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This 
Paper*  

  
Matched 2500 Points 2500 Points 

 Ortho-image Pair 3 Ortho-image Pair 4 
Translation (1.37, 8.40) pixels (-2.30, -5.37) pixels 

Rotation 0.42 ° -0.20 ° 

SIFT 

  
Matched 1512 keypoints 945 keypoints 

This 
Paper*  

  
Matched 2500 Points 2500 Points 

The proposed pixel-to-subpixel matching results use different colors to 
represent the matching qualities, green > cyan > blue > pink > red  (see Table 1). The 
red center areas were manually changed to bad matching for updating their elevation 
with adjacent points. Excluding the center area (112 points), the number of bad 
matching among these four ortho-image pairs ranges from 19 to 56, which accounts for 
2.24% of the 2500 selected points at most (see Table 2). Thus, this proposed matching 
method works better than the SIFT method in this specific task that matches different 
scales’ images. Additionally, the blue stripe area in pairs 1 and 2 are the edge of a 
wooden path and a platform, where the elevations change sharply, the proposed 
matching algorithm successfully matched the selected points in these areas. The red 
area on the left bottom corner of pair 4 is caused by the visitors’ movement. 

Table 2 also shows the NCC value distribution of four-orientation matching in 
these four ortho-image pairs (excludes the center area). The lower boundaries for these 
sixteen boxplots are around 0.2 to 0.3. Thus, using a constant value, such as 0.3, to 
determine matching quality is reasonable. The median of NCC value is around 0.8 in 
pairs 3 and 4, which is better than 0.6 in pairs 1 and 2. These statistic results indicate 
that the pairs 3 and 4 were matched better than pairs 1 and 2 by the proposed matching 
method. That is the same in SIFT method, and the significant image rotations in pairs 
1 and 2 may be the reason. 
 
Table 2. Ortho-image Matching Result Summary 
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Pair 1 Pair 2 Pair 3 Pair 4 

Total 2500 2500 2500 2500 
Good Matching 2364 2369 2371 2332 

Green-Four* 2158 1977 2352 2184 
Cyan-Three* 100 276 12 135 
Blue-Two* 88 110 4 7 
Pink-One* 18 6 3 6 

Bad Matching 136 131 129 168 
Center Area 112 112 112 112 
Bad-Center 24 19 17 56 
NCC Value 
Distribution 

    
* the number of NCC>0.3 among the 0, 90, 180 and 270 orientations 
 
Determining the Elevations 

The matched point pairs (𝑥𝑥,𝑦𝑦) and (𝑥𝑥’,𝑦𝑦’) were used to calculate the relative 
elevation for each pixel. The elevation (range from −𝐻𝐻/4 to 𝐻𝐻/4 relative to the drone 
takeoff plane) was represented as an 8-bit grayscale elevation-map (see Figure 6) by 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑢𝑢,𝑣𝑣 = 255 × (𝐸𝐸𝐸𝐸𝐸𝐸.𝑢𝑢,𝑣𝑣+ 𝐻𝐻/4)/(𝐻𝐻/2). In pairs 1 and 2, the wooden path and platform are 
distinguished from the ground. In pairs 3 and 4, the shape of the ground surface is easily 
noticed by the grayscale value changes in the elevation-map.  

Additionally, the selected 2500 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑋𝑋,𝑌𝑌,𝐸𝐸𝑙𝑙𝑙𝑙. ,𝑅𝑅,𝐺𝐺,𝐵𝐵) were imported into 
the MeshLab, and the mesh models were created with the default configuration in 
MeshLab (see Figure 7). 

 

  
Pair 1 Pair 2 

  
Pair 3 Pair 4 

Figure 6. Ortho-image and Elevation-map 
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Pair 1 Pair 2 

    
Pair 3 Pair 4 

Figure 7. Point Cloud and Mesh Model 
 

Evaluating the Proposed Method 
The profiles of the point clouds were used to evaluate the proposed method. 

With the help of the four orientations matching, the proposed NCC-based pixel 
matching is sensitive to elevation changes in both x-axis and y-axis direction of ortho-
images. In this experiment, the pairs 3 and 4 have an overlap that pair3’s x-axis is near 
to pair 4’s y-axis. Thus, pair3’s x-axis and pair 4’s y-axis should have a similar profile. 
The experiment result in Figure 8 confirms that the pairs 3 and 4 have the overlap 
profile from 0 to 17 m, which includes the ditch, wooden path and ground. The shapes 
of these two profiles from 0 to -17 m are nearly parallel, because this area is a slope.  

Pair 1’s profile at the y-axis shows the overall wooden path elevation is about 
0.85 m, and its profile at the x-axis shows the ground, close to the wooden path, has 
the elevation around 0.05 m (see Figure 9). Then the wooden path and the ground have 
about 0.8 m elevation differential. Additionally, five measured vertical distances from 
the wooden path to the ground is 0.83, 0.82, 0.82, 0.79 and 0.78 m by measuring tape, 
with the mean 0.808 m. The measure error is - 8 mm (or 0.008 m = 0.80 m - 0.808 m) 
with the drone flies at 10 meters above than the ground. 

 

 
Figure 8. Profile of Pair 3’ x-axis and Pair 4’s y-axis 
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Figure 9. Pair 1 Profiles 

 

CONCLUSION 
This paper presents a cheaper, faster and effective 3D reconstruction method, 

which only needs a drone-based low and high ortho-image pair as the input. The overall 
procedure includes: 1) using a drone to acquire construction sites’ low and high ortho-
image pairs, 2) using vertical baseline triangulation model to recover the elevations 
from the low and high ortho-image pairs, and 3) generating the 3D point cloud and 2D 
elevation-maps. The proposed method is faster than the standard SfM method. It takes 
less than 3 minutes to complete the whole procedure for an ortho-image pair (Python 
3.7.3, CPU Xeon Gold 5122 @3.6 GHz) with 2500 selected pixels.  

In this study, the camera distortion is not considered. This might impact the 
image feature matching, affecting the horizontal coordinate calculation and horizontal 
distance measurement (which was not performed in this paper). Further research can 
undistort the ortho-images with the camera’s distortion parameters. Additionally, the 
experiment only compared the straight-line distance between the model and real-world 
without aligning the model to the real-world coordinates. Further work can use the 
ground control points to align the model coordinates to the real-world coordinates. 
Furthermore, as the experiment only evaluated the 10 m and 20 m other-image pair, 
further evaluations should be set up to test the accuracy of different drone flight heights, 
such as 10m and 20m, 60 m and 120 m. 

 

REFERENCES 
Chen, K., Lu, W., Xue, F., Tang, P., and Li, L. H. (2018). "Automatic building 

information model reconstruction in high-density urban areas: Augmenting 
multi-source data with architectural knowledge." Automation in Construction, 
93 22-34. 

Aguilar, R., Noel, M. F., and Ramos, L. F. (2019). "Integration of reverse engineering 
and non-linear numerical analysis for the seismic assessment of historical adobe 
buildings." Automation in Construction, 98 1-15. 

Inzerillo, L., Di Mino, G., and Roberts, R. (2018). "Image-based 3D reconstruction 
using traditional and UAV datasets for analysis of road pavement distress." 
Automation in Construction, 96 457-469. 

Kim, H., and Kim, H. (2018). "3D reconstruction of a concrete mixer truck for training 
object detectors." Automation in Construction, 88 23-30. 



11 
 

Siebert, S., and Teizer, J. (2014). "Mobile 3D mapping for surveying earthwork 
projects using an Unmanned Aerial Vehicle (UAV) system." Automation in 
Construction, 41 1-14. 

Li, D., and Lu, M. (2018). "Integrating geometric models, site images and GIS based 
on Google Earth and Keyhole Markup Language." Automation in Construction, 
89 317-331. 

Moon, D., Chung, S., Kwon, S., Seo, J., and Shin, J. (2019). "Comparison and 
utilization of point cloud generated from photogrammetry and laser scanning: 
3D world model for smart heavy equipment planning." Automation in 
Construction, 98 322-331. 

Park, J., Kim, P., Cho, Y. K., and Kang, J. (2019). "Framework for automated 
registration of UAV and UGV point clouds using local features in images." 
Automation in Construction, 98 175-182. 

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. 
International journal of computer vision, 60(2), 91-110. 

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features 
(SURF). Computer vision and image understanding, 110(3), 346-359. 

Nassar, K., and Jung, Y. (2012). "Structure-From-Motion Approach to the 
Reconstruction of Surfaces for Earthwork Planning." Journal of Construction 
Engineering and Project Management, 2(3), 1-7. 

Sophian, A., Sediono, W., Salahudin, M. R., Shamsuli, M. S. M., and Za’aba, D. Q. A. 
A. (2017). Evaluation of 3D-Distance Measurement Accuracy of Stereo-Vision 
Systems. International Journal of Applied Engineering Research, 12(16), 
5946-5951. 

Guo, Q., Su, Y., Hu, T., Zhao, X., Wu, F., Li, Y., Liu, J., Chen, L., Xu, G., Lin, G., 
Zheng, Y., Lin, Y., Mi, X., Fei, L., and Wang, X. (2017). "An integrated UAV-
borne lidar system for 3D habitat mapping in three forest ecosystems across 
China." International Journal of Remote Sensing, 38(8-10), 2954-2972. 

Meng, C., Zhou, N., Xue, X., and Jia, Y. (2013). Homography-based depth recovery 
with descent images. Machine vision and applications, 24(5), 1093-1106. 

Haur, C. J., Kuo, L. S., Fu, C. P., Hsu, Y. L., and Heng, C. D. (2018). "Feasibility Study 
on UAV-assisted Construction Surplus Soil Tracking Control and Management 
Technique." IOP Conference Series: Materials Science and Engineering, 301 
12145. http://doi.org/10.1088/1757-899X/301/1/012145 


