
times were not significantly correlated with either TAS
or spiral tracing performance (p > 0.25), likely due to the
“outlier effect” of subject 7 on the small population
sample. Individual proprioceptive response delays for
subjects with MS fell within the control group range -
excepting subject 4, whose proprioceptive delay was >2σ
from the control average.
Figure 5 shows representative single-trial velocity pro-

files within trial and the distributions of visual and pro-
prioceptive submovement intervals across trials for a
representative subject with MS in Task 1 (left), which in-
cluded visual perturbations and in Task 2 (right), which
included physical perturbations. For all subjects, distri-
butions were well fit by the Gaussian mixtures model
(r2 > 0.70 p < 0.001 with 3 Gaussians) wherein the mean
of each Gaussian was centered at an integer multiple of
the interval associated with the primary distribution. For
each subject, internal (predicted) visual and propriocep-
tive response delays were estimated as the mean sub-
movement interval of the primary distribution.
Figure 6A shows the average visual and proprioceptive

submovement intervals across subjects. Proprioceptive
submovement intervals did not differ significantly be-
tween the MS and age-matched control groups (t(6) =
1.88, p = 0.11). Visual submovement intervals tended to
be shorter in subjects with MS compared to controls,
however, the difference did not reach statistical signifi-
cance (t(7) = −1.92, p = 0.097). Figure 6B compares the
duration of visual and proprioceptive response delays for
each participant with their corresponding submovement
intervals. Proprioceptive submovement intervals and re-
sponse delays were approximately equal for both control
and MS subjects (t(9) < 1.6, p > 0.05). Similarly, visual re-
sponse delays and submovement intervals did not differ
for control subjects (t(9) < 1.4, p > 0.05). By contrast, four
of the eight MS subjects exhibited a dramatic mismatch

between their visual submovement interval and corre-
sponding visual response delay. In these subjects, visual
response delays increased markedly compared to control
subjects, resulting in a significant group difference be-
tween visual response delay and visual submovement
interval (t(7) = 2.55 p = 0.038).

Motor noise (Task 3)
One subject with MS (Subject 5) was unable to complete
the task due to time constraints. For the remaining sub-
jects, the scaling of elbow torque variability with mean
elbow torque showed no significant differences between
groups (control subjects: 0.021 ± 0.010; subjects with
MS: 0.025 ± 0.011; paired samples: t(6) = 0.72, p = 0.48).

Frequency response analysis (Task 4)
The frequency response functions (and corresponding
best-fit models) relating corrective changes in arm pos-
ition to the perturbation of cursor position are shown in
Figure 7 for subject 4 with MS (right) and the corre-
sponding age-matched control (left). For subject 4, the
empirical frequency response function and corresponding
model fit both contain a marked resonance peak between
2–4 Hz, closely approximating the tremor frequency ob-
served in the subject’s spiral tracing task (i.e., 2.4-5 Hz).
The peak frequency identified in the compensatory track-
ing task was slightly lower than in the spiral tracing task,
likely due to the additional inertia of the manipulandum
handle and robot, which would act to reduce the resonant
frequency of the combined arm + robot system. The mag-
nitude of the FRFs for all subjects (control and MS) were
well approximated by the model of Figure 1 (R2 > 0.80 in
every case). The phase of the FRF was well approximated
by the model until approximately 2Hz and 6Hz in the MS
patients and control subjects respectively. Within this
range, the phase profile was dominated by the phase lag

Figure 4 Visual and proprioceptive response delays for control subjects (blue) and subjects with MS (red). (A) Group visual response
delays are shown on the left. Visual response delays for individual subjects with MS are shown on the right together. (B) Group proprioceptive
response delays are shown on the left. Proprioceptive response delays for subjects with MS are shown individually on the right. Error bars
denote ± SD for group and individual measures respectively. Shaded regions denote the corresponding ranges (±SD) for the control group.
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associated with the visual delay (Figure 7B – gray line). At
higher frequencies, phase estimates became too noisy to
unwrap reliably, however, model responses fell within the
95% confidence interval of possible phase profiles un-
wrapped from the FRF phase.
Of the thirteen parameters estimated using the fre-

quency responses analysis, significant differences between
groups were observed only for the integral and derivative

gains of the generic feedback controller. Subjects with
MS exhibited higher integral gains than control subjects
(6.86 ± 4.71 vs. 4.71 ± 2.39 Nm/deg-s; t(7) = −3.62, p <
0.01) and higher derivative gains than control subjects
(8.3×10−3 ± 3.8 ×10−3 vs. 3.3 ×10−3 ± 1.8 ×10−3 Nm-s/
deg; t(7) = −3.38, p < 0.05). In control subjects, the
derivative gain was significantly correlated with integral
gain, musculoskeletal viscosity, and musculoskeletal

Figure 6 Comparison of submovement intervals and task response delays. (A) Group average internal visual response delay (±SD) for
control subjects (blue) and subjects with MS (red). (B) Visual (filled circles) and proprioceptive (open triangles) response delays (±SD) as a function
of submovment interval for control subjects (blue) and subjects with MS (red). The diagonal line (black) represents equivalency between response
delay and submovement interval.

Figure 5 Characterization of visual and proprioceptive submovement intervals. (A) Movement velocity profiles used to calculate visual (left)
and proprioceptive (right) submovment intervals for Subject 4 (MS, TAS = 2). Examples of individual submovements are highlighted (gray) (B)
Distribution of submovement intervals across trials for vision (left) and proprioception (right) for a representative subject with MS (Subject 4). The
submovement interval for each subject was characterized by the mean and standard deviation of the best-fit gaussian mixtures model (red line)
formed from successive gaussian functions whose means and variances are constrained to be integer multiples of the primary distribution (black lines).
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stiffness (r = 0.81, 0.71, and 0.75 respectively; p < 0.05).
In subjects with MS, these correlations were absent; de-
rivative gain was not correlated with actual (or pre-
dicted) musculoskeletal viscosity or stiffness and it was
not correlated with tremor assessment score and tremor
amplitude measured by the spiral tracing task (r < 0.50;
p > 0.25). Instead, the best-fit derivative gain was signifi-
cantly correlated with visual response delay in subjects
with MS (r = 0.77; p = 0.024). This shift in coupling from
the plant (in controls) to the visual delay (in subjects
with MS) is interesting in light of the derivative gain’s
traditional role in modulating the transient response of
the system. This finding suggests the increased visual
processing delay seen in MS may play a central role in
causing subjects to alter the effective closed-loop dynamic
response of the arm during goal-directed movement.
We next analyzed the best-fit sensory feedback control

models from subjects with MS to identify systematic
covariations between model parameters and clinical per-
formance measures. We found that subjects with MS
displayed a consistent mismatch between the model pa-
rameters characterizing predictive arm dynamics (Eq. 4)
and the actual arm dynamics (Eq. 2). The degree of

parameter mismatch - quantified by the mismatch mag-
nitude normalized by the corresponding parameter value
from the actual arm dynamics - varied systematically
with tremor assessment score (TAS). Mismatches in all
three dynamical parameters (J, B and K) increased with
tremor severity, although mismatches in the effective
viscosity were evident only in subjects with severe tremor
(TAS = 3), (Figure 8A). By contrast, control subjects
showed no mismatch between the parameters characteriz-
ing internal and actual passive joint dynamics (two-tailed
Z < 1.9, p > .05 for each parameter).
Mismatches in inertia and stiffness also varied system-

atically with tremor power characterized using the spiral
tracing task (Figure 8B); In both cases, the relationship
was well approximated by a saturating exponential func-
tion (R2 > 0.73). By contrast, no systematic relationship
was observed between mismatches in viscosity and tremor
power (Figure 8B).

Pursuit tracking of step target displacements
We required subjects to perform a final tracking task to
characterize the impact of sensory feedback control defi-
cits on a reach and hold task similar to transporting a

Figure 7 Subject frequency response functions (FRFs) and model fits. (A) Magnitude of the FRF (colored traces) relating applied cursor
perturbation to corrective change in arm position for subject 4 with MS (TAS = 2; right) and the age-matched control subject (left). The best-fit
model for each subject is denoted by the solid black line. (B) Phase of the FRF (colored traces) with 95% confidence intervals (grey shading) for
subject 4 with MS (right) and age-matched control subject (left). The solid black line denotes the best-fit model to the subject’s magnitude FRF.
The grey line denotes the phase profile associated with the subject’s visual delay.
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cup of water along a tabletop. The task also enabled us
to compare movements generated by the subjects to
those predicted by the sensory feedback control model
of Figure 1. Subject and model performance were exam-
ined using measures of target acquisition time from the
onset of the step displacement and steady-state endpoint
error following the displacement. Control subjects’ per-
formance tended to cluster into one of two general task
strategies characterized by either larger endpoint errors
and faster response times or smaller endpoint errors and
slower (and more variable) response times (Figure 9;
note the two distinct peaks in the bivariate distribution
of control subjects’ performance represented by the dark
shading). For responses emphasizing speed of movement
(higher error, lower response time), 95% of trials took
less than 1200 ms to reach the target (Figure 9, top
shaded distribution) and resulted in an endpoint MSE’s
up to 0.02 degrees2. For responses emphasizing endpoint
accuracy, 95% of trials were completed within 2000 ms
with endpoint MSE’s less that 0.008 degrees2 (Figure 9,
bottom shaded distribution).

Subjects with MS exhibited similar trends in step-
tracking performance, with the exception that the four
subjects with high visual delays (Figure 9, dark red circles)
exhibited performances that fell outside the 95% confi-
dence interval bounds of the bivariate distribution of the
response times and endpoint MSEs exhibited by control
subjects. The subjects with high visual delays all had high
TAS and high tremor power. Three of the four subjects
(S4, S5, and S6) had significantly higher response times
when performing the step-tracking task. Endpoint MSE
was also increased, falling within the range of control
responses emphasizing speed over accuracy. The
fourth subject (S8) showed the reverse pattern with
an increase in endpoint MSE but no apparent in-
crease in response time. For all subjects with MS, the
corresponding performance of the best-fit model,
averaged across trials, is shown for comparison
(Figure 9, triangles). In all cases, model-predictions
underestimated actual response times and in all but
two cases, model-predictions over-estimated actual
terminal mean-squared errors.

Figure 8 Mismatch between predictive and actual limb dynamics. (A) Percent mismatch between predictive versus actual estimates of
passive joint dynamics (inertia, viscosity, stiffness) as a function of tremor severity (TAS score) in subjects with MS. The mismatch between actual
and predicted limb dynamics increased with tremor assessment score. Error bars denote ± SD of the bootstrap distribution. (B) Percent mismatch
between the parameters characterizing internal (predicted) and actual passive joint dynamics for subjects with MS (±SD), plotted against tremor
power characterized using the spiral-tracing task. Percent mismatch increased as a saturating function of with tremor magnitude (red) for inertia
and stiffness (R2 > 0.70; p < 0.01) but not for viscosity (R2 = 0.16; p = 0.32).
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Functional impact of mismatch between actual and
predictive limb dynamics
We examined the functional consequence of the mis-
match between actual and predictive arm dynamics in a
subsequent, post-hoc simulation analysis. For each MS
subject we performed two forward dynamic simulations
that characterized the model’s performance on the step
displacement task using (a) the best-fit model parameters,
including mismatches between actual and predictive limb
dynamics; and (b) “corrected” model parameters wherein
the predictive limb dynamics of the forward model were
forced to match the actual limb dynamical parameters.
Figure 10 shows representative results for a subject
with MS with moderate tremor (TAS = 2). Note how
the mismatch in limb dynamics actually decreased the
time to target acquisition and resulted in lower end-
point error.

Discussion
We used a multisensory model of sensory feedback con-
trol to individually characterize sources of sensorimotor
dysfunction in subjects with MS performing a series of
goal-directed stabilization and movement tasks about
the elbow. In contrast to the initial supposition that MS
might impact sensory feedback control uniquely in each
subject, the results suggest that upper extremity tremor

and dysmetria may result from systematic changes in
sensory feedback control. Specifically, subjects with mod-
erate to severe tremor (TAS ≥ 2) exhibited increased visual
response delays relative to normal control subjects. They
also exhibited systematic mismatches between predictions
of arm dynamics (vis-à-vis the forward model) and actual
arm dynamics which were not present in normal control
subjects; the degree of mismatch in subjects with MS cor-
related with tremor signal power measured in our spiral
tracing task. We also observed group-wise differences in
the integral and derivative gains of a generic model of the
neural feedback controller. Whereas the controller gain
parameters covaried with the dynamic properties (i.e.,
apparent viscosity and stiffness) of the musculoskeletal
system in normal control subjects, the derivative gain par-
ameter in subjects with MS correlated instead with the
visual delay. A comparison of actual and simulated
responses to step changes in desired performance
suggests that the apparent mismatch between subject
predictions of arm dynamics and actual arm dynamics
may actually serve to improve response times in sub-
jects with MS, despite their long visual delays. Taken
together, our results suggest that tremor and dysme-
tria in MS may be caused by a combination of two
factors: an inability of the brain to adequately adapt
to increases in the time required to process visual

Figure 9 Steady state error (degrees) vs. response time (ms) during a reach and hold task (step displacement). Shaded regions (dark,
medium, and light gray) denote the 50, 90, and 95% confidence intervals estimated from a mixture of Gaussians fit to control subjects’ response
across all trials. For subjects with MS, trial-averaged response times and MSEs are shown individually for clarity (filled circles). Dark red symbols
denote MS subjects with “high” (>3SD above the control mean) visual delays, and pink symbols denote MS subjects with “low” (<3SD) visual
delays. The average best-fit model performance to the same trials is also shown for each subject (filled triangles). Four subjects (all with “low”
visual delays) lie within the 95% CI for control subjects. Four subjects (all with “high” visual delays) lie outside the 95% CI for control subjects. In
all cases, the best-fit sensory feedback control model for subjects with MS (filled triangles) reacted more quickly to a target perturbation than the
subjects’ actual responses (filled circles).
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information related to movement and by compensa-
tory – but maladaptative – errors in predictions of
arm dynamics.
An increased visual delay such as the one observed

here is consistent with reductions in the conduction
speed of action potentials due to disease-induced demye-
lination in MS [47] and it agrees well with the increased
time required by MS subjects to perceive visual informa-
tion and perform visually-guided tasks [47-49]. Proprio-
ceptive conduction time in the lower extremities has
also been shown to increase in MS [50], although we did
not find a corresponding increase in proprioceptive re-
sponse delay for the upper extremity. This may be due to
the longer path length in the spinal cord for the transmis-
sion of motor control signals to the lower extremities.
Interestingly, the increased visual response delay in sub-

jects with MS was not accompanied by an increase in the
latency of submovements (i.e. their submovement inter-
val). Submovements have been used previously to study
impairments in movement control [51,52]. Current theor-
ies of intermittent control during goal-directed movement
associate individual submovements with discretization of
sensorimotor control, such that each submovement repre-
sents a complete “primitive” movement profile comprised
of movement planning, movement execution and sensory
feedback phases [42-45]. For the purpose of characterizing
feedback control in MS, we have assumed that the com-
bined time delays associated with these three submove-
ment phases form the basis of the expected response

delays characterized by the model (Figure 1). Correspond-
ingly, the submovement intervals measured experimen-
tally in response to corrective movements mediated by
visual or proprioceptive motion cues (Exp. 1a and 1b re-
spectively) reflect internal estimates of the open-loop sen-
sory processing delays. This interpretation is supported by
the consistent match in control subjects between visual
and proprioceptive response delays and the measured sub-
movement intervals (Figure 6B).
In subjects with MS, submovement interval and visual

response delay differed significantly in four of the eight
subjects, suggesting that they failed to adjust (or were
unable to adjust) their expectations of visual processing
delays to compensate for the full increase in visual pro-
cessing time resulting from the disease. A previous
study by Miall and Jackson has demonstrated that it is
possible to adapt to increases in extrinsic feedback de-
lays [46]. However, the visual delays seen here in sub-
jects with MS were markedly larger than those that
Miall and Jackson used to adapt their neurologically intact
subjects (<300 ms). Moreover, the delays experienced by
MS subjects reflect intrinsic, rather than extrinsic sources.
It is possible that intrinsic sources of delay may not en-
gage adaptive mechanisms that respond to task-specific
changes in the environment (cf. [53]).
Although continuous control models, such as the one

used here, make simplifying assumptions that neglect
the impact of intermittent feedforward control actions,
continuous control models have been shown to

Figure 10 Step response of the best-fit sensory feedback control model for subject 4 with moderate tremor (TAS = 2). Response for the
best-fit model containing a mismatch between the actual and expected elbow kinematics (black line) and for a model in which the actual and
expected kinematics are matched (gray line).
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accurately predict human performance in a variety of
single joint motor tasks that minimize the predictability
of environmental or target perturbations [30-33]. Add-
itional simplifications of our model include the use of a
1-D task to characterize movement control and the use
of a second-order musculoskeletal plant model. These
simplifications were made because the plant model of
the arm becomes much more complicated with the in-
clusion of additional joints or by including higher-order
models of muscle activation contraction dynamics [54].
We believe these simplifications are justified because the
bandwidth limitations of the plant are dominated by the
effects of the arm’s inertia and mechanical viscoelasticity
rather than by low-pass filter properties of the activa-
tion/contraction dynamics - at least in quasi-isometric
conditions such as the stabilization tasks studied here.
For subjects with MS, the pattern of mismatch in the

limb dynamics (stiffness and inertia) co-varied with tremor
assessment score and tremor power calculated from the
spiral-tracing task (Figure 8). This was despite marked dif-
ferences in task design; the model was characterized using
single-joint compensatory tracking movements with the
arm supported against gravity whereas the clinical assess-
ments and spiral tracing required the subject to generate
motion at multiple joints without arm support. Corres-
pondence in the results of these disparate tasks is to be ex-
pected; a disease-related increase in visual processing time
is expected to impact motor performance in any visuo-
motor task. The simulation results of Figure 10 suggest
that the observed mismatch between internal estimates of
plant dynamics and actual plant dynamics may actually
help subjects with moderate tremor reduce steady-state
movement error despite an inability to compensate for
long visual delays. This form of compensation would not
be unreasonable, particularly for adaptive mechanisms in
the brain that seek to minimize discrepancy between the
predicted and realized sensory consequences of actions
(cf. [55]). Uncompensated increases in visual delay would
yield lagged perceptions of arm position, compromising
limb state estimation [20]. Considering that a delay in the
limb’s response to descending motor commands also oc-
curs when the hand grasps an object that is heavier than
expected, an uncompensated lag in the visual perception
of limb motion could be misconstrued as an unexpected
increase in limb inertia. Therefore, increasing the internal
estimate of limb inertia (Figure 10) could, within narrow
limits, partially compensate the functional impact of in-
accurate predictions of sensory delay. Beyond those
limits, changes in the estimated limb dynamics could
lead to increased joint torque production (intended to
overcome an environmental load that is not in fact
present) and inappropriate compensatory responses to
the perceived error. This notion is consistent with the
suggestion that intention tremor in MS is due, in part,

to inaccurate voluntary corrections to errors in position
[48]. From a neurological standpoint, cerebellar damage,
which has been linked with tremor in previous studies
([16,17,56,57]), could degrade pathways necessary for ef-
fective sensorimotor adaptations, causing inappropriate
compensatory responses to become more likely, and ex-
acerbate tremor severity.
During the reach-and-hold task, subjects with MS

tended to move more slowly than the control subjects.
They also moved more slowly than the performance pre-
dicted by best-fit models of Figure 1. These results are
consistent with a favoring of accuracy over speed in the
pursuit tracking of step changes in target location and
may reflect a strategic choice by subjects to minimize
endpoint errors associated with delay and kinematic
mismatches. This bias toward accurate (rather than fast)
movements is not surprising since in many daily activ-
ities (e.g. eating, dressing) it is more important to bring
the hand accurately to a desired spatial location than to
do so with speed.
Our results suggest a possible reinterpretation of re-

sults of prior studies seeking to reduce tremor in MS.
Tasks which force subjects to adapt to novel force fields
or to perturbations [27-29] could allow subjects to “re-
set” maladaptive models and form a new model that is
better able to compensate for long visual delays. Our
results also suggest novel rehabilitative strategies for
reducing intention tremor in subjects with MS. We envi-
sion at least two possibilities: one approach would
require subjects to hold the handle of a rehabilitation
robot while making goal directed movements within a
simple virtual-reality environment. As training progresses,
subjects would be required to adapt to slowly-increasing
visuomotor delays while the robot would simulate mech-
anical loads that vary unpredictably from trial to trial, thus
discouraging compensatory mal-adaptation of musculo-
skeletal property estimates. We speculate that providing
practice in compensating for visuomotor delays while dis-
couraging adaptation of limb dynamics will favor appro-
priate adaptive compensations for physiological visual
processing delays, thereby mitigating tremor.
A second approach centers on the idea that the brain’s

effort to minimize performance error hinders the ability
to adapt to changes in the physiological visual delay.
That is, we speculate the presence of a non-monotonic
relationship between performance error and increases in
predictive delay such that small increases in predictive
delay would lead to increased errors, while large changes
in expected delay could lead to optimal performance.
This non-linear relationship may preclude the inherent
adaptive mechanisms from matching the predictive delay
to the true physiological delay. Rehabilitation under this
approach would involve using the feedback control
model (Figure 1) to identify and tailor the visual
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feedback to gradually shift the minimum performance
error to the actual visual delay [58].

Conclusion
The preliminary findings presented here demonstrate that
systems identification techniques provide an informative
framework for investigating how neuromotor disease af-
fects motor control and the neuromotor causes of motor
disability. Specifically, we have done so by examining defi-
cits in the neural processes underlying upper extremity
motor dysfunction in a small cohort of individuals with
clinical diagnoses of Multiple Sclerosis. We found evi-
dence that tremor and dysmetria may be caused by an in-
ability of the brain to adequately adapt to increases in the
time required to process visual information related to
movement as well as by compensatory mal-adaptations of
internal estimates of arm dynamics. Future studies should
seek to confirm the findings reported here with a larger
cohort of individuals with MS. Subsequent studies could
then seek effective ways to reduce intention tremor by
identifying strategies that mitigate motor instability due to
slowed visual processing caused by MS.

Appendix 1. Subtraction Analysis
A subtraction analysis was used to reduce the impact of
noise on the estimate of the subjects’ frequency response
function (FRF). For each trial, the relationship between
the input to the sensorimotor control system and joint
angle output can be expressed as:

θa sð Þ ¼ H sð Þ � X sð Þ þ N sð Þ
where X(s) is the power spectrum of the input – either
the torque or external perturbation – and N(s) is the
power spectrum of all noise sources combined. H(s)
is the transfer function relating the input X(s) to the
output θa(s). The sum of noise sources n(t) is as-
sumed to be zero mean and characterized by a nom-
inal spectrum N(s). In the frequency domain, the
addition of noise results in a frequency dependent
offset from the “true” FRF. This offset can be charac-
terized as a random variable Ni(s) with variance σn

2(s),
whose mean corresponds to the average noise
spectrum. To eliminate this offset, individual esti-
mates of the FRF were obtained by pair-wise subtrac-
tion of the trial-wise input and output spectra. For a
pair of trials,

θa1 sð Þ ¼ H sð Þ � X1 sð Þ þ N1 sð Þ
θa2 sð Þ ¼ H sð Þ � X2 sð Þ þ N2 sð Þ

subtraction yields

θa1 sð Þ−θa2 sð Þ ¼ H sð Þ � X1 sð Þ−X2 sð Þð Þ þ N1 sð Þ−N2 sð Þð Þ

so that the nominal noise spectrum is removed and the
variance is now centered around 0. Rearranging this
equation, we get:

H sð Þ ¼ θa1 sð Þ−θa2 sð Þ
X1 sð Þ−X2 sð Þ þ

N2 sð Þ−N1 sð Þ
X1 sð Þ−X2 sð Þ

where the first term characterizes the difference FRF of
the system and second reflects the contribution due to
noise. The frequency response due to noise has zero
mean and variance σ2n=σ

2
X .

The transfer function for the system, H(s), was esti-
mated by taking the average of the difference FRFs across
all pair-wise trial combinations (i, j),

H sð Þ≅FRF sð Þ ¼ 1
M

XN
i¼1

X
j ¼ 2
j > i

N θai sð Þ−θaj sð Þ
Xi sð Þ−Xj sð Þ

where M is the number of pairwise trial combinations
and the contribution of the (zero-mean) noise spectrum
decreases as the inverse square root of M.
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