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Abstract 
Drinking water distribution systems (DWDS) are unique engineering environments that are important routes for 
the acquisition and dissemination of antibiotic resistance. Antibiotic-resistant bacteria (ARB) and antibiotic 
resistance genes (ARGs) in drinking water pose risks to human and environmental health. Metals are known 
stressors that can select for antibiotic resistance. The objective of this review was to assess the state of 
knowledge regarding the impact of metal pipe materials, corrosion products, and corrosion inhibitors on the 
prevalence of antibiotic resistance in DWDS. ARGs and mobile genetic elements (MGEs) have been detected in 
full-scale DWDS in concentrations ranging from ~ 101 to 1010 copies/L. Metal pipe materials can select for 
bacteria harboring ARGs and metal resistance genes (MRGs) through co-selection processes. Corrosion products 
that develop in metal drinking water pipes (Cu, Fe, and Pb oxides) may also stimulate antibiotic resistance 
selection during distribution. Different corrosion inhibitor regimes (phosphates, sodium silicates) may also have 
impacts on microbial communities and the abundance of resistance genes in DWDS. Research is needed to 
quantify how engineering decisions related to drinking water infrastructure and corrosion inhibitor practices 
impact the abundance and distribution of ARG, MRGs, and MGEs in potable water systems.  

Key points 
• Lack of quantitative measurements of antibiotic and metal resistance genes in drinking water 

distribution systems. 
• Pipe materials and corrosion products that develop in pipe scales may impact antibiotic resistance. 
• Corrosion inhibitors with zinc or phosphate could alter antibiotic resistance. 
• Management decisions should consider antibiotic resistance ramifications. 

Keywords 
Antimicrobial resistance, ARG, Microbiome, Public health, Biofilm 

Introduction 
Antibiotic resistance is considered a major global threat in the 21st century, and a return to a pre-antibiotic era is 
predicted without serious or immediate attention (WHO [167]). Antibiotic-resistant bacteria (ARB) and antibiotic 
resistance genes (ARGs) occur naturally but are selected for and enriched by exposure to antibiotics (Song et al. 
[152]), antimicrobials (Carey and McNamara [22]; Carey et al. [23]; Hartmann et al. [60]; Harrison et al. [59]), 
disinfectants (Chapman [25]; Zhang et al. [183]), and metals (Seiler and Berendonk [148]; Zhang et al. [182]) in 
natural and engineered environments. ARB and ARGs have been detected in a variety of environments including 
soils (Knapp et al. [73]), lakes (Di Cesare et al. [33]), groundwater (Mackie et al. [100]; Koike et al. [75]), 
aquaculture (Seiler and Berendonk [148]), rivers (Pruden et al. [133]; Pruden et al. [132]; Kappell et al. [68]), 
treated wastewater effluent (Auerbach et al. [8]; LaPara et al. [78]; Mao et al. [102]; Di Cesare et al. [32]; Guo et 
al. [51]; Kappell et al. [70]; Cacace et al. [20]), biosolids (Ma et al. [99]; Munir and Xagoraraki [108]; Kimbell et al. 
[71]), drinking water treatment plants (Xi et al. [170]; Lin et al. [87]; Oh et al. [113]), drinking water distribution 
systems (DWDS) (Xi et al. [170]; Xu et al. [174]; Garner et al. [45]), and tap drinking water (Xi et al. [170]; 
Bergeron et al. [14]). Natural and engineered environments are composed of complex dynamics driven by 
microbial ecological processes that ultimately determine the level of prevailing antibiotic resistance (Pruden et 
al. [131]). ARB and ARGs can be transferred between environments via exposure routes through air, water, soil, 
wastewater and industrial effluent discharges, bacteria carrying ARGs on meat or produce, and application of 
biosolid-derived soil amendments (Vikesland et al. [161]; Pruden et al. [131]). Environmental hotspots that could 
directly convey ARB and ARGs to people, such as DWDS, are of primary interest because management decisions 
could potentially reduce public health risks. 



Over 100 different ARGs were detected in drinking water from two drinking water treatment plants in China 
with total ARG concentrations ranging from 105 to 1010 copies/L (Xu et al. [174]). Multiple studies correlated the 
presence of ARGs with mobile genetic elements (MGEs), suggesting that horizontal gene transfer could occur 
inside the DWDS (Ciric et al. [27]; Xu et al. [174]). In general, ARGs can be transferred vertically through 
microbial growth or acquired by horizontal gene transfer, which occurs through the uptake of free DNA 
(transformation), plasmid-mediated transfer (conjugation), and phage-mediated transfer (transduction) (Van 
Hoek et al. [160]). Horizontal gene transfer is a major mechanism for sharing ARGs between microorganisms and 
has been documented between pathogens, non-pathogens, and distantly related microbes, such as gram-
positive and gram-negative bacteria (Levy et al. [85]; Courvalin [28]; Pruden et al. [133]). Horizontal gene 
transfer of ARGs is of particular concern for human health if pathogens acquire resistance (Wingender and 
Flemming [168]; Wang et al. [164]). Additionally, metal resistance is a common phenotype in many 
microorganisms, and metal resistance genes (MRGs) are present in genomes isolated from numerous different 
environments including humans, animals, hydrothermal vents, and ocean microplastics (Pal et al. [115]; Yang et 
al. [176]). Metal resistance often occurs with antibiotic resistance (Baker-Austin et al. [9]). Stagnant conditions 
caused by intermittent water demand, which are common in urban areas, may also promote the growth of 
pathogens and other microorganisms potentially harboring ARGs and MRGs in DWDS (Lautenschlager et al. [79]; 
Proctor and Hammes [130]; Zlatanović et al. [188]; Bédard et al. [13]; Ling et al. [88]). Additionally, locations 
within DWDS that support higher densities of microorganisms (e.g., biofilms, tubercles, and loose deposits) may 
aid in the persistence of antibiotic resistance in DWDS (Hallam et al. [54]). The overall growth of microorganisms 
and microbial ecology in DWDS is influenced by several distribution system characteristics and may have 
implications on the types and abundance of resistance genes in DWDS. Even though metals are known to select 
for antibiotic resistance, and they are present in DWDS due to corrosion of metal pipes and addition of corrosion 
inhibitors, research gaps persist around the impact of metals on antibiotic resistance in DWDS. 

Previous analysis of microbial ecology in DWDS has been accomplished primarily through next-generation 
sequencing (NGS) technologies including 16S rRNA gene amplicon sequencing and DNA-based metagenomic 
analysis (Berry et al. [15]; Pinto et al. [125]; Douterelo et al. [35]; Ma et al. [97]). Many of these studies have 
investigated the drinking water microbiome during various stages of drinking water treatment and distribution, 
which can be influenced by many factors including spatial and temporal variations (Pinto et al. [124]; Prest et al. 
[128]; Potgieter et al. [127]), geography (Proctor and Hammes [130]), treatment processes (Ma et al. [98]; Oh et 
al. [113]), and distribution system characteristics (Sanganyado and Gwenzi [142]). Laboratory-scale studies have 
observed relationships between several distribution system parameters and the occurrence of opportunistic 
pathogens and microbial ecology in simulated DWDS including disinfectants (Shen et al. [150]; Zhang et al. 
[177]), water age (Wang et al. [165]; Wang et al. [164]), water temperature (Proctor et al. [129]), and pipe 
materials (Wang et al. [165]; Wang et al. [164]; Proctor et al. [129]). ARG profiles are impacted by the microbial 
communities in a given environment, and many of these previously studied parameters likely have impacts on 
antibiotic resistance in drinking water systems but have yet to be investigated. Additionally, few studies have 
utilized quantitative molecular tools to quantify the abundance of clinically relevant ARGs or MGEs in different 
phases (planktonic, biofilm, particle-associated, loose deposits) of full-scale DWDS (Garner et al. [45]). 

In this review, existing information on the impacts of metal pipe materials, corrosion inhibitors, and corrosion 
products on the prevalence of antibiotic resistance in DWDS is critically reviewed with the goal of consolidating 
information to help develop more effective monitoring and mitigation strategies along with recommended 
future research directions. As older DWDS get upgraded, there is an urgent need for improving our 
understanding of engineering management decisions such as pipe material selection on the dissemination of 
antibiotic resistance in DWDS. Here, we provide information regarding the antimicrobial activity of metals and 
potential mechanisms of antibiotic resistance selection in DWDS with specific emphasis on corrosion products 
and corrosion inhibitors. This review also summarizes existing information available regarding the abundance of 



ARGs, MRGs, and MGEs in DWDS. Additionally, recommendations are provided for future research directions 
with a focus on improving mitigation strategies for antibiotic resistance in DWDS. 

Quantification of Resistance Genes in Full-Scale Drinking Water Systems 
Understanding the sources and mechanisms of antibiotic resistance dissemination in drinking water networks is 
critical for mitigating risks to public health. Previous studies have highlighted that several factors related to 
drinking water treatment (Sharma et al. [149]; Sanganyado and Gwenzi [142]) and distribution system 
construction and operation can influence the abundance of bacteria in drinking water and biofilms (Douterelo et 
al. [35]; Sun et al. [155]; Douterelo et al. [37]). After finished drinking water enters the distribution system, it can 
spend hours to days inside pipes prior to reaching consumer taps, which can alter the chemical and 
microbiological quality of the water (Ji et al. [65]). Corrosion inhibitors, pH, dissolved inorganic carbon, 
disinfectant type/concentration, and other chemicals used during drinking water treatment (e.g., coagulants) 
may impact the presence and distribution of ARB and ARGs in DWDS (Liu et al. [91]; Zhang et al. [183]). A 
previous laboratory-scale study documented increased transfer of ARGs following exposure to disinfectants 
(free chlorine, chloramine, and hydrogen peroxide) and suggested that mechanisms including intracellular 
reactive oxygen species formation, SOS response, increased cell permeability, and altered expression of 
conjugation-relevant genes were responsible for horizontal gene transfer (Zhang et al. [183]). Additionally, 
Kappell et al. [69] observed increased selection for ARB and ARGs including sul1, qacH, and intI1 in drinking 
water microcosms treated with zinc-containing corrosion inhibitors compared to controls. This study reported 
that low concentrations of metals such as zinc in drinking water can lead to positive selection of bacteria able to 
assimilate metals, rather than negatively selecting against bacteria without metal resistance (Kappell et al. [69]). 
Although these studies have provided some insight into the potential mechanisms of antibiotic resistance 
selection under controlled laboratory conditions, there is a lack of data available regarding the presence of 
clinically relevant ARGs, MRGs, and MGEs commonly linked to horizontal gene transfer processes in full-scale 
DWDS. ARGs including beta-lactam resistance genes, sul1, and MGEs such as intI1 have previously been 
identified as potential indicators for the overall abundance of resistance genes in different environments (WHO 
[167]; Gillings et al. [49]; Ma et al. [96]). MRGs such as arsB, copA, czcD, and zntA confer resistance to metals, 
and may be co-selected for by bacterial exposure to antibiotics, disinfectants, and other contaminants (Pal et al. 
[115]). Furthermore, a previous study documented the co-occurrence of MRGs and ARGs on plasmids in 
clinically relevant genera including Escherichia, Staphylococcus, Salmonella, Klebsiella, Pseudomonas, 
and Mycobacterium (Pal et al. [116]). However, no studies known to the authors have documented MRGs in 
samples from full-scale DWDS using quantitative molecular techniques, i.e., techniques that generate copy 
numbers on a per L, g, or surface area basis. Few studies have employed quantitative techniques to quantify 
ARGs in full-scale DWDS (summarized in Table 1). 



Table 1. ARGs quantified in full-scale drinking water distribution systems (DWDS) 
Reference Garner et 

al 2018 
   Hao et 

al. 2019 
Rocha et 
al. 2019 

Su et 
al. 2018 

Xi et 
al. 2009 

Zhang et 
al. 2020 

Sample type Tap water Tap water Biofilms Biofilms Tap 
water 

Tap water Tap water Tap water Tap water 

Method of 
quantification 

qPCR qPCR qPCR qPCR qPCR qPCR qPCR qPCR qPCR 

Units Copies/mL Copies/mL Copies/swab Copies/swab Copies/L Copies/mL Copies/L Copies/100 
mL 

Copies/100 
mL 

Replicates 44 56 40 21 36 3 9 8 71 
Source water SW, GW SW, GW SW, GW SW, GW NA NA NA NA SW 
Treatment type(s) 5-stage BF, 

AS, DN 
4-stage BF, 
UV, bio-
filter 

Dual media 
filter, MB 

Dual media 
filter 

NA NA Sed., SF, 
PAC, GAC, 
O3 

NA NA 

Pipe material(s) NA NA NA NA NA NA NA NA NA 
Disinfectant NH2Cl Cl2 NH2Cl Cl2 Cl2 NH2Cl NA NH2Cl NA 
Observed mean 
absolute abundance 
of target genes 
(Log10 scale) 

         

16S rRNA 4.2 2.3–3.3 4.2 3.5 - 6.0 7.0–7.6 5.4–7.0 5.2–7.4 
blaTEM 1.8 1.7 1.5 1.6 3.5–5.5 - - 2.2–3.4 2.0–5.0 
blaSHV - - - - - - - 0–1.5 - 
ermB - - - - 2.5–3.8 - 5.0–5.5 - ND–5.0 
intI1 4.7 4.9 4.2 ND - - - - 2.0–4.5 
tet(M) - - - - 2.0–5.4 - 5.5 - - 
tet(W) - - - - - - 5.6–5.8 - ND–4.5 
tet(X) - - - - 2.2–3.8 - ND - - 
qnrA 1.2 ND ND 2.1 2.0–3.6 - ND - - 
qnrS - - - - - - 5.0 - - 
sul1 2.7 1.2–1.7 3.2 2.1 4.6–6.8 2.1 7.5 0.9–3.2 3.0–6.0 
sul2 - - - - 3.5–5.8 - 6.0 0.1–4.2 ND–5.7 
vanA 1.4 1.9 1.5 1.3 0–2.5 - - - - 



AS, activated sludge; BF, Bardenpho; GAC, granular activated carbon; PAC, powdered activated carbon; MB, 
membrane bioreactor; O3, ozone; Sed., sedimentation; SF, sand filter; UV, ultraviolet disinfection; NA, not 
available; ND, no detection; "-", no measurement or value; qPCR, quantitative PCR. Mean abundance values for 
target genes were adapted from source article(s) text or approximated from figures 
 

Studies documenting the occurrence and abundance of ARGs are important for developing effective monitoring 
strategies for controlling microbial drinking water quality. Total bacterial biomass (e.g., 16S rRNA) can range 
several orders of magnitude (~ 103–1010 copies/L) in drinking water (Table 1, Xi et al. [170]; Garner et al. [47]; 
Garner et al. [46]). ARGs including beta-lactamase resistance genes (blaTEM), sulfonamide genes (sul1 and sul2), 
tetracycline resistance genes (tet(W), tet(M), tet(X)), and the integrase gene of class 1 integrons (intI1) have 
been quantified in DWDS at concentrations ranging from approximately 101 to 107 copies/L (Table 1, Xi et al. 
[170]; Garner et al. [45]; Su et al. [154]; Hao et al. [57]; Rocha et al. [138]; Zhang et al. [178]). The majority of 
previous studies focused on measuring ARG abundance in the planktonic phase and did not measure gene 
concentrations in biofilms or corrosion deposits, which have been cited as important reservoirs for opportunistic 
pathogens and ARGs (Balcázar et al. [10]). Other studies have utilized high-throughput qPCR (HT-qPCR) for 
detecting ARGs in DWDS, with detections of over 100 different ARGs, transposases, and integrons in drinking 
water samples (Xu et al. [174]; Huang et al. [63]; Waseem et al. [166]). These studies and others have observed 
increases in transposase genes, β-lactam resistance genes, and MGEs in DWDS water compared to treated 
drinking water entering the DWDS. 

Many environmental factors exist in DWDS that may influence the abundance of ARGs. It is well documented 
that disinfection practices (e.g., chlorination or chloramination), antibiotics, antimicrobials, and metals may 
exacerbate the prevalence of antibiotic resistance in engineered systems such as DWDS. However, the fate of 
ARGs, MRGs, and mechanisms of horizontal gene transfer in full-scale DWDS are not well understood. 
Additionally, previous studies have suggested that extracellular DNA may persist in aquatic systems for long 
periods of time and may represent an important reservoir of ARGs in DWDS (Hao et al. [57]; Sakcham et al. 
[141]). Due to potential public health implications associated with the presence of opportunistic pathogens, 
ARGs, and MRGs in drinking water, this area of research warrants further investigation. 

Plausible Mechanisms for Antibiotic Resistance Selection by Metals in DWDS 
Previous studies on lab-scale and full-scale DWDS have focused on the impact of a variety of factors on microbial 
ecology in DWDS including pipe materials (Niquette et al. [111]; Lehtola et al. [82]; Proctor et al. [129]; 
Douterelo et al. [36]), flow regime (Manuel et al. [101]; Lautenschlager et al. [79]), nutrients (Batte et al. [11]), 
and disinfectant type (chlorine/chloramines) (Wang et al. [165]; Aggarwal et al. [2]; Dai et al. [31]; Waak et al. 
[163]), but they have seldomly focused specifically on the impact of metals on antibiotic resistance. Drinking 
water networks are comprised of various metal pipe materials including cast iron, ductile iron (Fe), copper (Cu), 
brass, and lead (Pb). Metal species such as Cu, Fe, and Pb are primarily introduced to drinking water through 
corrosion processes and leaching of metal ions from plumbing materials (Kang et al. [67]; Kim and Herrera [38]). 
Zinc (Zn) is present when added as a corrosion inhibitor attached to phosphate (Payne et al. [119]). Additional 
heavy metals such as aluminum (Al), arsenic (As), chromium (Cr), and uranium (U) present at concentrations 
below their maximum contaminant levels (MCLs) or at non-detectable levels in treated drinking water can 
accumulate in deposits and corrosion scales in DWDS (Lytle et al. [95]; Schock et al. [145]; Peng and Korshin 
[122]; Peng et al. [121]). The primary concern with the presence of trace metals in DWDS is the potential for 
their release back into finished drinking water, which may result in elevated dissolved metal levels in domestic 
tap water (Sun et al. [157]). Heavy metals present in drinking water environments at sub-inhibitory 
concentrations can promote antibiotic resistance and horizontal transfer of ARGs (Baker-Austin et al. [9]; Zhang 
et al. [179]; Zhang et al. [182]). In addition, positive correlations have previously been observed between 



multiple antibiotic resistance and metal exposure (Cu, Pb, Zn) in drinking water point of use samples compared 
to point of entry to the DWDS, suggesting that bacteria acquired antibiotic resistance inside the DWDS 
(Calomiris et al. [21]). 

Microorganisms have developed a variety of methods for coping with environmental stress, such as exposure to 
heavy metals. General mechanisms responsible for metal resistance in microbial cells include (i) exclusion by 
permeability barrier, (ii) active efflux, (iii) intra- and extracellular sequestration, (iv) enzymatic detoxification, 
and (v) decreased sensitivity of cellular targets to metal ions (Bruins et al. [18]; Harrison et al. [58]). Some 
microorganisms such as Pseudomonas aeruginosa can upregulate the expression of extracellular polymers or 
siderophores (metal-chelating agents) in response to metal exposure, which contain functional groups capable 
of binding to metal ions (Lemire et al. [84]). The role of siderophores is mainly to scavenge Fe, but can also form 
complexes with other essential metals (Mo, Mn, Co, and Ni) and make them available for microbial cells (Ahmed 
and Holmström [3]). Extracellular polymers and siderophores can precipitate metal ions in the extracellular 
environment, and soluble siderophores bound to metals may be subject to reduced uptake into microbial cells 
or increased efflux out of the cell by membrane transporters (Braud et al. [16]; Hannauer et al. [55]). 
Additionally, biofilms provide an advantageous way for microorganisms to survive on metallic pipes in DWDS, 
and a previous study reported growth of over 107 cells per cm2 after only 30 days on metal pipe materials 
including stainless steel and copper (Morvay et al. [107]). Molecular mechanisms responsible for stimulating 
horizontal gene transfer after exposure to metals (Cu, Ag, Cr, and Zn) include intracellular reactive oxygen 
species (ROS) formation, SOS response, increased cell membrane permeability, and altered expression of 
conjugation-relevant genes (Zhang et al. [179]). This study and other studies regarding the potential for 
horizontal gene transfer following metal ion exposure have suggested that selection mechanisms such as co-
resistance and cross-resistance likely play a significant role in the development of antibiotic resistance in metal-
contaminated environments (Baker-Austin et al. [9]; Seiler and Berendonk [148]; Knapp et al. [72]). In addition 
to co-resistance and cross-resistance, co-regulatory mechanisms may also promote the co-selection process, 
which occurs when a single regulatory gene controls multiple resistance genes that confer resistance to different 
compounds (Pal et al. [115]). 

Co-resistance is defined as two or more genetically linked resistance genes, indicating that the genes responsible 
for two or more resistances are located next to each other on one MGE (Chapman [25]; Ju et al. [66]). Hasman 
and Aarestrup et al. ([1]) observed a correlation between copper resistance and resistance to macrolides and 
glycopeptides in Enterococcus faecium obtained from copper-exposed pigs and documented the co-transfer of 
copper- and macrolide-resistant phenotypes in transconjugants (Aarestrup et al. [1]; Hasman and Aarestrup 
[62]; Hasman and Aarestrup [61]). The physical linkage results in the co-selection of other genes located on the 
same genetic element when an organism is exposed to a particular stressor, such as an antimicrobial compound 
or metal (Baker-Austin et al. [9]; Poole [126]). Even at environmentally relevant and sub-inhibitory 
concentrations, the presence of metals such as Cu have been positively correlated with ARGs, which is an 
indication that sublethal levels of Cu can increase ARG prevalence (Knapp et al. [72]; Zhang et al. [182]). The high 
redox potential of Cu has also allowed it to serve as an ideal biological co-factor, particularly in aerobic 
microorganisms (Outten et al. [114]; Rensing and Grass [135]). Previous studies have suggested that sub-
inhibitory levels of copper ions present in DWDS can stimulate growth of microorganisms (Zhang et al. [185]), 
catalyze decay of disinfectant residuals (chloramines) (Nguyen et al. [110]), and cause microbial community 
shifts (Proctor et al. [129]; Rhoads et al. [136]). Alternatively, copper and silver ion exposure can inhibit growth 
of microorganisms such as Legionella pneumophila at concentrations ranging from 0.20 to 4.0 mg/L (Liu et al. 
[92]; Kusnetsov et al. [76]; Van Der Kooij et al. [159]) and a strong inhibitory effect on nitrifying bacteria has 
been reported following copper exposure exceeding 0.90 mg/L (Zhang et al. [181]). The enrichment of antibiotic-
resistant microorganisms in metal-contaminated environments has been attributed to the selection of 
organisms harboring resistance genes for both agents (antibiotics and metals) on chromosomes or plasmids 



(Poole [126]). Furthermore, a survey of soils in Scotland demonstrated a significant correlation between Cu 
levels and the occurrence of ARGs including erm(B), erm(F), tet(M), and tet(W) (Knapp et al. [73]). This study also 
revealed positive correlations between Fe and Pb in soils and the occurrence of ARGs 
including tet(M), tet(W), blaTEM, and blaOXA. 

Cross-resistance is primarily observed through multidrug efflux pumps which can rapidly extrude structurally 
dissimilar compounds out of the cell, such as heavy metals and antibiotics (Baker-Austin et al. [9]; Martinez et al. 
[103]). Previous research has suggested that the abundance of class 1 integrons observed in metal-
contaminated environments were associated with an increase in antibiotic resistance, as class 1 integrons are 
closely located to genes encoding for the multidrug efflux pump czcA (which can expel Zn, Cd, and Co) (Seiler 
and Berendonk [148]). Class 1 integrons are genetic elements capable of acquiring and exchanging DNA 
fragments called gene cassettes (Hall et al. [53]). The presence of integrons and other MGEs can mediate a 
selective advantage to microorganisms exposed to stressful environmental conditions (e.g., exposure to metals). 
Previous studies have observed significant positive correlations between MGEs and ARGs in aquatic 
environments including blaTEM, ermA, sul1, tet(O), tet(W), and tet(X) (Pruden et al. [133]; Szekeres et al. [158]; 
Dong et al. [34]). 

Exposure to heavy metals may trigger co-selection responses, but can also increase the level of tolerance to 
antibiotics due to co-regulation of resistance genes (Seiler and Berendonk [148]). Guo et. al observed an 
increase in the tetracycline resistance gene (tet(Q)) in gut microbiota of mice exposed to Fe and suggested that 
iron exposure alone could potentially alter the diversity and functions of gut microbiota and the abundance of 
ARGs and MGEs (Guo et al. [52]). Some heavy metals (e.g., Pb) have no known function in bacterial cells but can 
cause oxidative stress, which could promote generation of ROS and facilitate horizontal gene transfer in the 
distribution system (Knapp et al. [73]). The dominant mechanisms of co-selection for metal- and antibiotic 
resistance remain relatively unknown, especially in drinking water environments. Previous studies have 
suggested that there may be more limited opportunities for metals to drive horizontal gene transfer of antibiotic 
resistance; however, numerous possibilities exist for metals to select for ARB through chromosomal MRGs (Pal 
et al. [117]; Pal et al. [115]). Additionally, transposable elements originating in chromosomal DNA can jump to 
plasmids carrying ARGs and MRGs that can easily be transferred to other microorganisms through 
transformation or conjugation. 

Metal pipe materials, including Cu, Fe, and Pb commonly used in DWDS including water mains, service 
connections, and premise plumbing, can influence microbial community composition and the presence of 
opportunistic pathogens (Rożej et al. [140]; Proctor et al. [129]; Neu et al. [109]). In fact, sub-inhibitory exposure 
to Cu and Zn can stimulate antibiotic resistance in water environments at concentrations below their respective 
maximum contaminant levels (MCLs) (Fig. 1). While MCLs are based on direct impacts to human health, these 
data imply that indirect consequences including selection for antibiotic resistance can occur at levels below the 
MCLs. Co-selection of ARGs and MRGs is likely ubiquitous in full-scale DWDS due to the presence of metals and 
disinfectants. Several bacteria genera commonly detected in DWDS contain plasmids with both ARGs and MRGs 
including E. coli, Staphylococcus, Pseudomonas, and Mycobacterium (Pal et al. [116]). Studies regarding the 
occurrence or distribution of ARGs, MRGs, or MGEs using molecular techniques such as qPCR or droplet digital 
PCR (ddPCR) are limited. Quantitative measurements of ARB, ARGs, and MRGs in drinking water and biofilms are 
essential for improving risk assessments for potable water systems. Additionally, fundamental research from 
laboratory-scale studies and full-scale DWDS surveys providing information on pipe materials and antibiotic 
resistance are both necessary to better understand how engineering management decisions impact human 
health. 



 
Fig. 1 Studies documenting antibiotic resistance in response to metal exposure in water environments (Cu and 
Zn). The US Environmental Protection Agency maximum contaminant level (MCL) for drinking water quality is 
plotted for reference. References for data in figure (Stepanauskas et al. [153]; Wright et al. [169]; Zhang et al. 
[182]; Zhang et al. [184]; Kappell et al. [69]; Zhang et al. [180]) 
 

Impact of Corrosion Products on Antibiotic Resistance 
Corrosion of drinking water infrastructure occurs due to oxidation processes of metal materials and results in 
subsequent formation and accumulation of corrosion products on metal surfaces (McNeill and Edwards [105]). 
Various chemical oxidation processes that occur in drinking water environments can degrade pipe surfaces, 
valves, and connections, and gradually rust metal surfaces. Corrosion of drinking water pipes is responsible for 
destruction of the pipe material and also the deterioration of the drinking water quality in the distribution 
system (Sun et al. [156]). Corrosion scales are formed by the accumulation of corrosion products and other 
suspended particles on pipe surfaces, which reduces the capacity of the system and provides habitats for 
potentially pathogenic microorganisms (Wang et al. [165]; Sun et al. [156]). 

Corrosion of drinking water pipes can occur due to a variety of circumstances including increased pipe service 
age, water chemistry, and operational parameters such as stagnation time and flow velocity (Flemming et al. 
[43]; Lehtola et al. [81]; Xie and Giammar [172]). Passivation of drinking water pipes occurs over time by the 
formation of corrosion products on pipe surfaces, and the formation of passivating scales in DWDS pipes lowers 
the potential for metal ions to leach into finished drinking water, but also provides increased surface area for 
bacterial attachment and biofilm formation (Zhu et al. [187]; Li et al. [86]). Corrosion products are comprised of 
scale minerals and possibly additional contaminants deposited from drinking water which may impact antibiotic 
resistance and horizontal gene transfer of ARGs in drinking water systems. Corrosion products that form in iron 
pipes typically consist of iron (III) oxyhydroxides (e.g., goethite (α-FeOOH), lepidocrocite (γ-FeOOH)), iron(II, III) 
oxides (e.g., magnetite (Fe3O4)), and/or iron(II) carbonates (e.g., siderite (FeCO3)) (McNeill and Edwards [105]; 
Peng et al. [123]; Yang et al. [175]). Common lead corrosion products include lead(II) oxides (e.g., litharge (α-
PbO)), lead(II) carbonates (e.g., cerussite (PbCO3), hydrocerussite (Pb3(CO3)2(OH)2)), lead (II) phosphates (e.g., 
hydroxylpyromorphite (Pb5(PO4)3OH)), and lead (IV) oxides (e.g., scrutinyite (α-PbO2), plattnerite (β-PbO2)) (Lytle 



and Schock [94]; Schock et al. [147]; Schock et al. [146]; Kim and Herrera [38]; Xie and Giammar [172]). 
Compared to iron and lead focused work, very few studies have investigated copper corrosion under conditions 
relevant to drinking water distribution, and cuprous oxide (Cu2O) and/or cupric oxide (CuO) are considered the 
dominant copper corrosion products (Feng et al. [42]; McNeill and Edwards [106]; Xiao et al. [171]; Kang et al. 
[67]; Lytle and Nadagouda [93]). Furthermore, there is a paucity of research regarding the impacts of these 
metal corrosion products on microbial growth, ecology, and potential selection for antibiotic resistance in 
DWDS. 

Formation of drinking water corrosion products is extremely heterogeneous and is strongly affected by water 
chemistry parameters, such as pH, dissolved inorganic carbon, dissolved oxygen, disinfectant type, natural 
organic matter, and use of corrosion inhibitors (Volk et al. [162]; Sarin et al. [143]; Xie et al. [173]; Noel et al. 
[112]). For instance, PbO2 has been observed as a common lead corrosion product in various distribution 
systems that use free chlorine as the disinfectant, while lead(II) phosphates have been identified as the 
predominant corrosion products in systems using phosphate corrosion inhibitors (Lytle and Schock [94]; Kim and 
Herrera [38]). Furthermore, corrosion products in DWDS can exhibit significantly different morphological and 
structural composition and be sinks for various inorganic contaminants such as As, Cd, Cr, manganese (Mn), 
nickel (Ni), and vanadium (V) (Schock et al. [145]; Peng and Korshin [122]; Gerke et al. [48]). For example, some 
common iron corrosion products, such as goethite, lepidocrocite, and magnetite have strong affinities to adsorb 
and concentrate trace heavy metals present in drinking water (Sarin et al. [144]; Peng et al. [123]). 
Consequently, the corrosion products and additional contaminants that accumulate from drinking water on 
biofilms and pipe surfaces may subsequently impact the distribution and abundance of ARB and ARGs present in 
drinking water systems. 

Similar to dissolved and particulate metals in aquatic environments, exposure of bacteria to corrosion products 
in DWDS may alter microbial communities and increase the potential for horizontal gene transfer of ARGs and 
MRGs. Previous studies have suggested that exposure of microbial populations to metal pipe materials and 
corrosion scales that accumulate in DWDS may eliminate some microorganisms while allowing metal-tolerant 
organisms to survive, which can potentially disseminate bacteria resistant to both metals and antibiotics in 
finished drinking water (Calomiris et al. [21]; Baker-Austin et al. [9]). Furthermore, a previous study 
demonstrated that exposure to cuprous oxide resulted in bacteriostatic effects against gram-positive bacteria 
(Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis) and gram-negative bacteria 
including Pseudomonas aeruginosa and Enterobacter cloacae (Pang et al. [118]). Exposure of bacterial 
populations to copper corrosion products such as cuprous oxide and cupric oxide could increase selection for 
copper-related resistance genes and ARGs in organisms harboring resistance genes for both agents (Aruoja et al. 
[6]; Pang et al. [118]; Hans et al. [56]; Poole [126]). For example, the presence of Cu2+ ions and CuO 
nanoparticles (1–100 μmol/L) increased the conjugative transfer of ARGs across bacterial genera, increased cell 
membrane permeability, and caused the overproduction of ROS (Zhang et al. [180]). Bacterial exposure to CuO 
nanoparticles at sub-inhibitory levels resulted in expression of stress response genes 
including dps, sodA, sodB, trxC, katE, and katG (Zhang et al. [180]). Additionally, corrosion scales provide 
bacteria with organic matter and nutrients, consume residual disinfectant concentrations, provide increased 
surface area for bacterial adsorption, and provide iron oxides as potential electron acceptors that may increase 
bacterial activity (Appenzeller et al. [5]; Jang et al. [64]). Consequently, bacterial exposure to corrosion scales in 
DWDS containing copper and iron oxides may increase bacterial growth and selection for bacteria harboring 
ARGs and MRGs in finished drinking water. 

There has been limited research conducted regarding different corrosion products and their effects on the 
abundance of ARB, ARGs, or MRGs in biofilms and drinking water in DWDS. Laboratory-scale studies are needed 
to understand the fundamental impacts of different corrosion products such as copper oxides and iron oxides on 



microbial communities and the antibiotic resistome. Full-scale studies are necessary to characterize the 
distribution of different corrosion products, resistance genes, and microbial communities in full-scale DWDS. 
Understanding the relationship of corrosion products and antibiotic resistance could provide critical information 
necessary to improve decisions regarding the selection of pipe materials for potable water systems. 

Impact of Corrosion Inhibitors on Antibiotic Resistance 
Optimized corrosion control treatment (OCCT) is a specific requirement of the Lead and Copper Rule (LCR) 
introduced in 1991 by the US Environmental Protection Agency (US EPA) (Brown et al. [17]). Drinking water 
utilities have three options for corrosion control treatment including adjusting the pH and alkalinity of drinking 
water, developing Pb(IV) scale by maintaining free chlorine residuals throughout the distribution system, and 
using corrosion inhibitors such as orthophosphate or sodium silicates (Brown et al. [17]). Corrosion inhibitors 
commonly applied in drinking water systems include polyphosphates, orthophosphate, zinc orthophosphate, 
and sodium silicates (Edwards and McNeill [39]; Schock et al. [146]; Cartier et al. [24]). Recent studies have cited 
the potential for phosphate-containing corrosion inhibitors to serve as a nutrient source for bacterial growth, 
which has raised concerns in some US drinking water utilities (Edwards and McNeill [39]; Fang et al. [41]). 
Therefore, it is important to gain a better understanding of the impacts of different corrosion inhibitors on 
microbial ecology and the abundance of ARGs and MRGs in full-scale DWDS. 

A national survey of water utilities revealed that over 50% of utilities used phosphate inhibitors, and zinc 
orthophosphates were the most common phosphates applied (McNeill and Edwards [104]) with over half of 
utilities reporting doses between 0.7 and 2 mg/L as phosphate (McNeill and Edwards [104]). Bacteria typically 
require a ratio for C:N:P of approximately 100:10:1, and many DWDS are P deficient (LeChevallier et al. [80]; 
Brown et al. [17]). Research regarding the effects of phosphate addition on drinking water microbial 
communities has yielded mixed results. Several studies have reported increased bacterial growth in drinking 
water systems with phosphate exposure levels ranging from 0.001 to 0.03 mg/L P (Lehtola et al. [83]; Chu et al. 
[26]; Fang et al. [41]; Payne et al. [119]). Phosphorus addition to drinking water can promote biofilm cell growth, 
decrease EPS production, and induce biofilms with increased thickness and biomass (Fang et al. [41]). By 
stimulating microbial growth in drinking water biofilms, phosphorus addition may also lead to increased 
abundance of ARB and ARGs. Polyphosphate addition to drinking water may impact biofilm growth resulting in 
softer, thicker biofilms that are more prone to detachment (Shen et al. [151]). Furthermore, the addition of 
polyphosphate can supply nutrients to bacteria for biofilm development, play an important role in bacteria 
metabolic regulation, and increase bacterial resistance to environmental stress (Rao and Kornberg [134]; 
Gangaiah et al. [44]). Zinc orthophosphate addition has been shown to increase microbial community diversity in 
drinking water biofilms (Payne et al. [119]). Another study reported that phosphate addition did not increase 
total biomass in biofilm communities, but did cause shifts in microbial community composition (Batté et al. 
[12]). Similarly, Jang et al. observed increased community richness and diversity in biofilms that developed on 
stainless steel and ductile cast iron coupons with phosphate addition compared to controls without phosphate 
addition (Jang et al. [64]). The use of zinc orthophosphate for corrosion control may also result in the selection 
of resistant microorganisms in DWDS due to the potential for zinc to select for ARGs and MRGs (Peltier et al. 
[120]; Kappell et al. [69]). As a result, the use of orthophosphate and zinc orthophosphate as corrosion inhibitors 
influences microbial ecology and may also impact the abundance and distribution of resistance genes in DWDS. 
However, limited research has been conducted regarding the effects of different corrosion inhibitor treatments 
on the presence of ARB, ARGs, and MRGs in full-scale DWDS. 

Sodium silicates are an alternative to phosphate-based corrosion inhibitors and have been reported to be an 
effective strategy for lead control in some systems since the 1920s (Butler and Ison [19]; Schock et al. [146]; 
Lintereur et al. [89]). Similar to polyphosphates, the molecular composition of sodium silicates are 



indeterminate, with the chemical formula (Na2O: n (SiO2), where n is a variable ratio (Crittenden et al. [29]). 
Typical dosages of silicates range from 4 to 30 mg/L as SiO2, and higher doses are required for drinking water 
with higher hardness, higher chlorides, and/or higher dissolved solids (Lane et al. [77]). Silicates and phosphates 
act as anodic inhibitors when used at low doses for corrosion control treatment of drinking water, which 
reduces corrosion by forming a protective layer of oxide film on pipe surfaces. The Illinois State Water Survey 
conducted extensive testing with corrosion inhibitors and recommended that silicates were the best option for 
corrosion inhibition in galvanized steel and copper-based piping commonly used in domestic hot water systems 
(Lane et al. [77]). The use of sodium silicates may have advantages over phosphate-based treatments due to the 
lack of phosphorus and zinc, which could potentially limit microbial growth and levels of ARGs in finished 
drinking water. A previous study observed decreased average bacterial growth (e.g., lower ATP concentrations) 
in biofilms subjected to sodium silicate treatment compared to phosphate-containing corrosion inhibitors, but 
the differences were not statistically significant (Kogo et al. [74]). Additionally, Rompré et al. ([139]) compared 
heterotrophic plate counts (HPC) between sodium silicate and phosphate treatments in a study conducted with 
laboratory-scale annular reactors and in a confined section of a full-scale DWDS, but reported no significant 
differences between corrosion control treatments (Rompré et al. [139]). This study also concluded that surface 
material (unlined gray iron vs. polycarbonate) was a larger factor influencing biofilm development in DWDS 
pipes compared to corrosion inhibitor type. Despite previous analysis of corrosion inhibitors in DWDS, the 
impact of corrosion inhibitor type on the abundance of ARB, ARGs, and MRGs has yet to be elucidated in full-
scale systems. Laboratory-scale and full-scale studies investigating the impacts of corrosion inhibitors and their 
impacts on the development of corrosion products and microbial communities are needed to better understand 
mechanisms of antibiotic resistance selection in DWDS. 

Little information exists regarding the impacts of sodium silicates on microbial ecology and the proliferation of 
antibiotic resistance in full-scale drinking water systems. A previous study investigated the effects of sodium 
silicate addition on cucumber seedling growth and resistance to the soil-borne pathogen Fusarium oxysporum f. 
sp. cucumerinum Owen (Zhou et al. [186]). The study reported changes in bacterial and fungal community 
structure in response to two mM sodium silicate addition in addition to decreased abundance of microbial taxa 
containing pathogens (Zhou et al. [186]). Consequently, the addition of sodium silicates to drinking water for 
corrosion control may also impact bacterial community composition but has yet to be investigated. In order to 
mitigate public health impacts related to corrosion of drinking water infrastructure, future studies should 
consider the impacts of different corrosion inhibitor regimes on microbial ecology and the abundance of ARGs 
and MRGs in drinking water systems. 

Conclusions and Future Research Recommendations 
Several studies have documented the presence, though not necessarily the quantity, of ARB and ARGs in 
drinking water environments. Factors such as metal pipe materials, corrosion inhibitors, and corrosion products 
that develop in full-scale DWDS may select for bacteria harboring resistance to both metals and antibiotics. 
There is a lack of information regarding the abundance and fate of ARB, ARGs, MRGs, and MGEs in different 
phases of DWDS including planktonic, biofilm, suspended solids, and loose corrosion deposits. Previous research 
has demonstrated that water quality deterioration in DWDS can result in increased levels of ARB and ARGs in 
consumer tap water, which poses a risk to human health. 

Future research on antibiotic resistance in DWDS should focus on monitoring the occurrence, fate, and 
distribution of ARB, ARGs, MRGs, and MGEs in multiple phases in full-scale systems. This information is critical 
for gaining a better understanding of the prevalence of antibiotic resistance in engineered systems capable of 
directly impacting human health. Previous characterization of DWDS has primarily focused on microorganisms in 
the planktonic phase and studies documenting and quantifying ARB, ARGs, or MRGs in drinking water biofilms 



are lacking. Drinking water biofilms have been cited as important reservoirs for opportunistic pathogens and 
horizontal gene transfer of ARGs (Wingender and Flemming [168]; Balcázar et al. [10]); however, the dominant 
pathways of antibiotic resistance selection in drinking water are not well documented. In addition to full-scale 
studies, laboratory-scale studies are needed to distinguish the impacts of different pipe materials, corrosion 
inhibitors, and corrosion products on the abundance of resistance genes in drinking water and biofilms. These 
studies will provide critical information regarding the relationship of different system parameters and 
mechanisms of antibiotic resistance selection in engineered systems. Locations with high densities of bacteria, 
such as drinking water biofilms, provide conditions which are suitable for proliferation and exchange of 
resistance genes, and selective pressures (e.g., metals) may increase the abundance of resistance genes in these 
communities. Additional research is needed to address the research gaps related to the fate and transport of 
clinically relevant resistance genes in DWDS. 

Fundamental information regarding the impacts of pipe materials, metals, and corrosion inhibitors on pathogens 
and abundance of resistance genes in DWDS is necessary to reduce the prevalence of antibiotic resistance in 
drinking water. Different pipe materials used in full-scale DWDS may influence the composition of microbial 
communities and associated resistance genes that can subsequently be transferred to humans through dermal 
contact, consumption of contaminated drinking water, or inhalation of aerosols during bathing (Falkinham [40]; 
Garner et al. [47]). Further research including QMRA is needed to determine the concentration of ARB or ARGs 
that may translate to human health risks (Ashbolt et al. [7]). Research that links ARGs to hosts and distinguishes 
extracellular DNA from intracellular DNA is also needed (Rice et al. [137]). Furthermore, limited availability of 
exposure assessments and dose-response data regarding ARB and ARGs for different scenarios hinder the 
implementation of QMRA approach for evaluating human health risks in aquatic environments (Amarasiri et al. 
[4]). 

The selection of target genes is also important for improving routine monitoring of ARGs, MRGs, and MGEs in 
full-scale distribution systems. Future research and microbial surveillance efforts should consider monitoring 
clinically relevant ARGs and other genes commonly linked to horizontal gene transfer processes including beta-
lactam resistance genes, intI1 and sul1 (WHO [167]; Gillings et al. [49]; Ma et al. [96]). The prevalence of 
dissolved, particulate, and solid phase metals in DWDS warrants further investigation regarding their potential 
for selection of resistance genes in drinking water biofilms. Additionally, the collection of samples from multiple 
locations (biofilm/pipe surfaces, corrosion tubercles, under tubercles) within the same distribution system or 
even the same pipe would increase knowledge regarding impacts of biogeographical heterogeneity in drinking 
water biofilms on antibiotic resistance (Liu et al. [90]; Gomez-Smith et al. [50]; Neu et al. [109]; Cruz et al. [30]). 
Laboratory and full-scale studies regarding pipe materials, corrosion inhibitors, and corrosion products are 
important for gaining insights into microbial functions and could be used to provide guidance to water utilities 
for making engineering decisions in DWDS that could reduce human health risks. 
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