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Abstract 
Using deep learning to recover depth information from a single image has been studied in many situations, but 
there are no published articles related to the determination of construction site elevations. This paper presents 
the research results of developing and testing a deep learning model for estimating construction site elevations 
using a drone-based orthoimage. The proposed method includes an orthoimage-based convolutional neural 
network (CNN) encoder, an elevation map CNN decoder, and an overlapping orthoimage disassembling and 
elevation map assembling algorithm. In the convolutional encoder-decoder network model, the max pooling and 
up-sampling layers link the orthoimage pixel and elevation map pixel in the same coordinate. The experiment 
data sets are eight orthoimage and elevation map pairs (1,536 × 1,536  pixels), which are cropped into 64,800 
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patch pairs (128 × 128  pixels). Experimental results indicated that the 128 × 128-pixel patch had the best 
model prediction performance. After 100 training epochs, 21.22% of the selected 2,304 points from the testing 
data set were exactly matched with their ground truth elevation values; and 52.43% points were accurately 
matched in ±5  cm and 66.15% points in ±10  cm, less than 10% points exceeded ±25  cm. This research 
project advanced drone applications in construction, evaluated CNNs’ effectiveness in site surveying, and 
strengthened CNNs to work with large-scale construction site images. 

Introduction 
The determination of elevations on construction sites is accomplished by contact surveying methods using total 
station; a global positioning system (GPS); a level, theodolite, and noncontact methods using a laser scanner (Du 
and Teng 2007; Kwon et al. 2017); drone photogrammetry (Nassar and Jung 2012; Siebert and Teizer 2014); and 
a stereo camera (Sung and Kim 2016). These methods are either based on the equipment’s physical properties 
or based on the camera model and epipolar geometry as reference information to find the geometry data, so 
the models can achieve state-of-the-art results. However, their weaknesses are noticeable because contact 
methods have a time-consuming outdoor procedure and a high probability of interfering with other construction 
operations. Noncontact methods produce a huge amount of unfiltered target points and need more time to 
process the raw data. A previous study stated that the duration for estimating on-site soil volume after drone 
photogrammetry is one processing day under the following conditions: the point cloud is generated by Agisoft 
PhotoScan, the geometry model is created by Autodesk ReCap with the point cloud, and the soil volume is 
estimated using Autodesk Civil 3D (Haur et al. 2018). Quickly and accurately estimating elevations of a 
construction site in real time is still a challenge. 

Previous research has shown the feasibility of using deep learning methods to recover the relative depth 
information for each pixel of an image of indoor scenes (Eigen et al 2014; Liu et al. 2015; Laina et al. 2016), 
outdoor scenes (Chen et al. 2016; Li and Snavely 2018), and scenes from automatic driving applications (Garg 
et al. 2016). In addition, convolutional neural networks (CNNs) have been verified as effective and reliable in 
microscale scenes, such as estimating the surface height map from a single image of a foam mat and mouse pad 
(Zhou et al. 2017). However, a challenge of training a deep learning model is acquiring a data set. In the 
automatic drive application, the CNN model is trained to determine the object’s distance from a single forward-
facing view of a car; the data set, depth, and front-view image pair are created using a stereo camera system 
that is installed on the front of the car (Garg et al. 2016). Another interesting approach to create a labeled data 
set is using artificial images, such as generating different view images from a photogrammetry-based, concrete 
mixer truck, and three-dimensional (3D) model, and using these images to train a construction equipment object 
detector (Kim and Kim 2018). 

The researchers’ recent work (Jiang and Bai 2020) presents a two-frame, image-based 3D-reconstruction 
method that utilizes drone technology to capture a low-high orthoimage pair for assembling a vertical-baseline 
stereo vision model. The developed method can be used to calculate the construction site elevation values from 
the stereo vision model and saves them as grayscale values in an elevation map. The elevation map is similar to 
a depth map (Eigen et al 2014; Garg et al. 2016), which stores the elevation value in each pixel of a grayscale 
image as its grayscale value. The drone-based orthoimage, also called a top/plan view or orthophoto (Siebert 
and Teizer 2014), is captured when the camera’s principal ray is perpendicular to the construction site surface. 
In the case of automatic driving, the forward-facing view has the camera’s principal ray perpendicular to the 
objects in front of the car. So, the images captured in front of automatic driving cars and above construction site 
surfaces have the common characteristic in that the objects in the same depth level/elevation level have 
common texture features as in the forward-facing view/orthoimage (Fig. 1). Therefore, capturing an orthoimage 



over a construction site by drone, then using this image to estimate the site elevations is a feasible approach 
that will reduce drone flying time and avoid hazards of drone crashes on the construction site. 

In this paper, a deep learning–based method, convolutional encoder-decoder network model is proposed to 
estimate elevations from the orthoimages of a construction site, which links each pixel of the orthoimage with 
the same coordinate pixel in the elevation map (see Fig. 1). This research evaluates the effectiveness of the 
single image-based 3D-reconstruction method, which requires much fewer images in estimating elevation than 
the multiple images-based methods, such as the structure from motion (SfM) method (Nassar and Jung 2012). 
To explain how to estimate site elevations from a drone-based orthoimage, the rest of this paper presents the 
data set acquisition, model designs, training and testing, field experiment, and result discussions. 

Proposed Method for Estimating Construction Site Elevations 
Drone-Based Orthoimage Acquisition 
An orthoimage of a construction site can be captured by yielding the camera gimbal to negative 90°, keeping the 
camera lens facing the ground. In this paper, the drone, DJI Phantom 4 Pro V2.0, is designed to fly at 10 and 
20 m over the takeoff location. As the focal length is fixed in the camera pinhole model (Fig. 2), the size of an 
object in the orthoimage (Image@H) has a negative relationship with the drone flight height (𝐻𝐻). The captured 
orthoimages have the following measurements: image sizes = 3,648 × 4,864  pixels; ground sample 
distance (GSD) = 0.27  cm/pixel; site size = 9.85 × 13.13  m2  m2 with 𝐻𝐻 = 10  m; and GSD =
0.54  cm/pixel, site size = 19.70 × 26.26  m2 with 𝐻𝐻 = 20  m. 

Elevation Data Acquisition 
The elevation data can be acquired by either contact or noncontact methods listed in the “Introduction” section, 
but the challenge is linking the orthoimage’s pixels with the elevation data. A possible approach is to store the 
elevation data in an equal-size, 8-bit, grayscale image, referred to as an elevation map, which uses 0 as the 
elevation lower boundary (−5 m) and 255 as the elevation upper boundary (5 m). In an elevation map, the 
grayscale value of each pixel can be easily converted from range [0, 255] to its corresponding real elevation 
value. In Fig. 3, the elevation map is represented in viridis colormap for better visualization, and the 𝑋𝑋 𝑌𝑌⁄  profiles 
show the elevation changes at the selected point (in meters). Acquiring elevation data for each pixel of the 
orthoimage is unreasonable. To save time, the simplified approach is to share the same grayscale 
value/elevation value for a patch, such as a 32 × 32-pixel patch. For example, the first selected pixel (16,16) 
shares its grayscale value/elevation value with the patch Elevation map [0∶31,0∶31]. 

Data Set Creation 
An RGB orthoimage acquired by the drone has three channels. Considering that the texture color is important in 
distinguishing between different objects on the construction site, the texture information is kept, rather than 
using a grayscale image. Thus, the proposed deep learning model has different input and output data channels, 
such as input shape (128,128,3) and output shape (128,128,1). Considering the computing capacity of the 
workstation system, in Fig. 4 the first through fifth columns list the possible model input and output data set 
examples of 32 × 32-pixel, 64 × 64-pixel, 128 × 128-pixel, 256 × 256-pixel, and 512 × 512-pixel patches, 
which are cropped from [0:31,0:31], [0:63,0:63], [0:127,0:127], [0:255,0:255], and [0:511,0:511] of 
the 1,536 × 1,536-pixel orthoimage and elevation map (the sixth column), respectively. For the elevation map 
patches, each larger patch contains four times more elevation values than the smaller patch, such as 
the 64 × 64-pixel patch contains elevation values from pixel (16,16), pixel (16,48), pixel (48,16), and pixel 
(48,48), while the 32 × 32-pixel patch only contains the elevation value from pixel (16,16). Thus, a smaller patch 
size is better for the deep learning model to learn the local features from the input and output data set. 
Conversely, a larger patch size is better for learning the global features from the input and output data sets. 



Therefore, for this paper, experiments were conducted to evaluate the performances of the different patch size 
configurations, which include 32 × 32-pixel, 64 × 64-pixel, 128 × 128-pixel, 256 × 256-pixel, 
and 512 × 512-pixel patches. When creating these patches, the stride was set as 16, 32, 64, or 96 pixels for 
moving these square boxes on the orthoimage and elevation map (larger strides were used to avoid workstation 
system memory shortages), and the number of patches were determined using Eq. (1), where “⌊ ⌋” is the floor 
function. Moreover, to make the deep learning model robust in different image orientations, the orthoimage 
and elevation map were planned to rotate 90°, 180°, and 270° to increase the data set by four times. 
Table 1 lists the detailed parameters in creating data sets from an orthoimage and elevation map pair 
with 1,536 × 1,536  pixels 

(1) 

Num. of Data Set

= �
Image Height− Patch Size

Stride
+ 1� × �

Image Width− Patch Size
Stride + 1�

× 4 

Table 1. Data set parameters 
Patch sizes Strides Rows Columns Number Number after four rotations 

32 × 32 16 95 95 9,025 36,100 
64 × 64 32 47 47 2,209 8,836 

128 × 128 32 45 45 2,025 8,100 
256 × 256 64 21 21 441 1,764 
512 × 512 96 11 11 121 484 

 

Network Architecture Setup 
The proposed deep learning model is a convolutional encoder-decoder network model (Fig. 5). In the encoder, 
the five convolution layers learn the model input orthoimage patch as feature maps; each convolution layer 
contains a 2D convolution operation with zero-padding [see Fig. 6(a)], and the layer output has the same size as 
the layer input (Chollet 2015); each max pooling layer next to the convolution layer is a max pooling operation 
[Fig. 6(b)], which reduces the layer input (convolution layer output) to one-half the size as the layer output. In 
the decoder, the five convolution layers interpret the feature maps to model an elevation map output; each 
convolution layer contains a 2D convolution operation with zero padding as well. The up-sampling layers are the 
reverse operations of max pooling operations, which enlarge the layer input to its double size as the layer 
output [Fig. 6(b)]. In detail, Fig. 6(a) shows an example of a zero-padded convolution operation. The original 
input is 5 × 5 in size, which has been padded to 7 × 7; the 3 × 3 kernel convolution has a 5 × 5 output, which 
has the same as the original input. If the original input is not padded with zero, the convolution output is the 
filled 3 × 3 region only. Fig. 6(b) shows an example of how max pooling (2 × 2 filter and strides = 2) and up-
sampling work in the model. 

The proposed convolutional encoder-decoder network model has an equal number of max pooling layers and 
up-sampling layers. This type of model is referred to as an hourglass-like model, which has been widely used in 
image segmentation, such as SegNet (Badrinarayanan et al. 2017). Another hourglass-like model uses 
deconvolution network in the decoder, such as DeconvNet (Noh et al. 2015), where each deconvolution (also 
known as transposed convolution) layer is the opposite operation of normal convolution (Chollet 2015). In this 
research study, the convolutional decoder and deconvolutional decoder were compared and their generated 
results do not have any significant difference. Additionally, the proposed model is different from SegNet, in 



which the up-sampling layer is the first layer in the decoder, but the proposed model uses a convolution layer 
first (Fig. 5). 

To make this encoder-decoder model able to interpret an orthoimage patch and predict an equivalent-sized 
elevation map patch, the intersection part of the encoder-decoder is proposed as a 512-channel feature map, 
which is generated from the “max_pooling2d_5” layer (Table 2). For example, the encoder generates 
a 4 × 4 × 512 feature map for the 128 × 128 × 3 input (Fig. 5). This intermedia feature map is required by the 
model output. Based on the data set creation, an elevation map shares a common integer value from 0 to 255 in 
each 32 × 32 small-patch; thus, a 128 × 128 elevation map patch contains 16 (4 × 4) elevation values; if each 
feature-map just represents the probability of the integer value from 0 to 255, then at least a 4 × 4 × 256 feature 
map is required for the decoder. The proposed “conv2d_5” layer uses 512 filters (Table 2), which doubles the 
required channel number. The 512-channel feature map can be understood as each channel is the probability of 
the element in the list [0.0, 0.5, 1.0, …, 245.5, 255.0]. In this research study, adding the interaction feature map 
to 1,024 channels was no different from the 512-channel. In addition, the five max-pooling layer is the maximum 
number for the encoder because the smallest model input 32 × 32-pixel patch is transformed to 
a 1 × 1-pixel feature map after five max pooling operations. 



Table 2. Model layers parameters 
 Model architecture for 32 × 32, 64 × 64, 128 × 128, 256 × 

256, and 512 × 512-pixel patches 
     Output shapes for each 

patch 
     

       32 64  128 256 512  
Blocks Layers (type and kernel size) Strides Padding Activations Filters/ 

channels 
Parameters 
number 

Rows/columns     Channels 

Input input_1 (input layer) — — — 3 0 32 64 128 256 512 3 
Encoder conv2d_1 (conv2D 3 × 3) 1 Same ReLU 64 1,792 32 64 128 256 512 64 
 max_pooling2d_1 (max pooling 2 × 2) 2 Same — — 0 16 32 64 128 256 64 
 conv2d_2 (conv2D 3 × 3) 1 Same ReLU 128 73,856 16 32 64 128 256 128 
 max_pooling2d_2 (max pooling 2 × 2) 2 Same — — 0 8 16 32 64 128 128 
 conv2d_3 (conv2D 3 × 3) 1 Same ReLU 256 295,168 8 16 32 64 128 256 
 max_pooling2d_3 (max pooling 2 × 2) 2 Same — — 0, 4 8 16 32 64 256 
 conv2d_4 (conv2D 3 × 3) 1 Same ReLU 512 1180160 4 8 16 32 64 512 
 max_pooling2d_4 (max pooling 2 × 2) 2 Same — — 0 2 4 8 16 32 512 
 conv2d_5 (conv2D 3 × 3) 1 Same ReLU 512 235,9808 2 4 8 16 32 512 
 max_pooling2d_5 (max pooling 2 × 2) 2 Same — — 0 1 2 4 8 16 512 
Decoder conv2d_6 (conv2D 3 × 3) 1 Same ReLU 512 235,9808 1 2 4 8 16 512 
 up_sampling2d_1 (up sampling 2 × 2) 1 — — — 0 2 4 8 16 32 512 
 conv2d_7 (conv2D 3 × 3) 1 Same ReLU 512 235,9808 2 4 8 16 32 512 
 up_sampling2d_2 (up sampling 2 × 2) 1 — — — 0 4 8 16 32 64 512 
 conv2d_8 (conv2D 3 × 3) 1 Same ReLU 256 117,9904 4 8 16 32 64 256 
 up_sampling2d_3 (up sampling 2 × 2) 1 — — — 0 8 16 32 64 128 256 
 conv2d_9 (conv2D 3 × 3) 1 Same ReLU 128 295,040 8 16 32 64 128 128 
 up_sampling2d_4 (up sampling 2 × 2) 1 — — — 0 16 32 64 128 256 128 
 conv2d_10 (conv2D 3 × 3) 1 Same ReLU 64 73,792 16 32 64 128 256 64 
 up_sampling2d_5 (up sampling 2 × 2) 1 — — — 0 32 64 128 256 512 64 
Output conv2d_11 (conv2D 3 × 3) 1 Same Sigmoid 1 577 32 64 128 256 512 1 
 Total parameters: 10,179,713      Layer output shape      
 Trainable parameters: 10,179,713      (Rows, columns, 

channels) 
     

 Nontrainable parameters: 0            
 



Furthermore, each convolutional layer also includes an activation function, which performs the nonlinear 
transformation of the features generated from the convolution operation (Dettmers 2015). In the proposed 
model, the input and output data sets, 24-bit RGB orthoimage, and 8-bit grayscale elevation map pairs with the 
value range [0, 255] are normalized to the range [0, 1] by dividing them by 255. Thus, the activation function 
should progressively change from 0 to 1 with no discontinuity for generating the output. The rectified linear unit 
activation function (ReLU), 𝑓𝑓(𝑥𝑥) = max(0,𝑥𝑥), is a very popular choice for use in hidden layers; it is faster than 
many activation functions, such as sigmoid. The ReLU function does not always output a nonzero, so it results in 
fewer neurons being utilized and less dependence between features (Nair and Hinton 2010). In addition, the 
sigmoid activation function (also known as logistic), 𝑓𝑓(𝑥𝑥) = 1/(1 + 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑥𝑥)) is used in the output layer to 
generate the continuous values for the elevation map, instead of using the SoftMax function to classify the 
objects in SegNet (Badrinarayanan et al. 2017). The detailed model layers and each layer output shape for each 
patch size trial are shown in Table 2, where the types of layers are described in the Keras 2.3 style (Chollet 
2015). 

Additionally, this paper uses the “Sequential model API” in Keras to set up the convolutional encoder-decoder 
network model. When compiling the model, it uses “rmsprop” as the optimizer, and “mean_squared_error” as 
the loss function (Chollet 2015); “validation_split” is set to 0.05, which means that 95% of the data sets is used 
for training the model and 5% of the data set is used for validation. In this paper, the efficiency of early stopping 
compared to nonstopping has been evaluated. The early stopping technique stopped model training when the 
monitored quantity had stopped improving (Chollet 2015), such that the training loss or validation loss had not 
decreased for 10 epochs. This paper uses “EarlyStopping(monitor=‘val_loss’, patience = 10).” What’s more, this 
paper uses the “same” padding for max pooling layers. Because the model input sizes are 32, 64, 128, 256, and 
512, which can be divided by 32 (2525), the padding setting in max pooling should have no impact on the result, 
because in each max pooling layer, the layer input size is halved, while the layer output size is still an integer 
that can be divided by 2. However, the model results varied on this setting. Using the “same” padding generated 
a better result than “valid” padding. 

Model Prediction and Postprocess 
The input layer and output layer of the proposed model (Fig. 5) indicate that the trained model predicts an 
elevation map patch from an input orthoimage patch. A model prediction example is shown in Fig. 7(a), while 
the edged area of each prediction patch is different from the center area. This is because the zero padding is 
used in convolution operations. The normal convolution operation shrinks the input image size down to the 
filled center region in Fig. 6(a). In this paper, the added padding operation enlarges the image size with “0” 
before the convolution operation [Fig. 6(a)]. Then, the zero-padding convolution ensures that the output 
maintains the same size as the input. However, the added “0” produces unwanted features in the edge of the 
prediction patches. The side-by-side assembly of predictions in Fig. 7(a) shows the unexpected gridlines. 

Fig. 7(b) shows the workflow of the orthoimage disassembling and elevation map assembling algorithm, which 
generates the elevation map without unexpected gridlines. This algorithm needs to disassemble the orthoimage 
into several overlapping patches. The required number of patches is determined by Eq. (2). When assembling 
the elevation map, only selected parts of each patch will be used. Compared with the side-by-side approach, the 
proposed overlapping algorithm replaces the patch edges with other predictions’ center regions. Additionally, 
the assembly of the elevation map has the same GSD as the orthoimage. Then, the 3D geometry data can be 
reconstructed using Eq. (3) 

(2) 



Num. of Required Patches = �2 ×
Image Height

Patch Size − 1� × �2 ×
Image Width

Patch Size − 1� 
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Experiment 
System Configuration 
Experiments in this paper were conducted using the proposed deep learning model in Fig. 5 and Table 2. The 
configuration of the system environment was Python 3.6.8, OpenCV 3.4.2, Keras 2.3.1, TensorFlow-GPU 1.14, 
CUDA 10.0, and cuDNN 7.6.4.38 on a workstation system with 2×Xeon Gold 5122@3.6GHz CPUs, 96GB 
(8GB×128GB×12) DDR4 2666 MHz memory, and 4 × 11GB memory GeForce RTX 2080 Ti GPUs. 

Experiment Data Set 
In this paper, the experiment data sets, the orthoimage, and the elevation map pairs were generated using the 
method in Jiang and Bai (2020). In this method, an original orthoimage taken by a drone will be preprocessed as 
presented in Table 3. Additionally, in this paper, the edges of the orthoimages and elevation maps are removed 
to make their width (1,536 pixels) and height (1,536 pixels), which are exactly divisible by 32, 64, 128, 256, and 
512. This is because the various patch size configurations will be compared. 

Table 3. Image processing parameters 
Processing step  Image size (pixels) GSD 

(cm/pixel) 
Site size (m2) 

Image preprocessing Original 3,648 × 4,864  0.27  9.85×13.13      
Cutting to square shape  3,648 × 3,648     0.27 9.85 × 9.85   

 Scaling, 0.5 1,824 × 1,824 0.54 9.85 × 9.85      
Removing margin, 128 pixels 1,568 × 1,568 0.54 8.47 × 8.47   

Additional processing 
in this paper 

Removing each side 16 pixels 1,536 × 1,536   0.54  8.29 × 8.29     



Fig. 8(a) shows the model training and validation data sets. The first and second column orthoimages were taken 
in Atwater Park (Shorewood, Wisconsin) during different seasons. Data A and B were taken on March 24, 2019, 
when the vegetation had not recovered yet. Data C and D were taken on June 5, 2019, when the vegetation was 
growing. Additional Data AC, CA, CG, and CI were taken September 2019, when the vegetation was fully grown. 
Data AC is the same wooden platform as B and D; Data CA is another wooden platform on this site; and Data CG 
and CI detail the umbrella and stairways. In addition, Fig. 8(b) includes an additional orthoimage and elevation 
map pair, which is proposed to be used for quantitatively evaluating the trained model. Furthermore, the 
elevation maps were aligned by picking a point on the wooden platform/path and setting its elevation 
as ±0.00±0.00. Fig. 8(c) shows the spatial relation among these nine data sets. In addition, the other 
orthoimages captured from different drone flight heights on the experiment site are proposed to be used to 
evaluate the trained model and will be shown in the “Discussion” section. 

Training and Validation 
The model training parameters including batch sizes, epochs, and data set numbers are listed in Table 4. The 100 
epochs and early stopping were shared for the five different patch size trials. Eight orthoimage and elevation 
map pairs [Fig. 8(a)] and their four rotations were used to train the model. Thus, the total number of data sets is 
eight times the number listed in the last column of Table 1. The data set numbers varied for the five different 
patch size trials, because the system memory limitation resulted in different strides being used for creating data 
sets. Moreover, in this paper, when training the model, the “batch size = 32” was used in the 512 ×
512-pixel patch trial, and “batch size = 128” was used in the other trials. This is because of the single GPU’s 
memory limitation (11 GB or 10.24 GiB); an additional 3.38 GiB memory and 2.29 GiB memory are needed for 
each GPU with batch sizes of 128 and 64, respectively. Fortunately, the small batch size in the 512 ×
512-pixel patch trial only results in more model training times in each epoch. 

Table 4. Model training parameters and results 
Patch size trials     Training epoch trials  
Patch sizes Data sets 

(validation split = 
0.05) 

  Batch 
sizes 

Early stopping (monitor 
= ‘val_loss’, patience = 
10), epochs = 100 

 

 
Total number Training Validation 

 
With early stop Without 

early stop 
32 × 32 288,800 274,360 14,440 128 29 100 
64 × 64 70,688 67,153 3,535 128 27 100 

128 × 128 64,800 61,560 3,240 128 18 100 
256 × 256 14,112 13,406 706 128 35 100 
512 × 512 3,872 3,678 194 32 32 100 

 

The loss results of model training for each trial are shown in Fig. 9(a), and the loss results of model validation 
(also known as model testing) for each trial are shown in Fig. 9(b). The five different patch size trials were 
stopped at different epochs (Table 4). The 128 × 128-pixel patch trial stopped at the 18th epoch is the earliest 
trial, and the 256 × 256 patch stopped at the 35th epoch. The 256 × 256-pixel patch took the most epochs for 
the validation loss to reach stable for 10 epochs. Furthermore, the validation results of each patch size are 
shown in Fig. 10, where the ground truths are the elevation map patches used in training the model and the 
predictions are the model outputs generated from the trained model with the corresponding inputs. The ground 
truths and model predictions are shown in the same viridis colormap range—the more similar the color, the 
more accurate the predictions. Visually, the model predictions are not a constant color (grayscale value) for 
a 32 × 32-pixel patch as the elevation map patches. The developed model decodes the elevation values for 



each pixel of the input patch instead of a single elevation value for the whole patch. The model output results 
show that the trained model can distinguish different objects, such as the wooden paths that are distinguished 
from the ground in the 256 × 256 and 512 × 512 trials. The trained model also shows the ability to correct 
elevation value errors that occur in the wooden path of 256 × 256 and 512 × 512 trials. In detail, the wooden 
paths of 256 × 256 and 512 × 512 in the ground truth have incorrect elevation values, while the predictions for 
the wooden paths show corrected elevations. 

For the five early stopping different patch size trials, the minimum model training loss occurred on 
the 128 × 128-pixel patch trial at its 18th epoch [Fig. 9(a)]. The 128 × 128-pixel patch also has the smaller 
model validation loss, while the minimum model validation loss occurred on 64 × 64-pixel patch trial at its 27th 
epoch. The Data A predictions in Fig. 10 indicates that the 128 × 128-pixel patch trial has better performance 
than other patch sizes in the early stopping trials, and the overlapping assembled predictions in Fig. 11 confirms 
that the 128 × 128-pixel patch has the best performance in the early stopping trial for Data CI as well. That may 
be because the 128 × 128-pixel patch balances the local features of each 32 × 32 patch and contains global 
features to connect each single 32 × 32 patch as well. The detailed comparisons of the different patch sizes will 
be stated in the “Discussion” section. 

Another model training was conducted without early stopping, the 18 to 100 epochs model training loss and 
validation loss of the five different patch size trials are shown in Figs. 9(c and d). The 128 × 128-pixel patch has 
the minimum model training loss of 8.74E-06 at 100 epochs, which is smaller than 1.82E-04 at the early stopping 
trial. The 64 × 64-pixel patch and 256 × 256-pixel patch trials have a more stable decreasing trend and smaller 
values for training loss compared to the extreme size patches 32 × 32 and 512 × 512. Therefore, using 
the 128 × 128-pixel patch for the developed convolutional encoder-decoder network model has the best 
model training and validation performance, followed by the 64 × 64-pixel patch and 256 × 256-pixel patch. 

Testing 
The Testing data AO in Fig. 8(b) is different from the Training data AC in Fig. 8(a). The data were captured on the 
same day but in different flight paths and sequences; the drone landed after it captured the AC low-high 
orthoimage pair and took off again to capture the AO pair. For the AC pair, the 10-m orthoimage was captured 
first followed by the 20-m orthoimage; but for the AO pair, the 20-m orthoimage was captured first followed by 
the 10-m orthoimage. 

Fig. 12 contains the model predictions for the Testing data AO. Visually, the 128 × 128-pixel patch has the best 
result in the early stopping trial, and the 64 × 64-pixel patch is better than others. The patches 128 ×
128 and 256 × 256 are better than others in the 100 epochs trials. The 100 epochs results are more detailed 
than the early stopping ones. These 2D predictions can easily be converted to 3D point clouds using Eq. (3) with 
the selected 2,304 (48 × 48) points (strides = 32  pixels in column and row directions). Fig. 13 overlaps 
the 128 × 128 and 256 × 256 prediction point clouds (one pixel is one point) with the ground truth, which is 
converted from the elevation map and plotted with RGB cubes. The model predictions have the similar shape as 
the ground truth and are more accurate than the ground truth for the wooden platform surface and its edges. 
The quantitative evaluations will be stated in the “Discussion” section. 

Discussion 
Patch Size Comparison and Discussion 
As the model training and testing results show, the 128 × 128-pixel patch and the 64 × 64-pixel patch are 
better than the other patch sizes in the early stopping trials. Fig. 14 shows the overlapping assembly of model 
predictions with the ground truth elevation map of the eight-model training data sets between these two patch 
sizes. In addition, several interesting points were selected to show their 𝑋𝑋 𝑌𝑌⁄ -profile elevation (m) changes. 



Each data set in Fig. 14 has ground surface, large objects or structures, and small objects. For the ground surface 
3D reconstruction, the 128 × 128-pixel patch has the best performance, as seen with the selected points in 
Data A and the 𝑌𝑌-profiles of Data C, D, and AC. Additionally, the sparse grass on the ground shows no impact to 
the 3D reconstruction of the ground surface shape, such as the 𝑋𝑋-profiles of Data B and D (Fig. 14). The trained 
model with 128 × 128-pixel patch correctly identifies that these regions are ground surface and not vegetation. 
For large object 3D reconstruction, the 128 × 128-pixel patch also has the best performance, seen in the 𝑌𝑌-
profile of the umbrella in Data CG, the 𝑌𝑌-profile of the stairways in Data CI, and the wooden platforms and 
wooden paths in all of the training data sets. For small objects, both the 128 × 128-pixel and 64 ×
64-pixel patches have good performance in the 3D reconstruction of the small objects’ shapes, such as the 𝑋𝑋 𝑌𝑌⁄ -
profiles of the garbage can in Data B and D. 

In general, the 128 × 128-pixel patch has a better performance with the early stopping setting at the 18th 
epoch than the 64 × 64-pixel patch trial with 27 epochs. However, training the developed model with the 
smallest 32 × 32-pixel patch has given a potential function to correct the elevation errors in the ground truth, 
such as the wooden path edge in the center region of Data A, the wooden platform corner in Data B, and the 
gap between the platform and the garbage can in Data B (Fig. 15). However, the large patch 
size 256 × 256 and 512 × 512 trials retained these errors. Therefore, the median size 128 × 128-pixel patch is 
the best option for balancing the local features and global features, each elevation value in the 32 ×
32-pixel patch, and the connections between 32 × 32-pixel patches. 

Texture Comparison and Discussion 
Aside from the ground surfaces, the vegetation surfaces and wooden surfaces are the two major textures in the 
experiment site [Fig. 8(c)]. The vegetation surfaces were captured during different seasons; the vegetation 
blocks show different colors in Data A, B, C, D, AC, and CG (Fig. 14). In Fig. 14, the selected point in Data AC is on 
the ground surface. The neighboring vegetation blocks were 3D-reconstructed well in the 𝑋𝑋-profile of Data AC 
(128 × 128-pixel patch), in which the real vegetation blocks’ surface heights ranged from 0.6 to 0.9 m on 
September 5, 2019. The 𝑋𝑋-profiles of Data A and B also crossed the withered vegetation blocks, in which 
the 128 × 128-pixel patch results are matched with the ground truth. In additional, Data CG and CI contain 
denser foliage in the shrub blocks, which are different from the vegetation blocks. The 𝑌𝑌-profile of Data CG 
and 𝑋𝑋-profile of Data CI are matched with the ground truth. The wooden surfaces and ground surfaces were 
captured in different brightness environments, and their colors are varied in Fig. 14. When creating the 
experiment data sets, all wooden surfaces (except the stairways) were set as elevation ±0.00  m. They were all 
3D-reconstructed well in the model predictions. Furthermore, the 𝑌𝑌-profile of Data CI shows the 3D-
reconstructed stairways are matched with the ground truth, and the selected point in Data CA has the correct 
elevation differential to the wooden platform as well. Thus, the developed model that trained with 3-channel 
RGB orthoimages is robust in complex textured regions for the early stopping 128 × 128-pixel patch trial. 

In addition, there are three kinds of poorly textured regions in the experiment data set, including shaded spots, 
shaded strips, and shaded blocks. For small spots of shade, such as the garbage can’s shade in Data D (Fig. 14), 
the 128 × 128-pixel patch generated the correct predictions. For large shade blocks, such as the tree’s shade 
and umbrella’s shade on the wooden platform in Data CA and CG, respectively (Fig. 14), the 128 ×
128-pixel patch has the correct predictions. The early stopping 128 × 128-pixel patch trial has inconsistent 
performance for the shaded strips. The selected point in Data AC is on the shade of the vegetation block. The 
ground surface was identified as vegetation in the 64 × 64-pixel patch trial but was correctly identified using 
the 128 × 128-pixel patch. However, the 64 × 64-pixel patch trials are more aligned with the “ground truth” 
than the 128 × 128-pixel patch trials, such as the 𝑌𝑌-profiles of the shaded ground surface close to the wooden 
platform in Data CA and the shaded area next to the bottom stairs in Data CI (Fig. 14). Fortunately, adding model 
training epochs can improve the prediction accuracy (Fig. 16), which will be discussed in the next section. 



Therefore, using the 128 × 128 × 3 RGB orthoimage input patch and 128 × 128 × 1 grayscale elevation map 
pair data sets to train the developed convolutional encoder-decoder network model has a good performance 
both in complex textured and poorly textured regions. 

Epoch Comparison and Discussion 
The validations of Data CA and CI (Fig. 16) indicate that it is worth continuing to train the model after the early 
stopping point to improve the performance of the 128 × 128-pixel patch. This is due to the model not training 
well enough at the 18th epoch, though it still has the potential to narrow down the variations of the validation 
loss [Fig. 17(a)]. In addition, the comparison of testing results (Fig. 12) shows that the 128 ×
128-pixel and 256 × 256-pixel patches are better and smoother than other patch sizes in the 100 epochs trials, 
and the comparison of the two 100 epochs validation loss curves in Figs. 17(a and b) confirmed that 
the 128 × 128-pixel patch is more stable and can reach a stable trend earlier than the 256 × 256-pixel patch. 
Thus, the well-trained 128 × 128-pixel patch has both the best model training and prediction performance for 
the developed convolutional encoder-decoder network model. 

Furthermore, the quantitative evaluation of the model validation accuracy and testing accuracy were conducted 
by measuring the point cloud (Fig. 13). In detail, for each validation result of the 128 × 128-pixel patch early 
stopping trial and 128 × 128-pixel patch 100 epochs trial, 2,304 (48 × 48) points (the centers of 
each 32 × 32-pixel patch) are selected from the corresponding orthoimage and the assembled elevation map 
predications (1,536 × 1,536  pixels). Then, the 3D point clouds were generated using Eq. (3) with the selected 
2,304 points. For each model training and validation data from A to CI, the variable “ELE-DIFF-EARLY” was 
created as the elevation differential between ground truth and 128 × 128-pixel patch early stopping, and 
variable “ELE-DIFF-100” was created as the elevation differential between ground truth and the 128 ×
128-pixel patch 100 epochs. Both variables have 18,432 (2,304 × 8) samples. For the Testing data AO, the same 
variables were created and named “AO-DIFF-EARLY” and “AO-DIFF-100” with 2,304 samples. The descriptive 
statistics for the four variables are listed in Table 5. For the model training and validation results, the 99% 
confidence interval (CI) of elevation differential is reduced from (1.6, 2.1) to (0.6, 0.8) cm by adding the model 
training epochs. In addition, the trained model has a good result in predicting the elevations for the Testing data 
AO; the elevation differential has a 99% CI of (2.14, 4.08) cm. Therefore, the model training epochs have a 
positive effect in improving the model accuracy; after 100 epochs the developed model is a well-trained model. 



Table 5. Elevation differential results 

Sample 𝑁𝑁 Mean (m) StDev SE mean 99% CI for 𝜇𝜇 Minimum Q1 Median Q3 Maximum 
ELE-DIFF-EARLY 18,432 0.018495 0.133267 0.000982 (0.015966, 0.021024) −2.31373 −0.03922 0 0.07843 1.84314 
ELE-DIFF-100 18,432 0.0073 0.058502 0.000431 (0.006190, 0.008410) −1.05882 0 0 0.03922 0.94118 
AO-DIFF-EARLY 2,304 0.0424 0.17635 0.00367 (0.03293, 0.05187) −1.17647 −0.03922 0.03922 0.11765 1.01961 
AO-DIFF-100 2,304 0.03111 0.18096 0.00377 (0.02140, 0.04083) −1.05882 −0.03922 0 0.07843 1.21569 

 



Accuracy Evaluation and Discussion 
Fig. 18(a) shows the distributions of the elevation differential between the ground truth, model validation 
results, and model testing results. The histogram of “ELE-DIFF-100-CM” shows that 94% of points from the 
model training data sets have an elevation error less than 10 cm in the well-trained model (100 epochs). The 
two histograms, “AO-DIFF-100-CM” and “AO-DIFF-EARLY-CM,” of the Testing data AO show that the well-trained 
model has a significant improvement over the early stopping model. The well-trained model prediction accuracy 
is 52.43% compared to the 47.05% on the early stopping model, in which an accurate elevation measurement is 
defined as measurement error that is equal to or less than 5.0 cm (Takahashi et al. 2017). The worst predictions 
(error > 25  cm or error < −25  cm) account for 9.64% and 12.37% in the well-trained model and early 
stopping model, respectively. In addition, the prediction contour maps are shown in Fig. 18(b), and the elevation 
differentials were mapped as well. Most of the worst predictions of the well-trained model are on the edges of 
the wooden platform and garbage cans. This is because the ground truths on these locations are incorrect; the 
model predictions have corrected them. Excluding these errors, the model prediction accuracy will increase. 
Thus, the well-trained model has at least a 52.43% accuracy in estimating the construction site elevations. 

Fig. 19 shows two 20-m orthoimages that have the same GSD = 0.54  cm/pixel as the model training data set. 
The blue garbage can (17.65 cm lower than the wooden platform) is the new object not used in training the 
developed model, and the original images were cut to a 3,584 × 4,864-pixel patch without image resizing. 
The 𝑌𝑌-profile at the blue garbage can is −13.7  cm, which is close to the true value with the error 3.95  cm <
5.0  cm. The 𝑌𝑌-profile on the top of the umbrella is 3.196 m, which is accurately matched with its true value of 
3.20 m. Therefore, training the developed model with the orthoimages captured at height 10 m can be used in 
3D reconstruction of orthoimages at height 20 m. The trained model is also able to generate the accurate 
elevations for the orthoimages at 20 m as well. However, its performance worsens for the orthoimages at 40 m 
and above. 

Furthermore, the top view of the experiment site in Fig. 8(c) was captured at a flight height of 100 m. The 
elevation prediction results of the well-trained models with 128 × 128-pixel and 32 × 32-pixel patches are 
shown in Fig. 20. The 32 × 32-pixel patch results show the ground surfaces, wooden surfaces, and shrub blocks 
are reconstructed well, but the vegetation blocks are assigned with incorrect elevations. The bad prediction of 
the 128 × 128-pixel patch occurs around (500, 2,000), where the shaded wooden path was not included in the 
model training data sets. Thus, to make the model satisfied with complex construction site situations, a 
comprehensive data set (orthoimage and elevation map pairs) is required. This data set should include different 
textures of the construction site, because the top-layer materials of the construction sites are not limited to 
vegetation, water, snow, sand, rock, soil, concrete, asphalt, buildings, and structures. For training a precise deep 
learning model, the number of data sets should be large enough to cover the various construction site surfaces. 

Conclusion and Future Work 
Conclusion 
This paper presents a single-frame, image-based, 3D-reconstruction method, which only needs a drone-based 
orthoimage as the input. The overall procedure is summarized in Fig. 1, which includes the following: (1) using a 
drone to acquire construction site orthoimages, (2) using an overlapping disassembling algorithm to generate 
the overlapping patches and their sequence number, (3) using the trained convolutional encoder-decoder 
network model to predict the elevation map for each patch, (4) assembling the prediction patches with the 
assigned sequence, and (5) converting the elevation map to elevation data or 3D point cloud. 

This experiment showed that the 128 × 128-pixel patch had the best prediction performance when the 
elevation values were shared in the elevation map with a 32 × 32-pixel patch. Adding model training epochs 



had a positive relationship to the model prediction accuracy. The testing results showed that the well-trained 
model had a 52.43% accuracy in elevation estimation with ±5.0  cm error, 66.15% accuracy 
with ±10.0  cm error, and less than 10% results with ±25  cm errors. Compared with the 94% accuracy (error ±
10.0  cm) in model training, it still has huge potential for improving the deep learning method for single image-
based 3D-reconstruction of construction sites. The proposed deep learning model can be used to estimate 
construction site elevations if the model is well-trained with data sets of similarly textured objects and sites. In 
this orthoimage-based, 3D-reconstruction method, the model training data sets were the reference information 
to estimate the construction site elevations. Thus, the performance of the proposed method relied on the 
quality and quantity of the model training data sets. The quality meant more comprehensive texture features 
and geometry shape features, while the quantity helped to build the ability to ignore incorrect elevation values 
in the data set and noise in the model predictions. 

Furthermore, the proposed overlapping disassembling and assembling algorithm was needed, which made the 
workstation system more able to train a deep learning model with larger sized images instead of shrinking 
images and losing image details. By disassembling the data sets into multiple small patches, the number of data 
sets was increased significantly. With the suitable patch size, such as the 128 × 128-pixel patch, the model 
balanced the global features and local features, and was even well-trained earlier than larger patch sizes. In 
addition, the smallest 32 × 32-pixel patch contained the maximum local features, which was important in 
correcting the incorrect elevations that occurred in the model training data sets, which were produced by other 
methods. It also showed an advantage in the 3D reconstruction of points, lines, and planes with sharp elevation 
changes, such as the corner of wooden platforms and the edges of the wooden paths. 

Future Works 
In this paper, the model training data set was limited to 10-m drone-based orthoimages, which only contained a 
few objects in a single-image frame. In addition, the formation of the elevation map only contained single 
elevation values in each 32 × 32-pixel patch. Therefore, adding the sixth convolution layer or adding the filters 
in the fifth convolution layer for the developed CNN encoder model had nonsignificant improvement in the 
model prediction. Future research can assign more elevation values to each 32 × 32-pixel patch, and the 
proposed model may need additional CNN encoder layers and CNN decoder layers to connect the added 
elevation features. In addition, increasing the drone flight height can enlarge an image’s spatial resolution and 
include more objects. Then, future research can train the proposed model with more data sets at different flight 
heights other than the 10-m height in this paper. 

To increase the accuracy of the elevation estimation, future research would use image segmentation or image 
classification to assign a class label for each patch (32 × 32-pixel). On one side, the label can be used as the 
additional reference information (feature map) to increase the accuracy of prediction. On the other side, the 
vegetation areas can be detected from the label and removed to obtain the ground elevations on the 
construction site, which is more important to earthwork operations than knowing the site surface height. 

Data Availability Statement 
The model training and testing data sets [orthoimage and elevation map pairs appear in Figs. 8(a and b)] are 
available from the corresponding author upon reasonable request. The Python code (convolutional encoder-
decoder network model appears in Fig. 5 and Table 2) is available from the corresponding author upon 
reasonable request. 
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