints must satisfy two equality conditions and four 

inequality conditions simultaneously to achieve the desired compliance. Since the space constrained by the 

realization conditions is so small, an arbitrarily specified compliance is still unlikely to be achieved by the 

mechanism. 

It can been seen that the limitations of 3J and 4J mechanisms for compliance realization are related to their 

limited number of controllable compliant components. Thus, an investigation into compliance realization using 

mechanisms with additional compliant components is needed. Because the space of planar compliance is 6 

dimensional, increasing the number of components to 5 will increase the dimension of the space of realizable 

compliance behaviors. 

This paper addresses planar compliance synthesis with a redundant mechanism having five compliant 

components. The approaches developed for mechanisms of three and four compliant 

components [6], [30] cannot be used directly for this case for the following reasons: (1) the realizable 

compliance space of a 5-component mechanism is not simply the union of compliance subspaces realized with 

all combinations of three and four components in the mechanism (the contributions of all components must be 

considered simultaneously); (2) although the constraints on compliance are less restrictive due to the reduced 

number of equality conditions, the number of inequality conditions for passive realization is increased; and (3) 

the geometric significance of each realization condition is completely different due to the increase of compliant 

components. 

The main contributions of the paper are: 

• identification of necessary and sufficient conditions for 5-component mechanisms to realize an arbitrary 

compliance; 

• identification of the geometric significance of each realization condition and interpretation of these 

conditions in terms of mechanism geometry; 

• development of geometry-based synthesis procedures for both 5-joint serial mechanisms and 5-spring 

parallel mechanisms for the realization of an arbitrary compliance. 

1.3. Overview 
This paper presents a geometric approach to the design of a redundant compliant mechanism having five 

compliant components that passively realizes an arbitrary planar compliance. Realization conditions on 

mechanism configurations for an arbitrarily given compliance are identified. Geometry based synthesis 

procedures are developed for both 5-joint serial and 5-spring parallel mechanisms. With these procedures, the 

realization of any given compliant behavior can be accomplished by choosing each elastic component based on 

its geometry from an allowable space. Section 2 provides some background needed for the realization of a 

compliance by a simple serial/parallel mechanism. In Section 3, realization conditions on the mechanism 

configuration to achieve a given compliance are identified. In Section 4, the geometric significance of each 

realization condition is presented. In Section 5, geometry based synthesis procedures are developed for both 

types of mechanisms. In Section 6, numerical examples are presented to demonstrate the synthesis process. A 

brief conclusion and summary are provided in Section 7. 
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2. Technical background 
In this section, some background needed for the realization of a planar compliant behavior with a simple 

serial/parallel mechanism is presented. For each type of mechanism, only simple compliant components (no 

helical joints or screw springs) are needed. 

2.1. Screw representation of a mechanism configuration 
Consider a serial mechanism having n joints 𝐽𝑖 (𝑖 = 1,2, … , 𝑛) as shown in Fig. 1a. Each joint can be described by 

a planar unit twist (the joint twist). In Plücker axis coordinates, the joint twists associated with a revolute 

joint 𝐽𝜏 and prismatic joint 𝐽𝜌 are: 

(1) 𝐭𝜏 = [
𝐮
1

] , 𝐭𝜌 = [
�̂�
0

] , 

where 𝐮 = 𝐫 × �̂�,, 𝐫 is the position vector of 𝐽𝜏, �̂� is the unit vector orthogonal to the mechanism plane, and �̂� is 

the (unit) vector along the axis of 𝐽𝜌. 

If a twist 𝐭τ is specified, the center of the twist, 𝑇𝜏, can be calculated using 

(2) 𝐫 = 𝐒𝐮 

where 𝐒 ∈ ℝ2×2 is the skew-symmetric matrix: 

(3) 𝐒 = [
0 −1
1 0

] . 

Thus, once a joint twist 𝐭i for a revolute joint is identified, the location of the joint 𝐽𝑖 = 𝑇𝑖  is uniquely determined 

as illustrated in Fig. 2a. Since a twist 𝐭𝜌 associated with a prismatic joint has infinite pitch (free vector), it only 

determines the direction of the prismatic axis. The joint location is arbitrary in the plane. 

 
Fig. 2. Screw representation of the location of a mechanism component. (a) The location of joint 𝐽𝑖  in a serial mechanism 
can be represented by a unit twist 𝐭𝑖. (b) The axis of a spring in a parallel mechanism is represented by a unit wrench 𝐰𝑖. 

 

For the parallel mechanism shown in Fig. 1b, each spring can be described by a planar unit wrench (the spring 

wrench). In Plücker ray coordinates, the spring wrenches corresponding to a line (translational) spring and a 

torsional spring are: 

(4) 𝐰𝜌 = [
�̂�
𝑑

] , 𝐰𝜏 = [
𝟎
1

] , 

where �̂� is a (unit) vector along the axis of spring, 𝑑 = (𝐫 × �̂�) · �̂�,, and 𝐫 is the orthogonal vector from 

frame O to the spring axis as shown in Fig. 2b. 

If a wrench 𝐰𝜌 is specified, the location of its axis (the line of action 𝑙) is determined by the perpendicular 

vector 𝐫, which can be determined using 

(5) 𝐫 = −𝑑𝐒�̂�, 

https://www.sciencedirect.com/topics/engineering/realization
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#fig0001
https://www.sciencedirect.com/topics/engineering/axis-coordinate
https://www.sciencedirect.com/topics/engineering/revolute-joint
https://www.sciencedirect.com/topics/engineering/revolute-joint
https://www.sciencedirect.com/topics/engineering/prismatic-joint
https://www.sciencedirect.com/topics/engineering/orthogonal-unit-vector
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#fig0002
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#fig0001
https://www.sciencedirect.com/topics/engineering/orthogonal-vector
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#fig0002


where matrix 𝐒 is defined in Eq. (3). 

Thus, once a spring wrench 𝐰𝜌 associated with a line spring is identified, the axis of the spring 𝑙 is uniquely 

determined. Since the spring wrench 𝐰𝜏 in Eq. (4) has infinite pitch, a torsional spring can be located anywhere 

in the plane. 

2.2. Screw product of a twist and wrench 
Since the center of a twist 𝐭, 𝑇, is independent of its density (magnitude), a scalar multiplication of a twist does 

not change its location. Similarly, a scalar multiplication of a wrench does not change its line of action 𝑙. For 

planar cases, a point 𝑇 is uniquely identified by a unit twist �̂�. A line 𝑙 is uniquely identified by a unit wrench �̂�. 

The screw product (reciprocal product) of a twist 𝐭 and a wrench 𝐰, if expressed in Plücker axis and ray 

coordinates respectively, is defined as 

𝐰𝑇𝐭 = 𝐭𝑇𝐰 

which indicates the work done by the wrench along the twist. 

If 𝐭 is a finite pitch unit twist expressed in Eq. (1) and 𝐰 is a finite pitch unit wrench expressed in Eq. (4), then the 

reciprocal product of 𝐭 and 𝐰 indicates the distance from the twist center of 𝐭 to the axis of 𝐰, i.e., if a point 𝑇 is 

represented by a unit twist 𝐭 and a line 𝑙 is represented by a unit wrench 𝐰, then the distance from 𝑇 to 𝑙 is 

calculated by 

(6) 𝑑 = 𝐰𝑇𝐭 = 𝐭𝑇𝐰.. 

A twist 𝐭 and a wrench w are called reciprocal [7] if the screw product of the two is zero: 

(7) 𝐰𝑇𝐭 = 𝐭𝑇𝐰 = 0, 

which indicates that the wrench 𝐰 does no work along twist 𝐭. 

For planar cases, the reciprocal relationship of a twist 𝐭 and wrench 𝐰 can be represented geometrically if both 

have finite pitches. If 𝑇 is the center of 𝐭 and 𝑙 is the axis of 𝐰, then 𝐭 and 𝐰 are reciprocal if and only if 𝑇 is on 𝑙. 

Note that the reciprocal product of two screws is coordinate frame independent. 

2.3. Compliance achieved by a passive elastic mechanism 
Consider a n-joint serial mechanism. Each joint has joint twists 𝐭𝑖 and joint compliance 𝑐𝑖   ≥  0 (𝑖 = 1, … , 𝑛). The 

Cartesian compliance 𝐂 at the configuration is [18]: 

(8) 𝐂 = 𝑐1𝐭1𝐭1
𝑇 + 𝑐2𝐭2𝐭2

𝑇 + ⋯ + 𝑐𝑛𝐭𝑛𝐭𝑛
𝑇 . 

This equation can be express in the form: 

(9) 𝐂 = 𝐓𝐂𝐽𝐓𝑇 , 

where 𝐓 = [𝐭1, 𝐭2, … , 𝐭𝑛] and 𝐂𝐽 is the (diagonal) joint compliance matrix  𝐂𝐽 = diag[𝑐1, 𝑐2, … , 𝑐𝑛]. Since each 

column of 𝐓 presents a unit twist contributed by a joint, 𝐓 is the Jacobian of the serial mechanism. Thus, the 

realization of Cartesian compliance matrix 𝐂 requires that an appropriate set of joint twists 𝐭𝑖 (or the mechanism 

Jacobian) and corresponding joint compliances 𝑐𝑖 are identified. In general, due to the non-uniqueness of the 

decomposition in Eq. (8), there is an infinite number of mechanism configurations that can realize a given 𝐂. 

Dual to serial mechanism realization, for a parallel mechanism having spring wrenches 𝐰𝑖 and spring 

stiffnesses 𝑘𝑖  ≥  0 (𝑖 = 1, … , 𝑛),the Cartesian stiffness 𝐊 [17] is: 
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(10) 𝐊 = 𝑘1𝐰1𝐰1
𝑇 + ⋯ + 𝑘𝑛𝐰𝑛𝐰𝑛

𝑇 . 

Similar to the serial case, Eq. (10) can be expressed as 

(11) 𝐊 = 𝐖𝐊𝐽𝐖𝑇, 

where 𝐖 = [𝐰1, 𝐰2, … , 𝐰𝑛] and 𝐊𝐽 is the diagonal joint stiffness matrix 𝐊𝐽 = diag[𝑘1, 𝑘2, … , 𝑘𝑛]. Since each 

column of 𝐖 presents a unit wrench imposed by each spring, 𝐖𝑇 is the Jacobian of the parallel mechanism. 

Thus, the realization of Cartesian stiffness 𝐊 requires that an appropriate set of spring wrenches 𝐰𝑖 (or the 

mechanism Jacobian) and the corresponding spring stiffnesses 𝑘𝑖  ≥  0 are identified. 

Note that Eq. (8) for the Cartesian compliance of a serial mechanism and Eq. (10) for the Cartesian stiffness of a 

parallel mechanism each applies for a general n-component mechanism (for both redundant and non-redundant 

mechanisms). It can be seen that if used for the realization of a full-rank 3 × 3 compliance or stiffness matrix, a 

mechanism must have at least 3 components (𝑛  ≥  3). Due to the rank deficiency of a prismatic joint twist and a 

torsional spring wrench, a serial mechanism containing prismatic joints alone can only attain a rank-2 matrix, 

and a parallel mechanism containing only torsional springs can only attain a rank-1 matrix. Hence, if a serial 

mechanism is used to realize a full-rank compliance matrix, it must have at least one revolute joint; and if a 

parallel mechanism is used to realize an arbitrary stiffness, at least two line springs must be used. Realization of 

a given compliance requires conditions on the locations of revolute joints (represented by joint twists) of a serial 

mechanism, and conditions on the spring axes (represented by spring wrenches) of a parallel mechanism. Since 

each joint twist 𝐭𝑖 and each spring wrench 𝐰𝑖 has geometric meaning, using screw representation, mathematical 

conditions for compliance realization can be interpreted in terms of mechanism geometry and expressed 

graphically in the plane. 

3. Realization conditions 
In this section, realization conditions for a 5-component compliant mechanism to achieve a given compliance 

are identified. Serial mechanisms are considered first. Then, by duality, the results are modified and extended to 

parallel mechanisms. 

3.1. Realization conditions for 5-joint serial mechanisms 
Consider a 5-joint serial mechanism. Each joint 𝐽𝑖 is represented by joint twist 𝐭𝑖 (𝑖 = 1,2, … ,5). A line that 

passes through two joints 𝐽𝑖 and 𝐽𝑖  (represented by a wrench 𝐰ij) satisfies the reciprocal conditions for 

both 𝐭𝑖 and 𝐭𝑗: 

(12) 𝐰𝑖𝑗
𝑇 𝐭𝑖 = 0and𝐰𝑖𝑗

𝑇 𝐭𝑗 = 0. 

Since a scalar multiplication of a wrench does not change its axis, 𝐰ij can be calculated by 

(13) 𝐰𝑖𝑗 = 𝛼(𝐭𝑖 × 𝐭𝑗), ∀𝑖 ≠ 𝑗, 

where α is an arbitrary scalar. 

Suppose that a symmetric matrix 𝐂 is expressed as: 

(14) 𝐂 = 𝑐1𝐭1𝐭1
𝑇 + 𝑐2𝐭2𝐭2

𝑇 + 𝑐3𝐭3𝐭3
𝑇 + 𝑐4𝐭4𝐭4

𝑇 + 𝑐5𝐭5𝐭5
𝑇 , 

and suppose that wrench 𝐰12 passes through joints 𝐽1 and 𝐽2; and wrench 𝐰34 passes through joints 𝐽3 and 𝐽4. 

Then, using Eq. (12), 
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𝐂𝐰12 = (𝑐1𝐭1𝐭1
𝑇 + 𝑐2𝐭2𝐭2

𝑇 + 𝑐3𝐭3𝐭3
𝑇 + 𝑐4𝐭4𝐭4

𝑇 + 𝑐5𝐭5𝐭5
𝑇)𝐰12

= 𝑐3(𝐭3
𝑇𝐰12)𝐭3 + 𝑐4(𝐭4

𝑇𝐰12)𝐭4 + 𝑐5(𝐭5
𝑇𝐰12)𝐭5.

. 

Applying Eq. (12) again to the above equation yields: 

(15) 𝐰34
𝑇 𝐂𝐰12 = 𝑐5(𝐭5

𝑇𝐰12)(𝐭5
𝑇𝐰34). 

Applying the same process with 𝐰13 and 𝐰24 yields: 

(16) 𝐰24
𝑇 𝐂𝐰13 = 𝑐5(𝐭5

𝑇𝐰24)(𝐭5
𝑇𝐰13). 

Solving both Eqs. (15) and (16) for 𝑐5 yields: 

(17) 
𝐰24

𝑇 𝐂𝐰13

(𝐭5
𝑇𝐰24)(𝐭5

𝑇𝐰13)
=

𝐰34
𝑇 𝐂𝐰12

(𝐭5
𝑇𝐰12)(𝐭5

𝑇𝐰34)
. 

In general, if the decomposition (14) applies to 𝐂, then, for any permutation (𝑖, 𝑗, 𝑝, 𝑞, 𝑟) from {1, 2, 3, 4, 5}: 

(18) 
𝐰𝑖𝑗

𝑇 𝐂𝐰𝑝𝑞

(𝐭𝑟
𝑇𝐰𝑖𝑗)(𝐭𝑟

𝑇𝐰𝑝𝑞)
=

𝐰𝑖𝑝
𝑇 𝐂𝐰𝑗𝑞

(𝐭𝑟
𝑇𝐰𝑖𝑝)(𝐭𝑟

𝑇𝐰𝑗𝑞)
 

where 𝐰𝑖𝑗  is a wrench passing through the centers of 𝐭𝑖 and 𝐭𝑗 (𝐽𝑖 and 𝐽𝑗) defined in Eqs. (12) or (13). 

Thus, Eq. (18) is a necessary condition for 𝐂 to be achieved at a configuration of a 5-joint serial mechanism. 

Using a process similar to that presented in [30] for 4-component mechanisms, it can be shown that Eq. (18) is 

also a sufficient condition. Thus, if Eq. (18) is satisfied for one permutation, then it must be satisfied for all 

permutations; and if matrix 𝐂 can be decomposed into the form of (14), then for every permutation (𝑖, 𝑗, 𝑝, 𝑞, 𝑟) 

from {1, 2, 3, 4, 5}, 

(19) 𝑐𝑟 =
𝐰𝑖𝑗

𝑇 𝐂𝐰𝑝𝑞

(𝐰𝑖𝑗
𝑇 𝐭𝑟)(𝐰𝑝𝑞

𝑇 𝐭𝑟)
=

𝐰𝑖𝑝
𝑇 𝐂𝐰𝑗𝑞

(𝐰𝑖𝑝
𝑇 𝐭𝑟)(𝐰𝑗𝑞

𝑇 𝐭𝑟)
.. 

Therefore, satisfaction of condition (18) for any one permutation (𝑖, 𝑗, 𝑝, 𝑞, 𝑟) of {1, 2, 3, 4, 5} is a necessary and 

sufficient condition for 𝐂 to be decomposed into the form of (14). Note that in the decomposition of Eq. (14), no 

restriction on each coefficient 𝑐𝑖 is yet imposed. This means that if condition (18) is violated for one 

permutation, the mechanism cannot achieve the given 𝐂 at the configuration even if each joint compliance can 

vary indefinitely in (−∞, +∞). 

For a PSD compliance matrix 𝐂 to be realized passively (using conventional springs or variable stiffness 

actuation), each joint compliance must be nonnegative, which requires 𝑐𝑟   ≥  0 in Eq. (19). It is readily shown 

that, if for any five permutations with 𝑟 being each of the joints (𝑟 = 1,2,3,4,5), 

𝐰𝑖𝑗
𝑇 𝐂𝐰𝑝𝑞

(𝐰𝑖𝑗
𝑇 𝐭𝑟)(𝐰𝑝𝑞

𝑇 𝐭𝑟)
≥ 0, 

then, the inequality conditions must be satisfied for all permutations of {1, 2, 3, 4, 5}. Thus, the realization 

conditions can be summarized as: 

Proposition 1 

Suppose 𝒕i( i = 1,2, … ,5) are the joint twists of a 5-joint serial mechanism. A given compliance 𝐂 can be achieved 

passively at the mechanism configuration if and only if the following conditions hold: 

(i) For any one permutation (𝑖, 𝑗, 𝑝, 𝑞, 𝑟) of {1, 2, 3, 4, 5}, 
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(20) 
𝐰𝑖𝑗

𝑇 𝐂𝐰𝑝𝑞

(𝐭𝑟
𝑇𝐰𝑖𝑗)(𝐭𝑟

𝑇𝐰𝑝𝑞)
=

𝐰𝑖𝑝
𝑇 𝐂𝐰𝑗𝑞

(𝐭𝑟
𝑇𝐰𝑖𝑝)(𝐭𝑟

𝑇𝐰𝑗𝑞)
.. 

(ii) For any five permutations with 𝑟 = 1,2,3,4,5, 

(21) 
𝐰𝑖𝑗

𝑇 𝐂𝐰𝑝𝑞

(𝐰𝑖𝑗
𝑇 𝐭𝑟)(𝐰𝑝𝑞

𝑇 𝐭𝑟)
≥ 0.. 

Therefore, the realization of a compliance at a given configuration requires the satisfaction of one equality 

condition in the form of (20) and five inequality conditions in the form of (21). 

3.2. Realization conditions for 5-spring parallel mechanisms 
By duality, a set of necessary and sufficient conditions on a 5-spring parallel mechanism to realize a given 

stiffness can be obtained. 

Suppose that 𝐰𝑖 ((𝑖 = 1,2, … ,5)) are the spring wrenches of a parallel mechanism. If two 

wrenches 𝐰𝑖  and 𝐰𝑗 intersect at 𝑇𝑖𝑗, then the two wrenches must be reciprocal to a twist 𝒕ij centered at 𝑇𝑖𝑗. 

Using the reciprocal condition, 𝒕ij can be calculated using 

(22) 𝐭𝑖𝑗 = 𝛽(𝐰𝑖 × 𝐰𝑗),, 

where 𝛽 is an arbitrary scalar. With appropriate modification, the results of Proposition 1 obtained for a 5-joint 

serial mechanism apply to a 5-spring parallel mechanism for the realization of an arbitrary stiffness. 

Proposition 2 

Suppose 𝐰𝑖 (𝑖 = 1, … ,5)) are spring wrenches of a 5-spring parallel mechanism. A given stiffness 𝑲 can be 

achieved passively by the mechanism if and only if the following conditions hold: 

(i) For an arbitrary permutation (𝑖, 𝑗, 𝑝, 𝑞, 𝑟) of {1, 2, 3, 4, 5}, 

(23) 
𝐭𝑖𝑗

𝑇 𝐊𝐭𝑝𝑞

(𝐭𝑖𝑗
𝑇 𝐰𝑟)(𝐭𝑝𝑞

𝑇 𝐰𝑟)
=

𝐭𝑖𝑝
𝑇 𝐊𝐭𝑗𝑞

(𝐭𝑖𝑝
𝑇 𝐰𝑟)(𝐭𝑗𝑞

𝑇 𝐰𝑟)
. 

(ii) For any five permutations of (𝑖, 𝑗, 𝑝, 𝑞, 𝑟) of {1, 2, 3, 4, 5} with 𝑟 = 1,2,3,4,5, 

(24) 
𝐭𝑖𝑗

𝑇 𝐊𝐭𝑝𝑞

(𝐭𝑖𝑗
𝑇 𝐰𝑟)(𝐭𝑝𝑞

𝑇 𝐰𝑟)
≥ 0. 

Dual to the serial case, if Eq. (23) holds for any one permutation, then it must hold for all permutations. If 

inequality (24) holds for any five permutations (with 𝑠 = 1,2,3,4,5), then the inequality must hold for all 

permutations. Thus, to realize a given stiffness using a 5-spring parallel mechanism, one equality condition in the 

form of (23) and five inequality conditions in the form of (24) must be satisfied. 

3.3. The uniqueness of the realization 
If at a given configuration, a 5J serial mechanism realizes a compliance, the realization is typically unique. This is 

due to the fact that, if among the five joint twists no three are linearly dependent (the generic case), then each 

joint compliance 𝑐𝑟 calculated by Eq. (19) is unique regardless of the permutation used in the calculation. 

Geometrically, the independence of three joint twists indicates that the locations of the three joints 

corresponding to these twists are not located on a single line. Since the mechanism Jacobian is full-rank for this 

generic case, the realization is unique for any non-singular configuration. It is easy to see that, at a singular 

configuration, the denominators of some 𝑐𝑖 in Eq. (24)are zero. The joint compliance of joint 𝐽𝑟 can be uniquely 

determined with (𝑖, 𝑗, 𝑝, 𝑞) being any permutation of {1, 2, 3, 4, 5} excluding 𝑟, i.e., (𝑖, 𝑗, 𝑝, 𝑞) = {1,2,3,4,5} ∖ 𝑟: 

https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0020
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0021
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#enun0001
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0023
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0024
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0023
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0024
https://www.sciencedirect.com/topics/engineering/linearly-dependent
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0019
https://www.sciencedirect.com/topics/engineering/jacobian
https://www.sciencedirect.com/topics/engineering/denominator
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0024


(25) 𝑐𝑟 =
𝐰𝑖𝑗

𝑇 𝐂𝐰𝑝𝑞

(𝐰𝑖𝑗
𝑇 𝐭𝑟)(𝐰𝑝𝑞

𝑇 𝐭𝑟)
. 

Although different permutations can be used in calculating 𝑐𝑟 using Eq. (25), condition (ii) of Proposition 

1 ensures that the joint compliance 𝑐𝑟 obtained is the same for the given set of joint twists at the configuration. 

Similarly, if a 5-spring parallel mechanism realizes a stiffness, and if among the five spring wrenches, no three 

are linearly dependent, then each spring stiffness 𝑘𝑟 in the realization must be unique. Geometrically, the 

independence of three spring wrenches indicates that the three wrenches do not intersect at a single point or 

are not parallel to each other. For this case, the mechanism Jacobian 𝐖𝑇 in Eq. (11) is full-rank (has rank 3). 

Thus, for a non-singular configuration, each spring stiffness can be uniquely obtained with an arbitrary 

permutation (𝑖, 𝑗, 𝑝, 𝑞) = {1,2,3,4,5} ∖ 𝑟: 

(26) 𝑘𝑟 =
𝐭𝑖𝑗

𝑇 𝐊𝐭𝑝𝑞

(𝐭𝑖𝑗
𝑇 𝐰𝑟)(𝐭𝑝𝑞

𝑇 𝐰𝑟)
.). 

4. Geometric significance of the realization conditions 
The set of realization conditions developed in Section 3 can be viewed in terms of the mechanism geometry. 

Since the realization conditions involve the product of two wrenches/twists about a given compliance/stiffness 

in Eq. (20) or (23), the physical significance of just the two products is identified first. Then, the geometric 

interpretations of all of the realization conditions are provided for the two types of simple 5-component 

mechanisms. 

4.1. Screw product about compliance 
As stated in Section 2.2, if a twist 𝐭 and wrench 𝐰 are both unit screws, then the screw product 

of 𝐭 and 𝐰 indicates the distance from the twist instantaneous center 𝑇 to the wrench axis 𝑙. Below, we identify 

the physical significance of the product of two unit wrenches about a given compliance 𝐂. 

Consider two unit wrenches 𝐰1 and 𝐰2. We show that, for a given compliance matrix 𝐂, the quantity 

(26) ℎ = 𝐰2
𝑇𝐂𝐰1 

is related to the location of the compliance center. 

Note that h defined in Eq. (27) is invariant under coordinate transformation for 𝐰1, 𝐰2 and 𝐂. To clearly show 

the physical significance of h, a coordinate frame located at the compliance center 𝐶𝑐  is used initially. In this 

coordinate frame, the compliance matrix 𝐂 has the block diagonal form: 

(27) 𝐂𝑛 = [
𝐃 𝟎
𝟎𝑇 𝑐𝜙

] , 

where 𝐃 is a 2 × 2 symmetric PSD matrix, 𝟎 is the zero 2-vector, and 𝑐𝜙  >  0 is the 

principal rotational compliance of 𝐂. Note that with the compliance matrix expressed in this form, the value 

of 𝑐𝜙 is unique. 

In the compliance center based frame, an arbitrary unit wrench 𝐰1 has the form: 

(28) 𝐰1 = [
𝐧1

𝑑1
𝑐], 

where 𝑑1
𝑐 is the distance from the axis of 𝐰1 to the frame origin, i.e., to the center of compliance 𝐶𝑐. The twist 

corresponding to 𝐰1 is: 
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(29) 𝐭1 = 𝐂𝑛𝐰1 = [
𝐃 𝟎
𝟎𝑇 𝑐𝜙

] [
𝐧1

𝑑1
𝑐] = [

𝐃𝐧1

𝑐𝜙𝑑1
𝑐]. 

The unit twist associated with 𝐭1 is: 

(30) �̂�1 =
1

𝑐𝜙𝑑1
𝑐 𝐭1,, 

which has the same center as 𝐭1. Premultiplying 𝐭1 by unit wrench 𝐰2 yields: 

(31) 𝐰2
𝑇𝐭1 = 𝐰2

𝑇𝐂𝑛𝐰1 = (𝑐𝜙𝑑1
𝑐)(𝐰2

𝑇 �̂�1). 

Since �̂�1is a unit twist and 𝐰2 is a unit wrench, (𝐰2
𝑇 �̂�1) indicates the distance from the center of 𝐭1, 𝑇1, to the 

wrench axis of 𝐰2. Thus, 

(32) 𝐰2
𝑇𝐂𝑛𝐰1 = 𝑐𝜙(𝐰1

𝑇𝐭𝑐)(𝐰2
𝑇 �̂�1) = 𝑐𝜙𝑑1

𝑐𝑑2
1,, 

where tc is the unit twist located at the compliance center 𝐶𝑐, 𝑑1
𝑐 indicates the distance from 𝐶𝑐 to the wrench 

axis of 𝐰1, and 𝑑2
1 indicates the distance from 𝑇1 to the wrench axis of 𝐰2 as illustrated in Fig. 3a. Similarly, 

(33) 𝐰1
𝑇𝐂𝑛𝐰2 = 𝑐𝜙𝑑2

𝑐𝑑1
2,, 

where 𝑑2
𝑐 indicates the distance from 𝐶𝑐 to the wrench axis of 𝐰2, 𝑑2

1 indicates the distance from 𝑇2 to the 

wrench axis of 𝐰1 (illustrated in Fig. 3b). Since the products in Eqs. (33) and (34) are frame independent, and 

since 𝐂 is symmetric, in an arbitrary frame, 

(34) 𝐰1
𝑇𝐂𝐰2 = 𝐰2

𝑇𝐂𝐰1 = 𝑐𝜙𝑑1
𝑐𝑑2

1 = 𝑐𝜙𝑑2
𝑐𝑑1

2. 

Thus, the product h defined in Eq. (27) is related to the rotational principal compliance of 𝐂 and the positions 

of 𝐰𝑖 relative to the compliance center. 

 
Fig. 3. Geometric significance of the product of two wrenches about 𝐂. 

In a dual development, the product 𝐭2𝐊𝐭1 is invariant under coordinate transformation for 𝐭1, 𝐭2 and 𝐊. When 

expressed in a frame located at its stiffness center 𝐶𝑘, a stiffness 𝐊 has the following block diagonal form: 

(35) 𝐊𝑛 = [
𝐀 𝟎
𝟎𝑇 𝑘𝜙

] ,, 

where 𝑘𝜙  >  0 is the principal rotational stiffness of 𝐊 and is uniquely determined by the stiffness behavior. 

Suppose that 𝐭1 and 𝐭2 are two unit twists, and that, in the coordinate frame located at 𝐶𝑘, the two twists have 

the form: 

(36) 𝐭𝑖 = [
𝐮𝑖

1
] , 𝑖 = 1,2. 

Then, the wrench associated with 𝐭1acting on 𝐊n is: 

(37) 𝐰1 = 𝐊𝑛𝐭1 = [
𝐀 𝟎
𝟎𝑇 𝑘𝜙

] [
𝐮1

1
] = [

𝐀𝐮1

𝑘𝜙
]. 
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The unit wrench associated with 𝐰1 is: 

(38) �̂�1 =
1

∥𝐀𝐮1∥
𝐰1, 

The third component of �̂�1 is the distance from the wrench axis to the frame origin, which is at the stiffness 

center 𝐶𝑘, i.e., 

(39) 𝑑1
𝑐 =

𝑘𝜙

∥𝐀𝐮1∥
. 

Thus, 

(40) 𝐭2
𝑇𝐊𝑛𝐭1 = 𝐭2

𝑇𝐰1 =∥ 𝐀𝐮1 ∥ (𝐭2
𝑇�̂�1). 

Using Eq. (40), 

𝐭2
𝑇𝐊𝑛𝐭1 = 𝑘𝜙

(𝐭2
𝑇�̂�1)

𝑑1
𝑐 . 

Since 𝐭2 and �̂�1are both unit screws, 𝐭2
𝑇�̂�1 indicates the distance from 𝑇2 (the twist center of 𝐭2 ) to the wrench 

axis of 𝐰1. Since the product in Eq. (41) is frame independent, in an arbitrary coordinate frame, 

(41) 𝐭2
𝑇𝐊𝐭1 = 𝑘𝜙

𝐭2
𝑇𝐰1

𝐰1
𝑇𝐭𝑐

, 

where tc is the unit twist located at the center of stiffness. Reversing the order of multiplication yields: 

(42) 𝐭1
𝑇𝐊𝐭2 = 𝑘𝜙

𝐭1
𝑇𝐰2

𝐰2
𝑇𝐭𝑐

. 

Since K is symmetric, Eqs. (42) and (43) are equal and can be expressed in terms of geometric parameters: 

(43) 𝐭1
𝑇𝐊𝐭2 = 𝐭2

𝑇𝐊𝐭1 = 𝑘𝜙
𝑑1

2

𝑑1
𝑐 = 𝑘𝜙

𝑑2
1

𝑑2
𝑐 , 

where 𝑑1
2 indicates the distance from 𝑇2 to the wrench axis of 𝐰1, 𝑑1

𝑐  indicates the distance from 𝐶𝑘 to the 

wrench axis of 𝐰1 as illustrated in Fig. 4a; and where 𝑑2
1 is the distance from 𝑇1 to the wrench axis 

of 𝐰2, 𝑑2
𝑐  indicates the distance from 𝐶𝑘 to the wrench axis of 𝐰2 as illustrated in Fig. 4b. 

 
Fig. 4. Geometric significance of the product of two twists about 𝐊. 

4.2. Geometric significance of the realization conditions for serial mechanisms 
For a 5-joint mechanism with joint twists 𝐭𝑖 (𝑖 = 1,2, … ,5),, let 𝐰𝑖𝑗  be the unit wrench reciprocal to 

twists 𝐭𝑖 and 𝐭𝑗, then the axis of 𝐰𝑖𝑗  passes through the two joints, 𝐽𝑖 and 𝐽𝑗. Denote: 

𝐭𝑖𝑗 = 𝐂𝐰𝑖𝑗. 

Then, 𝐰𝑖𝑗  and 𝒕ij are solely determined by the mechanism geometry and the desired compliance 𝐂. The 

realization conditions require that one equality condition in the form of (20) is satisfied and five inequality 
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conditions in the form of (21) are satisfied. Below, the geometric significance of each of these conditions is 

identified. 

4.2.1. Equality condition for serial mechanisms 
Using the results presented in Section 4.1, the geometric significance of equality condition (20) can be obtained. 

Here, we consider the case [𝑖, 𝑗, 𝑝, 𝑞, 𝑟] = [1,2,3,4,5]. The equality realization condition (20) for this case 

requires that 

(44) 
𝐰12

𝑇 𝐂𝐰34

(𝐰12
𝑇 𝐭5)(𝐰34

𝑇 𝐭5)
=

𝐰23
𝑇 𝐂𝐰14

(𝐰23
𝑇 𝐭5)(𝐰14

𝑇 𝐭5)
. 

Using Eq. (35), this can be expressed in geometric terms as: 

𝑐𝜙

𝑑12
𝑐 𝑑34

12

𝑑12
5 𝑑34

5 = 𝑐𝜙

𝑑23
𝑐 𝑑14

23

𝑑23
5 𝑑14

5 . 

Since 𝑐𝜙 is constant for a given compliance, the condition is reduced to only geometric terms: 

(45) 
𝑑12

𝑐 𝑑34
12

𝑑12
5 𝑑34

5 =
𝑑23

𝑐 𝑑14
23

𝑑23
5 𝑑14

5 , 

where 𝑑12
𝑐  is the distance from the compliance center 𝐶𝑐 to line 𝐽1𝐽2, 𝑑34

12 is the distance from the center 

of 𝐭12 to line 𝐽3𝐽4, 𝑑12
5  is the distance from 𝐽5 to line 𝐽1𝐽2, and 𝑑34

5  is the distance from 𝐽5 to line 𝐽3𝐽4 (each 

illustrated in Fig. 5a); and where 𝑑23
𝑐  is the distance from the compliance center 𝐶𝑐 to line 𝐽2𝐽3, 𝑑14

23 is the 

distance from the center of 𝐭23 to line 𝐽1𝐽4, 𝑑23
5  is the distance from 𝐽5 to line 𝐽2𝐽3, and 𝑑14

5  is the distance 

from 𝐽5 to line 𝐽1𝐽4(each illustrated in Fig. 5b). The equality condition (46) requires that the ratios between the 

distances in Fig. 5a and 5b must be the same. Thus, the equality realization condition is expressed in terms of 

the mechanism geometry and compliance properties. 

 
Fig. 5. Geometric interpretation on the equality condition for serial mechanisms. The distance ratios defined in Eq. (46) for 
(a) and (b) must be the same. 
 

4.2.2. Inequality conditions for serial mechanisms 
Suppose 𝑙𝑖𝑗  is the line of action of 𝐰𝑖𝑗  that passes through joints 𝐽𝑖 and 𝐽𝑗. First, consider the case in 

which 𝑙𝑖𝑗  does not intersect the triangle with the other 3 joints (𝐽𝑝, 𝐽𝑞 and 𝐽𝑟) as vertices. For the locations of 5 

joints shown in Fig. 6, suppose, with no loss of generality, that 𝑙12, the line passing through joints 𝐽1 and 𝐽2, does 

not intersect triangle 𝐽3𝐽4𝐽5. We show that, for this case, if 𝐂 is achieved passively at the configuration, the 

twist 𝐭12 = 𝐂𝐰12must be centered inside triangle 𝐽3𝐽4𝐽5. 
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Fig. 6. Geometric interpretation on the inequality conditions. (a) Twist center 𝑇12 is located in the triangle formed by 
joints 𝐽3, 𝐽4 and 𝐽5. (b) Twist center 𝑇13 is located outside the triangle formed by 𝐽3, 𝐽4 and 𝐽5 and in the shaded area. 

 

Because Eq. (14) holds for 𝐂 with each 𝑐𝑖  ≥  0, substituting Eqs. (12) and (14)into 𝐭12 = 𝐂𝐰12 yields: 

(46) 𝐭12 = 𝑐3(𝐭3
𝑇𝐰12)𝐭3 + 𝑐4(𝐭4

𝑇𝐰12)𝐭4 + 𝑐5(𝐭5
𝑇𝐰12)𝐭5.. 

Since the line of action of 𝐰12 does not intersect triangle 𝐽3𝐽4𝐽5, the three vertices are on the same side of 𝑙12. 

Thus, ((𝐭3
𝑇𝐰12),), (𝐭4

𝑇𝐰12)and (𝐭5
𝑇𝐰12) must have the same sign. Because 𝑐𝑖  ≥  0 for passive realization, the 

coefficients 𝑐𝑖(𝐭𝑖
𝑇𝐰12) > 0, or 𝑐𝑖(𝐭𝑖

𝑇𝐰12) < 0 (𝑖 = 3,4,5). Because twist 𝐭12 in Eq. (47) is a positive (or negative) 

combination of the other three unit twists, 𝑇12 must be located inside triangle 𝐽3𝐽4𝐽5. 

Conversely, if 𝑇12 is located inside triangle 𝐽3𝐽4𝐽5, then the three coefficients of 𝐭𝑖 (𝑖 =

3,4,5)in (47), (𝐭3
𝑇𝐰12),, (𝐭4

𝑇𝐰12) and (𝐭5
𝑇𝐰12),, must have the same sign, which indicates 𝑐3, 𝑐4 and 𝑐5 have the 

same sign. We show that 𝑐3, 𝑐4 and 𝑐5 cannot be negative. 

Because C is a symmetric PSD matrix, 

𝐰12
𝑇 𝐂𝐰12 = 𝑐3(𝐭3

𝑇𝐰12)2 + 𝑐4(𝐭4
𝑇𝐰12)2 + 𝑐5(𝐭5

𝑇𝐰12)
2

≥ 0.. 

Therefore each ci must be non-negative. Thus, for this case, the inequality condition is equivalently represented 

by the location of 𝑇12, which is demonstrated in Fig. 6a. 

Next, consider the case in which the axis of 𝐰𝑖𝑗  intersects triangle 𝐽𝑝𝐽𝑟𝐽𝑠. Here assume, without loss of 

generality, that the axis of 𝐰13 intersects triangle 𝐽2𝐽4𝐽5 (as shown in Fig. 6b). If the compliance 𝐂 is passively 

achieved at the configuration shown, each coefficient 𝑐𝑖  ≥  0 in Eq. (14). Then, similar to Eq. (47), we have: 

(47) 𝐭13 = 𝑐2(𝐭2
𝑇𝐰13)𝐭2 + 𝑐4(𝐭4

𝑇𝐰13)𝐭4 + 𝑐5(𝐭5
𝑇𝐰13)𝐭5. 

Since 𝐽2, 𝐽4 and 𝐽5 are not all on the same side of 𝐰13, 𝐭2
𝑇𝐰13,, 𝐭4

𝑇𝐰13 and 𝐭5
𝑇𝐰13 do not all have the same sign. 

Here, suppose that only 𝐭4
𝑇𝐰13 and 𝐭5

𝑇𝐰13 have the same sign. Thus, the center of 𝐭13, 𝑇13, must be outside the 

triangle formed by 𝐽2𝐽4𝐽5 and bounded by the two lines 𝐽2𝐽4 and 𝐽2𝐽5(in the shaded area in Fig. 6b). On the other 

hand, if point 𝑇13 is inside the shaded area, the coefficients of 𝐭4  and 𝐭5 in (48), 𝑐4(𝐭4
𝑇𝐰13) and 𝑐5(𝐭5

𝑇𝐰13),, must 

have the opposite sign of the coefficient of 𝐭2 , 𝑐2(𝐭2
𝑇𝐰13). Since (𝐭2

𝑇𝐰13) has a sign opposite to that 

of (𝐭4
𝑇𝐰13) and (𝐭5

𝑇𝐰13), 𝑐2, 𝑐4 and 𝑐5 have the same sign. Because 𝐂 is a symmetric PSD matrix, by the same 

process used for the first case, 𝑐2, 𝑐4 and 𝑐5 must be non-negative. 

For a serial mechanism having five joints among which no three are collinear, the realization conditions can be 

equivalently interpreted geometrically as: 

Proposition 3 

A given compliance matrix 𝐂 can be passively realized at a configuration of a 5-joint serial mechanism if and only 

if the following conditions hold: 
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(i) The distance ratios for different sets of joints described in Fig. 5a and 5b are the same (satisfy Eq. (46)); 

(ii) A wrench whose axis passes through any 2 joints, (a) if not intersecting the triangle with the vertices being the 

other three joints, when multiplied by 𝐂, yields a twist centered in the shaded triangle described in Fig. 6a; (b) if 

intersecting the triangle, when multiplied by 𝐂, yields a twist centered in the shaded area described in Fig. 6b. 

Note that condition (i) in Proposition 3 is equivalent to the equality condition (20) which ensures the 

decomposition of the desired compliance 𝐂 into the form of (14). Condition (ii) for any two 

joints 𝐽𝑖 and 𝐽𝑗 ensures that the joint compliances for the other three joints are non-negative, and ensures that 

three inequality conditions in Eq. (21) are satisfied. Thus, satisfaction of condition (ii) for two sets of different 

joints (e.g., {𝐽1, 𝐽2} and {𝐽3, 𝐽4}, or {𝐽1, 𝐽3} and {𝐽2, 𝐽5}) guarantees all coefficients ci’s in Eq. (14) are non-negative, 

which ensures the passive realization of 𝐂 with the 5J serial mechanism. 

4.3. Geometric significance of the realization conditions for parallel mechanisms 
By duality, the results presented in Section 4.2 for 5-joint serial mechanisms can be modified and applied to 5-

spring parallel mechanisms. 

Suppose that 𝐰𝑖  (𝑖 = 1, … ,5) are spring wrenches of a 5-spring parallel mechanism and suppose that 

wrenches 𝐰𝑖  and 𝐰𝑗 intersect at 𝑇𝑖𝑗. Then the unit twist centered at 𝑇𝑖𝑗, 𝒕ij, must be reciprocal to 

both 𝐰𝑖 and 𝐰𝑗. Denote: 

𝐰𝑖𝑗 = 𝐊𝐭𝑖𝑗.. 

Then, 𝒕ij and 𝐰𝑖𝑗  are solely determined by the five spring wrenches and the desired stiffness 𝐊. The realization 

conditions require that one equality condition in the form of (23) is satisfied and five inequality conditions in the 

form of (24) are satisfied. Below, the geometric significance of each of these conditions is identified. 

4.3.1. Equality condition for parallel mechanisms 
Using the results presented in Section 4.1, the equality condition (23) can be written as: 

𝐭34
𝑇 𝐰12

(𝐭𝑐
𝑇𝐰12)(𝐭12

𝑇 𝐰5)(𝐭34
𝑇 𝐰5)

=
𝐭14

𝑇 𝐰23

(𝐭𝑐
𝑇𝐰23)(𝐭23

𝑇 𝐰5)(𝐭14
𝑇 𝐰5)

.. 

Since the screw product of a unit twist and a unit wrench indicates the distance from the twist center to the 

wrench axis, normalizing the wrenches and twists yields 

(48) 
𝑑12

34

𝑑12
𝑐 𝑑5

12𝑑5
34 =

𝑑23
14

𝑑23
𝑐 𝑑5

23𝑑5
14 ,, 

where 𝑑𝑝𝑞
𝑖𝑗

 is the distance from the twist center of 𝒕ij to the wrench axis of 𝐰pq. The geometric meaning of each 

distance 𝑑𝑝𝑞
𝑖𝑗

in Eq. (49) is illustrated in Figs. 7a and 7b. The ratios of the distances in Eq. (49) in the two figures 

must be equal. Thus, the equality realization condition is expressed in terms of the mechanism geometry 

and stiffness properties. 
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Fig. 7. Geometric interpretation on the equality conditions for parallel mechanisms. The distance ratios defined 
in Eq. (49) for (a) and (b) must be the same. 

 

4.3.2. Inequality conditions for parallel mechanisms 
Suppose a 5-spring parallel mechanism has spring wrenches 𝐰𝑖  (𝑖 = 1,2, … ,5) among which no three are 

concurrent or parallel to each other. Dual to Eq. (14), a stiffness K can be passively achieved by the mechanism if 

and only if 𝐊 can be expressed as: 

(49) 𝐊 = 𝑘1𝐰1𝐰1
𝑇 + 𝑘2𝐰2𝐰2

𝑇 + 𝑘3𝐰3𝐰3
𝑇 + 𝑘4𝐰4𝐰4

𝑇 + 𝑘5𝐰5𝐰5
𝑇 ,, 

with each 𝑘𝑖  ≥  0. 

Suppose that 𝒕ij is the unit twist centered at 𝑇𝑖𝑗, the intersection of wrenches 𝐰𝑖 and 𝐰𝑗, and that 𝐰𝑖𝑗  is the 

wrench resulting from 𝒕ij imposed on 𝐊, i.e., 

𝐰𝑖𝑗 = 𝐊𝐭𝑖𝑗.. 

Using a procedure equivalent to that for serial mechanisms, suppose, without loss of generality, (𝑖, 𝑗) =

(1,2),, and first consider the case in which 𝑇12 is located in the triangle formed by the other three 

wrenches 𝐰3, 𝐰4, 𝐰5 (as shown in Fig. 8a). For this case, it is shown that the line of action of 𝐰12 does not 

intersect the triangle. 

 
Fig. 8. Geometric interpretation of the inequality conditions. A twist centered at 𝑇12, (a) if located in the triangle formed by 
wrench axes 𝐰3, 𝐰4 and 𝐰5, when multiplied by 𝐊, yields a wrench 𝐰12 that does not intersect the triangle; (b) if located 
outside the triangle, when multiplied by 𝐊, yields a wrench 𝐰12 that intersects the triangle without crossing the shaded 
area. 

 

In fact, 

(50) 𝐰12 = 𝐊𝐭12 = 𝑘3(𝐰3
𝑇𝐭12)𝐰3 + 𝑘4(𝐰4

𝑇𝐭12)𝐰4 + 𝑘5(𝐰5
𝑇𝐭12)𝐰5. 

Then, 

(51) 𝐭34
𝑇 𝐊𝐭12 = 𝑘5(𝐰5

𝑇𝐭12)(𝐰5
𝑇𝐭34). 

Since 𝑇12 is in the triangle, 𝑇12 and 𝑇34 are on the same side of 𝐰5. Thus, 𝐰5
𝑇𝐭12 and 𝐰5

𝑇𝐭34 have the same sign, 

which together with Eq. (52)indicates 𝐭34
𝑇 𝐊𝐭12 > 0. Similarly, 𝐭35

𝑇 𝐊𝐭12 > 0,, 𝐭45
𝑇 𝐊𝐭12 > 0. Summarizing, 

(52) 𝐭34
𝑇 𝐊𝐭12 > 0, 𝐭35

𝑇 𝐊𝐭12 > 0, 𝐭45
𝑇 𝐊𝐭12 > 0.. 

If 𝐰12 intersects the triangle, it must intersect one of three line segments: 𝑇12𝑇34, 𝑇12𝑇35, or 𝑇12𝑇45. Suppose 

that 𝐰12 intersects segment 𝑇12𝑇34 at 𝑇 (as shown by the dashed line in Fig. 8a), and 𝐭 is the unit twist centered 

at 𝑇. Then, since 𝑇 is located between 𝑇12 and 𝑇34, twist t can be expressed as a positive combination of the two 

unit twists 𝐭12 and 𝐭34: 
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𝐭 = 𝛼𝐭12 + 𝛽𝐭34,, 

where 𝛼  >  0 and 𝛽  >  0. Then, 

𝐭𝑇𝐰12 = (𝛼𝐭12 + 𝛽𝐭34)𝑇𝐊𝐭12 = 𝛼𝐭12
𝑇 𝐊𝐭12 + 𝛽𝐭34

𝑇 𝐊𝐭12 = 0. 

Since 𝐭12
𝑇 𝐊𝐭12 ≥ 0, 𝛼  >  0 and 𝛽  >  0, 

(53) 𝐭34
𝑇 𝐊𝐭12 < 0, 

which conflicts with the first inequality in (53). Therefore, 𝐰12 cannot intersect segment 𝑇12𝑇34. By the same 

reasoning, 𝐰12 cannot intersect segment 𝑇12𝑇35 or segment 𝑇12𝑇45. Thus, 𝐰12 cannot intersect triangle 𝐽3𝐽4𝐽5. 

Conversely, if the line of action of 𝐰12 does not intersect the triangle, then, the three 

vertices 𝑇34, 𝑇35 and 𝑇45 of the triangle must be on the same side of 𝐰12, and 

thus t34
𝑇 w12, t35

𝑇 w12 and 𝐭45
𝑇 𝐰12must have the same sign. Below, we show these three quantities must be 

positive. To prove this, we only need to show that t34
𝑇 w12 > 0,. 

Consider the line l passing through 𝑇12 and 𝑇34 which intersects 𝐰12 at 𝑇′ (as shown Fig. 8a). Since 𝑇′ is outside 

the triangle, it must be outside the segment 𝑇12𝑇34. Then, the unit twist 𝐭′ centered at 𝑇′ can be expressed as 

𝐭′ = 𝛼′𝐭12 + 𝛽′𝐭34,, 

where the two scalars 𝛼′ and 𝛽′ have opposite signs, i.e., 𝛼′𝛽′  <  0. Since 𝐭′ and 𝐰12 are reciprocal, 

𝐭′𝑇𝐰12 = (𝛼′𝐭12 + 𝛽′𝐭34)𝑇𝐊𝐭12 = 𝛼′𝐭12
𝑇 𝐊𝐭12 + 𝛽′𝐭34

𝑇 𝐊𝐭12 = 0.. 

Thus, 𝐭12
𝑇 𝐊𝐭12 and 𝐭34

𝑇 𝐊𝐭12 must have the same sign. Because 𝐭12
𝑇 𝐊𝐭12 > 0, then 𝐭34

𝑇 𝐊𝐭12 > 0,, satisfying the 

first inequality of (53). With similar procedures, the three inequalities in (53) are each satisfied, which implies 

that 𝑘3, 𝑘4 and 𝑘5 in Eq. (51) are non-negative. Summarizing, coefficients 𝑘3, 𝑘4 and 𝑘5 in Eq. (51) are non-

negative, if and only if 𝐰12 does not intersect the shaded triangle formed by wrenches 𝐰3, 𝐰4, and 𝐰5 as 

illustrated in Fig. 8a. 

Second, consider the case in which 𝑇12 is located outside the triangle formed by wrenches 𝐰3, 𝐰4, and 𝐰5. 

Using a process similar to that used for the serial case, it can be proved that, for this case, the line of action 

of 𝐰12 must intersect the triangle without crossing the shaded area described in Fig. 8b. 

For a parallel mechanism having five springs among which no three are concurrent or parallel to each other, the 

realization conditions can be equivalently interpreted geometrically as: 

Proposition 4 

A stiffness matrix 𝐊 can be passively realized with a 5-spring parallel mechanism if and only if the following 

conditions hold: 

(i) The distance ratios for different sets of wrenches described in Fig. 7a and 7b are the same (satisfy Eq. (49)); 

(ii)A twist centered at the intersection of 2 spring axes, (a) if located within the triangle enclosed by the other 3 

springs, when multiplied by 𝐊, yields a wrench that does not intersect the triangle; (b) if located outside the 

triangle, when multiplied by 𝐊, yields a wrench that intersects the triangle without crossing the shaded area 

described in Fig. 8b. 

Dual to the serial case, condition (i) in Proposition 4 ensures the decomposition of 𝐊 into the form of Eq. (50). 

Condition (ii) of Proposition 4 for any two springs ensures that the spring stiffnesses for the other three springs 
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are non-negative. Thus, satisfaction of condition (ii) for two sets of different springs (e.g., {𝐰1, 𝐰2} and {𝐰3, 𝐰4}, 

or {𝐰1, 𝐰3} and {𝐰2, 𝐰4}) guarantees the passive realization of 𝐊 with the 5-spring parallel mechanism. 

4.4. The compliance center and the mechanism configuration 
For any given planar compliant behavior, there is a particular point at which both the compliance matrix and 

stiffness matrix can be described in a diagonal form. This unique point is defined to be the center of 

compliance/stiffness. It was shown [6], [30] that, if a compliant behavior is passively achieved with a mechanism 

having 3 or 4 elastic components, then the center must be located within an area enclosed by the locations of 

these components. These results can be extended to mechanisms having five elastic components. 

First consider a serial 5J mechanism. Let 𝑙𝑖𝑗  be the line passing through 𝐽𝑖  and 𝐽𝑗, and 𝐰𝑖𝑗  be the unit wrench 

associated with 𝑙𝑖𝑗. Suppose, with no loss of generality, that 𝑙12 does not intersect the triangle with vertices at 

the other joints 𝐽3, 𝐽4 and 𝐽5. Then by realization inequality condition (i) of Proposition 3, 𝑇12, the center of 

twist 𝑇12 = Cw12, must be inside triangle 𝐽3𝐽4𝐽5. Since the compliance center and 𝑇12 must be on the same side 

of 𝑙12 [30], 𝐶𝑐 must be on the same side of 𝑙12 as the triangle (the shaded area as illustrated in Fig. 9a). Applying 

the same process to all lines 𝑙𝑖𝑗  that have the other three joints on the same side, the center of compliance must 

be within the convex hull formed by the five joints as demonstrated in Fig. 9b. 

 
Fig. 9. Locus of compliance centers 𝐶𝑐. (a) When considering only two joints, 𝐽1 and 𝐽2, 𝐶𝑐  is on the same side of line 𝑙12 as 
triangle 𝐽3𝐽4𝐽5. (b) When considering all joints, 𝐶𝑐  must be within the convex hull formed by the five joints. (c) For a 5-spring 
parallel mechanism, the stiffness center 𝐶𝑘 must be the within the union of triangles formed by any three spring axes. 

 

Similarly, it can be shown that, if a stiffness is passively achieved by a 5-spring parallel mechanism, the stiffness 

center must be inside the union of triangles formed by any 3 spring axes as illustrated in Fig. 9c. Note that for a 

5-spring parallel mechanism, the locus area of stiffness centers 𝐶𝑘 is not convex. 

5. Compliance synthesis 
In this section, synthesis procedures for both types of mechanisms are developed using the conditions on the 

mechanism geometry developed in Section 4. In each procedure, the center of the elastic behavior is used. 

5.1. Synthesis with a 5-joint serial mechanism 
Suppose 𝐂 is a 3 × 3 compliance matrix having the form: 

𝐂 = [
𝐀 𝐛
𝐛𝑇 𝑐33

] , 

the compliance center 𝐶𝑐 is determined by: 

(54) 𝐫𝑐 =
1

𝑐33
𝐒𝐛,, 

where 𝐒 is the 2 × 2 matrix defined in Eq. (3). The unit twist 𝐭c associated with 𝐶𝑐 is calculated using Eq. (1). 

The procedure for a 5-joint serial mechanism realization of compliance 𝐂 presented below identifies the 

locations of the five joints and the corresponding joint compliances. Selections used in the procedure are 

illustrated in Fig. 10. 
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1. Select arbitrarily a line 𝑙12 and obtain the corresponding unit wrench 𝐰12. Two joints 𝐽1 and 𝐽2 will lie on 

line 𝑙12. The associated twist is calculated: 

(55) 𝐭12 = 𝐂𝐰12.. 

The unit twist associated with 𝐭12, �̂�12,, is obtained and the center of �̂�12, 𝑇12, is calculated using Eq. (2). 

2. Select arbitrarily a line 𝑙34 (represented by unit wrench 𝐰34). Two joints 𝐽3 and 𝐽4 will lie on line 𝑙34. 

3. Select the location of joint 𝐽5. To satisfy condition (ii) of Proposition 3, this point must be located on the same 

side of 𝑙34 as 𝑇12. The unit twist centered at 𝐽5, 𝐭5, is obtained using Eq. (1). 

4. Select a line 𝑙23 (represented by wrench 𝐰23) that intersects 𝑙12 and 𝑙34to obtain joint locations 𝐽2 and 𝐽3. This 

line must be judiciously chosen such that 𝑇34 satisfies condition (ii) of Proposition 3. The twist associated 

with 𝐰23 is calculated: 

(57)𝐭23 = 𝐂𝐰23. 

The unit twist associated with 𝐭23, �̂�23, is obtained, and the center of 𝐭23, 𝑇23, is calculated using Eq. (2). The 

distance ratio used in the equality condition corresponding to the selections of 𝐰12, 𝐰34, 𝐰23and 𝐽5 is 

calculated: 

(58) 𝛾𝑠 =
(𝐰12

𝑇 𝐭𝑐)(𝐰34
𝑇 �̂�12)(𝐰23

𝑇 𝐭5)

(𝐰12
𝑇 𝐭5)(𝐰34

𝑇 𝐭5)(𝐰23
𝑇 𝐭𝑐)

. 

Note that in calculation of the ratio 𝛾𝑠 in Eq. (58), normalization of 𝐰12, 𝐰34 and 𝐰23 to unit wrenches is not 

necessary since they appear in both the numerator and denominator. 

5. Choose a line 𝐰14 such that the ratio of the distances from the line to 𝑇23 and 𝐽5 is equal to 𝛾𝑠. This can be 

accomplished by the following steps. 

(a) On line 𝑙𝑝 passing through 𝑇23 and 𝐽5, choose point 𝑃 such that the ratio of the distances from 𝑇23 to 𝑃 and 

from 𝐽5 to 𝑃 is 𝛾𝑠. This point (𝑥𝑝, 𝑦𝑝) can be determined by the two equations: 

(59) 
∥𝐭𝑝−�̂�23∥

∥𝐭𝑝−𝐭5∥
= |𝛾𝑠|, 𝐭𝑝 · (�̂�23 × 𝐭5) = 0,, 

where 𝐭𝑝 = [𝑦𝑝, −𝑥𝑝, 1]
𝑇

is the unit twist located at 𝑃, and �̂�23 and 𝐭5 are the unit twists at 𝑇23 and 𝐽5, 

respectively. Note that the set of equations in (59) yields two solutions on line 𝑙𝑝: one is inside line 

segment 𝐽5𝑇23, and the other is outside. The selection of point Pfor the realization depends on the sign of 𝛾𝑠: 

if 𝛾𝑠   >  0, the solution outside segment 𝐽5𝑇23 is selected; if 𝛾𝑠   <  0, the solution inside segment 𝐽5𝑇23 is 

selected. Thus 𝑃 is uniquely determined. 

(b) Any line passing through point P satisfies the ratio condition. Judiciously select a line 𝑙14 passing 

through P (denoted as 𝐰14) that intersects 𝐰12 and 𝐰34 to obtain joint locations 𝐽1 and 𝐽4. In the selection of 

this line, condition (ii) of Proposition 3 for both 𝑇12 and 𝑇34 must be satisfied. 

6. Calculate the joint compliances using Eq. (25). 

With this final step, the five joint locations and compliances in the serial mechanism are identified. 
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Fig. 10. Compliance synthesis with a 5-joint serial mechanism using geometric constraints. 

 

5.2. Synthesis with a 5-spring parallel mechanism 
Suppose 𝐊 is a given 3 × 3 stiffness matrix having the form: 

𝐊 = [
𝐃 𝐯
𝐯𝑇 𝑘33

] , 

the center of stiffness is calculated by: 

(60) 𝐫𝑐 = −𝐒𝐃−1𝐯 

where S is the 2 × 2 matrix defined in Eq. (3). The unit twist 𝐭𝑐 associated with the stiffness center 𝐶𝑘 is 

calculated using Eq. (1). 

Below, the synthesis procedure for stiffness realization with a 5-spring parallel mechanism is presented. 

Selections used in the process are shown in Fig. 11. 

1. Select arbitrarily a point 𝑇12 and calculate the unit twist 𝐭12 centered at 𝑇12 using Eq. (1). Two spring 

axes 𝐰1 and 𝐰2 of the mechanism will intersect at this point. The wrench associated with 𝐭12 is calculated: 

(61) 𝐰12 = 𝐊𝐭12. 

The unit wrench associated with 𝐰12, �̂�12, is obtained and the line of action of 𝐰12 is interpreted geometrically 

using Eq. (4). 

2. Select another point 𝑇34 arbitrarily. Calculate the unit twist 𝐭34associated with 𝑇34. The wrench corresponding 

to 𝐭34 is calculated: 

(62) 𝐰34 = 𝐊𝐭34. 

With the unit wrench associated with 𝐰34, the line of action of 𝐰34 is again interpreted geometrically 

using Eq. (4). Two spring axes 𝐰3 and 𝐰4 will intersect at 𝑇34. 

3. Select line 𝑙5, which will be the line of action of spring 𝐰5. To satisfy condition (ii) of Proposition 4, this line 

must be selected such that points 𝑇12 and 𝑇34 are on the same side of 𝑙5. The unit spring wrench 𝐰5 is obtained 

using Eq. (4). 

4. 

https://www.sciencedirect.com/topics/engineering/geometric-constraint
https://www.sciencedirect.com/topics/engineering/stiffness-matrix
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0003
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0001
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#fig0011
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0001
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0004
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0004
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#enun0004
https://www.sciencedirect.com/science/article/pii/S0094114X18319438#eq0004


Judiciously select a point 𝑇23, at which spring axes 𝐰2 and 𝐰3 will meet. This point, together with 

points 𝑇12 and 𝑇34, determines wrenches 𝐰2 and 𝐰3. In selecting this point, condition (ii) of Proposition 4 must 

be satisfied. The wrench corresponding to the twist at 𝑇23 is: 

(63) 𝐰23 = 𝐊𝐭23.. 

Calculate the distance ratio used in the equality condition corresponding to the selections 

of 𝑇12, 𝑇34, 𝑇23 and 𝐰5: 

(64) 𝛾𝑝 =
(𝐭34

𝑇 𝐰12)(𝐭𝑐
𝑇𝐰23)(𝐭23

𝑇 𝐰5)

(𝐭𝑐
𝑇𝐰12)(𝐭12

𝑇 𝐰5)(𝐭34
𝑇 𝐰5)

. 

5. Select a point 𝑇14 such that the ratio of the distances from the point to lines of 𝐰23 and 𝐰5 is equal to 𝛾𝑝, i.e., 

(65) 
𝐭14

𝑇 𝐰23

𝐭14
𝑇 𝐰5

= 𝛾𝑝.. 

This can be accomplished by the following steps. 

(a)  For the given 𝐰23 and 𝐰5, consider the equation defined by: 

(66) 𝐭𝑇𝐰23 = 𝛾𝑝(𝐭𝑇𝐰5), 

where 𝐭 is a unit twist defined by 𝐭 = [𝑦, −𝑥, 1]𝑇. Then Eq. (66)defines a line 𝑙𝑡 on which any point satisfies the 

equality condition. 

(b) Judiciously choose one point 𝑇14 on line 𝑙𝑡 such that condition (ii) of Proposition 4 for both 𝐰12 and 𝐰34 are 

satisfied. The remaining four spring axes (wi, 𝑖 = 1,2,3,4) are determined by the four lines passing through 

points (𝑇12, 𝑇14), (𝑇12, 𝑇23), (𝑇23, 𝑇34), and (𝑇14, 𝑇34) as illustrated in Fig. 11. 

6. Calculate the stiffness for each spring using Eq. (26). 

With this final step, the five spring axes and their stiffnesses in the parallel mechanism are identified. 

 
Fig. 11. Compliance synthesis with a 5-spring parallel mechanism based on geometry. 

 

5.3. Discussion 
In each step of the procedures presented in Sections 5.1 and 5.2, a line or a point is selected. Since the elastic 

components (joints or springs) in a mechanism can be numbered arbitrarily, the order of these selections can be 

changed. 
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When the mechanism configuration is determined, each joint compliance in the serial mechanism (or 

each spring constant in the parallel mechanism) can be calculated using any permutation in Eq. 

(25)or (26) provided that all twists and wrenches involved have finite (zero) pitch. Thus, any translational twist 

or rotational wrench (having infinite pitch) should not be used in Eq. (25) or (26) to calculate the joint 

compliances or spring stiffnesses. 

In application, constraints on the mechanism configuration need to be considered. For example, if it is desired 

that the first joint 𝐽1 and the last joint 𝐽5 be located at given locations (e.g., when the location of the robot base 

and end-effector pose are specified), the synthesis of a given compliance involves identifying the three 

remaining joint locations 𝐽2, 𝐽3 and 𝐽4. The procedure presented in Section 5.1 can be modified to meet this 

requirement and is described below. 

First, choose a line 𝑙12 to pass through the given point 𝐽1 and choose 𝐽5 at the location yielding the desired end-

effector pose. Then select line 𝑙34 at a location that satisfies condition (ii) of Proposition 3. Line 𝑙23 can be 

selected as described in Step 4 to determine 𝐽2 and 𝐽3, and point P is calculated using the method described in 

Step 5a. By passing through points 𝐽1 and 𝑃, line 𝑙14 is determined. The intersection of 𝑙34 and 𝑙14 is the location 

of 𝐽4. It can be seen that, since the locations of two joints are specified, line 𝑙14 is unique. 

Note that in the compliance realization with a 5-joint mechanism, at most two joint locations can be specified 

arbitrarily. If three joint locations are constrained, the mechanism may not have sufficient mobility to achieve a 

configuration required by the realization, and thus would not be able to realize the given behavior. Once the 

first two joint locations are selected, the remaining joint locations must be selected such that geometric 

condition (ii) in Proposition 3 is satisfied. The serial elastic mechanism synthesis example in the next section 

considers practical constraints. 

In the synthesis process, the space of possible joint locations for each joint is identified. One can select any one 

from the available space based on its geometry. When five joint locations are selected, the corresponding joint 

compliances can be determined by Eq. (25). Since the selection of each joint is not unique, if different 

configurations are selected in the process, a different set of joint compliances will be obtained using Eq. (25). It 

is guaranteed that all joint compliances calculated by Eq. (25) are positive for any configuration selected using 

the procedure. Also, in selecting the location of each joint, mechanism singularity (for which three joints are 

located on a straight line) should be avoided. This can always be accomplished since there are infinitely many 

options in the space of joint locations. 

Note that, once the joint locations are identified, the specified compliance is realized only at that configuration. 

Since a 5J serial mechanism has redundancy, the nullspace of the Jacobian is nonzero and 

thus kinematic internal motion allows the mechanism configuration to change with the endpoint pose relative to 

the base unchanged. The realization may not be maintained for a variation from the obtained configuration 

because a change of the configurations by an internal motion may violate the realization conditions. 

It can be seen that to realize a given compliance using a serial mechanism with two specified joint locations, the 

mechanism must have at least 5 joints. This is because if the number of joints of a mechanism is less than 5, the 

mechanism does not have the necessary degree of freedom to satisfy the corresponding realization conditions. 

Similar to the serial case, for parallel mechanism synthesis with two spring axes being specified, the mechanism 

must have at least five springs in order to realization an arbitrary stiffness. For a 5-spring parallel mechanism, 

the first two spring wrenches can always be selected arbitrarily. In the selection of the remaining springs, the 

previously selected spring wrenches and geometric condition (ii) in Proposition 4must be satisfied. Also, in 

selecting the spring axes, mechanism singularity (three springs intersecting at a single point or parallel to each 
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other) should be avoided. This can always be accomplished since there are infinitely many options in the space 

of acceptable spring wrenches. 

Compared to previous results [30] for 4-component mechanisms, the advantages of the 5-component 

mechanisms considered in the paper are that the dimension of the space of realizable compliances at a 

configuration is increased by one and that more geometric constraintson the mechanism can be accommodated. 

The disadvantage is that more components increase the complexity of the mechanism. 

6. Synthesis procedure examples 
Numerical examples for both serial and parallel mechanisms are presented to demonstrate the synthesis 

procedures. For serial mechanism synthesis, the procedure identifies a serial mechanism that realizes the given 

compliance 𝐂 by selecting the locations of five joints and their corresponding joint compliances. For parallel 

mechanism synthesis, the procedure identifies a parallel mechanism that realizes the given stiffness 𝐊 by 

selecting the axes of five springs and their corresponding spring constants. 

In a global coordinate frame, the compliant behavior to be realized is specified by: 

(67) 𝐊 = [
6N/m −4N/m 2N

−4N/m 12N/m 10N
2N 10N 18N · m

] , 𝐂 = 𝐊−1 = [

0.58m/N 0.46m/N −0.32N−1

0.46m/N 0.52m/N −0.34N−1

−0.32N−1 −0.34N−1 0.28(N · m)−1

] . 

In the examples, the units of all wrenches and twists calculated in the synthesis process are consistent with that 

used in 𝐊 and 𝐂. For a twist, the first two components have units of length in meters [m] and the third 

component has units of radian. For a wrench, the first two components have units of force in Newton [N] and 

the third component has units of moment in 𝑁  ·  𝑚. Also, all Cartesian coordinates are in meters. 

Using Eq. (55) or (60), the stiffness/compliance center of this behavior is calculated to be located at (
17

14
, −

8

7
). 

The unit twist at the center is 

𝐭𝑐 = [−
8

7
, −

17

14
, 1]

𝑇

. 

6.1. Synthesis with a 5-joint serial mechanism 
In this example, it is desired that joints 𝐽1 (the joint connected to the base of the manipulator) and 𝐽5 (the joint 

connected to the manipulator end-effector) be at given locations. In the coordinate frame used to describe 𝐂, 

the two joints 𝐽1 and 𝐽5 are required to be located at 

𝐫1 = [−2, −2]𝑇 , 𝐫5 = [2, −2]𝑇 . 

Below, the locations of the remaining three joints are identified using the modified synthesis procedure 

presented in Section 5.3. 

The unit twists associated with 𝐽1 and 𝐽5 are calculated using Eq. (1) to be: 

𝐭1 = [−2,2,1]𝑇, 𝐭5 = [−2, −2,1]𝑇 . 

The modified serial mechanism synthesis procedure of Section 5.3 is used to determine the other three joint 

locations (𝐽2, 𝐽3, 𝐽4), and all joint compliance values. The component geometry selections used in the process are 

illustrated in Fig. 12. 
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Fig. 12. Compliance synthesis with a 5-joint mechanism with 𝐽1 and 𝐽5 being specified. The desired compliance is realized by 
choosing the remaining three joint locations and all joint compliances in the serial mechanism. 

 

The first line 𝑙12 is selected to pass through 𝐽1 at (−2, −2) with an arbitrary slope. Here, the slope is selected to 

be 1. The unit wrench representing 𝑙12 is: 

𝐰12 =
√2

2
[1,1,0]𝑇 . 

The twist 𝐭12 corresponding to 𝐰12 is calculated to be: 

�̂�12 = [−1.5758, −1.4848,1]𝑇,. 

Normalizing 𝐭12 yields the unit twist: 

�̂�12 = [−1.5758, −1.4848,1]𝑇, 

and the location of the center of 𝐭12, 𝑇12, is calculated to be (1.4848, −1.5758). 

The second line 𝑙34 is where joints 𝐽3 and 𝐽4 will lie. Since the location of 𝐽5 has been specified, 𝑙34 must be 

selected such that 𝑇12 and 𝐽5 are on the same side of 𝑙34; otherwise 𝑇12 will be outside of the triangle formed 

by 𝐽3, 𝐽4 and 𝐽5 (which violates the inequality condition (ii) of Proposition 3). In this example, 𝑙34 is chosen to 

pass through point (1,0) and parallel to y-axis. The unit wrench representing 𝑙34 is: 

𝐰34 = [0,1,1]𝑇 .. 

The associated twist 𝐭34 is: 

𝐭34 = 𝐂𝐰34 = [0.14,0.18, −0.06]𝑇. 

The twist center of 𝐭34, 𝑇34, is determined to be (3, −2.3333). 

Select a line 𝑙23 to meet lines 𝑙12 and 𝑙34 to determine the locations of 𝐽2 and 𝐽3. This line should be chosen such 

that 𝑇34 is above line l25 (which passes 𝐽2 and 𝐽5 as shown in Fig. 12) to satisfy condition (ii) of Proposition 3. 

Here, a line passing through point (0, −0.5) parallel to x-axis is selected. With this selection, joint locations 

of 𝐽2 and 𝐽3 are determined. The unit wrench associated with line 𝑙23 is: 

𝐰23 = [1,0,0.5]𝑇 .. 

The associated twist 𝐭23 is: 
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𝐭23 = 𝐂𝐰23 = [0.42,0.29, −0.18]𝑇. 

The location of 𝐭23, 𝑇23, is determined to be (1.6111, −2.3333). 

The ratio 𝛾𝑠 in Eq. (58) is calculated to be: 

𝛾𝑠 =
(𝐰12

𝑇 𝐭𝑐)(𝐰34
𝑇 �̂�12)(𝐰23

𝑇 𝐭5)

(𝐰12
𝑇 𝐭5)(𝐰34

𝑇 𝐭5)(𝐰23
𝑇 𝐭𝑐)

= 0.6667. 

Since 𝛾𝑠   >  0, point 𝑃 must be outside line segment 𝐽5𝑇23. Using the set of equations in (59), point 𝑃 is 

calculated to be located at (0.8333, −3.0001). The unit twist centered at this location is: 

𝐭𝑝 = [−3.0001, −0.8333,1]𝑇 . 

Line 𝑙14 is uniquely determined by the two points 𝐽1 and P. The unit wrench associated with 𝑙14 can be 

determined using Eq. (13): 

𝐰14 = [0.9430, −0.3328,2.5516]𝑇 . 

Finally, the intersection of 𝑙14 and 𝑙34 identifies the location of 𝐽4, which is calculated to be (1, −3.0589). The 

three joint locations (𝐽2, 𝐽3, 𝐽4 illustrated in Fig. 12) are: 

𝐫2 = [
−0.5
−0.5

] , 𝐫3 = [
1

−0.5
] , 𝐫4 = [

1
−3.0589

] . 

Since 𝑇12 is inside triangle 𝐽3𝐽4𝐽5, and 𝑇34 is outside triangle 𝐽1𝐽2𝐽5 and is inside the area bounded by 

lines l15 and l25 (shown in Fig. 12), condition (ii) of Proposition 3 is satisfied. Thus, all five joint compliances for 

this configuration are positive. The values of the joint compliances are obtained using Eq. (25): 

𝑐1 = 0.0022m/N, 𝑐2 = 0.0089m/N, 𝑐3 = 0.1667m/N, 𝑐4 = 0.0221m/N, 𝑐5 = 0.0800m/N. 

With this synthesis procedure, the serial mechanism configuration with specified locations of 

joints 𝐽1 and 𝐽5 (illustrated in Fig. 12) and the values of all 5 joint compliances are identified. The five joint twists 

at the configuration are: 

𝐭1 = [
−2
2
1

] , 𝐭2 = [
−0.5
0.5
1

] , 𝐭3 = [
−0.5
−1
1

] , 𝐭4 = [
−3.0589

−1
1

] , 𝐭5 = [
−2
−2
1

] . 

The result is verified by adding the joint compliance components using Eq. (14): 

𝐂𝑆 = 𝑐1𝐭1𝐭1
𝑇 + 𝑐2𝐭2𝐭2

𝑇 + 𝑐3𝐭3𝐭3
𝑇 + 𝑐4𝐭4𝐭4

𝑇 + 𝑐5𝐭5𝐭5
𝑇 = [

0.58m/N 0.46m/N −0.32N−1

0.46m/N 0.52m/N −0.34N−1

−0.32N−1 −0.34N−1 0.28(N · m)−1

] .

 

 

It can be seen that the compliance matrix 𝐂𝑆 obtained for the synthesized serial mechanism is the desired 

compliance matrix 𝐂 in Eq. (67). 

Note that with this procedure, the serial mechanism configuration (with 𝐽1 and 𝐽5 specified) is determined by 

choosing the locations of the other three joints. In construction, the joint connecting sequence does not affect 

the compliant behavior realized by the serial mechanism, i.e., the same compliance is achieved with joint 

sequence of 𝐽1𝐽4𝐽2𝐽3𝐽5 or 𝐽1𝐽2𝐽4𝐽3𝐽5. 
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6.2. Synthesis with a 5-spring parallel mechanism 
Following the synthesis procedure presented in Section 5.2, the given stiffness is achieved by a 5-spring parallel 

mechanism. The component geometry selections used in the process are illustrated in Fig. 13. 

 
Fig. 13. Stiffness synthesis with a 5-spring mechanism. The desired stiffness is realized by choosing the axes of five springs 
and their corresponding spring rates in the parallel mechanism. 
 

First, point 𝑇12 can be chosen arbitrarily. Two spring axes (𝐰1 and 𝐰2) will meet at this point. In this 

example, 𝑇12 is selected to be (1, −2). The unit twist at 𝑇12 is: 

𝐭12 = [−2, −1,1]𝑇 .. 

The associated wrench 𝐰12 is: 

𝐰12 = 𝐊𝐭12 = [−6,6,4]𝑇 .. 

Normalizing 𝐰12 yields the corresponding unit wrench: 

�̂�12 =
√2

2
[−1,1,

2

3
]

𝑇

. 

The wrench axis of 𝐰12 is interpreted geometrically by Eq. (4) and is illustrated in Fig. 13. 

The second point 𝑇34 (where two additional spring axes 𝐰3 and 𝐰4 will meet) can also be chosen arbitrarily. In 

this example, 𝑇34 is chosen to be (2, −2). Using Eq. (3), the unit twist centered at 𝑇34 is: 

𝐭34 = [−2, −2,1]𝑇 , 

and the associated wrench is: 

𝐰34 = 𝐊𝐭34 = [−2, −6, −6]𝑇 . 

The wrench axis of 𝐰34 is shown in Fig. 13. 

Next, line 𝑙5 is selected. To satisfy condition (ii) of Proposition 4, 𝑇12 and 𝑇34 must be on the same side of 𝑙5. 

Also, since 𝑇12 and 𝑇34 are located below the stiffness center 𝐶𝑘, 𝐰5 should be located above 𝐶𝑘. Here, 𝑙5 is 

chosen to pass through point (0, −0.5) and parallel to the x-axis. The unit spring wrench 𝐰5 associated with this 

line is: 
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𝐰5 = [1,0,0.5]𝑇 . 

Next, choose point 𝑇23 to determine the spring wrenches 𝐰2 and 𝐰3. Here, to reduce the range spanned by the 

springs, point (2, −4) is selected so that 𝐰3 is vertical (parallel to the y-axis). With this selection, 

the realization condition of Proposition 4 (ii) is satisfied. The unit twist at 𝑇23 is calculated to be: 

𝐭23 = [−4, −2,1]𝑇 , 

and the corresponding wrench is calculated to be: 

𝐰23 = 𝐊𝐭23 = [−14,2, −10]𝑇. 

The distance ratio in Eq. (64) corresponding to the selections of 𝑇12, 𝑇34, 𝑇23 and 𝑙5 is calculated to be: 

𝛾𝑝 =
(𝐭34

𝑇 𝐰12)(𝐭𝑐
𝑇𝐰23)(𝐭23

𝑇 𝐰5)

(𝐭𝑐
𝑇𝐰12)(𝐭12

𝑇 𝐰5)(𝐭34
𝑇 𝐰5)

= −6.2222. 

Using Eq. (66), the equation for line lt is obtained: 

(68) 𝑦 = −0.2571𝑥 − 0.8857. 

The final point 𝑇14 must be on line lt. Here, 𝑇14 is selected so that 𝐰1 is also vertical. The location of 𝑇14 can be 

obtained by solving Eq. (68) with 𝑥 = 1. The location of the point is determined to be at (1, −1.1428). The unit 

twist at this point is: 

𝐭14 = [−1.1428, −1,1]𝑇 . 

The axes of the remaining 4 springs are identified by lines 𝑇12𝑇14, 𝑇12𝑇23, 𝑇23𝑇34, and 𝑇14𝑇34 as illustrated 

in Fig. 13. The 5 spring wrenches in the mechanism are: 

𝐰1 = [
0
1
1

] , 𝐰2 = [
0.4472

−0.8944
0

] , 𝐰3 = [
0
1
2

] , 𝐰4 = [
0.7592

−0.6508
0.2186

] , 𝐰5 = [
1
0

0.5
] . 

It can be seen that, for (𝐰1, 𝐰2) and (𝐰3, 𝐰4), the realization condition in Proposition 4(ii) is satisfied. Thus 

all spring stiffnesses must be positive. Since twists 𝐭12, 𝐭23, 𝐭14 and 𝐭34 are already known, to determine the 

values of the spring stiffnesses using Eq. (26), only 𝐭35 and 𝐭45 are needed. It is easy to determine that 𝑇35 is 

located at (2, −0.5),, and 𝑇45 is located at (0.25, −0.5). The two unit twists needed are: 

𝐭35 = [−0.5, −2,1]𝑇, 𝐭45 = [−0.5, −0.25,1]𝑇 . 

Using these twists, the spring stiffnesses calculated using Eq. (26) are: 

𝑘1 = 4.6677N/m, 𝑘2 = 1.6672N/m, 𝑘3 = 3.1427N/m, 𝑘4 = 6.7460N/m, 𝑘5 = 1.7778N/m.. 

With this synthesis procedure, the five spring axes (shown in Fig. 13) and the associated spring constants are 

identified. The realization of the desired stiffness with the 5-spring mechanism is verified using Eq. (50): 

𝐊𝑃 = 𝑘1𝐰1𝐰1
𝑇 + 𝑘2𝐰2𝐰2

𝑇 + 𝑘3𝐰3𝐰3
𝑇 + 𝑘4𝐰4𝐰4

𝑇 + 𝑘5𝐰5𝐰5
𝑇 = [

6N/m −4N/m 2N
−4N/m 12N/m 10N

2N 10N 18N · m
] . 

It can be seen that the stiffness matrix 𝐊𝑃 obtained for the synthesized parallel mechanism is the desired 

stiffness matrix 𝐊 in Eq. (67). 

Note that the procedure only identifies the axis of each spring. In parallel mechanism construction, a line spring 

can be placed at any location along its axis. Also note that, since 𝐰1 and 𝐰3 are selected to be parallel in this 
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example, 𝐭13 calculated in Eq. (22) has infinite pitch (centered at infinity). Thus, in calculating spring 

constants k2, k4 and k5using Eq. (26), permutations not containing 𝐭13 should be used. 

7. Summary 
In this paper, a geometric approach to passive realization of any given planar compliance with a simple 5-joint 

serial or 5-spring parallel mechanism is presented. Realization conditions for a 5-component redundant 

mechanism to achieve an arbitrarily specified planar compliance are presented. Since these conditions impose 

requirements on the mechanism configuration, they can be geometrically interpreted and illustrated on the 

plane. Geometry based synthesis procedures to realize a compliance are developed for both types of 

mechanisms. For serial mechanism synthesis, the procedure identifies the five joint locations and the 

corresponding joint compliances for the compliance realization. A 5-joint serial mechanism can be constructed 

based on the component geometry and joint elastic property. For parallel mechanism synthesis, the procedure 

identifies the five spring axes (lines of action) and the corresponding spring rates for the stiffness realization. A 

5-spring parallel mechanism can be constructed based on the geometric and elastic properties of each 

component. Unlike most of the previous realization approaches, the procedures allow one to choose each 

component, based on its geometry, from the space of admissible options. Because the space of admissible 

options is restricted by inequalities, the realization of a compliant behavior with constraints on the mechanism 

configuration can be accomplished. Any given compliance can be achieved with a mechanism having at most 

two specified components (i.e., two joint locations of a serial mechanism, or two spring axis lines of a parallel 

mechanism). The selection of the remaining components is restricted in some way. This ability makes 5-

component redundant compliant mechanisms more practical in robotic applications, especially for tasks when 

the mechanism geometry and/or workspace are constrained. Since the approach developed in the paper is 

completely geometry based, graphic tools can be used to better design an elastic mechanism. 
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