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Abstract 
Liquid transportation fuels are composed of hundreds of species, necessitating the use of surrogates in CFD 
simulations. Surrogates composed of a few species are often formulated to emulate the combustion properties 
targets (CPTs) of pre-vaporized fuels but fail to reproduce their vaporization behavior, implying that such 
surrogates cannot replicate the CPTs in the presence of preferential vaporization. The prevailing approach to 
this problem proposes a physical–chemical surrogate formulated to match the fuel’s distillation curve in addition 
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to its CPTs. However, the physical–chemical surrogate approach requires more species, may not reproduce the 
instantaneous (distillation-resolved) CPTs, and is not well-suited to conditions in which non-surrogate species 
surround the droplets. A recent hybrid approach addresses these shortcomings by combining a continuous 
thermodynamic model (CTM) for droplet vaporization with an adaptive chemical surrogate formulated using 
functional group matching (FGM). Whereas the hybrid model previously required a delumping calculation to 
recover discrete fluxes prior to FGM, the approach is modified here to directly predict the fluxes of functional 
groups using the CTM, increasing its flexibility for high-pressure applications. To this end, a novel, purely 
mathematical distribution variable is proposed to correlate key functional groups, in addition to thermophysical 
and transport properties. The accuracy and flexibility of both hybrid approaches compare favorably with the 
physical–chemical surrogate method. While droplet vaporization rates are well-represented by both methods, 
functional group fluxes and instantaneous CPTs are predicted more accurately by the hybrid methods, 
illustrating their potential for improving the accuracy of Eulerian-phase solvers in the presence of preferential 
vaporization. 

Keywords 
Multicomponent droplet vaporization, Surrogate, Combustion property targets, Continuous thermodynamics, 
Preferential vaporization 

Nomenclature 
𝐵𝐵𝑀𝑀 Spalding mass transfer number 
𝐵𝐵𝑇𝑇 Spalding heat transfer number 
𝐶𝐶 molar concentration 
C1, C2… fitting constants 
𝑐𝑐𝑝𝑝 specific heat capacity 
𝐷𝐷 diffusion coefficient 
𝑓𝑓 function 
𝐹𝐹 objective function 
𝐼𝐼 distribution variable 
𝑘𝑘 thermal conductivity 
𝑙𝑙𝑣𝑣 latent heat of vaporization 
𝑚𝑚 moment 
MW molecular weight 
𝑁𝑁 number of CA-DQMoM nodes 
𝑁𝑁𝑁𝑁 Nusselt number 
𝑛𝑛 number of discrete species 
�̇�𝑛 molar flow rate 
𝑟𝑟 radial coordinate 
𝑅𝑅 radius of droplet 
R2 coefficient of determination 
𝑅𝑅𝑓𝑓 radius of gas film 
𝑆𝑆 source term in CTM species equation 

𝑆𝑆
−

 source term in moment transformed species equation 
𝑆𝑆ℎ Sherwood number 
𝑇𝑇 temperature 

𝑇𝑇
−

 volume averaged temperature 
𝑡𝑡 time 



𝑤𝑤 CA-DQMoM weight 
𝑤𝑤
−

 CA-DQMoM average weight 
𝑥𝑥 mole fraction 
𝑥𝑥
−

 volume averaged mole fraction 
𝛿𝛿 delta function 
𝜙𝜙 fugacity coefficient 
𝜌𝜌 density 

Superscripts 
∗ modified (Sherwood number, Nusselt number) 
𝑖𝑖 discrete species index 
𝑗𝑗 CA-DQMoM node index 
𝑘𝑘 moment order index 
𝑡𝑡𝑡𝑡𝑡𝑡 total (for all species) 
𝜁𝜁 flux 

Subscripts 
𝑔𝑔 gas 
𝑖𝑖 discrete species index 
𝑗𝑗 CA-DQMoM node index 
𝑘𝑘 moment order index 
𝑙𝑙 liquid 
𝑛𝑛𝑛𝑛 normal boiling 
𝑠𝑠 evaluated at droplet surface 
𝑣𝑣 vapor 
∞ at far-field boundary 

Acronyms 
CA-DQMoM Couple Algebraic-Direct Quadrature Method of Moments 
CFD Computational Fluid Dynamics 
CPT Combustion Property Target 
CTM Continuous Thermodynamic Model 
DCM Discrete Component Model 
DCN Derived Cetane Number 
DDFS Direct Dual Fuel Stratification 
DQMoM Direct Quadrature Method of Moments 
FGM Functional Group Matching 
H/C Hydrogen to Carbon ratio 
MW Molecular Weight 
ODE Ordinary Differential Equation 
QMoM Quadrature Method of Moments 
RCCI Reactivity Controlled Compression Ignition 
TSI Threshold Sooting index 



1. Introduction 
Liquid transportation fuels are typically comprised of hundreds of hydrocarbon species. Computational fluid 
dynamics (CFD) simulations for spray combustion in gasoline, jet and diesel engines must simplify the 
representation of these multicomponent fuels to achieve computational tractability. Surrogate mixtures 
composed of fewer species are therefore used to emulate the combustion behavior of real fuels. However, 
because surrogates have often been formulated to mimic the combustion properties of fully pre-vaporized fuels, 
they cannot account for the effects of preferential vaporization on combustion behavior [1], [2]. Recent findings 
that combustion properties are convergent for large hydrocarbon mixtures typical of transportation 
fuels [3] underscore the importance of capturing the impacts of the multicomponent nature of these fuels on 
droplet vaporization, physical properties and preferential vaporization [3], [4]. 

The prevailing approach to the address the problem of preferential vaporization employs a surrogate that can 
reproduce the fuel’s distillation curve, in addition to its combustion property targets (CPTs) [5], [6], [7]. 
However, there are drawbacks to the physical–chemical surrogate approach. First, formulating a surrogate that 
accurately emulates the fuel’s distillation curve in addition to its CPTs requires a significantly larger surrogate, 
increasing the computational cost for the Eulerian-phase solver. For instance, a 14-component physical–
chemical surrogate was used to match the CPTs as well as the distillation curve for Jet-A [8]. Elsewhere, the 
combustion property targets of Jet-A were replicated using a four-species surrogate, but a nine-species 
surrogate was required to emulate its distillation curve [5]. 

Second, implicit in the physical–chemical surrogate approach is the assumption that matching the target fuel’s 
distillation curve ensures that the behavior of a vaporizing surrogate droplet will match the behavior of the real 
droplets at engine-relevant conditions. However, the (advanced) distillation curve represents idealized, vapor–
liquid equilibrium behavior [9], whereas multicomponent droplet vaporization is a more complex, 
partiallytransport-limited phenomenon. In other words, matching the distillation curve to a certain level of 
accuracy does not guarantee that the droplet vaporization behavior will be reproduced equally well. 
Furthermore, even if a physical–chemical surrogate is formulated to match the fuel’s distillation curve in 
addition to its CPTs, this does not ensure that the instantaneous (distillation-resolved) chemical properties of 
the evaporated fuel will match that of the target fuel. This point has been noted by Wang et al. [4] in discussing 
the surrogate approach. 

A third drawback associated with the physical–chemical surrogate approach is that it is not well-suited to 
accommodate conditions in which species other than the surrogate components surround the droplets and may 
even condense from the vapor phase [10]. For example, in a dual-fuel combustion environment, such as 
reactivity controlled compression ignition (RCCI) [11], a physical–chemical surrogate used to represent one fuel 
cannot straightforwardly accommodate the presence of the chemical species comprising the other fuel. 
Similarly, pyrolysis chemistry can produce hydrocarbon species (e.g. alkenes) present in the droplet boundary 
conditions that cannot be straightforwardly accommodated using a physical–chemical surrogate for the fuel. 

A recently developed hybrid droplet vaporization–adaptive surrogate model employs a different approach to 
emulating the behavior of multicomponent liquid droplets and surrogate formulation [12]. Droplet vaporization 
and physical properties are modeled in a continuous thermodynamic framework using the Coupled Algebraic 
Direct Quadrature Method of Moments (CA-DQMoM) [13], rather than with a discrete surrogate. A Functional 
Group Matching (FGM) model is then used to determine the instantaneous vaporization flux of a small chemical 
surrogate composed of a few discrete species, which serves as the source term for the Eulerian phase. FGM 
adjusts the instantaneous chemical surrogate composition to ensure that the distribution of key functional 
groups in the flux from the droplet matches that of the chemical surrogate [12]. The hybrid method is a 
computationally efficient approach that emulates the physical properties, as well as the distillation resolved 



CPTs, of a multicomponent fuel and provides a means to account for the effects of preferential vaporization on 
combustion behavior. 

This hybrid approach differs from previous [14], [15] and subsequent [16] models that lumped large physical 
surrogates into smaller chemical surrogates. Whereas Krishnasamy et al. [14] linked a 14-component 
physical/spray surrogate to a 4-component chemical surrogate using a group chemistry representation based on 
hydrocarbon class, the hybrid method [12] generates the chemical surrogate to match the instantaneous 
distribution of functional groups in the vaporization flux from a droplet, since the distribution of functional 
groups has been shown to be a good predictor of combustion behavior [5]. The hybrid method [12] also differs 
from a subsequent approach [16] which appears to partially match functional groups, but it is not clear if the 
functional group distributions remain the same and if the matching is based on the instantaneous flux from the 
droplets. The hybrid model [12] is distinct from both approaches [14], [15], [16], [17] in that it uses a continuous 
thermodynamic model (CTM) to represent the droplet’s vaporization and physical properties, rather than a 
discrete physical surrogate. CTMs using quadrature-based moment methods can be more flexible than discrete 
component models (DCMs) and their computational efficiency is not directly dependent on the number of 
physical surrogate components needed to represent a particular fuel and combustion environment. 

The unified treatment of droplet vaporization and surrogate formulation (“the hybrid model”) can circumvent 
the three shortcomings associated with the prevailing physical–chemical surrogate approach. CA-DQMoM treats 
a multicomponent mixture as a continuous distribution capable of assuming an arbitrary form. In contrast to 
physical–chemical surrogates, which generate Eulerian-phase source terms that consist of many discrete 
species, FGM produces a smaller, chemical surrogate for the Eulerian-phase solver. Furthermore, it will be 
shown in Section 3.4 that the hybrid droplet vaporization-adaptive surrogate model produces a more accurate 
solution for the instantaneous functional group fluxes and CPTs than a physical–chemical surrogate formulated 
to match the CPTs and the distillation curve of the same target fuel. Finally, in contrast to discrete physical–
chemical surrogates, the CA-DQMoM approach can accommodate droplet boundary conditions that include 
species not present in the combined physical–chemical surrogate, which may even condense on the droplets 
under engine-relevant conditions [10], [18]. 

The previous version of the hybrid droplet vaporization-adaptive surrogate model [12] is depicted schematically 
in Fig. 1. It is noted that the continuous representation of the multicomponent mixture calculated by CA-
DQMoM is “delumped” to produce a full discrete distribution, such that the flux of functional groups in the 
discrete fuel can be calculated and used to determine the composition of the surrogate flux using FGM. While 
providing high accuracy, this intermediate delumping step requires that any nonlinearity in the governing 
species equations be confined to terms associated with the mixture as a whole [19]. Although this condition is 
satisfied for many droplet vaporization models appropriate for use in CFD codes, applications to high-pressures 
and transcritical conditions characteristic of diesel or jet engines may require the incorporation of models that 
violate this condition, such as non-ideal Maxwell-Stefan transport models. Elimination of the delumping step 
would therefore facilitate application of the hybrid droplet vaporization-adaptive surrogate model to conditions 
encountered in high-pressure applications. 

 
Fig. 1. Schematic depiction of the previous hybrid droplet vaporization – adaptive surrogate method. 



 

The goals of this paper are, therefore: (1) to modify the hybrid droplet vaporization – adaptive surrogate 
approach by removing the intermediate delumping step in Fig. 1, and (2) to compare the accuracy of the hybrid 
approach, with and without delumping, to the prevailing physical–chemical surrogate approach. The CA-
DQMoM droplet vaporization model will first be modified to directly predict the vaporization (condensation) 
fluxes of key functional groups from (to) the droplet, eliminating the need for the delumping submodel. Because 
typical continuous distributions variables are unable to correlate chemical functional groups in addition to the 
usual thermophysical properties, a novel, purely mathematical distribution variable is proposed. The idea of 
tailoring the CTM distribution variable to the desired model outputs can be applied to other chemical 
engineering problems and is not limited to CTMs using quadrature-based moment methods. Like the previous 
hybrid model with delumping, the functional group fluxes predicted directly by CA-DQMoM with the optimized 
distribution are then input to the Functional Group Matching (FGM) model to produce a time-dependent, 
distillation-resolved flux of surrogate species that can be input to the gas-phase CFD solver. In Section 2, the 
hybrid droplet vaporization model, including CA-DQMoM and FGM, will be summarized and the optimized 
distribution approach will be outlined. The dependence of thermophysical properties, transport properties and 
chemical functional groups on the optimized distribution variable will also be presented. In Section 3, the hybrid 
droplet vaporization-adaptive surrogate method using the optimized distribution will be compared to the hybrid 
model with delumping and to the physical–chemical surrogate approach. The accuracy of the three methods will 
be evaluated by comparing droplet vaporization behavior, functional group fluxes and CPTs to those predicted 
by the full discrete model for the multicomponent target fuel. Discussion of the results and conclusions will be 
considered in Section 4. 

2. Droplet vaporization/adaptive surrogate model 
2.1. Discrete component model 
The hybrid approach can be applied to a variety of physical models for multicomponent droplet vaporization. 
The particular discrete component model (DCM) upon which the present CTM is based has been described 
previously [13], but has been modified [20] to incorporate the Peng-Robinson equation of state [21]. The 
droplets are assumed to be spherically symmetric. To account for finite rates of liquid mass transfer [22], 

governing differential and algebraic equations are solved for the volume averaged mole fractions, 𝑥𝑥
¯
𝑙𝑙
𝑖𝑖, and 

surface mole fractions, xl,si, of all n species comprising the droplet: 
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The symbols appearing in the equations are listed in the nomenclature and are generally standard. 

As in all sub-grid-scale droplet models appropriate for Lagrangian-Eulerian CFD codes, transport in the gas-phase 
boundary layer surrounding the droplet is assumed to be quasi-steady [23]. A mass balance at the droplet 
surface yields the expression for the rate of change of droplet size 
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where the Spalding transfer number on a molar basis is defined 
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and the modified Sherwood number is defined [23]: 
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The total molar vaporization rate is given by 

(6) 
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and the vapor molar flow rate of each discrete species, which would serve as the source term for the Eulerian 
phase, is: 
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While previous versions of the hybrid model employed the ideal gas equation of state and Raoult's Law for 
vapor–liquid equilibrium at the interface, the Peng-Robinson equation of state [21] and non-ideal vapor–liquid 
equilibrium are employed at present and have been incorporated in Eq. (2), where the fugacity coefficient for 
each species, i, and phase, p, is 𝜙𝜙𝑝𝑝𝑖𝑖 . The binary interaction coefficients for hydrocarbon pairs are assumed to be 
zero. 

The species equations above can be coupled with a variety of approaches for calculating the droplet 
temperature, including infinite conductivity, quasi-steady and effective conductivity models [24]. In this paper, 
the liquid temperature within the droplet was modeled with a parabolic temperature profile [25] using 

equations for the droplet’s average, 𝑇𝑇
¯
𝑙𝑙, and surface, 𝑇𝑇𝑙𝑙,𝑙𝑙, temperature [26]: 
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The Spalding heat transfer number [23], [26] is given by 

(10) 
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and the modified Nusselt number, 𝑁𝑁𝑁𝑁𝑔𝑔∗ , [26] is defined in a similar manner to the modified Sherwood number. 
The latent heat of vaporization of the mixture, 𝑙𝑙𝑣𝑣, and the heat capacity of the vapor, 𝑐𝑐𝑝𝑝,𝑣𝑣, are found using flux 
weighted mixing equations, which will be discussed in Section 2.2.2. The need for flux weighting of the discrete 
properties in these equations is discussed by Laurent [26]. Temperature-dependent thermophysical and 
transport properties for all the discrete species are obtained from the Yaws’ database [27]. Properties for the 
gas-phase are evaluated using the 1/3 rule [28]. 

Discrete component models are the most accurate approach for representing the multicomponent nature of 
droplet vaporization but are computationally prohibitive for CFD applications unless the fuel is treated using a 
smaller surrogate mixture. 

2.2. Continuous thermodynamic model (CTM) 
CTMs characterize a multicomponent mixture as a continuous function of a distribution variable to reduce the 
computational cost compared to full discrete models. The distribution variable, I, is usually chosen to be the 
normal boiling temperature, Tnb [29], or molecular weight, MW [30], since those properties are relevant to 
phase change and correlate well with other thermophysical properties. 

To convert the DCM described in the previous section to continuous form, the average liquid mole fraction is 
taken to be a continuous function of the distribution variable, I, [31] giving the continuous form of Eq. (1) 
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The corresponding algebraic expression for 𝑥𝑥𝑙𝑙,𝑙𝑙(𝐼𝐼) given in Eq. (2) is similarly converted to continuous form: 
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The vapor–liquid equilibrium condition and all other equations and properties required by the model are 
similarly converted to continuous form (see Section 2.2.2). 



CTMs based on pre-determined distributions, like gamma functions [30], [32], have been employed in droplet 
vaporization models, including those incorporated in CFD codes [33]. While these distribution functions might, in 
some cases, be adequate to represent the composition of a multicomponent fuel prior to significant 
vaporization, the distribution becomes distorted throughout the vaporization and/or condensation process, 
rendering CTMs based on pre-determined distributions lacking. 

2.2.1. CA-DQMoM 
In contrast to predetermined distributions, quadrature-based moment methods efficiently solve for an evolving 
continuous distribution without assuming any functional form [31], [34]. For instance, the quadrature method of 
moments (QMoM) represents the evolution of a continuous distribution by solving for the first 2N moments of 
the distribution, where N is the number of nodes used to represent the distribution [34]. The direct quadrature 
method of moments (DQMoM) solves directly for the N nodes (abscissas, or I-values) and N weights (mole 
fractions) of an evolving equivalent distribution, which is mathematically identical to QMoM, but can be 
numerically superior [31]. In the context of droplet vaporization, CA-DQMoM extends DQMoM to account for 
finite rates of diffusion within a droplet by solving for the nodes and weights associated with two continuous 
distributions [13], corresponding to the average and surface liquid mole fractions governed by Eqs. (11), (13). 

CA-DQMoM for droplet vaporization has been described previously [13] but is summarized here. A moment 
transformation is applied to Eq. (11) to generate 2N equations for the first 2N moments of the distribution, 𝑘𝑘 =
0: 2𝑁𝑁 − 1. 

(14) 
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where, 
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and 𝑓𝑓(𝐼𝐼) is given by 

(16) 

𝑓𝑓(𝐼𝐼) = �
15𝐷𝐷𝑙𝑙
𝑅𝑅2

+
3
𝑅𝑅
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡
� 𝐼𝐼𝑘𝑘 

A Gaussian quadrature approximation is applied to the average and surface mole fraction distributions, which 
each have their own weights and nodes: 

(17) 
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(18) 
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Rather than solving for the moments of the distribution, CA-DQMoM solves directly for the weights and nodes 
by writing the distribution function for the differential variable as a sum of N delta functions 

(19) 

𝑥𝑥
¯
𝑙𝑙(𝐼𝐼) = �𝑤𝑤

¯
𝑗𝑗𝛿𝛿 �𝐼𝐼 − 𝐼𝐼

¯
𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

 

Differentiating and inserting in Eq. (11) yields 

(20) 
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Applying derivative rules, multiplying by 𝐼𝐼𝑘𝑘, integrating over the distribution and applying rules for integrals of 
delta functions and their derivatives, one arrives at 2N equations that can be written in matrix form [31]: 
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The Gaussian quadrature approximations (Eqs. (17), (18)) are substituted in Eq. (15) to obtain the source 

terms, 𝑆𝑆
¯
𝑘𝑘, in terms of the weights and nodes. 
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To solve for the algebraic variables 𝑤𝑤𝑙𝑙,𝑗𝑗 and 𝐼𝐼𝑙𝑙,𝑗𝑗, a moment transformation is performed on Eq. (13) and 
quadrature approximations (17), (18) as well as a corresponding quadrature for the gas-phase boundary, 
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are used. In a CFD context, the n discrete species in Eq. (23) would be supplied by the Eulerian-phase solver. 
Applying the three quadrature approximations to Eq. (13) results in the 2N coupled algebraic expressions for the 
surface weights and nodes, given by 
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Details of the derivation are available elsewhere [13], [20]. 

2.2.2. Property evaluation for CA-DQMoM 
As a type of continuous thermodynamic model, all thermophysical and transport properties required by CA-
DQMoM must be interpolated as a function of the distribution variable, I, (in addition to being functions of other 
properties, such as temperature). For instance, in previous implementations, where I was taken to be the 
normal boiling point, Tnb [12], [19], the liquid specific heat capacity is given by a linear correlation of cp,l as a 
function of I, 
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Properties of the mixture are then obtained by continuous forms of mixing rules. If the mixing rule is linear, 
weighting the property by the liquid mole fraction and integrating over the entire distribution yields a mixture 
property in terms of k moments of the liquid mole fraction distribution, 𝑚𝑚𝑙𝑙

𝑘𝑘. For instance, for the liquid specific 
heat capacity, this would yield 
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Some mixture properties are defined for the bulk liquid or vapor, some are defined at the interface, and some 
properties characteristic of the vaporization (or condensation) flux are “flux-weighted” rather than weighted by 
the mole fraction of a phase/location. Following a procedure similar to Eq. (26), it can be shown [26] that flux-
weighted mixture quantities are given in terms of moments of the flux fractions, 𝑚𝑚𝜍𝜍

𝑘𝑘. These flux moments are 



expressed in terms of the moments on the vapor side of the interface, 𝑚𝑚𝑔𝑔,𝑙𝑙
𝑘𝑘 , the moments at the far-field 

boundary, 𝑚𝑚𝑔𝑔,∞
𝑘𝑘 , and the Spalding mass transfer number, 𝐵𝐵𝑀𝑀, by: 
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2.2.3. Optimized distribution variable 
The central insight of this paper is that CTMs, including CA-DQMoM, can be used to directly predict the 
vaporization (condensation) flux of chemical functional groups from (to) a multicomponent fuel droplet by 
tailoring the distribution variable, I. This obviates the need for the delumping model and enables application of 
the hybrid approach to physical models that may be necessary for high-pressure environments. Because CTMs 
require that all properties be correlated as functions of the distribution variable, direct prediction of functional 
group fluxes implies that these functional groups must be well-correlated by the distribution variable. Because 
mixing rules yield expressions involving the moments of the distribution, it is advantageous that these 
correlations be polynomial. This is because quadrature methods solve for a certain number of moments of the 
evolving species distribution, and the moments appear in the equations for the properties of the mixture, as 
illustrated in Eq. (26c). 

While Tnb and MW are often used as distribution variables for CTMs [29], [30], neither can satisfactorily correlate 
the important chemical functional groups that govern the chemical behavior of multicomponent hydrocarbon 
fuels. This is illustrated in Fig. 2, which shows the dependence of the chemical functional groups on the normal 
boiling temperature, Tnb, for the species comprising Jet-A (discussed in Section 3.2). Although it might be 
possible to employ a separate distribution for every chemical family (e.g. n-alkanes, iso-alkanes) to partially 
address this issue, this approach has been found to be impractical due to computational cost and numerical 
instability. 

 
Fig. 2. Dependence of the ratios of (a) CH2, (b) CH3 and (c) benzyl-type functional groups per molecule on the 
normal boiling temperature, for Jet-A. 
 

Therefore, to directly calculate the flux of chemical functional groups in addition to thermophysical and 
transport properties, a new, strictly mathematical (without physical significance) distribution variable, known 
simply as I, can be developed using optimization. The purpose of the optimization routine is to assign to every 
hydrocarbon species a value of I such that the dependence of thermophysical properties, transport properties 
and the number of CH3, CH2 and benzyl- groups per molecule (yCH3, yCH2, ybenzyl) on I is approximately polynomial. 
The values for the thermophysical and transport properties at various temperatures are obtained from 
Yaws [27], and the functional groups associated with each species are based on a simple average of all isomers 
of that species in the appropriate chemical family in the NIST database (this is discussed in Section 3.2). 

The optimization procedure employed a genetic algorithm to determine I-values for every discrete species such 
that an objective function involving residuals of polynomial fits of the desired thermophysical properties and 



functional group to the distribution variable, I, was minimized. A single-objective genetic algorithm was 
employed, although multi-objective optimization could be pursued in the future. The objective function was 
chosen to be 

(28) 
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The first term ensures proper spacing between I and values and prevents clustering. The remaining terms 
contain coefficients of determination (R2 values) for polynomial fits between three important properties and the 
distribution variable, I. The three properties include those influencing vaporization (the Peng-
Robinson a parameter), the functional group distributions (yCH3, yCH2) and properties associated with the size of 
the molecule (yCH2, a), which tends to correlate with other properties not explicitly included in the objective 
function. Constraints were also used to force the benzyl-group distribution to be a double step-function 
with I, because all fuel components had either zero, one or two benzyl-group per molecule. While this objective 
function was determined in an ad-hoc manner, it serves as proof-of-concept for the idea of using tailored 
distribution functions in CTMs. 

This optimization procedure constitutes a pre-processing step that only needs to be performed once for a given 
fuel. This is akin to the process of optimizing the composition of a physical–chemical surrogate. Furthermore, 
the optimized I-distribution obtained for one fuel can serve as the basis for others, since many hydrocarbon 
fuels (e.g. jet fuels like Jet-A, JP-8) contain similar sets of major species [35]. 

Even though the objective function involved just a few properties/functional groups, all properties required by 
the hybrid droplet model were subsequently fit to the optimized I-distribution to generate polynomial 
correlations for use in the hybrid droplet vaporization model. Most polynomials were third order in I. Results for 
selected properties and functional groups are shown in Fig. 3. It is noted that the Peng-Robinson a parameter is 
fit as a1/2, as is done when using MW as the distribution variable [36]. The quality of the fits for the 
thermophysical and transport properties are comparable to those obtained using the typical distribution 
variable (Tnb) previously, but the current approach has the advantage that it enables CA-DQMoM to directly 
predict the vaporization or condensation flux of key functional groups . A second advantage of the present 
approach is its improved ability to incorporate species from different chemical families in a single distribution. 



 
Fig. 3. Selected correlations of properties and functional groups with the optimized distribution variable, I. (a) 
Peng-Robinson parameter, a1/2, at two temperatures (b) molecular weight, MW, (c) gas-phase thermal 
conductivity, kg, at two temperatures, and (d)-(f) the ratios of CH2, CH3 and benzyl-type functional groups per 
molecule, respectively. “All species” refers to those comprising the target fuel, discussed in Section 3.2, and the 
“gasoline surrogate” is two more species relevant to the third test case presented in Section 3.4. 
 

2.3. Functional group matching and adaptive surrogate formulation 
Functional group matching has been described previously [12]. FGM takes as input the fluxes of key functional 
groups from the droplet, and uses it to construct a time-dependent, chemical surrogate composed of a few 
discrete species, with the same distribution of functional groups [12], as shown in Fig. 1. FGM was inspired by 
the finding of Won et al. which demonstrated a link between combustion property targets (CPTs) and chemical 
functional groups (CH2, (CH2)n, CH3, CH, C, and Benzyl-type) [5]. The FGM method uses four coupled algebraic 
equations to match the molar flow rates of benzyl-type functional groups, the sum of CH2 and (CH2)n functional 
groups, CH3 functional groups and the molecular weight of the vaporization/condensation flux to those same 
quantities in the instantaneous flux of the discrete chemical surrogate. In a CFD context, the instantaneous flux 
of these species would serve as the species source terms for the Eulerian phase. The four species employed for 
the chemical surrogate are the same as in [12] and are shown in Table 1. Except for n-heptane, these four 
species are the same as the chemical surrogate employed by Won et al. [5] for Jet-A. The chemical surrogate 
species can be easily changed to meet the needs of gas-phase chemical kinetic models. 

Table 1. Chemical surrogate components and their functional groups. 
Class Species Formula CH2 (CH2)n CH3 CH C Benzyl 



n-alkane n-heptane C7H16 0 5 2 0 0 0 
n-alkane n-hexadecane C16H34 0 14 2 0 0 0 
iso-alkane iso-dodecane C12H26 2 0 7 1 2 0 
aromatic 1,3,5-trimethylbenzene C9H12 0 0 3 0 0 1 

 

The original hybrid model performs a delumping step prior to functional group matching (see Fig. 1), to recover 
the mole fractions and fluxes of all discrete species from the droplet. Delumping is based on the fact that many 
droplet models appropriate for incorporation in CFD codes are nonlinear, but the nonlinearity is associated 
solely with terms representative of the multicomponent mixture as a whole [19]. Therefore, the results of the 

CTM can be inserted for the nonlinear terms in the governing differential equation for 𝑥𝑥
¯
𝑙𝑙
𝑖𝑖, thus linearizing the 

equations. The first order, linear ordinary differential equations (ODEs) can then be solved analytically and 
efficiently using the integrating factor method. 

Whereas the original hybrid method used the delumped (discrete) fluxes as input to FGM, the proposed hybrid 
method with the optimized distribution variable uses CA-DQMoM to directly calculate the functional group 
distribution and molecular weight of the vaporization flux. 

2.4. Combustion property calculations 
To assess the ability of the hybrid model to predict the impacts of preferential vaporization on combustion 
behavior, the instantaneous CPTs for the vaporization flux can be evaluated. The CPTs most relevant to global 
combustion behavior for jet fuels are molecular weight (MW), hydrogen to carbon ratio (H/C), derived cetane 
number (DCN), and threshold sooting index (TSI) [5]. The MW and H/C ratio of the full target fuels are calculated 
with linear blending rules and the DCN is calculated using the regression developed by Won et al. [5]. The TSI 
cannot be calculated for the full DCM because of a lack of experimental data and is therefore not considered 
when comparing the performance of the hybrid models and the physical–chemical surrogate. It is also noted 
that the CPTs would not be calculated by the hybrid model when implemented in a CFD context and are 
evaluted here for assessment purposes only. 

2.5. Numerical approach 
The hybrid models and the DCMs were integrated in time using the IDA solver developed by the Lawrence 
Livermore National Laboratory. Both CA-DQMoM and the DCM require an ordinary differential equation for the 

evolution of droplet radius, R, and average liquid temperature, 𝑇𝑇
¯
𝑙𝑙, as well as an algebraic equation for Tl,s. With 

the Peng-Robinson equation of state, CA-DQMoM requires 2N differential equations (for the average weights 

and nodes, 𝑤𝑤
¯
𝑗𝑗 and 𝐼𝐼

¯
𝑗𝑗) and 3N algebraic equations (for the weights and nodes at the liquid surface, 𝑤𝑤𝑙𝑙,𝑗𝑗 and 𝐼𝐼𝑙𝑙,𝑗𝑗, 

and for the gas weights at the interface, 𝑤𝑤𝑙𝑙𝑔𝑔,𝑗𝑗), where N is the number of nodes used in CA-DQMoM. The 
number of nodes, N is typically between two and four. In the test cases presented in Section 3.4, the number of 

nodes, N = 4. The DCM requires n differential equation (for 𝑥𝑥
¯
𝑙𝑙
𝑖𝑖) and 2n algebraic equations (for 𝑥𝑥𝑙𝑙,𝑙𝑙𝑖𝑖  and 𝑥𝑥𝑔𝑔,𝑙𝑙

𝑖𝑖 ). For 
the full target fuel, n = 67 (see Section 3.2), while for the physical–chemical surrogate, n = 9 (see Section 3.3). 

3. Results and discussion 
3.1. Validation of physical model for droplet vaporization 
Although the hybrid approach can be applied to a variety of droplet vaporization models with different levels of 
complexity, the fidelity of the physical model outlined in Section 2.1 is first evaluated by comparing predictions 
of the DCM to existing experimental data. Comparisons to multicomponent, ambient pressure data and to 
single-component, elevated pressure data will be presented. 



Runge et al. [37] measured the evolution of 639 µm diameter droplets of JP-8 at ambient temperature (294 K) 
and pressure (1 bar) with a relative velocity of 3 m/s. To account for the convective conditions, the Sherwood 
and Nusselt number correlations given by Abramzon and Sirignano [23] are employed to 
determine 𝑆𝑆ℎ𝑔𝑔∗  and 𝑁𝑁𝑁𝑁𝑔𝑔∗  and the corresponding film radius, Rf. The JP-8 composition used in the full DCM is 
based on Edwards’ data which consists of 67 species, mostly specified by carbon number and chemical 
family [38]. The composition for the JP-8 droplet employed in the DCM is the same as the 67 species employed 
by Govindaraju and Ihme [39] based on Edwards’ data. 

Fig. 4 compares the predictions of the full DCM to the measurements of Runge et al. [37]. DCM predictions 
for d^2 match the experimental data well. In addition to validating the physical model described in Section 2.1, 
this comparison provides confidence in the adequacy of experimental multicomponent fuel characterizations 
provided in terms of carbon number and chemical family to represent complex hydrocarbon fuels. This point is 
discussed further in Section 3.2. 

 
Fig. 4. Comparison of the squared diameter variation predicted by the physical model (DCM) with experimental 
data, for a multicomponent droplet (JP-8) at ambient pressure [37]. 
 

Nomura et al. [40] measured the variation of droplet diameter for suspended n-heptane droplets at pressures of 
0.1–5 MPa, under quiescent, microgravity conditions. Fig. 5 shows a comparison between DCM predictions and 
the data of Nomura et al. for pressures up to 1 MPa. The agreement is adequate, but at increasing pressures the 
deviation between experiment and prediction increases. This is not unexpected, since the physical model 
employed in this paper does not incorporate gas solubility, pressure-dependent property correlations, droplet 
non-sphericity [41] and vapor-phase transience [42]. Another source of disagreement is likely the uncertainty 
associated with convection and transience in the first 0.16 s of the experiment [40], during which the 
experimental droplet traversed the hot chamber on its way to the test position and experienced convective heat 
up, reducing the measured vaporization time [43]. While future work will focus on incorporating high-pressure 
effects, the comparisons with the experimental data of Runge and Nomura demonstrate that the physical model 
is adequate for comparing the hybrid approach to the physical–chemical surrogate approach for 
multicomponent hydrocarbon droplets. 

 



Fig 5. Comparison of the squared diameter variation predicted by the physical model (DCM) with experimental 
data [40] for heptane at (a) 0.1 MPa, (b) 0.5 MPa and (c) 1 MPa. 
 

3.2. Target fuel for test cases 
The test cases in Section 3.4 are based on droplets of Jet-A fuel. The characterization of the fuel is based on 
Edwards’ summary for Jet-A (POSF-10325) in which most species are specified by carbon number and chemical 
family [38], which is in turn based on the measurements of [44]. The corresponding composition for the target 
fuel is the same 67 species employed by Govindaraju and Ihme (see supplemental material therein) [39]. The 
CPTs and advanced distillation curve for this target fuel are compared to experimental data for Jet-A (POSF 
10325) in this section. 

Fig. 6 shows a comparison between the experimentally measured [35] advanced distillation curve for Jet-A 
(POSF 10325) and the calculated advanced distillation curve for the 67-component target fuel. The advanced 
distillation curve is a better representation of the thermodynamic states of a multicomponent mixture than the 
ASTM D86 distillation curve [45], so the experimental data in Fig. 6 for Jet-A is taken from a source employing 
the advanced distillation curve methodology [35]. The calculation of the advanced distillation curve for the 67-
component target fuel shown in Fig. 6 is performed following the procedure outlined by Kim et al. [46], by 
determining the temperature of the bubble point at each fraction of distilled volume using a nonlinear solver 
routine and subsequently solving for the composition of the remaining liquid. Good agreement between the 
experimentally measured advanced distillation curve for Jet-A (POSF 10325) and the calculated advanced 
distillation curve for the target fuel is observed. 

 
Fig. 6. Comparison between advanced distillation curve measured for Jet A-10325 [35] and the calculated 
advanced distillation curve for the 67-component target fuel used to represent Jet A-10325. 
 

Although the precise composition of all isomers is not known experimentally, this does not introduce undue 
uncertainty into the droplet vaporization behavior. To demonstrate this, the droplet vaporization/condensation 
behavior calculated using the full DCM for the target fuel [39] is compared to that for a fuel in which the 67 
species are treated as being composed of a simple average of every isomer of that chemical family and formula 
found in the Yaws database (a total of 1079 species) [27]. It is observed in Fig. 7 that the droplet vaporization 
behavior, as characterized by the instantaneous vaporization rate, is not strongly affected by the precise 
composition. This suggests that experimental data such as that measured by Lovestead et al. [35] and Striebich 
et al. [44] is adequate for representing the droplet vaporization behavior of the target fuel and can be used as a 
basis for model development. 



 
Fig. 7. Comparison of target fuels with properties composed of average of all isomers in the Yaws 
database [27] and composed of specific isomers [39], for vaporization in (a) pure air and (b) fuel-rich conditions. 
 

Even though the exact isomeric composition does not significantly alter the target fuel’s 
vaporization/condensation behavior, it can certainly affect the resultant chemistry and combustion properties of 
the gas phase via its impact on functional group distributions. Because the fuel’s functional group distribution 
correlates with measurable combustion property targets [5] and can even be determined directly by NMR [8], 
the specific isomeric composition of the target fuel could be tuned to match that of the experimental fuel and its 
combustion property targets, if necessary. In the present test case, no tuning was used and the functional group 
distribution associated with each of the 67 species in the DCM were calculated using an average of all 
hydrocarbon species of that family and chemical formula in the NIST database. 

The CPTs (molecular weight, DCN, and H/C ratio) of this target fuel were calculated and are shown in Table 2, in 
which they are compared to the measured CPTs for POSF-10325 summarized by Edwards [38]. It is noted, that 
in Table 2, DCN is calculated using the new quantitative structure–property relation (QSPR) regression 
developed by [8] that accounts for cycloalkane functionality, since that functionality is, of course, present for the 
experimentally measured fuel. It is seen in Table 2 that the CPTs (and hence the functional group 
distribution [5]) of the target fuel used to represent POSF-10325 agree closely with the experimental values. 

Table 2. Comparison between experimentally measured CPTs for Jet A-10325 and the CPTs for the 67-
component target fuel used to represent Jet A-10325. 

CPT POSF-10325 [38] Target Fuel 
Molecular Weight 159.0 158.4 
H/C Ratio 1.91 1.94 
DCN 48.3 47.9* 

*DCN of the target fuel is calculated from QSPR regression [8] that accounts for cycloalkane functionality. 

Because the CPTs and distillation curve for the 67-component target fuel match those measured experimentally, 
and because the droplet vaporization process and physical properties do not appear to be significantly affected 
by the isomeric composition, it is concluded that the present target fuel representation of Jet-A is acceptable. 
Nonetheless, it is noted that emerging techniques using two-dimensional gas chromatography with time-of-
flight mass spectrometry have the potential to quantify the detailed composition of hydrocarbon fuels with even 
higher levels of precision [47]. 

3.3. Physical-chemical surrogate formulation 
To compare the performance of the hybrid droplet vaporization-adaptive surrogate approach to the physical–
chemical surrogate approach, a physical–chemical surrogate for the present target fuel was formulated 
following the procedure outlined by Won et al. [5]. An optimization routine was used to determine the mole 



fractions of the nine-component physical–chemical surrogate in [5] to match the CPTs, as well as the advanced 
distillation curve, of the target fuel (described in Section 3.2). The resultant composition of the physical–
chemical surrogate is shown in Table 3. It is noted, that in formulating the physical–chemical surrogate, the 
impact of the cycloalkane functionality on DCN was omitted, as in [5], because the chemical surrogate used in 
the functional group matching does not include a cycloalkane species (Table 1). This could be included in the 
future, but it does not affect the comparison between the hybrid approach and physical–chemical surrogate 
approach presented in Section 3.4. 

Table 3. Composition of the physical–chemical surrogate used to represent the target fuel. 
Component Surrogate Mole Fraction 
n-octane 0.0003 
n-decane 0.0003 
n-dodecane 0.3009 
n-tetradecane 0.2365 
n-hexadecane 0.0330 
iso-octane 0.0150 
iso-dodecane 0.0475 
1,3,5-trimethylbenzne 0.3652 
toluene 0.0014 

 

The calculated advanced distillation curves for the physical–chemical surrogate (Table 3) and for the full target 
fuel are shown in Fig. 8. The advanced distillation curves for the target fuel and the physical–chemical surrogate 
are both calculated as described in Section 3.2 [46]. It is observed that the distillation curve of the physical–
chemical surrogate closely matches that of the target fuel. 

 
Fig. 8. Comparison between the advanced distillation curves calculated for the physical–chemical surrogate and 
its corresponding target fuel. 
 

The calculated CPTs for the physical–chemical surrogate (Table 3) and the full target fuel are shown in Table 4. 
Good agreement between the physical–chemical surrogate and the target fuel is obtained for all three CPTs. 
Because the CPTs and the advanced distillation curve of the physical–chemical surrogate match those of the full 
target fuel, this nine-component physical–chemical surrogate represents the state-of-the-art approach for 
modeling vaporization of multicomponent fuel droplets, and will be compared to the hybrid droplet 
vaporization-adaptive surrogate model proposed in this paper. 

Table 4. CPTs calculated for the physical–chemical surrogate and its corresponding target fuel. 



CPT Physical-Chemical Surrogate Target Fuel 
Molecular Weight 159.5 158.4 
H/C Ratio 1.92 1.94 
DCN 55.3* 54.9* 

*DCN for both fuels is calculated from QSPR regression [5] that does not account for cycloalkane functionality, 
as explained in the text. 

3.4. Comparison of hybrid models to physical–chemical surrogate and full DCM 
Droplet vaporization behavior for the full discrete target fuel (DCM) will be compared to three models which 
approximate it: the hybrid model with the optimized distribution, the hybrid model with delumping, and the 
physical–chemical surrogate model formulated to match the target fuel. 

3.4.1. Test case 1: vaporization in pure air 
For vaporization of a 100 µm droplet into pure air at 600 K and 1 MPa, the evolution of the instantaneous total 
molar flux is shown in Fig. 9. Comparing the droplet vaporization behavior predicted by the two versions of the 
hybrid model to that calculated using the full DCM, it is observed that CA-DQMoM, using either normal boiling 
point (“Hybrid Delumping”) or the optimized distribution variable (“Hybrid Direct”), can successfully reproduce 
the vaporization behavior of a multicomponent droplet. The nine-component physical–chemical surrogate 
("Surrogate") also replicates the droplet vaporization behavior for these conditions, although the accuracy is 
lower than the continuous thermodynamic models. 

 
Fig. 9. Evolution of the total molar flow rate for vaporization in air, calculated using the full DCM for the target 
fuel, the physical–chemical surrogate, CA-DQMoM with delumping and CA-DQMoM with direct prediction of 
functional groups. 
 

Fig. 10 shows the instantaneous flux of the key chemical functional groups for the full target fuel DCM and the 
three models that approximate it. The hybrid delumping method reproduces the functional group fluxes with 
the highest accuracy, followed by the hybrid direct method (which uses the optimized distribution variable) 
which is less accurate in its prediction of CH3. Both hybrid methods are more accurate in predicting the flux of 
chemical functional groups than the physical–chemical surrogate approach and the difference is especially 
pronounced for the benzyl-group. 



 
Fig. 10. Flux of chemical functional groups for vaporization in air, calculated using the full DCM for the target 
fuel, the physical–chemical surrogate, CA-DQMoM with delumping and CA-DQMoM with direct prediction of 
functional groups. 
 

The hybrid models use a CTM (CA-DQMoM) to predict the vaporization/condensation/physical behavior of the 
droplets and then use the functional group matching model to generate a small chemical surrogate source term 
for the Eulerian phase of CFD codes [12]. Although not the focus of this paper, the mole fractions of the 
chemical surrogate flux calculated by FGM for the hybrid direct model are shown in Fig. 11. The fraction of the 
heavier n-alkane and 1,3,5-trimethylbenzene increase at later times as the less volatile species begin to 
vaporize, while the lighter n-alkane becomes less prevalent in the chemical surrogate. The adaptive nature of 
the chemical surrogate composition enables CFD codes to better capture the impacts of preferential 
vaporization on gas-phase chemistry at a lower computational cost than the physical–chemical surrogate 
approach, due to its smaller size. As noted, the species comprising the chemical surrogate can be easily altered. 

 
Fig. 11. Instantaneous composition of the adaptive chemical surrogate calculated with the direct hybrid method 
for vaporization in pure air. 
 

Using the instantaneous composition of the adaptive chemical surrogate flux, the instantaneous combustion 
property targets of the flux are calculated for the hybrid models and compared to the physical–chemical 
surrogate and to the full DCM in Fig. 12, for times at which the total vaporization rate is greater than 10 nmol/s. 
The hybrid model with delumping captures these properties most accurately, followed by the hybrid direct 
model with the optimized distribution variable. Matching the evolution of the chemical functional groups (Fig. 
10) is key to matching the distillation-resolved combustion behavior [5], so it is not surprising that the relative 



performance of the three approximate models is the same in Fig. 10, Fig. 12. While the physical–chemical 
surrogate matches the molecular weight at early times with more accuracy than the direct hybrid model, the 
latter produces a better match for the H/C ratio and the DCN throughout vaporization. The impact of 
preferential vaporization on the Eulerian phase is apparent in the variation of the CPTs of the flux in Fig. 12. It is 
noted that in a CFD context, the CPTs would not need to be calculated. 

 
Fig. 12. Chemical properties of the instantaneous flux for vaporization in air, calculated using the full DCM for 
the target fuel, the physical–chemical surrogate, CA-DQMoM with delumping and CA-DQMoM with direct 
prediction of functional groups. 
 

Although the physical–chemical surrogate is formulated to match the pre-vaporized CPTs (and therefore the 
pre-vaporized functional groups) as well as the distillation curve, there is no constraint ensuring that the 
functional group distribution of the lower (higher) volatility species in the physical–chemical surrogate matches 
the functional group distribution of the lower (higher) volatility species of the target fuel. With CA-DQMoM, 
however, the properties governing vaporization (e.g. Peng-Robinson parameters) as well as the functional group 
distributions are both correlated with the same optimized distribution variable. This ensures that the functional 
group fluxes throughout vaporization match those of the target fuel and is likely the reason that the functional 
group fluxes are predicted more accurately with the hybrid approach. 

3.4.2. Test case 2: vaporization in a fuel-rich mixture 
The models were also tested under conditions in which condensation initially dominates vaporization. While, in 
reality, the fuel species surrounding a droplet would not be constrained to those present in the physical–
chemical surrogate, practically, a CFD code would not track more than several transported fuel components in 
addition to the reaction products and intermediates. However, even in a CFD context, the vapor surrounding a 
droplet could consist of species other than those comprising the physical–chemical surrogate, either due to gas-
phase chemistry or in a dual-fuel combustion environment. There is no obvious way in which the physical–
chemical surrogate approach can accommodate species beyond those which comprise the surrogate. Therefore, 



a comparison will be performed first for a case in which the droplet boundary conditions only include species 
comprising the physical–chemical surrogate, and subsequently for a case in which other species are present in 
the vapor surrounding the droplet (Section 3.4.3). 

The evolution of total molar flux is shown in Fig. 13 for a 100 µm droplet injected into an environment at 600 K, 
1 MPa and containing 14.3% fuel by mass. The fuel in the vapor phase is comprised of the more volatile species 
present in the physical–chemical surrogate: 0.01 mole fraction of n-octane, iso-octane, n-decane and toluene. 
The initial negative molar flux indicates condensation occurs at early times, after which the droplet heats up and 
vaporization dominates. 

 
Fig. 13. Evolution of the total molar flow rate during the vaporization into a fuel-rich mixture, calculated using 
the full DCM for the target fuel, the physical–chemical surrogate, CA-DQMoM with delumping and CA-DQMoM 
with the new distribution variable. 
 

The hybrid method with delumping is again the most accurate of the three methods for representing the droplet 
vaporization behavior. The hybrid method with the optimized distribution variable (hybrid direct) performs 
reasonably well when the vaporization fluxes are negative (condensation), however, at early times, the physical–
chemical surrogate is more accurate in capturing the droplet behavior. This test case is representative of others 
that indicate that during condensation and subsequent re-vaporization of species present in the physical–
chemical surrogate itself, the physical–chemical surrogate approach is quite accurate in representing the droplet 
behavior. However, as the droplet heats up and vaporization of the full fuel begins to dominate, both hybrid 
methods (even the direct hybrid method) become more accurate, as they better represent the full target fuel. 
This can be observed in the later times in Fig. 13. 

The functional group fluxes for the test case with initial condensation are shown in Fig. 14 for the three 
approximations to the full DCM. The hybrid model with delumping reproduces the instantaneous flux of key 
functional groups to/from the droplet with the highest accuracy. Despite the accuracy of the physical–chemical 
surrogate in predicting droplet vaporization at early times (Fig. 13), both hybrid methods are more accurate than 
the physical–chemical surrogate approach in predicting the distillation-resolved flux of functional groups. This is 
particularly the case for the flux of CH2– and benzyl-groups, which is similar to Fig. 10, although to a lesser 
extent. The CPTs of the vaporization flux are shown in Fig. 15 for times in which the vaporization flux is larger 
than 10 nmol/s. Despite the accuracy of the physical–chemical surrogate in predicting the droplet vaporization 
behavior at early times (Fig. 13), it is not very accurate in predicting the instantaneous H/C ratio or DCN, due to 
its inaccuracy at predicting the distillation-resolved functional group fluxes (Fig. 14). The hybrid model with 
delumping is the most accurate, and the direct hybrid model has similar accuracy for H/C ratio and DCN, 
although it is the least accurate in predicting molecular weight. 



 
Fig. 14. Flux of chemical functional groups for vaporization into a fuel-rich mixture, calculated using the full DCM 
for the target fuel, the physical–chemical surrogate, CA-DQMoM with delumping and CA-DQMoM with direct 
prediction of functional groups. 
 

 
Fig. 15. Chemical properties of the instantaneous flux for vaporization into a fuel rich mixture, calculated using 
the full DCM for the target fuel, the physical–chemical surrogate, CA-DQMoM with delumping and CA-DQMoM 
with direct prediction of functional groups. 
 

3.4.3. Test case 3: vaporization in presence of species not comprising physical–chemical surrogate 
The final test case compares the performance of the hybrid approaches and the physical–chemical surrogate 
approach for conditions in which species beyond those present in the physical–chemical surrogate surround the 
droplet. This situation might arise, for instance, due to pyrolysis chemistry in the gas-phase or in a dual-fuel 
combustion environment. As an example of the latter, a Direct Dual Fuel Stratification (DDFS) environment [48], 
in which both the less reactive fuel (gasoline) and the more reactive fuel (Jet-A, in this case) are injected directly, 
is represented at 600 K and at 1 MPa. At the time when the more reactive fuel is injected, portions of the spray 
may encounter localized regions rich in gasoline. Consistent with a CFD context, the gasoline vapor surrounding 
the droplet will be represented by a chemical surrogate, which is comprised of indane and methylpentane [49], 
with each present at a mole fraction of 0.05. 



It is not immediately clear how the physical–chemical surrogate model can best accommodate the presence of 
species beyond those comprising the surrogate. The two gasoline surrogate species in this test case, indane and 
methylpentane, were treated as 1,3,5 trimethylbenzne and n-octane, respectively. For the direct hybrid method, 
the optimized distribution can be explicitly tailored, if needed, to ensure that the gasoline surrogate species’ 
properties are well-correlated with the distribution variable, I. The I-values for the gasoline surrogate species 
and its ability to correlate key properties are shown with the filled symbols in Fig. 3, where it is apparent that 
the optimized CTM can readily incorporate the presence of species not comprising the multicomponent fuel. 

For conditions dominated by species not comprising the physical–chemical surrogate, the accuracy of the 
physical–chemical surrogate approach in predicting droplet behavior decreases when condensation occurs, 
compared to the previous test case. This can be observed in the early times of Fig. 16. Nonetheless, it still 
represents the instantaneous droplet vaporization rate reasonably well. For this test case, it is observed that the 
hybrid model with delumping is less accurate than the direct hybrid model at later times. 

 
Fig. 16. Evolution of the total molar flow rate during the vaporization into a mixture containing species not 
present in the physical–chemical surrogate, calculated using the full DCM for the target fuel, the physical–
chemical surrogate, CA-DQMoM with delumping and CA-DQMoM with the new distribution variable. 
 

The functional group fluxes and CPTs of the flux are shown in Fig. 17, Fig. 18, respectively. It is observed that the 
direct hybrid method is the most accurate model at reproducing the DCM data for the functional group fluxes 
and the CPTs for the DDFS test case, in which non-fuel species surround the droplet. This observation extends to 
include the molecular weight of the flux, in contrast to the previous test cases, as seen in Fig. 18a. 

 



Fig. 17. Flux of chemical functional groups for vaporization into a mixture containing species not present in the 
physical–chemical surrogate, calculated using the full DCM for the target fuel, the physical–chemical surrogate, 
CA-DQMoM with delumping and CA-DQMoM with direct prediction of functional groups. 

 
Fig. 18. Chemical properties of the instantaneous flux for vaporization into a mixture containing species not 
present in the physical–chemical surrogate, calculated using the full DCM for the target fuel, the physical–
chemical surrogate, CA-DQMoM with delumping and CA-DQMoM with direct prediction of functional groups. 
 

3.4.4. Computation time 
The computation time of all three approximate models are significantly lower than the DCM for the full target 
fuel, with average reductions of 94.1%, 93.6% and 92.2% for the hybrid method with delumping, the physical-
surrogate method and the direct hybrid method, respectively, for test case 1. The CPU time required for the 
physical–chemical surrogate method (n = 9) is 21.6% lower than the direct hybrid method (2N = 8), even though 
the hybrid method requires one less ODE and three fewer algebraic equations when using N = 4, as described in 
Section 2.5. This may be due to the coupled nature of the governing ODEs for the weights and nodes in CA-
DQMoM, as seen in Eq. (21). Future efforts to improve the efficiency of the direct hybrid method are warranted, 
including evaluation of different scaling approaches to reduce the condition number of the DQMoM matrix [50]. 

4. Conclusions 
A unified modeling approach to droplet vaporization and adaptive chemical surrogate formulation appropriate 
for incorporation in CFD codes is proposed. The previous hybrid modeling approach, which employed CA-
DQMoM with delumping for droplet vaporization followed by functional group matching for chemical surrogate 
formulation, has been modified to eliminate the delumping step and to directly predict the flux of key functional 
groups to/from the droplet. Although the previous approach is accurate and efficient, this modification extends 
the applicability of the hybrid approach to a wider range of physical models with no restrictions on the type of 
nonlinearity, which will be important for future high-pressure applications. To enable CA-DQMoM to directly 
predict the flux of key functional groups to/from the droplet, a purely mathematical, continuous distribution 
variable is proposed to replace frequently used continuous distribution variables like molecular weight or 
normal boiling temperature. The new distribution variable is tailored to correlate key chemical functional 
groups, in addition to thermophysical and transport properties, and is constructed using an optimization 
procedure. 



A comparison of the two hybrid models to the conventional physical–chemical surrogate approach is also 
presented. The physical–chemical surrogate is formulated to match the CPTs of the target fuel, as well as its 
distillation curve, and represents the prevailing approach to accounting for the effects of preferential 
vaporization. The accuracy of the three approximate methods for multicomponent fuels are evaluated by 
comparison with the full discrete model for the multicomponent target fuel (which would be prohibitively 
expensive in a CFD context). 

In general, the two hybrid models based on continuous thermodynamics and the physical–chemical surrogate 
based on a discrete component model all satisfactorily reproduced the instantaneous droplet 
vaporization/condensation rate. When droplet behavior was dominated by the multicomponent fuel (e.g. 
boundary conditions of pure air), the hybrid models based on continuous thermodynamics (CA-DQMoM) were 
more accurate than the physical–chemical surrogate. At times when droplet behavior is dominated by the 
condensation or re-vaporization of hydrocarbon species that comprise the physical–chemical surrogate itself, 
the physical–chemical surrogate was slightly more accurate than the hybrid direct model in predicting the 
vaporization/condensation rate. When the droplet boundary conditions included species that were not part of 
the physical–chemical surrogate, then the hybrid direct method was more accurate than the physical–chemical 
surrogate in predicting droplet vaporization/condensation rate. 

The instantaneous flux of functional groups to/from the droplet and their CPTs were predicted with higher 
accuracy by the hybrid models, irrespective of the species boundary conditions to which the droplets were 
exposed. This is thought to be because the physical–chemical surrogate approach separately matches the pre-
vaporized CPTs of the target fuel and the distillation curve of the target fuel. Thus, there is no constraint which 
ensures that the functional group distribution varies along the distillation curve in the same manner as it does 
for the target fuel. In contrast, in the hybrid direct method, the properties governing vaporization and the 
functional group distributions are both correlated with the optimized distribution variable. This ensures that the 
functional group fluxes and CPTs of the flux better match those of the target fuel throughout vaporization and 
should increase the accuracy of Eulerian-phase chemistry in CFD codes. The original hybrid method with 
delumping is generally the most accurate in its prediction of functional group fluxes and CPTs due to the 
accuracy of the analytical delumping solution, as discussed elsewhere [19]. 

The hybrid droplet vaporization-adaptive surrogate model using an optimized distribution variable is a promising 
method for faithfully representing the impact of multicomponent fuel droplets on gas-phase physics and 
chemistry in a CFD context. Its capability to accommodate physical models with any type of nonlinearity 
distinguishes it from the previous CA-DQMoM with delumping hybrid model. Its ability to accurately predict the 
flux of functional groups and combustion properties throughout vaporization, to produce a small surrogate 
source term for an Eulerian-phase solver and to accommodate a variety of boundary conditions distinguishes it 
from the conventional physical–chemical surrogate approach. 
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