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Abstract 
Past plastic management practices have resulted in pollution. An improved management scenario may 

involve adding used bioplastic to anaerobic digesters to increase methane for renewable energy. In this 

work, effects of polyhydroxybutyrate (PHB) bioplastic anaerobic co-digestion with synthetic 

primary sludge on operation and microbial communities were investigated. Co-digesters treating 

sludge were co-fed 20% untreated or pretreated (55 °C, pH 12) PHB. Pretreament resulted in shorter 

lag (5 d shorter) before methane production increased after co-digestion. At steady-state, co-digesters 

converted 86% and 91% of untreated and pretreated PHB to methane, respectively. Bacterial 

communities were different before and after bioplastic co-digestion, whereas no archaeal community 

change was observed. Relative abundance of 30 significant bacteria correlated with methane 

production and lag following PHB addition. No previously known PHB degraders were detected 

following PHB co-digestion. Microbial communities in anaerobic digesters treating synthetic primary 

sludge are sufficiently capable of co-digesting PHB to produce additional methane. 

Keywords 
Archaea, Methanogenesis, Microbial structure function relationship, Plastic, Polyhydroxyalkanoate, 

Spearman's rank order correlation 

1. Introduction 
Biodegradable polymer alternatives have been developed that could replace plastics derived 

from fossil fuel. However, most plastics are still currently produced from fossil fuels such as crude oil 

and are not biodegradable in the timeframe of composting systems (Ali Shah et al., 2008; Geyer et al., 

2017). The present lack of appropriate plastic waste management practices has resulted in as much as 

79% of all plastic waste ever generated, estimated at 6300 million metric tons as of 2015, to amass in 

the environment or landfills (Geyer et al., 2017). Conventional non-biodegradable plastics, namely 

single-use plastic packaging, can lead to contamination of land and aquatic environments. In addition, 

marine plastic pollution has been found to cause ecological damage (Rochman et al., 2016). Plastic can 

fragment into smaller microplastic particles in the marine environment and act as a transport medium 

for harmful chemicals to enter the food chain (Mato et al., 2001). 

Biodegradable plastic based on polyhydroxybutyrate (PHB) is one promising alternative to fossil-fuel-

derived plastic (Tokiwa and Calabia, 2004; Tokiwa et al., 2009; Emadian et al., 2017). 

PHB bioplastics share similar properties with common thermoplastics such as polypropylene, and can 

often replace plastics produced from fossil fuel (Kalia et al., 2000; Verlinden et al., 2007). PHB is a form 

of polyhydroxyalkanoate(PHA) polyester produced by various heterotrophic microbes during stressed 

conditions, such as during carbon feast-famine regimes or nutrient limitation (Verlinden et al., 

2007; Roohi et al., 2018). Industrially-relevant bacteria known to produce PHAs include but are not 

limited to Alcaligenes latus, Cupriavidus necator, and Pseudomonasputida (Kourmentza et al., 2017). 

The PHB granules stored by microbes internally can be extracted and purified to produce resin that 

may be used directly or may be copolymerized with other bioplastics to create application-specific 

blends (Kalia et al., 2000). Bioplastics derived from PHB are essentially completely biodegradable in 

aerobic and anaerobic engineered or natural environments (Kalia et al., 2000; Getachew and 

Woldesenbet, 2016). 
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PHB bioplastics can lower economic and ecological impacts if the substrate used to produce them is 

biologically derived or originates from by-products or wastes (Narodoslawsky et al., 2015). For 

example, methane derived from anaerobic digestion of waste can be used as a substrate to produce 

PHB by methanotrophic bacteria, specifically Type II Methanotrophs (class Alphaproteobacteria), 

under aerobic conditions (Pieja et al., 2011a, Pieja et al., 2011b). Methane-derived PHB polymer is 

currently available from a commercial source (Mango Materials, Inc. Albany, CA, USA). 

One plastic management scenario involves collecting and adding used PHB bioplastic to anaerobic 

digesters to increase methane production for renewable energy or for new bioplastic production. PHB 

contains no nitrogen and has a theoretical oxygen demand (ThOD) of 1.6 g ThOD/g PHB and yields 

0.66 L CH4/g PHB (35 °C) calculated from stoichiometric degradation to methane and the Ideal Gas Law, 

based on Buswell equation (Buswell and Mueller, 1952). PHB is a dense carbon source that could be 

co-digested with food, animal or municipal waste containing excess nitrogen (Wang et al., 2015; Benn 

and Zitomer, 2018). The biochemical pathway of anaerobic PHB biodegradation yields acetate, 

butyrate, and H2, which are readily degradable methanogenic substrates capable of supporting both 

acetoclastic and hydrogenotrophic methanogens (Janssen and Schink, 1993). Some existing 

municipal water reclamation facilities have excess capacity and could digest bioplastic in addition 

to municipal wastewater sludge to generate more methane. Additionally, PHB can be stored on-site to 

provide a consistent digester feedstock. The cycle of methane to PHB to methane or renewable energy 

could yield a more sustainable cradle-to-cradle plastic management scenario (Pieja et al., 

2011b; Criddle et al., 2014; Getachew and Woldesenbet, 2016). 

(1) 𝐶4𝐻6𝑂2(𝑃𝐻𝐵) + 1
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𝐻2𝑂 → 2

1

4
𝐶𝐻4 + 1

3
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𝐶𝑂2 

Continuous anaerobic digestion or co-digestion of PHB bioplastics to increase methane production has 

not been thoroughly investigated. In short-term, batch studies, the biochemical methane potential 

(BMP) values of five commercially available bioplastics including two PHB bioplastics produced from 

fermentation of D-glucose were determined and approximately 67% of the ThOD in raw PHB was 

converted to methane in 40 d under mesophilic conditions (Benn and Zitomer, 2018). Other studies 

have reported bioplastic digestion to methane with conversion efficiencies ranging from 39% in 5 d to 

100% in 98 d under mesophilic conditions (Budwill, 1996; Yagi et al., 2014). 

Typically, initial hydrolysis of macromolecules such as PHB bioplastic is often the rate-limiting step for 

methane production. Pretreatment of PHB polymers using chemical and thermal processing could 

facilitate hydrolysis resulting in more rapid bioplastic transformation to methane. Pretreatment 

under alkaline conditions at elevated temperatures has been shown to increase hydrolysis rates 

resulting in release of water-soluble products such as 3-hydroxybutyrate and crotonate that can 

support growth of anaerobic microbes and support methanogenesis (Dörner and Schink, 1990; Janssen 

and Harfoot, 1990; Yu et al., 2005). Pretreatment at 55 °C and pH 12 for 24 or 48 h increased methane 

production from PHB from 67% to 91% (Benn and Zitomer, 2018). 

The abundance of PHB degrading bacteria in anaerobic digester biomass also ostensibly affects the rate 

and extent of PHB conversion to methane. PHB bioplastics can be hydrolyzed by water soluble 

endogenous carboxylesterase, like PHA depolymerase or lipase, which disrupt the ester 

linkage between bioplastic monomers, releasing them as water soluble products available 
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for microbial metabolism (Yoshie et al., 2002). A review by Emadian et al. (2017) provided a list of 

isolated bacterial and fungal PHB degrading microorganisms in natural environments. The PHB 

degrading bacterial isolates were classified in the 

genera Streptomyces, Burkholderia, Bacillus, Cupriavidus, Mycobacterium, Nocardiopsis, Pseudomonas,

 Enterobacter and Gracilibacillus (Emadian et al., 2017). Most known PHB degrading bacteria have been 

isolated from compost or natural environments such as soil or river sedimentscontaminated by PHB, 

whereas there is no published work which has reported on the microbial community composition 

during anaerobic co-digestion of PHB bioplastics to our knowledge. Presence or enrichment of PHB 

degrading bacteria during anaerobic PHB co-digestion, and correlation between their abundance and 

digester performance could lead to strategies such as appropriate starting biomass selection 

or bioaugmentation to improve co-digester performance. In this study, bench scale, continuously fed, 

anaerobic co-digesters were used to convert two different untreated and pretreated PHB bioplastics as 

well as synthetic municipal primary sludge to biogas containing methane. Digester function and 

microbial community composition before and after initiation of PHB co-digestion were determined. 

Key taxa exhibiting significant relative abundance shifts after PHB was fed were correlated with 

observed digester methane yield and lag time. 

2. Materials and methods 

2.1. Bioplastic processing and pretreatment 
Two different PHB bioplastics, ENMAT™ Y3000, TianAn BiologicMaterials Co., China (PHB1), which is 

a fine powder and Mirel™, Yield10 Bioscience, Inc., Woburn, MA, USA (PHB2), which is in pelletform, 

were employed. The two different commercially available PHBs were used to discern if the source and 

form of PHB affects anaerobic bio-degradability. Bioplastic pellets were processed before anaerobic 

digestion using methods reported elsewhere (Witt et al., 2001; Yagi et al., 2013). Briefly, bioplastic was 

immersed in liquid nitrogen for 5 min to make it brittle and easier to grind in a laboratory blender 

(Waring 700G Commercial Blender). Ground bioplastic was sieved and the fraction with nominal 

particle size <0.15 mm was anaerobically digested or pretreated before digestion. 

Aliquots of processed bioplastic were pretreated in an effort to increase methane production. PHB1 

was pretreated at 55 °C and pH 12 for 24 h, whereas PHB2 was pretreated at 55 °C, pH 12 for 48 h. 

These conditions were shown in previous work to result in maximum biochemicalmethane potential 

(BMP) increases compared to untreated controls (Benn and Zitomer, 2018). 

2.2. Anaerobic digesters 
Eight, 2.5 L anaerobic digesters with 2 L working volume were operated for 175 d. Digesters were 

continuously stirred-tank reactors (CSTRs), mixed at 350 rpm using a magnetic stir bar and operated 

with a 15-d hydraulic retention time (HRT) at 35 °C. Digesters were seeded with mesophilic anaerobic 

digester biomass (35 g VS/L) from a municipal water resource recovery facility (South Shore Water 

Reclamation Facility, Oak Creek, WI). During the pre-co-digestion period from days 1 to 115, all 

digesters were fed synthetic municipal primary sludge (SMPS) at an organic loading rate (OLR) of 3.6 g 

COD/L-d without bioplastic as a co-digestate. After the pre-co-digestion period, untreated or 

pretreated PHB bioplastics were co-fed with SMPS during the post-co-digestion period from days 116 

to 175. The PHB bioplastic OLR was 0.75 g COD/L-d, which was 20% of the SMPS OLR. 
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SMPS was composed of ground dog food (1.21 ± 0.12 g COD/g TS) sieved to <0.8 mm particle size 

having approximately 21% protein and 13% fat (Nutro Natural Choice, Franklin, TN, USA). The SMPS 

feed also contained basal nutrients and alkalinity in the following concentrations [mg/L]: NH4Cl [400]; 

MgSO4*7H2O [400]; KCl [400]; Na2S*9H2O [300]; CaCl2*2H2O [50]; (NH4)2HPO4 [80]; FeCl3*4H2O [10]; 

CoCl2*6H2O [1.0]; ZnCl2 [1.0]; KI [10]; (NaPO3)6 [10]; the trace metal salts: MnCl2*4H2O, NH4VO3, 

CuCl2*2H2O, AlCl3*6H2O, Na2MoO4*2H2O, H3BO3, NaWO4*2H2O, and Na2SeO3 [each at 

0.5]; cysteine [10]; yeast extract [100] and NaHCO3 [6000]. The SMPS composition was used in previous 

studies to simulate primary municipal sludge (Carey et al., 2016; Benn and Zitomer, 2018). 

The eight digesters were divided into four sets of duplicates digesters. The first and second digester 

sets were fed SMPS with untreated and pretreated PHB1 bioplastic, respectively. The third and fourth 

digester sets were fed SMPS with untreated and pretreated PHB2 bioplastic, respectively. Lag time was 

defined as the period from day 115 (when PHB co-digestion was initiated) until the first day the 

methane production rate increased to the average methane production rate observed during the 

subsequent, post-co-digestion quasi steady-stateperiod. Quasi steady-state was defined as the period 

after digester operation had been previously maintained under consistent conditions for at least 

three solids retention times (SRTs) (i.e., 45 d). 

2.3. DNA extraction and illumina sequencing analyses 
DNA was extracted and sequenced to monitor microbial communitycomposition as described 

elsewhere (Carey et al., 2016; Venkiteshwaran et al., 2017). Digester effluent samples were collected 

for DNA extractionduring the pre-co-digestion quasi steady-state period (days 91, 99 and 105), the 

transition period (days 121, 129 and 135) and the post-co-digestion quasi steady-state period (days 

161, 168 and 175). DNA was extracted using the PowerSoil™ DNA Isolation Sample Kit (MoBio 

Laboratories, Inc., Carlsbad, CA, USA) according to the manufacturer protocol. Sequencing was 

performed using the Illumina MiSeq v3 300 base pair sequencing platform (Illumina, San Diego, CA). 

Universal primers 515F and 806R targeting the V4 variable region of 16S rRNA gene were used for PCR 

amplification. Raw unjoined sequence data were quality filtered (mean sequence quality score > 25). 

Barcodes and primers were removed from the sequences. Sequences with ambiguous base reads, 

fewer than 150 base pairs, and with homopolymer sequences exceeding 6 base pairs or longer were 

also removed. The de-noised sequences were then clustered into operational taxonomic units (OTUs) 

having 97% similarity. Each OTU was compiled into taxonomic “counts” and classified using BLASTn 

against a curated database derived from GreenGenes, RDPII and NCBI. 

2.4. Major, minor and significant OTUs 
Major OTUs were defined as those with relative abundance values ≥0.1% in one or more samples, 

whereas minor OTUs were those with relative abundance <0.1% in all samples. Spearman's rank order 

correlation was performed using major OTUs to select significant OTUs with relative abundance values 

in all digesters that correlated with average methane production rate, as described elsewhere 

(Venkiteshwaran et al., 2017). Spearman's rank order correlation was used as a measure 

of monotonicstatistical dependence due to its robustness since it does not require underlying 

assumptions regarding the distribution frequency of variables (e.g., normal or uniformly distributed 

etc.) or the existence of a linear relationship between variables (Zuur et al., 2007). Only the quasi 

steady state pre- and post-co-digestion periods were considered for Spearman's order rank correlation. 

https://www.sciencedirect.com/topics/engineering/alkalinity
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/trace-metal
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cysteine
https://www.sciencedirect.com/science/article/pii/S2589014X1930088X?via%3Dihub#bb0065
https://www.sciencedirect.com/science/article/pii/S2589014X1930088X?via%3Dihub#bb0035
https://www.sciencedirect.com/topics/engineering/observed-rate
https://www.sciencedirect.com/topics/engineering/quasi-steady-state
https://www.sciencedirect.com/topics/engineering/solid-retention-time
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microbial-communities
https://www.sciencedirect.com/science/article/pii/S2589014X1930088X?via%3Dihub#bb0065
https://www.sciencedirect.com/science/article/pii/S2589014X1930088X?via%3Dihub#bb0260
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/effluents
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dna-extraction
https://www.sciencedirect.com/topics/engineering/homopolymer
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/otus
https://www.sciencedirect.com/topics/engineering/spearman-rank
https://www.sciencedirect.com/science/article/pii/S2589014X1930088X?via%3Dihub#bb0260
https://www.sciencedirect.com/topics/engineering/monotonic
https://www.sciencedirect.com/science/article/pii/S2589014X1930088X?via%3Dihub#bb0320


Major OTUs with relative abundance values that most positively related (i.e., Spearman's rank scores 

>0.75) and most negatively related (i.e., Spearman's rank scores less than −0.75) to methane 

production rates were categorized as significant OTUs. 

2.5. Microbial community analyses 
Richness (S), Shannon diversity (H) and evenness (E) indices were calculated using abundance data for 

all OTUs. Richness was calculated as the number of OTUs identified at the genus level. Shannon-

Weaver diversity indices were determined as described by Briones et al. (2007). Evenness was 

calculated as described by Falk et al. (2009). Sequence readswere rarefied to even depth in R Studio 

with Phyloseq package using “rarefy_even_depth” (rngseed 3), 430 OTUs were removed due to zero 

reads present after random subsampling (Mcmurdie and Holmes, 2013). Analysis of similarities 

(ANOSIM) using Bray-Curtis dissimilarity was performed to compare the variation in taxa abundance 

values using the vegan package in R (Oksanen et al., 2016). ANOSIM analysis gives an ANOSIM statistic 

value (R) and a p value (significance of R). R valuesclose to 1 suggest high dissimilarity between groups, 

whereas values close to zero suggest no difference between groups. Spearman's rank order correlation 

was performed using Excel 2010 (Version 14.3.2 e Microsoft, USA) with the added statistical software 

package XLStat Pro 2014 (Addinsoft, USA). Non-metric dimensional scaling (NMDS) plots were 

produced using R Studio with Phyloseq package using “ordinate()” with Bray-Curtis distances and 

constructed with “plot_ordination()”. Sample group ellipses at 95% confidence level were overlaid 

using “stat_ellipse()” from ggplot package (Fox and Weisberg, 2011; Mcmurdie and Holmes, 2013). 

Dual hierarchical clustering of pre and post-co-digestion samples was done in R Studio using “cor()” 

and “hclust” functions, and a heatmap was made in Excel 2010. Blast searching of representative 

sequences was conducted using default settings and excluding uncultured sequences on the browser-

based blastn tool (https://blast.ncbi.nlm.nih.gov/) (Altschul et al., 1990). 

2.6. Anaerobic digester performance analyses 
Biogas was collected daily in gas sampling bags (Kynar PVDF 20.3 L, Cole Parmer, Vernon Hills, IL, USA) 

and the volume was measured with a wet test gas meter (Precision Scientific, Chicago, IL, USA). Biogas 

methane concentration was quantified by gas chromatography (GC System 7890A, Agilent 

Technologies, Irving, TX, USA) using a thermal conductivity detector. Volatile fatty acid (VFA) 

concentrations were measured by gas chromatography (GC System 7890A, Agilent Technologies, 

Irving, TX, USA) using a flame ionization detector. Volatile Solids (VS) and COD were determined by 

standard methods (APHA et al., 1999) and the pH was measured using a pH meter and probe (Orion 4 

Star, Thermo, Waltham, MA, USA). Average, standard deviation, variance and ANOVA calculations 

were performed using Excel 2010 (Version 14.3.2 e Microsoft, USA). 

3. Results and discussion 

3.1. Anaerobic co-digester function 
During the pre-co-digestion quasi steady state period (Days 90 to 115) all digesters were operated 

similarly, and digester methane production rates were similar (p value >0.05, n = 8), averaging 

1.9 ± 0.02 L-CH4/L-d (Fig. 1, Co-digestion functional meta data). All digester pH values remained stable 

and the effluent total VFA concentration averaged 48 ± 4 mg/L as acetic acid (n = 8) (co-digestion 

functional meta data). The addition of PHB bioplastic as a co-digestate on Day 116 initially resulted in 
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highly variable methane production in co-digesters (Fig. 1). Subsequently, the methane production rate 

in all co-digesters increased by Day 160 as a result of PHB co-digestion. 

 
Fig. 1. Digesters average methane production at 35 °C co-digesting (A) untreated PHB1, (B) pretreated PHB1, (C) 

untreated PHB2, and (D) pretreated PHB2 with SMPS. Quasi steady-state periods before and after PHB co-
digestion began are depicted at the top of each figure along with the transition period immediately after the 

start of PHB co-digestion. Sampling times for microbial community analysis are represented by “❌”. Error 
bars are standard deviation (n = 2). 

 

Pretreating the PHB bioplastics at high pH and temperature reduced the lag time before PHB co-

digestion commenced and increased methane production immediately after PHB began to be co-

digested. The lag times were 3 to 5 d shorter for digesters fed pretreated versus untreated PHBs (Fig. 

1). The shorter lag times also resulted in higher cumulative methane production during the post-co-

digestion transition period (days 116 to 135). Also, the cumulative methane production from 

pretreated PHBs was 4.4 to 6.8% higher than that from untreated PHBs during the transition period 

(Fig. 1). 

Methane production during the post- co-digestion steady state period was 16% higher than that 

observed before bioplastics were co-fed. The total OLR when PHB was co-fed was 20% higher than 

when digesters were fed SMPS alone. Similar to the pre-co-digestion quasi steady state period, 

digester pH remained stable and the effluent VFA concentrations remained lower than 50 mg/L. In 

previous research, batch biochemicalmethane potential (BMP) testing over 40 d resulted in 50 to 80% 

and 82 to 100% PHB conversion to methane for raw and thermo-chemically pretreated PHB, 

respectively (Benn and Zitomer, 2018). Optimal thermochemical pretreatment of PHBs resulted in 

approximately 20% increases in BMP values; therefore, those pretreatments were used in this study. In 

21-d batch experiments, Budwill et al. (1992) observed 87% conversion of PHB to methane and up to 

96% conversion for a related PHA co-polymer. Similarly, Yagi et al. (2014) observed 92 to 93% 

conversion of PHB to methane during 26-d, batch anaerobic digestion. Therefore, the continuously-fed 

PHB co-digesters operating at 15-d HRT resulted in methane conversion efficiencies similar to those 

observed in previous batch experiments. 
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There was no long-term difference between methane production for untreated and pretreated PHB 

bioplastics during co-digestion. Methane production during the post- co-digestion quasi steady state 

period (Days 160 to 175) for all digesters was similar (p value >0.05, n = 8) and averaged 2.2 ± 0.02 L-

CH4/L-d. PHB conversion efficiency to methane during post- co-digestion quasi steady state was 93 ± 42 

and 79 ± 21% for untreated PHB1 and PHB2, respectively, and 98 ± 4 and 84 ± 1% for pretreated PHB1 

and PHB2, respectively. Duplicate digesters receiving pretreated PHB had notably less variation than 

those with untreated PHB during the quasi steady state. A 5 ± 0.1% increase in PHB conversion 

efficiency was observed when PHBs were pretreated but this difference was not statistically significant. 

However, the most benefit from PHB pretreatment during co-digestion was related to a reduced lag 

time to attain quasi-steady state methane production, reducing this acclimationperiod by nearly 50%. 

3.2. Microbial community analyses 
Illumina sequencing yielded 15.5 million raw sequences, with 215,466 ± 55,825 (n = 72) raw reads per 

sample. After 123,995 sequence reads (i.e., lowest sequence reads per sample), the number 

of OTUs was saturated as revealed by the asymptotic nature of the rarefaction curves and resulted in 

significant coverage. Therefore, a total of 8.7 million sequence reads from all 72 digesters samples 

were analyzed with 123,995 rarified sequence reads per sample. Based on 97% similarity, a total of 

14,926 OTUs were observed with an average of 3503 ± 192 OTUs per sample. 

The microbial community composition data from individual digesters during a given time period were 

more similar to each other than they were to microbial communities in other digesters as indicated by 

ANOSIM results (R = 0.95, p = 0.001). Alpha diversity indices such as richness, Shannon-Weaver 

diversity and evenness did not correlate with observed pre- or post-co-digestion digester methane 

production rates. 

Digester microbial communities were significantly different before and after bioplastic co-digestion 

(Fig. 2). Initially, all digester microbial communities were similar to each other during pre-co-digestion 

when SMPS without PHB was fed (ANOSIM R = 0.55, p = 0.001) (Fig. 2). However, after PHB feeding 

commenced, the microbial communities clustered separately from those of the pre-co-digestion period 

(ANOSIM R = 0.82, p = 0.001) (Fig. 2). 
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Fig. 2. Communities comparison NMDS plots during pre- and post-co-digestion periods for digesters based on 

(A) total microbial OTUs, (B) major OTUs (i.e., ≥0.1% relative abundance in at least one sample), (C) minor OTUs 
(i.e., <0.1% relative abundance) and (D) 30 significant OTUs having relative abundance values related to 

methane production rate using Spearman's rank correlation. 

 

Factors such as the PHB type and whether or not the PHB was pretreated were not observed to affect 

the microbial communitychanges. Although the microbial communities shifted after co-digestion 

started, all digester microbial communities converged during the post-co-digestion steady state period 

(ANOSIM R = 0.61, p = 0.001) (Fig. 1). 

A total of 366 major OTUs having ≥0.1% relative abundance in at least one sample were identified that 

accounted for 88.5 ± 0.7% of the total microbial abundance. The remaining 14,560 minor OTUs with 

lower (<0.1%) relative abundance accounted for 11.5 ± 0.003% of the total abundance. Both major and 

minor OTU relative abundance values changed after PHB co-digestion began (Fig. 2B and C). The 

observed microbial community differences between pre- and post-co-digestion periods using major 

(ANOSIM R = 0.83, p = 0.001) and minor (ANOSIM R = 0.81, p = 0.002) OTU data were similar to that 

observed using total OTUs (Fig. 2A, B and C). Major shifts in microbial communities during co-digestion 

of municipal sewage solids and fat, oil and grease (FOG) also have been reported due to change in the 

feed composition (Kurade et al., 2019). 

3.2.1. Major Bacterial OTUs 

Relative abundance values of major bacterial OTUs during pre- and post-co-digestion period 

significantly changed after PHB bioplastic was fed to the co-digesters (ANOSIM R = 0.87, p = 0.001). The 

342 major bacterial OTUs represented a total of 14 phyla. Relative abundance of two bacterial phyla 

significantly changed due to PHB co-digestion: the relative abundance of Cloacimonetes increased from 
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4.0 ± 1.8% to 8.8 ± 2.8% (p value <0.05, n = 48) and Chloroflexi decreased from 2.8 ± 1.1% to 0.6 ± 0.2% 

(p value <0.05, n = 48), respectively, from pre- to post-co-digestion 

periods. Bacteroidetes and Firmicutes were consistently the two most dominant phyla in all co-

digesters during both pre- and post-co-digestion periods, with major bacterial relative abundance 

values during the pre-co-digestion period of 35 ± 3.9% and 22 ± 2.0%, respectively; these values did not 

change significantly (p value >0.05, n = 48) during post-co-digestion. Similarly, the relative abundance 

of phyla Proteobacteria, Deferribacteres, Synergistetes, Thermotogae and Actinobacteria did not 

change significantly (p value >0.05, n = 48) from their pre-co-digestion values of 7.3 ± 1.1%, 5.8 ± 3.9%, 

5.2 ± 1.1%, 3.0 ± 1.2% and 1.6 ± 0.6%, respectively. 

3.2.2. Major Archaeal OTUs 

There were 14 major archaeal OTUs observed in all samples. During the pre-co-digestion period, the 

combined relative abundance of the major archaeal OTUs ranged from 1.1 to 5.8%. The dominant 

archaeal OTU was most similar to Methanosaeta and accounted for 3.0 ± 1.2% of the total microbial 

abundance and 89.6 ± 3.4% of the total archaeal abundance during the pre-co-digestion period. 

Despite the increase in OLR and methane production, PHB co-digestion had no significant influence on 

the archaeal community composition or archaeal relative abundance. No significant major archaeal 

OTU community change was observed after the digesters attained post-co-digestion quasi steady state 

period. The pre- and post-co-digestion archaeal community clustered together and were relatively 

similar (ANOSIM R = 0.07, p = 0.03). Methanosaeta remained the dominant archaeal OTU, accounting 

for 4.3 ± 2.2% of the total microbial community and 90.6 ± 6.7% of the total archaeal abundance during 

the post-co-digestion period. 

Methanosaeta have a lower growth rate and higher affinity for acetate than the only other known 

aceticlastic methanogen genera (Methanosarcina). They typically outcompete Methanosarcina in 

digesters with low acetate concentration (<500 mg/L) (Conklin et al., 2006; Hori et al., 2006). Since the 

co-digesters in this study had total VFA concentration of <50 mg/L during pre- and post-co-digestion 

periods, the presence of Methanosaeta as the dominant aceticlastic methanogen was reasonable. 

3.2.3. Spearman correlation to select significant OTUs 

Major OTUs of 48 digester samples (24 from pre- and post-co-digestion period, respectively) were 

correlated with the observed methane production rate on the days the samples were taken. 

Spearman's rank order correlation analysis yielded 30 significant OTUs with relative abundance values 

correlating to co-digester methane production (Fig. 2D). All significant OTUs were bacteria, whereas 

no archaea were identified. Of the 30 significant OTUs, 16 were positively correlated and 14 were 

negatively correlated with methane production (Table 1). Though the archaeal community is important 

for a stable functioning digester, the results indicates that the bacterial community may have played a 

more crucial role, as bacterial hydrolysis is ostensibly the rate limiting step during PHB co-digestion. 
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Table 1. Blast search result of the Spearman correlated 30 significant OTUs. Of the 30 selected OTUs, 16 OTUs were positively and 14 OTUs 

were negatively correlated with methane production. Taxonomic classification in bold font represents the valid level based on 

percent homology with the homology percentage ranges in parentheses. Relative abundance ranges and averages are for 24 samples. 
 

OT
U # 

Phylum 
(>77%) 

Class (80–85%) Order (85–90%) Family (90–95%) Genus (>95% 
homology) 

Percent 
homolo
gy 

Pre-co-
digestio
n 
relative 
abundan
ce range 
& (Avg), 
% 

Co-
digestio
n 
relative 
abundan
ce range 
& (Avg), 
% 

Positivel
y 
correlat
ed OTUs 

OT
U 1 

Deferribacte
res 

Deferribacteres Deferribacterales Deferribacteraceae Deferribacter 91.4 0.01 to 
0.08 
(0.05) 

0.06 to 
0.15 
(0.10) 

 
OT
U 2 

Deferribacte
res 

Deferribacteres Deferribacterales Deferribacteraceae Deferribacter 91.9 0.02 to 
0.07 
(0.04) 

0.04 to 
0.13 
(0.09)  

OT
U 3 

Deferribacte
res 

Deferribacteres Deferribacterales Deferribacteraceae Deferribacter 92.3 0.29 to 
1.27 
(0.84) 

1.01 to 
2.41 
(1.75)  

OT
U 4 

Deferribacte
res 

Deferribacteres Deferribacterales Deferribacteraceae Deferribacter 92.1 0.02 to 
0.07 
(0.05) 

0.06 to 
0.14 
(0.10)  

OT
U 5 

Deferribacte
res 

Deferribacteres Deferribacterales Deferribacteraceae Deferribacter 90.4 0.12 to 
0.49 
(0.33) 

0.39 to 
0.96 
(0.69)  

OT
U 6 

Deferribacte
res 

Deferribacteres Deferribacterales Deferribacteraceae Deferribacter 92.4 0.02 to 
0.09 
(0.05) 

0.06 to 
0.16 
(0.11)  

OT
U 7 

Proteobacte
ria 

Deltaproteobacte
ria 

Desulfuromonadale
s 

Geobacteraceae Geobacter a 98.5 0.01 to 
0.04 
(0.02) 

0.03 to 
0.12 
(0.07)  

OT
U 8 

Firmicutes Clostridia Clostridiales Gracilibacteraceae Gracilibacter 92.2 <0.01 to 
0.0 (0.0) 

<0.01 to 
0.17 
(0.04) 
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OT
U 9 

Firmicutes Clostridia Clostridiales Gracilibacteraceae Gracilibacter 91.2 0.03 to 
0.07 
(0.04) 

0.06 to 
1.69 
(0.28)  

OT
U 
10 

Firmicutes Clostridia Clostridiales Gracilibacteraceae Gracilibacter 93.0 <0.01 to 
0.01 
(0.01) 

0.02 to 
0.39 
(0.10)  

OT
U 
11 

Thermotoga
e 

Thermotogae Thermotogales Thermotogaceae Kosmotoga b 99.6 0.49 to 
2.28 
(1.23) 

2.16 to 
5.06 
(3.26)  

OT
U 
12 

Firmicutes Negativicutes Selenomonadales Veillonellaceae Pelosinus 84.3 <0.01 to 
0.01 
(0.0) 

0.06 to 
0.21 
(0.12)  

OT
U 
13 

Firmicutes Clostridia Clostridiales Clostridiales Pseudoflavonifra
ctor 

96.0 <0.01 to 
0.01 
(0.0) 

<0.01 to 
0.16 
(0.04)  

OT
U 
14 

Firmicutes Clostridia Clostridiales Clostridiales Pseudoflavonifra
ctorc 

97.1 <0.01 to 
0.0 (0.0) 

<0.01 to 
0.03 
(0.01)  

OT
U 
15 

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 93.4 0.01 to 
0.07 
(0.03) 

0.05 to 
0.42 
(0.12)  

OT
U 
16 

Proteobacte
ria 

Deltaproteobacte
ria 

Syntrophobacterale
s 

Syntrophorhabdace
ae 

Syntrophorhabdu
s 

94.5 0.04 to 
0.08 
(0.06) 

0.05 to 
0.2 
(0.11) 

Negativ
ely 
correlat
ed OTUs 

OT
U 
17 

Bacteroidet
es 

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 84.7 0.02 to 
1.35 
(0.55) 

<0.01 to 
0.04 
(0.01) 

 
OT
U 
18 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Bellilinea 96.3 0.21 to 
1.75 
(0.78) 

0.03 to 
0.27 
(0.13)  

OT
U 
19 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Bellilinea 96.1 0.01 to 
0.11 
(0.04) 

<0.01 to 
0.02 
(0.01)  

OT
U 
20 

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 93.0 0.01 to 
0.10 
(0.04) 

<0.01 to 
0.02 
(0.01) 
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OT
U 
21 

Deferribacte
res 

Deferribacteres Deferribacterales Deferribacteraceae Deferribacter d 99.6 0.22 to 
0.61 
(0.39) 

0.07 to 
0.22 
(0.15)  

OT
U 
22 

Firmicutes Clostridia Clostridiales Eubacteriaceae Eubacterium 86.8 0.11 to 
2.23 
(0.68) 

0.03 to 
0.25 
(0.11)  

OT
U 
23 

Proteobacte
ria 

Gammaproteobac
teria 

Chromatiales Halothiobacillaceae Halothiobacillus 73.6 <0.01 to 
0.16 
(0.04) 

<0.01 to 
0.02 
(0.0)  

OT
U 
24 

Planctomyc
etes 

Planctomycetia Planctomycetales Planctomycetaceae Planctomyces 87.5 0.02 to 
0.53 
(0.17) 

<0.01 to 
0.08 
(0.03)  

OT
U 
25 

Bacteroidet
es 

Bacteroidia Bacteroidales Porphyromonadacea
e 

Proteiniphilum e 98.5 0.02 to 
0.10 
(0.05) 

<0.01 to 
0.03 
(0.02)  

OT
U 
26 

Proteobacte
ria 

Gammaproteobac
teria 

Alteromonadales Pseudoalteromonad
aceae 

Pseudoalteromon
as 

89.1 0.24 to 
6.97 
(3.05) 

0.07 to 
1.23 
(0.24)  

OT
U 
27 

Proteobacte
ria 

Gammaproteobac
teria 

Alteromonadales Pseudoalteromonad
aceae 

Pseudoalteromon
as 

85.7 <0.01 to 
0.16 
(0.06) 

<0.01 to 
0.02 
(0.0)  

OT
U 
28 

Bacteroidet
es 

Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Sphingobacteriu
m 

84.2 0.04 to 
1.63 
(0.69) 

<0.01 to 
0.05 
(0.02)  

OT
U 
29 

Firmicutes Clostridia Clostridiales Symbiobacteriaceae Symbiobacteriu
m 

95.6 0.03 to 
0.20 
(0.06) 

<0.01 to 
0.06 
(0.02)  

otu 
30 

firmicutes clostridia thermoanaerobact
erales 

thermoanaerobacter
ales family iii. 
incertae sedis 

thermovenabulu
m 

83.5 0.15 to 
0.99 
(0.44) 

0.01 to 
0.41 
(0.08) 

a >97% homology; uncultured Geobacter sp. 
b >97% homology; ay692052.1 UASB reactor clone m79. 

c >97% homology; uncultured Pseudoflavonifractor sp. 
d >97% homology; uncultured Deferribacter sp. 
e >97% homology; uncultured Proteiniphilum sp. 
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Previous studies on anaerobic digestion of complex carbon substrates have also resulted in similar 

findings. Yue et al. (2013) reported a significant shift in digester bacterial community, compared to the 

archaeal community, when the substrate composition changed after co-digestion of cattle 

manure with corn stover was initiated. Conversely, both bacterial and archaeal communities changed 

significantly when only the SRT value of the co-digesters was varied (Yue et al., 2013). 

Similarly, Ziganshin et al. (2013) reported that bacterial communities were influenced significantly by 

varying substrate composition during anaerobic co-digestion of cattle manure with various agricultural 

residues (chicken manure, distillers grain, maize silage, maize straw and jatropha cake), and both 

bacterial and archaeal communities were influenced by other factors, such as digester operating 

temperature, SRT and organic loading rate. 

OTUs most similar to Kosmotoga and Deferribacter became more dominant after PHB co-digestion as 

indicated by relative abundance values (Table 1). The taxonomic identification of the positively 

correlated bacterial OTUs were distinct from the negatively correlated OTUs. Except for one negatively 

correlated OTU of genus Deferribacter (OTU 21), the genera of the 13 remaining negatively correlated 

OTUs were not represented among the 16 positively correlated OTUs (Table 1). 

The significant OTU relative abundance values were less similar (ANOSIM R = 0.91, p = 0.001) than 

those of the major bacterial OTUs when comparing pre- and post-co-digestion quasi steady state 

periods (Fig. 2B and D). Relative abundance heatmap with dual hierarchical clustering of the 30 

significant OTUs illustrates a major shift from pre to post-co-digestion. Taxa with relative abundance 

values that positively (OTUs 1–16) and negatively (OTUs 17–30) correlated with methane production 

clustered into two branches. Likewise, pre and post-co-digestion samples clustered into two distinct 

branches with post-co-digestion samples primarily clustered by presence or absence of pretreatment, 

but not by PHB type. Pre-co-digestion samples showed no clustering pattern. Sample clustering 

depicted a clear differentiation between pre and post-co-digestion communities and the influence of 

PHB treatment on microbial community composition. The combined relative abundance of the 16 

positively correlated OTUs increased from 2.8 ± 0.6% during pre-co-digestion to 7.1 ± 1.2% during post-

co-digestion. Conversely, the combined relative abundance of the 14 negatively correlated OTUs 

decreased from 7.2 ± 3.0% during pre-co-digestion to 0.8 ± 0.3% during the co-digestion period. 

Relative abundance values of significant OTUs changed and converged for all digesters after each 

bioplastic was co-digested (Fig. 3A and B). Pre- and post-co-digestion quasi steady state and transition 

period relative abundance value similarity was quantified using the ANOSIM statistic value (R) and 

employed the significant OTU data (ANOSIM data values). Co-digesters were able to more quickly 

adapt and exhibited shorter lag times when pre-co-digestion communities were less similar to 

transition period communities (Fig. 4A) and when transition communities were more similar to post-

co-digestion communities (Fig. 4C). In addition, cumulative transition period methane production was 

higher when pre-co-digestion and transition period communities were less similar (Fig. 4B), or when 

transition versus post-co-digestion communities were more similar (Fig. 4D). Conversely, co-digesters 

with shorter lag times and higher cumulative transition period methane production showed more 

similarity between post-co-digestion and transition period communities. The community shift in the 

342 major bacterial OTUs during pre-, transition- and post-co-digestion periods were also compared 

with the observed difference in lag time and cumulative transition period methane production. 
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However, the shift in the major bacterial OTUs did not show a strong correlation like that observed 

using the 30 significant OTUs (ANOSIM data values). 

 
Fig. 3. Communities comparison NMDS plots during pre-, transition- and post-co-digestion periods for digesters 

receiving (A) PHB1 and (B) PHB2 based on the 30 significant OTUs having relative abundance values related to 

methane production rate using Spearman's rank correlation. 
 

 
Fig. 4. Similarity of pre-co-digestion and transition period microbial communities versus (A) lag time before 
post-co-digestion PHB methane production commenced and (B) cumulative methane produced during the 
transition period. Similarity between transition and post-co-digestion period microbial communities versus (C) 
lag time before post-co-digestion PHB methane production commenced and (D) cumulative transition period 
methane produced. Community similarity was quantified by the ANOSIM statistic value (R). ANOSIM was 

performed using the 30 significant OTUs having relative abundance values that related to methane production 

rate using Spearman's rank correlation. 

 

Factors such as the change in OLR brought about by PHB co-digestion could influence the microbial 

community due to potential changes in the digester pH, VFA concentration or other parameters. 

However, the OLR increased only 20% during PHB co-digestion, and no drop in pH or high VFA 

production (<50 mg/L) was observed after bioplastic co-digestion. On the other hand, substrate 

composition is also known to influence microbial community composition in anaerobic digesters(Noike 

et al., 1985; Álvarez et al., 2010; Cesaro and Belgiorno, 2014). Therefore, it is more likely that change in 
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significant OTU relative abundance was due to the change in substrate composition after co-digestion 

started rather than due to OLR increase. 

3.3. The role of positively correlated OTUs in anaerobic PHB degradation 
Of the known PHA or PHB degrading bacteria, only the genera Streptomyces and Bacillus were most 

similar to OTUs identified in this study (Janssen and Harfoot, 1990; Budwill et al., 1996; Mergaert et al., 

1996; Abou-Zeid et al., 2001; Emadian et al., 2017). However, the relative abundance values 

of Streptomyces and Bacillus OTUs were relatively low (<0.001%) and did not significantly increase 

after PHB addition. In addition, none of the 16 positively correlated OTUs were previously reported to 

have a role in PHB degradation. Microbial degradation of bio-polymers such as PHB or PHA requires 

extracellular enzymes such PHA depolymerase and lipase (Rodríguez-Contreras et al., 2012; Banerjee 

et al., 2014). Taxa to which the 30 significant OTUs were most similar were compared to a current list 

of microorganisms that possess PHA depolymerase or lipase enzymes (Pleiss et al., 2000; Knoll et al., 

2009). None of the 30 significant OTUs were found in the PHA depolymerase database. Two positively 

correlated OTUs, Geobacter and Ruminococcuswere found in the lipase database; however, so were six 

of the negatively correlated 

OTUs: Bacteroides, Clostridium, Eubacterium, Planctomyces, Pseudoalteromonas, 

and Symbiobacterium. 

Several of the positively correlated significant OTUs have been previously identified for their 

fermentative and acetogenic function during anaerobic 

digestion. Deferribacter and Pseudoflavonifractor are known acidogenic amino acid degraders (Talbot 

et al., 2008; Jumas-Bilak et al., 2009; Cardinali-Rezende et al., 

2016). Geobacter and Syntrophorhabdus are known for direct interspecies electron transfer (DIET) in 

anaerobic digestion and generally are important syntrophic bacteria co-occurring symbiotically with 

hydrogenotrophic methanogens (McInerney et al., 2007; Shen et al., 2016). Gracilibacter 

thermotolerans, the only Gracilibacter taxa characterized, is defined as acidogenic, 

obligate anaerobe and ferments a number of carbohydrates yielding acetate, lactate and ethanol (Lee 

et al., 2006). Members of the order Thermotogales, 

including Kosmotoga, Fervidobacterium and Geotoga, are well characterized carbohydrate hydrolyzers 

and fermenters, and proliferate in anaerobic digesters (Ju et al., 2017; Peces et al., 2018; Wang et al., 

2018). Pelosinus is a strict anaerobe and has been associated with acetogenic fermentation of lactate 

through the expression of hydrolyzing lipase enzymes (Jaeger et al., 1995; Roohi et al., 2018). Members 

of the genera Ruminococcus are anaerobic and cellulolytic bacteria which play an important role in the 

hydrolysis and fermentation of hemicellulosic and cellulosic materials during anaerobic digestion (Yi et 

al., 2014). 

Most current knowledge regarding PHB-degrading microorganisms is based on isolates from natural 

environments such as soil or river sediments contaminated by PHB. In contrast, reports regarding 

microbial communities during anaerobic co-digestion of PHB are lacking. The results of this study show 

that anaerobic co-digestion of PHB and SMPS significantly impacts the relative abundance of specific 

bacteria that are have not been previously identified to be involved in PHB degradation. In addition, 

none of the currently known PHA degrading microorganisms were observed to play a significant role in 

anaerobic PHB co-digestion. Therefore, there may be as-yet-unknown PHB degrading bacteria. The 
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hydrolytic and lipolytic activities of the diverse bacterial community in an anaerobic digester treating 

primary sludge are sufficient to co-digest PHB polymers. The results of this study confirm that 

municipal water reclamation facilities with excess capacity could co-digest PHB bioplastic in addition 

to municipal wastewater sludge to generate more methane and renewable energy. Furthermore, 

pretreatment of bioplastics at high temperature and pH can further help by decreasing lag time and 

increasing methane production immediately after PHB bioplastic co-digestion is initiated. 

New insights into the microbial community of PHB co-digesters can further the advancement of 

sustainable bioplastic waste management strategies. Fundamental knowledge of the complex 

microbial consortia needed for successful PHB co-digestion is useful for monitoring startup operations 

when full-scale bioplastic co-digestion is initiated. Troubleshooting full-scale bioplastic co-digestion can 

also be accomplished through observation of the microbial community and may help to predict lag 

time associated with community acclimation. Predicting methane production rate from relative 

abundance data of the significant OTUs identified herein may further improve co-digester design and in 

the selection of co-digester inoculum in the future (Venkiteshwaran et al., 2017). 

4. Conclusion 
Methane production increased as a result of PHB co-digestion with no change in digester 

performance. Pretreatment of PHB bioplastic at high pH and temperature initially reduced the lag time 

before methane production increased when PHB co-digestion began. PHB co-digester bacterial 

communities changed, whereas no archaeal community change was observed. 

No previously known PHB degraders were observed in the co-digesters. OTUs most similar 

to Deferribacter, Geobacter, Kosmotoga, and Ruminococcus were found to correlate positively with 

increased methane production resulting from PHB co-digestion. These OTUs may play an important 

role in PHB bioplastic conversion to methane in anaerobic digestion. 
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