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The mixed quantum/classical approach is applied to the problem of ro-vibrational energy transfer
in the inelastic collisions of CO(v = 1) with He atom, in order to predict the quenching rate co-
efficient in a broad range of temperatures 5 < T < 2500 K. Scattering calculations are done in
two different ways: direct calculations of quenching cross sections and, alternatively, calculations
of the excitation cross sections plus microscopic reversibility. In addition, a symmetrized average-
velocity method of Billing is tried. Combination of these methods allows reproducing experiment
in a broad range of temperatures. Excellent agreement with experiment is obtained at 400 < T
< 2500 K (within 10%), good agreement in the range 100 < T < 400 K (within 25%), and semi-
quantitative agreement at 40 < T < 100 K(within a factor of 2). This study provides a stringent test
of the mixed quantum/classical theory, because the vibrational quantum in CO molecule is rather
large and the quencher is very light (He atom). For heavier quenchers and closer to dissociation limit
of the molecule, the mixed quantum/classical theory is expected to work even better. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4818488]

I. INTRODUCTION

Collisional energy transfer in carbon monoxide plays a
significant role in atmospheric chemistry,1, 2 astrophysics,3–5

and condensed matter physics at ultra-cold temperatures.6, 7

It has been studied in the past both theoretically8–19 and
experimentally3, 18 in a broad range of temperatures. For ex-
ample, rotational-vibrational transitions of CO is a valuable
diagnostic probe of diverse astrophysical environments, such
as interstellar and circumstellar media,20–24 where the tem-
peratures of interest are very high, up to T ∼ 2500 K. Ro-
vibrational transitions in the intermediate temperature range,
300 K < T < 1000 K, are important to the post-combustion ki-
netics of CO.23–25 Finally, these processes play critical role in
developing the methods for cooling (and trapping) molecules
to (at) sub-Kelvin temperatures, because efficiency of exper-
imental techniques depends on the ratio between elastic and
inelastic scattering cross sections. Thus, experimental studies
of inelastic transitions in CO + He is an important bench-
mark, which has many potential applications including the
high resolution molecular spectroscopy and controlled chem-
ical reactions.26, 27 Also, the study of vibrational relaxation of
CO by collisions with He atoms provides a convenient gen-
eral model which could be used for analysis of relaxation
processes involving other diatomic molecules and other low-
mass collision partners.13

In the past, significant efforts have been devoted to testing
and refining the potential energy surface (PES) for interaction
between CO and He. Despite the fact that this system is rel-
atively simple from the chemical point of view, a satisfactory

a)Author to whom correspondence should be addressed. Electronic mail:
dmitri.babikov@mu.edu

agreement between calculated and experimental rate coeffi-
cients could not be achieved for a long period of time.9–12, 28

The improvement of detection techniques29, 30 and develop-
ment of the PES31–33 went through several refinement cycles.
Finally, an acceptable agreement between theory and experi-
ment has been reached in different parts of the desired broad
range of temperatures. Two latest very similar PESs for this
system have been reported34, 35 and used for calculations of
inelastic scattering. The PES from Ref. 34 was used in this
work in order to enable direct comparison of our results with
those of Refs. 15 and 17.

Due to this past interest, the CO(v = 1) + He seems to
represent an ideal benchmark system for developing and test-
ing new theoretical methods for description of ro-vibrational
quenching. The exact inelastic quantum scattering approach
(coupled-channel) is expected to be accurate, but appears to
be computationally affordable for T < 500 K only.9, 15, 16, 18 At
higher temperatures, the approximate quantum calculations
(coupled states) are usually accurate in predicting the tran-
sition probabilities and cross sections, but inclusion of the
highly excited rotational states is still very expensive.16, 17, 36

In the contrast, the classical trajectory calculations, although
highly affordable, are not able to provide good agreement
with experimental data.37 The main drawback of classical ap-
proach is leakage of zero-point energy, which becomes severe
in the molecules with large vibrational quanta. Thus, it is de-
sirable to develop an alternative method, which will work in
the broad range of temperatures and for any molecule.

One reasonable way to tackle the inelastic ro-vibrational
quenching is a mixed quantum/classical theory (MQCT)
where the vibrational motion of the molecule is treated
quantum mechanically while translational and rotational
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degrees of freedom are treated classically.38 This approach
eliminates the problem of zero-point energy leakage, and
also allows capturing other quantum mechanical phenomena,
such as scattering resonances (including calculations of their
lifetimes41, 42), quantization of vibrational states, their normal
vs. local mode character, and finally, quantum symmetry.43

The MQCT method39–42 is expected to work well when
the rotational quantum is small compared to thermal energy.
This condition may not be fulfilled entirely for the lightest ro-
tors only, such as methane or water (both contain H atoms),
but it is satisfied well for majority of molecules, including
heavy diatomics such as CO, O2, N2, etc. The second require-
ment is a semi-classical regime of scattering. In this respect,
the CO(v = 1) + He system studied here is not an easy one.
The helium atom is light and one expects to see deviations
from classical scattering at lower temperatures.

So, the purpose of this work was to carry out calcula-
tions of ro-vibrational quenching using the MQCT method
and compare results with experiment in a broad range of tem-
peratures, in order to see whether the classical approximation
breaks down or not and, if it does, at what temperature does
this happen and how bad the MQCT results become, or they
still remain acceptable? The findings from these calculations
came out very encouraging.

Several sets of results in the range 5 K < T < 2500 K are
presented, analyzed, and compared in this paper. Some of our
results are from “direct” calculations of quenching, where the
initial vibrational state of CO is v = 1, and cross sections for
transitions to the final ground state v = 0 are computed di-
rectly and used to derive the quenching rates. Another set of
data is from the “reverse” approach, where cross sections for
excitations from v = 0 to v = 1 are computed first, and then
converted into the quenching rates using the principle of mi-
croscopic reversibility.19, 44 One more set of data is from the
average-velocity (symmetrized) approach of Billing,45 where
the principle of microscopic reversibility is built in by con-
struction, and the results of direct and reverse calculations are
very similar to each other.

The paper is organized as follows. In Sec. II, we out-
line major components of the MQCT for the simplest energy-
transfer process – collision of a diatomic molecule with an
atomic quencher. Numerical results for CO(v = 1) + He are
presented and discussed in Sec. III. The last Sec. IV is de-
voted to the symmetrized approach. Conclusions and possible
applications of this theory are given in Sec. V.

II. THEORETICAL FRAMEWORK

Detailed derivations of equations for the mixed quan-
tum/classical treatment of inelastic diatomic quencher
+ molecule scattering have been reviewed recently.46 Here,
we briefly recap only the major points of this theory.

A. Mixed quantum/classical dynamics

Vibrational motion of the molecule is treated quan-
tum mechanically by introducing the vibrational wave func-
tion �(R, t) and propagating numerically the time-dependent

Schrodinger equation,

i
∂

∂t
�(R, t) = Ĥ (t)�(R, t), (1)

on a grid of points using the wave packet technique.47 The
Hamiltonian operator

Ĥ (t) = − ¯
2

2μ

∂2

∂R2
+ Vrot(R; t) + Vpot(R; t) (2)

is time-dependent (implicitly) because the centrifugal term

Vrot(R; t) = p2
γ

2μR2
+ p2

α

2μR2 sin2 γ
(3)

and the potential energy surface Vpot(R; t) = Vpot(R, α, γ, q)
both depend on the classical variables: α(t), γ (t), and q(t).
Azimuthal angle α and polar angle γ describe orientation of
the molecule in space. Its rotational motion is treated classi-
cally by introducing their conjugate momenta pα(t) and pγ (t),
and propagating the Hamiltonian equations

α̇ = pα

Ĩ sin2 γ
, (4a)

γ̇ = pγ

Ĩ
, (4b)

ṗα = −∂Ṽ

∂α
, (4c)

ṗγ = −∂Ṽ

∂γ
+ p2

α cos γ

2Ĩ sin3 γ
. (4d)

The instantaneous mean moment of inertia Ĩ (t) of such
“fluid” rotor is determined by vibrational wave function39, 46

Ĩ (t) = 〈�(R, t)| 1

μR2
|�(R, t)〉−1. (5)

The mean-field potential

Ṽ (α, γ, q, t) = 〈�(R, t)|Vpot(R, α, γ, q)|�(R, t)〉, (6)

drives the classical trajectory of motion for rotation and the
process of quencher + molecule scattering, described by
Cartesian coordinates q(t) and their conjugate momenta p(t)

q̇ = p/m, (7a)

ṗ = −∇Ṽ . (7b)

In this way, the vibrational motion, treated with quantum
mechanics, affects the classical degrees of freedom (rotation
and scattering) through the mean values of Ĩ and Ṽ in Eqs. (4)
and (7). In turn, the classical trajectory for rotation and scat-
tering affects evolution of quantum vibrational wave function,
through time-dependence of Vrot and Vpot in the Hamiltonian
operator of Eq. (2). Energy is exchanged between vibrational,
rotational, and scattering degrees of freedom, while the total
energy is conserved. Spectral analysis of the final vibrational
wave packet gives information about probabilities of state-to-
state transitions P

jj ′
vv′ (E), which is easy to convert into cross

sections σ
jj ′
vv′ (E), as shown below.
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B. Quenching rate coefficient from direct calculations

In this section, we will discuss ro-vibrational transitions
and will label final states by primed indexes. For example,
cross section for a transition from the initial ro-vibrational
state (v, j ) into the final state (v′, j ′) at collision energy E
is denoted by σ

jj ′
vv′ (E). Quantum mechanical expression for

the rate coefficient of vibrational quenching from v = 1 into
v′ = 0 is15–17, 19

κdir
10 (T ) =

√
8kT

μπ

1

(kT )2

×

∑
j ′

∑
j

(2j+1) exp
(
−ε

j

1
kT

) ∞∫
0

σ
jj ′
10 (E)E exp

(− E
kT

)
dE

∑
j

(2j + 1) exp
(
− ε

j

1
kT

) .

(8)

Note that in this expression cross sections for the vibrational
transition of interest (from v = 1 to v′ = 0) are summed over
the final rotational states (j′) and are averaged over the initial
rotational states (j), assuming thermal distribution and taking
into account the rotational degeneracy. Ro-vibrational ener-
gies of the initial states are denoted by ε

j

1 . Subscript “dir”
means that these are “direct” calculations of quenching, as
opposed to “reverse” calculations discussed in Sec. II C.

Now recall that in our approach the rotational motion is
treated classically. Distributions of the initial and final rota-
tional states are continuous and smooth (not quantized). In
this situation, Eq. (8) should be rewritten in the following
way:

κdir
10 (T ) =

√
8kT

μπ

1

(kT )2

∞∫
0

σ̃10(E)E exp

(
− E

kT

)
dE, (9)

where we introduced

σ̃10(E) =

∑
j ′

∑
j

(2j + 1) exp
(
− ε

j

1
kT

)
σ

jj ′
10 (E)

∑
j

(2j + 1) exp
(
− ε

j

1
kT

) . (10)

This emphasizes that only the vibrational motion is quantized,
while the rotational motion is treated classically. Strictly
speaking, our mixed quantum/classical calculations cannot
produce well-defined values of the individual σ

jj ′
10 . They can

only give the average value of σ̃10.
From practical perspective, this also means that sampling

of the initial rotational states can be optimized (at a given T)
for calculations of σ̃10(E) as a whole. There is no need to con-
verge the value of each individual σ

jj ′
10 (E); only the accuracy

of average σ̃10(E) matters. In this respect, some values of j are
more important than others and it is convenient to introduce
weights of the initial ro-vibrational states as

wj
v (T ) =

(2j + 1) exp
(
− ε

j
v

kT

)
∑
j

(2j + 1) exp
(
− ε

j
v

kT

) . (11)

Using this definition, we can convert Eq. (10) into

σ̃10(E) =
∑

j

w
j

1

∑
j ′

σ
jj ′
10 (E). (12)

This transparent expression emphasizes summation over
the final j′ and averaging (weighted sum) over the initial j.

C. Quenching rate coefficient from microscopic
reversibility

Microscopic reversibility plays fundamental role in the
reaction dynamics.44 In practice, it is sometimes advanta-
geous to carry out calculations in the “reverse” direction (e.g.,
excitation instead of quenching) and then convert these raw
data into the final data for “direct” process, using the princi-
ple of microscopic reversibility.21, 44, 49 This approach works
well for the full-quantum dynamics.48 In the mixed quan-
tum/classical dynamics, the microscopic reversibility is not
automatically built in,45 and we felt it is important to do calcu-
lations in the reverse direction as well, namely, for collisional
excitation from v′ = 0 into v = 1.

Calculations carried out for vibrational excitation at colli-
sion energy E′ give us cross sections σ

j ′j
01 (E′). In notations of

this section, we switch the order of indexes, because the pro-
cess is reversed, but we still keep association of unprimed and
primed indexes with excited and ground vibrational states, re-
spectively. The principle of microscopic reversibility states
that49

(2j + 1)σ jj ′
10 (E)E = (2j ′ + 1)σ j ′j

01 (E′)E′. (13)

This assumes that the total energy (collisional + internal) of
the direct processes is equal to that of the reverse process

E + ε
j

1 = E′ + ε
j ′
0 . (14)

Rotational energy is included into the ro-vibrational
eigenvalues ε

j

1 and ε
j ′
0 , but it gives minor contribu-

tion compared to the quantum of vibration: 
ε = ε0
1 − ε0

0
≈ 2143 cm−1 (using the PES of CO from Ref. 15). Thus, for
CO, calculations of direct and reverse processes should be
carried out at very different collision energies. For example,
if for the direct process E = kT ≈ 200 cm−1 at room tempera-
ture, then for the reverse process E′ ≈ E + 
ε = 2343 cm−1

≈ 12 kT.
Substitution of Eqs. (13) and (14) into Eq. (8) allows ob-

taining the following formula (see the Appendix):

κ rev
10 (T ) ≈

√
8kT

μπ

1

(kT )2

×
∞∫

0

σ̃01(E + 
ε)(E + 
ε) exp

(
− E

kT

)
dE,

(15)

where rate coefficient of the direct process κ10 is ex-
pressed through average cross section for the reverse process
σ̃01(E + 
ε). We see that, indeed, the scattering calculations
of the reverse process should be carried out at energy raised
by 
ε, compared to calculations of the direct process.
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Note that Eq. (15) is approximate. In order to make this
formula look similar to Eq. (9), we used two approximations
described in the Appendix, but they hold well for the CO + He
quenching. Furthermore, those approximations are related to
how the rotational energy is treated. In the absence of rotation,
Eq. (15) is exact. The general expression is also discussed in
the Appendix.

D. Numerical approach

The initial conditions for CO + He collisions were gener-
ated in the following way. At t = 0, the center of mass of CO
is at the origin of the laboratory reference frame, while He is
at a distance of ∼35 bohrs. The incident direction of He atom
is sampled randomly and uniformly as explained in Ref. 46.
The impact parameter b is sampled randomly and uniformly
(independently from sampling the incident direction) in the
range 0 ≤ b ≤ bmax , where bmax = 8 bohrs. Initial momenta
p(t = 0) = √

2μE of the incident He atoms are determined
by the center-of-mass collision energy E, constant for a batch
of trajectories.

The initial rotational states of CO are chosen randomly,
but taking into account their weights in Eq. (11). For exam-
ple, for the direct calculations (quenching) at a given temper-
ature T, first, the weights w

j

1 (T ) are computed and truncated
at some large value of j, giving nj numbers. Then, the range
[0, 1] is split onto nj intervals with lengths proportional to
w

j

1 (T ). Finally, a random number is generated in the range
[0, 1] and the initial rotational state j is chosen based on which
of nj sectors this number falls in.

When the initial rotation state j is chosen, the vibrational
eigenstate v = 1 is computed for the Hamiltonian (2) with
Vrot(R; t) = j 2/(2μR2) and is used to set up the initial wave
packet �(R, t = 0). The non-uniform grid of 64 points is op-
timized as explained in Ref. 39. The initial values of classical
variables for rotation are α = 0, γ = π /2, pγ = 0, and pα = j.
Classical equations of motion are propagated using 4th-order
Runge-Kutta method with adaptive step-size control.50 Vibra-
tional wave packet is propagated using Lanczos method.51

Kinetic energy operator is applied using FFT.50

At the final moment of time, the spectrum of vibrational

eigenstates of the final rotational state j ′ =
√

p2
γ + p2

α/ sin2 γ

is computed, and the vibrational wave packet �(R, t) is pro-
jected onto v′ = 0 to obtain the corresponding transition prob-
ability P

jj ′
10 (E). If needed, these could be converted into indi-

vidual cross sections σ
jj ′
10 (E) by binning the values of final j′

(the values of initial j are already integer by set up). Instead,
we focused on computing the rotationally averaged cross sec-
tions for vibrational quenching σ̃10(E) using

σ̃10(E) = 2πbmax

N∑
n=1

bP
jj ′
10 (E)/N. (16)

In this expression, the sum over N trajectories in a batch re-
places two sums in Eq. (12) – the simple sum over final j′ and
the weighted sum over initial j.

For calculations in the reverse direction (excitation) the
procedure is similar, but the weights w

j ′
0 (T ) are used and the

N
100 101 102 103

σ,
δσ

(Å
2 )

10-7

10
-6

10-5

FIG. 1. Convergence of average excitation cross section σ̃01 (solid line) and
its statistical error δσ̃01 (dotted line) as a function of the number of trajectories
N in a sample.

initial wave function is that of v′ = 0 eigenstate. The inci-
dent momentum p′(t = 0) = √

2μE′ is determined by E′ = E
+ 
ε, and the final projection is onto v = 1 eigenstate. The
result of such calculation is σ̃01(E + 
ε).

Figure 1 gives example of convergence study for σ̃01(E)
at E = 800 cm−1 and T = 200 K. The value of statistical er-
ror δσ̃ is also shown. We see that after N ∼ 6000 trajecto-
ries the error drops to the level of ∼2%, which we consider a
converged result. It is worth noting, and is rather surprising,
that after only as few as 20 trajectories one gets a reason-
able estimate of averaged cross section σ̃ . Of course, after 20
trajectories the statistical error is still high, δσ̃ = 60%. Any-
way, this is a very useful property: it appears that one can
generate a good estimate of rotationally averaged σ̃ at very
little computational cost. This must be due to efficiency of the
multi-dimensional Monte Carlo integration in Eq. (16), which
utilizes the importance sampling according to the weights w

j
v

given by Eq. (11). In Table I, we listed how many values of
j were included in Eq. (10) and how many trajectories were
propagated in Eq. (16), in order to obtain converged results at
different temperatures.

TABLE I. Requirements and convergence in terms of the rotational exci-
tation and the number of trajectories in the MQCT calculations at different
temperatures.

T (K) jmax N δσ /σ × 100%

5a 2 120 31
20a 5 120 33
50a 9 240 25
100 18 3800 2
500 35 4700 2
1000 52 5900 2
1500 64 7800 2
2000 70 8600 2
2300 75 9500 2

aAt these temperatures, the results are not entirely converged, obtained for an estimate
only.
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0 1000 2000 3000 4000 5000 6000

σ
(Å

2 )

10-11

10-9

10-7
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(b) Excitation

E+Δε (cm-1)
0 1000 2000 3000 4000 5000 6000

σ
(Å

2 )

10-11

10-9

10-7

10-5

10-3

(a) Quenching

FIG. 2. Computed cross sections (symbols) and their analytic fits (lines) for:
(a) quenching σ̃10(E); and (b) excitation σ̃01(E + 
ε). Each frame shows
data obtained at five values of temperature: from T = 100 K to T = 900 K
with 200 K steps. Vertical dotted line in frame (b) corresponds to E = 0, or
E′ = 
ε.

III. RESULTS AND DISCUSSION

Figure 2(a) shows examples of computed cross sections
for quenching, σ̃10(E), in a broad range of relevant energies
for five chosen values of temperature: from T = 100 K to
T = 900 K with 200 K steps. Figure 2(b) shows the same for
excitation, σ̃01(E + 
ε). Note that Figs. 2(a) and 2(b) have
different horizontal axes: E and E + 
ε, respectively. The
overall trends of σ̃10(E) and σ̃01(E + 
ε) are similar (except
at low energies, see below). Their monotonic behavior is easy
to fit by the well-known analytic expression for energy depen-
dence of state-to-state transition cross section52

σ (E) = aE exp(−b/
√

E). (17)

The fitting coefficients a and b carry physical meaning: a cor-
responds to the average magnitude (well depth) while b cor-
responds to the average distance (well size) of the molecule
+ quencher interaction potential. We found that this depen-
dence describes well both excitation and quenching processes
– σ̃10(E) and σ̃01(E + 
ε), with E in Eq. (17) replaced by
E + 
ε for the latter case, and slightly different fitting co-
efficients. The coefficients are collected in Table II. The de-
pendencies of a(T) and b(T) on temperature are smooth and
monotonic.

TABLE II. Temperature dependence of fitting coefficients in the analytic
expression for excitation and quenching cross sections.

a × 103 (Å2/cm−1) b × 10−2 (cm−1/2)

T (K) Excitation Quenching Excitation Quenching

100 1.66 1.61 7.51 7.47
200 1.65 1.60 7.43 7.39
300 1.65 1.60 7.35 7.32
400 1.64 1.60 7.28 7.24
500 1.62 1.59 7.22 7.15
600 1.62 1.58 7.12 7.06
700 1.61 1.55 7.05 6.98
800 1.58 1.51 7.00 6.91
900 1.52 1.47 6.93 6.83

The quenching cross section σ̃10(E) tends to vanish as
E → 0. Four points computed in the range E < 500 cm−1

exhibit cross sections on order of σ̃10 ≈ 10−11 Å2, and this is
probably an overestimation. These numbers may not be par-
ticularly accurate because they are so small. The fit using
Eq. (17), with these points excluded, suggests even smaller
values for quenching cross section at E < 500 cm−1.

In contrast, the excitation cross section σ̃01(E + 
ε) is
finite (non-zero) at E = 0 and exhibits values on order of
σ̃01 ≈ 10−6 Å2. Note that the values of excitation cross sec-
tions σ̃01(E + 
ε) are finite even at E ≤ 0 (in Fig. 2(b), this
part of energy range is to the left of the vertical dashed line
E′ = 
ε). This is so because, as explained in Sec. II D,
the reverse calculations are done at collision energy
E′ = E + 
ε. At E = 0, we still have some residual colli-
sion energy E′ = 
ε ≈ 2143 cm−1, just sufficient to reach the
channel threshold. Below this energy the quantum mechani-
cal cross section for excitation would be zero, but the MQCT
approach yields a (small but) non-zero cross section at E < 0.
This is an artifact, apparently, due to the mean-field treatment
of collision. According to Eq. (15), the energy range E < 0 is
not included in the integral of the rate coefficient κ rev

10 .
To further clarify this point, we plotted in Figs. 3(a) and

3(b) the values of integrand in Eq. (9) for direct calculations
f dir(E) = σ̃10(E)E exp{−E/kT } and in Eq. (15) for reverse
calculations f rev(E′) = σ̃01(E′)E′ exp{−(E′ − 
ε)/kT }, re-
spectively. One sees that in Fig. 3(a) the integrand vanishes
at E = 0 as it should, while in Fig. 3(b) the integrand is fi-
nite at E = 0. At higher temperatures, this does not affect
the value of κ10 significantly, since the integrand shows max-
imum at E > 0, and its behavior near E = 0 is less important.
However, at T ≤ 400 K the maximum of the integrand is at
E ≤ 0 (to the left of the vertical dashed line E′ = 
ε) so that
the energy region near E = 0 plays the dominant role. Thus,
the artificially large values of σ̃01(E + 
ε) at low energies E
lead to artificially large values of integrand in Eq. (15) which,
at the end, may result in overestimated values of κ10(T) at low
temperatures.

The results for κ10(T) from direct and from reverse calcu-
lations, and the available experimental data,4, 20, 53 are shown
all together in Fig. 4 (solid lines for calculations, symbols for
experiments). The κ10(T) dependence from direct calculations
shows correct trend in the entire range of temperatures, but
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E (cm-1)
0 1000 2000 3000 4000 5000 6000

10-11

f
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10-5

10-3
(a) Direct

(b) Reverse

E+Δε (cm-1
)

f
(Å

2 ×
cm

-1
)

10-6
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100

0 1000 2000 3000 4000 5000 6000

FIG. 3. Energy dependence of the integrand in the expression for quench-
ing rate coefficient: (a) f dir(E) in Eq. (9) for direct calculations; and
(b) f rev(E + 
ε) in Eq. (15) for reverse calculations. Each frame shows
data obtained at nine values of temperature: from T = 100 K to T = 900 K
with 100 K steps. Vertical dotted line in frame (b) corresponds to E = 0, or
E′ = 
ε.

the absolute values are underestimated compared to experi-
ment, particularly at low temperatures (three orders of mag-
nitude difference at T = 100 K). Interestingly, the κ10(T) de-
pendence from reverse calculations follows experiment very
closely at all temperatures higher than T ≈ 400 K. However,
at T ≤ 400 K the reverse calculations deviate from the exper-
iment up, giving overestimated values of κ10(T), which could
be expected from the discussion above.

Given the success of reverse approach at T > 400 K,
it would be desirable to find a practical fix for the problem
at low temperatures. An ad hoc solution is simply to force
σ̃01(E + 
ε) to go to zero at E = 0, analytically. We tried this,
and multiplied the computed cross section σ̃01(E + 
ε) by
a smooth masking function (related to arctangent) that starts
from zero at E = 0 and goes to one at E ≈ 700 cm−1. Same
function was used for all temperatures. The result is in ex-
cellent agreement with experiment in the entire range of tem-
peratures (see Fig. 4, dashed line). Although this approach is
entirely empirical, its simplicity and success makes it quite
useful.

It is worth noting that at high temperatures we see a much
better agreement between direct and reverse calculations. For
example, at T = 2300 K two values of κ10 are less than one or-

T (K)
0 500 1000 1500 2000 2500

κ
(c

m
3 /s

)

10-21
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-17
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10-13

FIG. 4. Rate coefficients for quenching of CO(v = 1) by He impact from
direct calculations (solid green line) and from reverse calculations (solid blue
line), in comparison to experimental results (symbols) taken from Refs. 4, 18,
and 51. Dashed red line shows results of empirical correction to the reverse
approach at low collision energies. See text for details.

der of magnitude different (75% different, to be more precise)
and the trend is such that at even higher temperatures the dif-
ference is expected to decrease even further. Recall that direct
and reverse calculations are done with two different collision
energies, E and E + 
ε, respectively. When E is small the
effect of extra-energy (equal to the vibrational quantum 
ε)
is very significant, but when energy E is high by itself the ef-
fect of 
ε is much less important. So, one can deduce that
the difference between direct and reverse calculations is man-
ifestation of quantization of vibrational states in the MQCT
method. In the case of CO, the vibrational quantum is particu-
larly large, 
ε = 2143 cm−1, and it is not surprising that high
temperature is needed in order to see the direct and reverse re-
sults merging to the same value of κ10. Indeed, the quenching
of fundamental transition in CO(v = 1) is one of the worst
case scenarios. Near the dissociation limit, where the density
of states is much higher, the mixed quantum classical method
would work much better.

Moreover, the problem of non-vanishing σ̃01(E + 
ε) at
E = 0 (discussed above) is also related to the large value
of quantum 
ε in CO. If 
ε would be smaller, the value
of κ10(T) from reverse calculations would agree with ex-
periment even at lower temperatures. In order to test this
hypothesis, we carried out a set of additional calculations
for one chosen value of T = 300 K, but for several differ-
ent CO molecules. Impossible in experiment, but straightfor-
ward in theory is to flatten the PES of CO, producing new
molecule with smaller vibrational quantum! In such com-
putational experiments, we studied the values of vibrational
quantum down to 
ε = 100 cm−1. Figure 5(a) gives the val-
ues of κ rev

10 and κdir
10 vs. 
ε, while Figure 5(b) gives the ratio

R = (κ rev
10 − κdir

10 )/(κ rev
10 + κdir

10 ). The last points in Figs. 5(a)
and 5(b) corresponds to true CO, where at T = 300 K the
value of κ10 obtained from the reverse calculations is several
orders of magnitude larger than that obtained from the direct
calculations. In this case, the ratio R is very close to one. As
we reduced 
ε, we first saw a plateau for the ratio R, ex-
panding down to 
ε ∼ 1000 cm−1, but then, in the range of
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FIG. 5. The dependence of: (a) κ rev
10 and κdir

10 , and (b) the ratio R = (κ rev
10

− κdir
10 )/(κ rev

10 + κdir
10 ), on the value of vibrational quantum 
ε in a series of

computational experiments with theoretically modified CO potential.


ε < 400 cm−1, we observed a fast (close to linear) decrease
of the ratio R down to zero (see Fig. 5(b)). At 
ε = 100 cm−1,
the values of κ10 from direct and reverse calculations were
only 20% different.

We believe this numerical experiment proves that direct
and reverse calculations are expected to be equivalent (and,
in fact, both accurate) in the semi-classical regime, when the
vibrational quantum 
ε is on the order of thermal energy, or
smaller. However, our results for CO with large vibrational
quantum show that at low temperatures they produce different
results, which means that microscopic reversibility is not built
automatically in the MQCT method.

IV. THE AVERAGE VELOCITY (SYMMETRIZED)
APPROACH

During the process of finalizing this paper, we run onto
a book of Billing,45 which we did not know about. It appears
that Billing45 found an ingenious solution that allows merging
the results of direct and reverse calculations, even in the case
of low temperature and large vibrational quantum 
ε. We are
not going to repeat his arguments here, but will present our
own viewpoint on his method.

We believe that the problem of unsatisfied reversibility
is due to the Ehrenfest (mean-field) treatment of the scatter-
ing process in the MQCT method. Indeed, in the full-quantum

approach the incoming wave in the entrance channel and the
outgoing wave in the exit channel of the process correspond
to two different energies (very different in the case of large
vibrational quantum 
ε). The approximate method of trajec-
tory surface hopping54 takes this information into account, by
adjusting momentum in the exit channel to reflect the change
of internal energy (by 
ε). But the Ehrenfest approach is, in
a sense, an antithesis of the trajectory surface hopping. If the
transition probability is very small (which is the case here at
low T), the trajectory in the inelastic exit channel is almost
equivalent to the elastic trajectory, because the mean field po-
tentials, given by Eq. (6), are very similar and momenta are
very close to p = √

2μE. In order to fix the Ehrenfest ap-
proach, we must use, somehow, the information from reverse
trajectories that have momentum p′ = √

2μE′, which corre-
sponds to energy of the exit channel E′ = E + 
ε. Our results
for CO presented above show that experiment is between the
direct and reverse results, which is encouraging.

A. Transition cross-section

One technical thing we have to do first is to replace the
classical-like expression for cross section, Eq. (16), with a
quantum-like formula

σ
jj ′
10 = π

k2

Jmax∑
J=0

1

NJ

(2J + 1)

(2j + 1)

l=J+j∑
l=|J−j |

P
jj ′
10 . (18)

Here, J is total angular momentum of the molecule
+ quencher system, l is orbital momentum of the quencher.
As in Eq. (16), the probability is summed over the final rota-
tional states but Eq. (18) is for one given value of j; it should
be thermally averaged over the initial j, similar to Eq. (10).
This expression originates from the standard full-quantum
expression.55

Practical implementation of this formula uses sampling
procedure different from the one described in Sec. II D. Here,
for each given j one should sample J randomly and uniformly
between 0 and Jmax (determined by bmax ) and then sample
l randomly and uniformly between |J − j| and J + j. How-
ever, we checked and found that both sampling methods pro-
duce practically equivalent distributions. We also checked and
found that expressions of Eqs. (16) and (18) give very simi-
lar results for cross sections. Indeed, one can show that in the
limit of small j and high collision energy, when J ≈ l (here
we take j = 0 for simplicity) and l ≈ bk, which follows from
l(l + 1) = (bk)2, expression of Eq. (18) gives

σ ≈ π

k2

∑
l

(2l + 1)

Nl

P = π

k2

lmax

N

∑
l

(2l + 1)P

≈ π

k2

lmax

N

∑
2bkP = 2πbmax

N

∑
bP , (19)

equivalent to Eq. (16). Our numerical results showed that
Eq. (16) slightly underestimates cross section compared to
Eq. (18), but (even in the worst case of low collision energy,
E = 
ε/4 ∼ 536 cm−1) by no more than 20%.
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B. Microscopic reversibility

An important property of Eq. (18), in the context of
reversibility, is the explicit dependence of cross section on
collision energy (k2 = 2μE/¯2 in the case of direct and
k′2 = 2μE′/¯2 in the case of reverse calculations) and on rota-
tional degeneracy (2j + 1 and 2j′ + 1, respectively). Substitu-
tion of Eq. (18) into the principle of microscopic reversibility,
Eq. (13), leads to numerous cancellations and gives

P
jj ′
10 (E) = P

j ′j
01 (E′). (20)

This expression tells us that microscopic reversibility is satis-
fied only if the transition probabilities for direct and reverse
processes are equal. (Note that this is third version of the prin-
ciple, now in terms of individual trajectories, in addition to
that in terms of cross sections in Eq. (13), and rate coefficients
in Eq. (A8).)

Now recall that probability of vibrationally inelastic (and
in general any non-adiabatic) transition depends on collision
velocity. We cannot possibly satisfy Eq. (20) at low energy
E if p = √

2μE but p′ = √
2μ(E + 
ε) (i.e., much larger).

One straightforward solution to the problem would be to
launch direct and reverse trajectories with equal velocities.
The average between direct and reverse velocities seems to
be a reasonable chose, which leads to: (

√
E + √

E + 
ε)/2
= √

U , where we introduced the actual collision energy
U that permits to satisfy microscopic reversibility. This equa-
tion can be easily solved for E (taking square of left and right
parts, twice) which gives

E = U − 
ε

2
+ 
ε2

16U
. (21)

In a similar way, starting with (
√

E′ − 
ε + √
E′)/2 = √

U ,
one obtains

E′ = U + 
ε

2
+ 
ε2

16U
. (22)

Note that these expressions satisfy E′ = E + 
ε and E < U
< E′.

Thus, in the symmetrized approach we will satisfy micro-
scopic reversibility through P

jj ′
10 (U ) = P

j ′j
01 (U ), but then we

will express E and E′ through U according to Eqs. (21) and
(22), and will integrate the resultant probabilities in Eq. (9)
for direct and in Eq. (A10) for reversed processes, using cross
section in the form of Eq. (18). An important thing to note is
that k2 in the denominator of Eq. (18) should correspond to
the integration variable, namely, k2 = 2μE/¯2 in the case of
direct and k′2 = 2μE′/¯2 in the case of reverse calculations.

Furthermore, one can express U through E

U = E + √
E(E + 
ε)

2
+ 
ε

4
, (23)

or U through E′

U = E′ + √
E′(E′ − 
ε)

2
+ 
ε

4
. (24)

These expressions show that at the lower integration limit in
Eq. (9), when E = 0, we have U = 
ε/4. Similarly, at the
lower integration limit in Eq. (A10), when E′ = 
ε, we have
U = 
ε/4. So, the actual collision energy U of our trajectories
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FIG. 6. Energy dependence of the integrands f dir(E) of Eq. (25) and f rev(E)
of Eq. (27) for the symmetrized average-velocity approach. The data obtained
at nine values of temperature are presented: from T = 100 K to T = 900 K
with 100 K steps. Note that results from both direct (solid line) and reverse
(dashed line) calculations are shown in one frame.

is never less than one quarter of the vibrational quantum. In
the case of CO quenching, this is about E = 536 cm−1.

C. Numerical results

It has to be stressed that in order to implement the sym-
metrized average-velocity approach, we did not have to redo
the scattering calculations. All we had to do was to reintegrate
the cross sections we already had from the direct and reverse
calculations discussed in Sec. III, but treating E and E′ in their
old meaning as U in its new meaning. Namely, for the direct
process we integrated over E from 0 to +∞, according to
Eq. (9), the following integrand:

f dir(E) = σ̃10(U )E exp{−E/kT }, (25)

where the U = U(E) dependence is that of Eq. (23) and where
for the reverse process we integrated over E′ from 
ε to +∞,
according to Eq. (A10), the following integrand:

f rev(E′) = σ̃01(U )E′ exp{−(E′ − 
ε)/kT }, (26)

where the U = U(E′) dependence is that of Eq. (24). Alter-
natively, for the reverse process one can re-express f rev(E′)
through E

f rev(E) = σ̃01(U )E exp{−E/kT }, (27)

and integrate it from 0 to +∞, according to Eq. (A11).In
Fig. 6, we plotted f dir(E) and f rev(E) together, using solid and
dashed lines, respectively, for nine chosen values of temper-
ature from T = 100 K to T = 900 K with 100 K steps. This
picture demonstrates very clearly that f dir(E) ∼= f rev(E), par-
ticularly at low energies. It is almost unbelievable that Fig. 6
contains all exactly the same data as Figs. 3(a) and 3(b), only
their arrangement is different (now in terms of U = U(E)).

The results for κ10(T) from the symmetrized calcula-
tions, both direct and reverse (lines), are shown in Fig. 7 and
compared to available experimental data (empty symbols).
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FIG. 7. Rate coefficients for quenching of CO(v = 1) by He impact ob-
tained according to the symmetrized average-velocity approach from direct
(green line) and reverse (blue line), calculations. Experimental results from
Refs. 4, 18, and 53 are shown by empty symbols. Full quantum results from
Ref. 35 are shown by filled red diamonds.

The results from direct and reverse calculations are very
close to each other, particularly at low temperatures, when
transition probabilities are small and the perturbative picture
discussed in Sec. IV B is applicable. The experimental de-
pendence of κ10(T) is reproduced really well by these calcu-
lations, through the six orders of magnitude range of values
and in a broad range of temperatures, without any empirical
adjustments. The MQCT results also compare well with full
quantum results of Peterson and McBane from Ref. 35 shown
in Fig. 7 by filled red diamonds (obtained using a different
PES).

Finally, we looked at the very low temperature range,
where the full quantum calculations of Balakrishnan15

showed the switch of the monotonic κ10(T) behavior near
the T = 20 K from decreasing to growing. Interestingly, our
MQCT calculations show similar behavior. Figure 8 demon-
strates that at very low temperature the rate coefficient κ10(T)

κ

FIG. 8. Rate coefficients for quenching of CO(v = 1) by He impact in the
low temperature range obtained here (blue line) in comparison with full quan-
tum calculations of Ref. 15 (black line) and experimental values from Ref. 53
(symbols).

starts growing, in contrast to the monotonic decrease, ex-
pected from T-dependence in Fig. 7. In fact, one can show
this analytically: As E → 0 we have U → 
ε/4 and, at zero-
order, we can replace the dependence of σ̃10(U ) · E by a con-
stant number proportional to P10(
ε/4) which corresponds to
rotation-less transition at T = 0. Then, from Eq. (9) we can
obtain the lower boundary estimate

κdir
10 (T ) ≥

√
8kT

μπ

π¯2

2μ(kT )2
P10(
ε/4)

∞∫
0

exp

(
− E

kT

)
dE

=
√

2π¯4

μ3kT
P10(
ε/4). (28)

So, we see that in the T → 0 limit one should expect to ob-
serve κ10(T) → ∞, and our calculations near T = 5 K really
show this. Note that this is a classical behavior, different from
the quantum mechanical Wigner law that becomes valid at
sub-Kelvin temperatures.56

As for the absolute value of rate coefficient, the largest
discrepancy between the MQCT rate and the full-quantum
rate of Balakrishnan15 is observed near T = 20 K. There, our
result is about a factor of ×4 higher, which can probably be
judged as semi-quantitative agreement. Note that at T < 100 K
we did not try to reach convergence and run only few hun-
dred trajectories to obtain an estimate of cross section (20%
–30% statistical error). Also, like Balakrishnan,15 we included
only the values of j up to j = 3, in order to make comparison
straightforward.

Finally, we computed the values of converged quenching
cross sections for a broad range of collision energies. Note
that such cross sections are not really needed anywhere in the
mixed quantum/classical treatment of kinetics. We did these
calculations only in order to conduct a detailed comparison of
the MQCT results against results of the full quantum methods.
Figure 9 shows our data (green line) in comparison with CC
calculations of Balakrishnan15 (blue symbols), and CS cal-
culations of Krems17 (red symbols) on the same PES. The
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FIG. 9. Cross sections for quenching of CO(v = 1) by He impact obtained
by MQCT method (green line) in comparison with full quantum CC results
from Ref. 15 and CS results from Ref. 17 (blue and red symbols, respec-
tively).
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overall trend of energy dependence is reproduced really well.
At collision energies above 100 cm−1, the MQCT results lie
between CC and CS results. At lower energies, the MQCT
cross sections are somewhat underestimated (e.g., by a fac-
tor of ×4 compared to CC results of Balakrishnan15 at
E = 10 cm−1) and are closer to CS results of Krems.17 Note,
however, that in this energy range there is a discrepancy by
about a factor ×2 even between results of two quantum meth-
ods. Overall, the agreement of MQCT with full quantum
methods can be judged as good.

V. CONCLUSIONS

The mixed quantum/classical approach was applied to
the problem of ro-vibrational energy transfer in the inelas-
tic collisions of CO(v = 1) with He atom, in order to pre-
dict the quenching rate coefficient in a broad range of
temperatures 5 K < T < 2500 K. Scattering calculations
were done in two different ways: (i) direct calculations
of quenching cross sections or, alternatively (ii) calcula-
tions of excitation cross sections plus microscopic reversibil-
ity. At temperatures T > 500 K, the second approach gives
quenching rate coefficients in excellent agreement with
experiment.

At T < 500 K, the second approach overestimates rate
coefficients, but this problem can be easily fixed by forcing
the excitation cross section to vanish in the physically irrel-
evant energy range (below the reaction threshold) and grow
smoothly just above the threshold. In contrast, the first ap-
proach (direct quenching) underestimates the reaction rate co-
efficient for CO(v = 1) + He, but we showed that this prob-
lem must be less severe in the molecules and/or processes
with smaller vibrational quanta involved (e.g., near the dis-
sociation limit).

Furthermore, the problem at low energies can be eas-
ily avoided by using (iii) a symmetrized average-velocity ap-
proach of Billing.45 It gives good agreement with experiment
at T < 500 K using either cross sections for direct quenching,
or those for excitation + reversibility. Note that no extra scat-
tering calculations are needed for this third approach: the data
used in either (i) or (ii), or both simultaneously, can be uti-
lized. Even at very low temperatures 5 < T < 50 K, the agree-
ment of predicted quenching rates with experimental data and
with full quantum calculations was within half order of mag-
nitude.

In one statement, we can formulate our overall recom-
mendation as follows: The MQCT calculations of the relax-
ation rate coefficients should be carried out in the reverse
direction (excitation) using the principle of microscopic re-
versibility; at low collision energies, the symmetrized (aver-
age velocity) approach of Billing45 is essential, but at high
collision energies it is not really needed.

It should be emphasized that the CO(v = 1) + He system
studied here represents a stringent test of the MQCT method.
First, the vibrational quantum in CO is rather large and, sec-
ond, the He quencher is very light. For heavier quenchers
and closer to dissociation limit of the molecule, the MQCT
method is expected to work even better.
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APPENDIX: QUENCHING RATE COEFFICIENT
EXPRESSED THROUGH CROSS SECTION
FOR EXCITATION

First, consider the numerator of Eq. (8)

∑
j ′

∑
j

(2j + 1) exp

(
− ε

j

1

kT

) ∞∫
0

σ
jj ′
10 (E)E exp

(
− E

kT

)
dE,

(A1)
and move the integral sign outside of the double-sum. Then
rearrange the order of factors as follows:

∞∫
0

∑
j ′

∑
j

(2j + 1)σ jj ′
10 (E)E exp

(
−E + ε

j

1

kT

)
dE. (A2)

This version allows using Eqs. (13) and (14) straight in order
to replace the pre-exponential factor and the numerator of the
exponent, respectively. These substitutions give

∞∫

ε

∑
j ′

∑
j

(2j ′ + 1)σ j ′j
01 (E′)E′ exp

(
−E′ + ε

j ′
0

kT

)
dE′.

(A3)
Note also that we have changed the variable of integration
and the limits of integration. Indeed, based on Eq. (14),
for integration over the collision energy of each individual
state-to-state transition we have dE = dE′and we also see
that E′ = ε

j

1 − ε
j ′
0 ≈ 
ε when E = 0. The latter approxima-

tion is based on the fact that rotational quantum of energy
is much smaller than vibrational quantum. One can easily
avoid this approximation, but then each term of the double-
sum in Eq. (A3) will have its own specific lower limit of
integration. This is inconvenient, and for simplicity we use

ε ≈ ε

j

1 − ε
j ′
0 .

Now consider denominator of Eq. (8). It represents the
rotational partition function of the excited vibrational state
v = 1

Q1 =
∑

j

(2j + 1) exp

(
− ε

j

1

kT

)
. (A4)

Introducing similar partition function for the ground vibra-
tional state, Q0, and formally replacing Q1 in the denomi-
nator of Eq. (8) by Q0 × (Q1/Q0), we obtain the following
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expression:

κ rev
10 (T ) = Q0

Q1

√
8kT

μπ

1

(kT )2

∞∫

ε

σ̃01(E′)E′ exp

(
− E′

kT

)
dE′.

(A5)
Here, by analogy with Eq. (10), we introduced the rotationally
averaged cross section for the reverse vibrational transition
(excitation)

σ̃01(E′) =

∑
j

∑
j ′

(2j ′ + 1) exp

(
− ε

j ′
0

kT

)
σ

j ′j
01 (E′)

∑
j ′

(2j ′ + 1) exp

(
− ε

j ′
0

kT

) . (A6)

Also, by analogy with Eq. (9), we can define rate coefficient
for the reverse transition (excitation) as

κ01(T ) =
√

8kT

μπ

1

(kT )2

∞∫

ε

σ̃01(E′)E′ exp

(
− E′

kT

)
dE′.

(A7)
Note, however, that integration in Eq. (A7) starts at
E′ = 
ε, different from Eq. (9), where integration starts at
E = 0. This makes physical sense because if we start from
v′ = 0 the channel v = 1 is open only when the collision en-
ergy E′ exceeds the excitation energy (E′ ≥ 
ε), while if we
start from v = 1 the channel v′ = 0 is open at any collision
energy (E ≥ 0). Formally, one could expand the limits of inte-
gration in Eq. (A7) down to E′ = 0, but only if the excitation
cross section σ̃01(E′) exhibits the correct property: σ̃01 = 0
when E′ < 
ε. In any case, using Eq. (A7) in Eq. (A5), we
obtain

κ10Q1 = κ01Q0, (A8)

which is a thermally averaged (canonical) analogue of the
micro-canonical expression of Eq. (13).

Now take a look at the ratio Q0/Q1 in Eq. (A5). Each
of Q0 and Q1 can be written as a product of rotational
partition function and vibrational factor. For the low lying
vibrational states, the rotational partition functions are ap-
proximately equal and they approximately cancel in the
Q0/Q1 ratio. Only the ratio of vibrational factors survives and
gives

Q0

Q1
=

∑
j ′

(2j ′ + 1) exp

(
− ε

j ′
0

kT

)
∑
j

(2j + 1) exp
(
− ε

j

1
kT

) ≈ exp

(

ε

kT

)
. (A9)

This term can be brought inside the integral in Eq. (A5),
which gives

κ rev
10 (T ) ≈

√
8kT

μπ

1

(kT )2

∞∫

ε

σ̃01(E′)E′ exp

(
−E′ − 
ε

kT

)
dE′.

(A10)

Expression (A10) suggests to change the integration variable
back to E = E′ − 
ε, which finally leads to

κ rev
10 (T ) ≈

√
8kT

μπ

1

(kT )2

×
∞∫

0

σ̃01(E + 
ε)(E + 
ε) exp

(
− E

kT

)
dE.

(A11)

So, this expression is approximate. In order to make it look
similar to Eq. (9) we, first, introduced a single lower integra-
tion limit 
ε ≈ ε

j

1 − ε
j ′
0 in Eq. (A3) and, second, neglected

the ratio of rotational partition functions in Eq. (A9). The ex-
act (much bulkier) version of Eq. (A11) can be easily recov-
ered, if needed.
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