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Abstract 
Adequate rebar-concrete bonding is crucial to ensure the reliable performance of reinforced concrete (RC) 
structures. Many factors such as the concrete properties, concrete cover depth, transverse reinforcement, and 
the presence of corrosion will affect the bond behavior, and consequently, the structural performance. While 
many prior studies have focused on the influence of the aforementioned factors on the bond strength, the 
impact of these factors on the bond failure mode has not been thoroughly investigated. A probabilistic bond 
failure mode prediction model that considers various influencing factors including loading type and corrosion is 
developed in this study. This study uses the bond testing results of 132 beam-end specimens subjected to 
monotonic and cyclic loading and adopts classification methods to develop the prediction model, which is then 
used to evaluate the impact of bond behavior on the reliability of a RC beam with a lap splice. 

http://doi.org/10.1016/j.engstruct.2021.11194
http://epublications.marquette.edu/
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1. Introduction 
Reinforced concrete (RC) is a widely used construction material for civil structures like bridges [1], [2], 
buildings [3], and dams [4]. As the bond between rebar and concrete (i.e., rebar–concrete interaction) is meant 
to ensure the transformation of force between the rebar and concrete, bond behavior directly impacts the 
structure load-carrying capacity and failure mode. This bond is known to be influenced by many factors such as 
the concrete properties, transverse reinforcement, the ratio of concrete cover to rebar size, loading type, and 
rebar corrosion. Many researchers have studied how those influencing factors affect the bond strength, through 
which impact structural performance [5], [6], [7], [8], [9], [10], [11], [12], [13]. 

Another aspect of bond behavior that is also crucial for determining the performance of RC structures is the 
bond failure mode. Based on ACI [14], there are two distinguished bond failure mode: pull-out and splitting 
failure. Pull-out bond failure occurs when there is sufficient confinement and/or concrete cover to prevent 
concrete splitting and restrain crack growth, resulting in the shearing of concrete between ribs. Splitting failure 
occurs when confinement or cover is not provided adequately to achieve the complete pull-out strength. In 
splitting failure, the deformation-bearing forces cause splitting that spreads through the sides of the member 
and makes the concrete to lose its bonding and cover. 

In contrast to bond strength, the bond failure mode has not been well studied, especially in the presence of 
corrosion and/or under cyclic loading. Both ACI [14] criteria and CEB [15] use bar size, concrete cover, and 
confinement of transverse stirrups to determine the bond failure mode. Cucchiara et al. [16] and Zandi Hanjari 
et al. [17] examined the impact of the existence of the stirrups on the failure mode. Kivell [5] observed that 
specimens with high levels of corrosion (more than 12%) or under cyclic loading have more tendency to fail in 
pull-out. Soraghi and Huang [7] developed models for predicting the bond failure mode using logistic and lasso 
classification algorithms to consider various influence factors including the presence of transverse stirrups, cover 
to rebar diameter ratio, the level of corrosion, and the loading type. 

This study develops probabilistic prediction models of bond failure mode based on classification methods and 
examines the importance of bond failure mode prediction in the structure performance evaluation. The model 
development uses the results from a comprehensive experimental testing where various influencing factors are 
considered, including compressive strength of concrete, ratio of concrete cover to rebar diameter ratio, 
confinement of transverse stirrups, corrosion level, and loading type. 

In this paper, the bond tests conducted on a set of beam-end specimens are described first, next the 
probabilistic models based on various classification methods are developed, and then the prediction accuracy of 
the models is compared. Lastly, a case study is presented using the developed bond failure mode prediction 
model to examine how the bond impacts the flexural performance of an RC beam with a lap splice under various 
corrosion levels based on the reliability analysis. 

2. Experimental program 
2.1. Specimen design and details 
A set of beam-end specimens are designed to investigate the intact and corroded rebar bond behavior under 
monotonic and cyclic loading. The design of the specimens are based on four parameters that found to be 
influencing bond behavior according to the findings of previous studies (e.g., [7], [13], [18], [19]) and they are: 



concrete compressive strength (f′c), cover size to rebar diameter ratio (c/d), corrosion level (Q), and transverse 
rebar confinement that can be quantified by an index value, Ktr [20], as shown below: 

(1) 

𝐾𝐾𝑡𝑡𝑡𝑡 =
𝑓𝑓𝑦𝑦,𝑡𝑡𝑡𝑡 · 𝐴𝐴𝑡𝑡𝑡𝑡

4136.85 · 𝑑𝑑𝑏𝑏 · 𝑠𝑠
 

where fy,tr is the yield strength of transverse reinforcement (kN/m2), Atr is the transverse reinforcement area 
(m2), db is the diameter of intact rebar (m), and s is the spacing of the transverse reinforcement (m). The detailed 
specification for each specimen is provided in Table A1, Table A2, Table A3 in Appendix A. Table 1 summarizes 
the ranges of the design parameters. The specimens are classified into three groups (as shown in Table 1) based 
on the three designated concrete compressive strength levels: 25 MPa, 35 MPa, and 45 MPa (corresponding to 
measured averages of 27 MPa, 36 MPa, and 43 MPa, respectively, obtained in the cylinder tests). Each of the 
three groups consists of 44 beam-end specimens; thus, 132 specimens are tested. The level of corrosion, Q, is 
the percentage of mass reduction of the reinforcement in the bonded region. Group 1 consists of 22 corroded 
specimens with the designed Q ranging from 5% to 20% (corresponding to measured Q of 3.2% to 15.6% after 
load testing was completed) and 12 intact specimens (Q = 0%). Group 2 consists of 38 corroded specimens with 
the designed Q ranging from 5% to 15% (corresponding to measured Q of 4.93% to 19.08% after testing was 
completed) and 6 intact specimens. Group 3 also consists of 38 corroded specimens with designed Q ranging 
from 5% to 15% (corresponding to measured Q of 3.74% to 16.85% after load testing was completed) and 6 
intact specimens. 



Table 1. Summary of design parameters of testing specimens. 
Group f′c (MPa)  No. of 

specimens 
(Imperial rebar 
size) 

  No. of 
specimens 
(Loading 
type*) 

 No. of intact 
specimens 

Corroded 
specimens w/ 
corrosion, Q (%) 

 c/d Ktr 

 
Target Actual 

 
  

 
 

 
Target Actual 

  

1 25 27 16 (#5) 16 
(#6) 

12 
(#8) 

18 (M) 26 
(C) 

12 5–20 3.2–15.6 1.3–4.8 0 or 
3.6–5.8 

2 35 36 16 (#5) 16 
(#6) 

12 
(#8) 

22 (M) 22 
(C) 

6 5–15 4.93–19.0 
 

7.3–
11.7 

3 45 43 16 (#5) 16 
(#6) 

12 
(#8) 

22 (M) 22 
(C) 

6 5–15 3.74–16.8 
 

7.3–
11.7 

*(M) Monotonic, and (C) cyclic. 

 



Specimens in each group use three sizes of reinforcement bars: #5 bars (db = 15.875 mm), #6 bars 
(db = 19.05 mm), and #8 bars (db = 25.4 mm). Among the 44 specimens in Group 1, 22 have transverse stirrups 
with Ktr values ranging from 3.68 to 5.89, and the remaining 22 specimens have no transverse stirrups 
(i.e., Ktr = 0). All specimens in Groups 2 and 3 have transverse stirrups to increase the chance of pull-out failure, 
with Ktr values ranging from 7.3 to 11.7. For loading type, in Group 1, 18 of the specimens are tested under 
monotonic loading, while 26 specimens are tested under cyclic loading; in groups 2 and 3, 22 specimens in each 
group have monotonic loading and the other 22 specimens have cyclic loading. 

Dimensions and reinforcement detailing for the designed beam-end specimens are shown in Fig. 1(a), and Fig. 
1(b) shows an actual casted beam-end specimen. All specimens are 508 mm × 381 mm × 190.5 mm. All 
transverse, parallel, and longitudinal reinforcements are #3 rebar with a diameter of 76.2 mm. All the 
reinforcements are coated with epoxy to prevent corrosion except for the test bar. The test bar is covered by 
PVC pipes at the two ends within the concrete. The middle bonded region of the test bar that is not covered by 
PVC pipe has a bonded length, lb, as shown in Fig. 1(a), and lb = 88.9 mm, 114.3 mm, and 152.4 mm are adopted 
for the specimens with rebar sizes of #5, #6, and #8, respectively. These bonded lengths are chosen to prevent 
rebar tensile yielding prior to bond failure, to ensure a relatively uniform distribution of bond stress [13], and 
prevent conical failure of the specimens [21]. The yield strength, Fy, and ultimate strength, Fu, of rebar are 
420 MPa and 600 MPa, respectively, regardless of the rebar size. 

Fig. 1. Beam-end specimens: (a) schematic design and (b) as-casted beam-end specimen. 
 

To accelerate corrosion on the test bar, sodium chloride (NaCl) was added to the concrete before it was poured 
into the specimen molds. The amount of salt (NaCl) in the concrete is calculated based on 3.75% weight of 
cement as is suggested by previous researchers [22], [23] to achieve accelerated corrosion. 

2.2. Corrosion process 
Accelerated corrosion is achieved by applying current to the test bar. The designed corrosion level can be 
calculated as: 

(2) 

𝑄𝑄 =
Δ𝑀𝑀

𝛾𝛾 · 𝑙𝑙𝑏𝑏 · 𝐴𝐴𝑏𝑏0
× 100% 

where ΔM (grams) is the change in mass of the rebar due to corrosion; γ = 7.86 gr/cm3 is the density of iron, lb is 
the corroded length (or bond length), and Ab0 refers to the intact cross-sectional area of rebar. With a desired 
level of Q, ΔM can be estimated based on Eq. (2). Then the accelerated corrosion time, T, during which the 
current needs to be applied can be calculated to achieve the desired corrosion level based on Faraday’s law [24] 



(3)  

𝑇𝑇 =
Δ𝑀𝑀 · 𝑍𝑍 · 𝐹𝐹
𝐴𝐴 · 𝐼𝐼

 

where A = 56 g referring to the atomic weight of iron; I is current (Amp); Z = 2 is the valency number of ions of 
the substance, Fe, and F = 96500 (Amp⋅sec), which is referred to as Faraday’s constant. 

After casting, the specimens are cured with sufficient humidity [25]. In this study, all specimens are kept in the 
designed humidity tents (schematically shown in Fig. 2(a)) for curing as well as corroding. The corrosion setup 
(schematically shown in Fig. 2(b)) is designed to allow power supplies to be connected to the specimens to 
supply the required current for accelerating corrosion while keeping the specimens in the humidity tents. The 
corrosion setup uses a parallel circuit system where the rebar serves as the anode, while a stainless steel plate 
that was located underneath the specimen (mostly underneath the bonded region) acts as the cathode [26]. The 
parallel system allows specimen(s) to be removed without stopping the current that runs through the other 
specimens, and such a setup is necessary, as each specimen is designed for different corrosion levels and 
requires a different corrosion time. In addition, the parallel system allows the use of power supplies with lower 
voltage compared to a setup using a series circuit system. 

Fig. 2. Schematic view of (a) humidity tents and (b) corrosion setup. 
 

2.3. Test setup 
Monotonic and cyclic testing are performed to study the corrosion impact on bond behavior. Utilizing the testing 
frame that is securely mounted on a rigid floor in the testing lab, a vertical test setup is designed for this study 
based on ASTM A944-10 and a previous study by Bandelt and Billington [27] where the applied loading on beam-
end specimens is in a vertical direction as well. Fig. 3(a) and 3(b) are a schematic of the setup that shows the 
boundary conditions and a 3D-rendering view of the setup, respectively. It should be noted that the roller/pin 
supports were provided at six locations, where three supports react (shown in solid arrows) when the rebar is 
under tension and the other three supports react (shown in dashed arrows) when the rebar is under 
compression, as shown in Fig. 3(a). Fig. 3(c) and (d) show the testing frame and the laboratory test setup, 
respectively. 



Fig. 3. (a) Boundary conditions of testing specimen; (b) 3D rendering view of test setup; (c) testing frame, (d) 
laboratory test setup. 
 

A 245-kN actuator is secured to the testing frame in a vertical position; a threaded rod is welded to the test bar 
and the specimen connects to the actuator through a special connection designed particularly for this test. 
Rebar slippage is measured according to ASTM standard A944-10 [28] using linear variable differential 
transducers (LVDTs) at the free-end of the specimen. The LVDTs are mounted on the bottom of the concrete as 
shown in Fig. 3(a) such that the slippage of the rebar relative to the bottom of the concrete could be measured. 

To accomplish the testing, it is necessary to first determine the loading procedure and loading rate. ASTM 
standard 944-10 [28] specifies that a loading rate between 10% and 33% of the predicted rupture force be 
reached within one minute. However, this rate is too fast to allow recording the critical points during the failure 
process, particularly the point at which the rupture force occurs (i.e., the bond strength is achieved). Thus, the 
loading rate is recalculated in such a way that the rupture force will not occur in less than three minutes. 
Accordingly, all monotonic specimens are tested in displacement-control with a rate equal to 0.005 mm/sec 
(that is, 1.3 mm per 3 min). Fig. 4(a) shows an actuator force-displacement diagram under monotonic loading, 
where Fr is the rupture force and Δr is the displacement of the actuator at rupture. 



 
Fig. 4. (a) Actuator force and displacement diagram under monotonic loading and (b) cyclic loading protocol. 
 

As ASTM standard 944-10 does not specify the cyclic loading procedure for bond testing, the procedure used in 
Kivell [5] is adopted in this study. Fig. 4(b) shows the adopted cyclic loading protocol consists of three sets of 
cycles, where Fr and Δr are extracted from the corresponding monotonic curve (Fig. 4(a)). 

In the cyclic loading, the first set of cycles are force-controlled with a maximum force of 0.5Fr; the other two sets 
of cycles are displacement-controlled with maximum displacements of 1.0Δr and 1.5Δr, respectively. The first set 
is mainly used for weakening the bond, while the second and third sets of cycles are designed to break the bond 
and capture the behavior after exceeding the bond strength. For the force-controlled cycles, the loading rate is 
10%Fr ~ 33%Fr per minute; for the displacement-controlled cycles, the displacement rate is 10%Δr ~ 33%Δr per 
minute. 

2.4. Experimental results and discussion 
After testing is complete, the monotonic and cyclic bond behaviors of all specimens are obtained. The work 
presented in this paper focuses on the prediction of the failure modes; the study on the other bond 
characteristics (e.g., bond strength) will be presented in future papers. Two distinct failure modes, pull-out and 
splitting failure are observed, and the failure modes for each specimen are summarized in Table A1, Table 
A2, Table A3 in Appendix A, where failure mode “P” refers to the pull-out failure and “S” is the splitting failure. 
However, there were 12 specimens whose failure modes were not distinguishable due to various reasons (e.g., 
the actuator reached its force capacity before the bond failure occurred); these specimens are marked as “NA” 
in failure mode. Fig. 5 shows the typical actuator force-displacement diagrams under monotonic or cyclic loading 
with splitting or pull-out failure modes. A common feature of splitting failure under either monotonic or cyclic 
loading is the sudden drop in force when the specimen reaches its rupture force, followed by observing large 
surface and/or sides cracks on the specimen. 



Fig. 5. Typical actuator force-displacement (a) under monotonic loading with pull-out failure, (b) under 
monotonic loading with splitting failure, (c) under cyclic loading with pull-out failure, and (d) under cyclic loading 
with splitting failure. 
 

In addition, different crack patterns are observed for the two failure modes. Fig. 6 shows typical crack patterns 
for pull-out and splitting failure modes, and Fig. 7 presents a schematic view of crack patterns for each mode of 
failure. Generally, with splitting failure, not only the surface of the specimen is crushed, but at least one crack is 
initiated from the testing rebar as shown in Fig. 7(a). This is because such surface cracks are propagated from 
the radial splitting of the concrete due to the wedge action of the test bar ribs when the bond fails in splitting. 
However, with pull-out failure, the cracks do not initiate from the testing rebar (as shown in Fig. 7(b)), as there is 
sufficient confinement to restrain the concrete surrounding the rebar from splitting. Darwin and 
Graham [21] also found that splitting failure (which was the only failure mode observed in their specimens) have 
some crack patterns based on the presence of transverse stirrups as well as on the cover size, which is 
consistent with the splitting mode cracking patterns observed in this study. Thus, identifying the cracking 
pattern could help to determine the failure mode. 

 
Fig. 6. A typical cracking pattern for (a) splitting failure mode and (b) pull-out failure mode. 



Fig. 7. Schematic view of crack patterns formed on the test specimens after failure: (a) splitting failure mode and 
(b) pull-out failure mode. 
 

3. Probabilistic prediction model for bond failure mode 
In this section, existing deterministic models for bond failure mode and various classification algorithms are 
reviewed. The logistic and lasso classification algorithms used in the model development are described, and the 
performances of the various prediction models are compared based on the experimental data. 

3.1. Existing deterministic models 
In the literature, very few models are available for predicting RC bond failure modes. If let Y = 1 and Y = 0 
represent pull-out and splitting bond failure, respectively, the prediction by CEB criteria can be written as [15]: 

(4a) 

𝑌𝑌 = �
1 𝑐𝑐 ⩾ 5𝑑𝑑𝑏𝑏
0 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 2.0&c𝑚𝑚𝑚𝑚𝑚𝑚 = db&db ⩽ 20mm&Ktr,CEB = 2% 

where cmax = max{cx,csi} and cmin = min{cx,cy,csi}, in which cx and cy are the concrete cover toward the horizontal 
and vertical edges, respectively, and csi is the half of the center-to-center test bar spacing (if more than one test 
bar is implemented); Ktr,CEB = Atr/(nb·db·s), in which nb is the number of anchored test bars. However, it is obvious 
that conditions for splitting failure (i.e., cmax/cmin = 2.0, cmin = db and Ktr,CEB = 2%) are very strict, which makes 
these CEB criteria almost inapplicable. Thus, instead of using the CEB criteria literally, the “equal” sign in the 
expressions may be interpreted to be “no larger than”, and the logical operator between the expressions be 
interpreted to be “or”, rather than “and”. Also, for the cases that do not satisfy both pull-out and splitting 
conditions of the CEB criteria, the prediction can be treated as “unknown”. Thus, the CEB criteria is interpreted 
as follows in this study: 

(4b) 

𝑌𝑌 = �
1
0

unknown

𝑐𝑐 ⩾ 5𝑑𝑑𝑏𝑏
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
⩽ 2.0or𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ⩽ 𝑑𝑑𝑏𝑏or𝑑𝑑𝑏𝑏 ⩽ 20mmor𝐾𝐾𝑡𝑡𝑡𝑡,CEB ⩽ 2%

otherwise

 



Meanwhile, ACI [29] uses the following criteria for the bond failure mode prediction: 

(5) 

𝑌𝑌 = �
1�𝑐𝑐 + 𝐾𝐾𝑡𝑡𝑡𝑡,ACI/𝑑𝑑𝑏𝑏� ⩾ 2.5
0�𝑐𝑐 + 𝐾𝐾𝑡𝑡𝑡𝑡,ACI/𝑑𝑑𝑏𝑏� < 2.5

 

where Ktr,ACI = Atr·fy,tr/(1500·s·nb). 

The two prediction models shown above are deterministic based; thus, uncertainty is not considered. More 
importantly, these two models do not holistically consider all the parameters that might influence the bond 
failure mode, such as corrosion and loading types. 

3.2. Classification algorithms 
Supervised machine learning techniques (i.e. regression and classification) are extensively implemented in 
engineering purposes for response estimation. Whilst the regression algorithm is appropriate for continuous 
response prediction, the classification algorithm is suitable for categorical responses such as failure modes [30]. 
In this study, classification methods are used to develop probabilistic models based on all the influencing 
parameters. In the following, a brief description of the classification algorithms of logistic and lasso classification 
is described, and other classification algorithms adopted in this research is provided in Appendix B. 

3.2.1. Logistic classification 
The logistic classification algorithm evaluates the relationship between independent variables and dependent 
variables (i.e., categorical response) using a logistic function. The binary response, Y, refers to the bond failure 
mode and is defined as the same as before: Y = 1 for pull-out and Y = 0 for splitting. The formulation for logistic 
classification to estimate the probability of pull-out failure is shown as: 

(6) 

𝑃𝑃𝑃𝑃(𝑌𝑌 = 1|𝐱𝐱) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0 + ∑𝑚𝑚𝑖𝑖=1 𝛽𝛽𝑖𝑖𝐱𝐱𝑖𝑖)

1 + 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽0 + ∑𝑚𝑚𝑖𝑖=1 𝛽𝛽𝑖𝑖𝐱𝐱𝑖𝑖�
 

where x = {xi}, in which xi are the independent variables selected, m is the number of independent variables 
used, and β0 and {βi} are the coefficients for logistic classification that can be obtained using the maximum 
likelihood technique [31] through a likelihood function as: 

(7) 

𝑙𝑙(𝛃𝛃) = ��𝑦𝑦𝑗𝑗𝛃𝛃T𝐱𝐱
~
𝑗𝑗 − 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝑒𝑒𝑒𝑒𝑒𝑒�𝐱𝐱

~
𝑗𝑗𝛃𝛃���

𝑁𝑁

𝑗𝑗=1

 

where the subscript j refers to the jth observation data, xj = {1 x}T, and β = {β0 β1 β2 … βm}T. As Y is a binary 
variable, then P(Y = 0|x) = 1 − P (Y = 1|x). It should be noted that the deviance of the fitted model is proportional 
to −log[l(β)]; accordingly, by maximizing l(β) for the β evaluation, the deviance will be minimized. 

3.2.2. Lasso classification 
While the lasso classification uses the same formulation (shown in Eq. (6)) as the logistic algorithm, the way to 
evaluate the model parameters is different. Lasso classification requires a constraint on the coefficients in the 
maximum likelihood evaluation, which can be expressed as: 

(8) 



𝑙𝑙(𝛃𝛃) = ��𝑦𝑦𝑗𝑗𝛃𝛃T𝐱𝐱𝑗𝑗 − 𝑙𝑙𝑙𝑙�1 + 𝑒𝑒𝑒𝑒𝑒𝑒�𝐱𝐱𝑗𝑗𝛃𝛃�� − 𝜆𝜆�|𝛽𝛽𝑖𝑖|
𝑝𝑝

𝑖𝑖=0

�

𝑁𝑁

𝑗𝑗=1

 

where λ is a penalty factor also known as the constraint. Lasso classification stabilizes a system by applying a 
cost of the sum of absolute values of the coefficients. This is called sparse regularization to constrain over-fitting 
and is conducted using the lassoglm function in MATLAB by which the deviance will be minimized in order to 
estimate the model parameters in Eq. (8). Lasso classification is a more desirable technique when working with a 
relatively small size of data, or when there is a correlation between independent variables [32], and lasso’s 
strength is to reduce the fitted model deviance without substantially increasing the prediction bias. 

3.3. Model development 
From an engineering perspective, logistic and lasso classification are capable of providing explicit formulations. 
For this reason, both methods are used in developing the probabilistic model. Other methods, including the two 
deterministic models and other classification algorithms (i.e., decision tree, discriminant analysis, K-nearest 
neighbors, Naïve-Bayes, random forest, and support vector machine) that are described in Appendix B, will be 
assessed in terms of their model prediction accuracy. 

3.3.1. Independent variables selected for the models 
To develop the failure mode prediction models based on Eq. (6), a preliminary analysis needs to be performed 
first to select the potential variable xi [33]. Next, a model selection procedure is used to delete the independent 
variables that are not contributing significantly to the model prediction. 

In this study, the variables showing the potential impacts on the failure mode (Y) are: f′c, c/d, Ktr, Q, and MC, 
where MC is a dummy variable defined as: 

(9) 

𝑀𝑀𝑀𝑀 = �12
monotonicloading

cyclicloading  

In addition, the linear interactions among these five variables are also examined via scatter plots. As an 
example, Fig. 8(a) and 8(b) show the scatter plots of Ktr and c/d versus the actual response y, respectively; 
and Fig. 8(c) shows the interaction term, Ktr⋅c/d, versus y with a fitted logistic curve. These three plots in Fig. 
8 show that although the individual variables might not contribute to the failure mode prediction, their 
interaction might. Table 2 lists all the potential variables, xi, used in Eq. (6) for the model development using 
logistic and lasso classification. 



Fig. 8. Example of a scatter plot of failure mode for terms (a) c/d, (b) Ktr, and (c) logistic curve for their 
interaction term (Ktr⋅c/d). 
 

Table 2. Potential variables used for model development. 
Term types xi     
Single variable f′c c/d Ktr Q MC 
Interaction of 2 variables Ktr⋅c/d Ktr⋅Q Ktr·f′c Ktr⋅MC c/d⋅Q  

c/d⋅MC c/d·f′c Q⋅MC Q·f′c MC·f′c 
Interaction of 3 variables Ktr⋅c/d⋅Q Ktr⋅Q⋅MC Ktr⋅c/d⋅MC Ktr·c/d·f′c Ktr·Q·f′c  

Ktr·MC·f′c c/d⋅Q⋅MC c/d·Q·f′c c/d·MC·f′c Q·MC·f′c 
Interaction of 4 variables Ktr⋅c/d⋅Q⋅MC Ktr·c/d·Q·f′c Ktr·c/d·MC·f′c Ktr·Q·MC·f′c c/d·Q·MC·f′c 
Interaction of 5 variables Ktr·c/d·Q·MC·f′c     

 

3.3.2. Model prediction accuracy 
Different quantities are adopted to measure the performance of the developed models, such as the mean 
absolute error of prediction, MAE: 

(10)  

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
=
∑ |𝑒𝑒𝑖𝑖|𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 

where 𝑦𝑦�𝑖𝑖  is the prediction, yi is the true value, and n is the number of data points. Another way to measure 
prediction accuracy is the hit-or-miss approach. Using the prediction probability formula from Eq. (6) and opting 
a threshold level of α (that is set to be 50% in this study), then P(Y = 1|x) ≥ α indicates a pull-out failure 
and P(Y = 1|x) < α indicates a splitting failure. Accordingly, based on the correct or wrong prediction of the 
failure mode, there are four possible outcomes as shown in Table 3: true positive (TP) and true negative (TN) as 
the correct detections, and false positive (FP) and false negative (FN) as the false detections. Then the 
probability of correct detection, PCD, as a measure of model prediction accuracy, can be calculated using the 
number of TP tests (nTP), the number of TN tests (nTN), and the total number of tests (ntotal): 

(11) 

𝑃𝑃𝐶𝐶𝐶𝐶 =
𝑛𝑛𝑇𝑇𝑇𝑇 + 𝑛𝑛𝑇𝑇𝑇𝑇
𝑛𝑛𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 

Table 3. Four possible prediction outcomes. 



Failure mode Predicted to be pull-out Predicted to be splitting 
Pull-out 
(Y = 1) 

True positive 
(TP) 

False negative 
(FN) 

Splitting 
(Y = 0) 

False positive 
(FP) 

True negative 
(TN) 

 

Similar measurements can be used for pull-out and splitting failure mode, separately, as follows: 

(12) 

𝑃𝑃𝐶𝐶𝐶𝐶,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑛𝑛𝑇𝑇𝑇𝑇

𝑛𝑛𝑇𝑇𝑇𝑇 + 𝑛𝑛𝐹𝐹𝐹𝐹
=

𝑛𝑛𝑇𝑇𝑇𝑇
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑜𝑜𝑜𝑜𝑜𝑜

 

And 

(13) 

𝑃𝑃𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑛𝑛𝑇𝑇𝑇𝑇

𝑛𝑛𝑇𝑇𝑇𝑇 + 𝑛𝑛𝐹𝐹𝐹𝐹
=

𝑛𝑛𝑇𝑇𝑇𝑇
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

3.3.3. Model selection 
When using all the 31 variables (listed in Table 2) in Eq. (6), the model is considered as a full model with a model 
size of 31. For logistic classification, a model selection is performed to the full model to remove the variables 
with insignificant contributions to the model prediction. In particular, the all possible subset approach [34] is 
adopted in which all potential combinations of xi are first formulated for every reduced model size (ranging from 
1 to 30), which will result in more than two billion possible models. To keep the model practical, the maximum 
model size is capped at four (i.e., four variables in a model), which also greatly reduces the computational time. 
Accordingly, all subsets with model size of five and above are excluded. 

In addition, the models with any model parameters having p-values greater than 10% and variance inflation 
factors (VIFs) greater than 10 are treated as invalid and are eliminated. Statistical measurements such as R-
squared (R-sq), adjusted R-squared (Adj-R-sq), and Akaike information criterion (AIC) are then used for each 
model size to evaluate the performance of models. 

Models with the highest R-sq and Adj-R-sq or the lowest AIC are the most favorable model for a specific model 
size. The most favorable models from each subset are then compared to determine the final model. It is noted 
that different statistical measurements (Adj-R-sq, R-sq, and AIC) may result in a different best model. 

The most desirable models for various model sizes are shown in Table 4. MAE and PCD are also calculated to 
compare the performance of those models. It can be observed that the model with a model size of 4 has 
improved accuracy regarding R-sq and Adj-R-sq; the model with a model size of 3 has the same accuracy in 
terms of MAE and slightly improved accuracy regarding PCD. Thus, the smaller model size is preferred, and z in 
Eq. (6) for logistic regression is written as: 

(14) 

𝑧𝑧 = 𝛽𝛽0 + 𝛽𝛽1(𝑐𝑐/𝑑𝑑 · 𝑄𝑄) + 𝛽𝛽2(𝑓𝑓𝑐𝑐′ · 𝑐𝑐/𝑑𝑑) + 𝛽𝛽3(𝑄𝑄 · 𝑀𝑀𝑀𝑀 · 𝑓𝑓𝑐𝑐′) 

Table 4. Statistics summary for the top three logistic classification models for each model size. 
Model 
size 

Independent 
variables 

   R-
sq (%) 

Adj-R-
sq (%) 

AIC MAE PCD (%) 

1 c/d·MC·f′c    21 20 13.4 0.48 66 



2 c/d·f′c MC·f′c 
  

30 27 124.8 0.42 75 
3 c/d·Q c/d·f′ Q·MC⋅f′c 

 
32 30 123.3 0.33 79 

4 MC c/d·fc′ Ktr·Q·MC Q·MC·fc′ 35.2 32 122.5 0.33 78 
 

The statistics of the model coefficients in Eq. (14) are summarized in Table 5. 

Table 5. Logistic model coefficients. 
Model coefficients β0 

(Intercept) 
β1 
(c/d·Q) 

β2 
(c/d·fc′) 

β3 
(Q·MC⋅f′c) 

Mean −3.46 −4.00 +0.031 0.65 
Standard deviation 0.81 1.62 0.008 0.14 
Coefficient of variation −0.23 −0.40 0.25 0.21 

 

The method of cross-validation is used to train and validate the lasso model. Cross-validation method divides 
train set into m folds (10 folds is used in this research), then the model parameters are evaluated through a 
subsequence manner for various penalty factor values (λ), meaning that in the sparse regularization the 
independent variables having a corresponding coefficient of zero are eliminated for a given penalty factor value. 
Hence there will be a subsequence of models having different model sizes associated with the continuance of 
the penalty factor value. The model with the minimum average deviance plus one standard deviation is 
suggested to be the final model [32], since this model will balance the prediction that is measured by deviance 
as opposed to false discovery. 

Since the method of cross-validation randomly divides data, there is a possibility that each analysis leads to a 
different result. Thus, the analyses are performed multiple times on the total dataset (100 times in this study). 
The variables selected at the end of each analysis that appear most frequently among all the repetition is the 
one selected as the final term. As the result of the multiple analyses conducted in this study, four terms appear 
most frequently: three terms (i.e., c/d⋅f′c, MC⋅f′c, Q·MC·f′c) appear in all analyses, and one term (i.e., Ktr·c/d·f′c) 
appear in half of the analyses. However, when using all these four terms, the accuracy of the resulting model 
was found to be lower than that for a model using only three terms (i.e., c/d⋅f′c, MC⋅f′c, Q·MC·f′c); thus, Ktr·c/d·f′c, 
is excluded. Accordingly, based on lasso classification, z in Eq. (6) can be written as:  

(15)  

𝑧𝑧 = 𝛽𝛽0 + 𝛽𝛽1(𝑐𝑐/𝑑𝑑 · 𝑓𝑓𝑐𝑐′) + 𝛽𝛽2(𝑀𝑀𝑀𝑀 · 𝑓𝑓𝑐𝑐′) + 𝛽𝛽3(𝑄𝑄 · 𝑀𝑀𝑀𝑀 · 𝑓𝑓𝑐𝑐′) 

The estimated model coefficients in Eq. (15) are provided in Table 6. 

Table 6. Lasso model coefficients. 
Model coefficients β0 

(Intercept) 
β1 
(MC⋅f′c) 

β2 
(c/d⋅f′c) 

β3 
(Q·MC·f′c) 

Mean −4.5 0.049 0.014 0.0194 
Standard deviation 0.26 0.003 0.001 0.019 
Coefficient of variation −0.06 0.06 0.08 0.97 

 

3.4. Model comparison 
Using either logistic or lasso classification, both Eq. (14) and Eq. (15) suggest that four independent variables 
contribute to the failure mode prediction: f′c, c/d, Q, and MC. It is worthy to understand how these four 
variables contribute to the bond failure mode. Recall that splitting bond failure involves the radial splitting of the 



concrete cover by the wedge action of the bar ribs, while pull-out bond failure mainly involves the shearing of 
the bar against the surrounding concrete. As concrete compressive strength, f′c, is directly correlated to concrete 
tensile splitting resistance and shearing cracking resistance, it is not surprising that f′c is selected in the proposed 
formulation. Cover to rebar diameter ratio, c/d, was found in many previous literature as an important factor to 
affect failure mode [35], [36], [37], [38], as it measures the confinement around the test bars that could help 
effectively prevent the splitting cracking in concrete. 

The impact of corrosion of rebar, Q, on the bond failure mode, on the other hand, changes the failure mode by 
changing the interactive effect of ribs and concrete. The produced layer of rust (i.e., steel oxidizes) within the 
gap between rebar and concrete could act as a lubricant and thus alter the failure mode, mostly from splitting to 
pull-out [5], [6]. Lastly, the loading type of the specimen, monotonic and cyclic, MC, was also found to be a 
contributing factor in the response of the bond behavior. This is because the cycles in cyclic loading can weaken 
the bond on each cycle before rupture without causing extensive splitting cracks in concrete [35], which leads to 
the bond failing in a pull-out fashion. 

In addition, when comparing the selected terms in the logistic and lasso model formulations, it was found that 
they both include two terms (c/d⋅f′c and Q·MC·f′c) and have a negative intercept β0. Note that both models do 
not select any terms that include Ktr. This finding shows that within the ranges of Ktr considered in this study, the 
transverse stirrup does not influence the failure mode prediction. This is consistent with the findings from Lin et 
al. [39]. In addition, Soraghi and Huang [7] also found that the presence of a higher amount of transverse 
stirrups will not necessarily lead to pull-out failure. 

Fig. 9 shows the comparison for the sensitivity of the two models to three parameters: Q, f′c, and c/d under 
monotonic or cyclic loading. For all three parameters, both models show the same trend: the model prediction 
for the model under cyclic loading is more sensitive to the x-axis quantity than the one under monotonic 
loading, which is in agreement with the finding of Kivell et al. [5]. In addition, Fig. 9 indicates that with an 
increase in Q, f′c, or c/d, the probability of the failure being pull-out increases; the result regarding corrosion is 
also consistent with the previous finding from Kivell et al. [5]. However, under cyclic loading, the lasso model is 
found to be more sensitive than the logistic model with respect to Q (Fig. 9(a)) and f′c (Fig. 9(b)). Under 
monotonic loading, the logistic model is found to be more sensitive than the lasso model with respect to f′c (Fig. 
9(b)) and c/d loading (Fig. 9(c)). 

Fig. 9. Sensitivity comparison between logistic and lasso logistic models for (a) corrosion level, (b) concrete 
compressive strength, and (c) ratio of cover to rebar diameter. 
 

Fig. 10 shows a comparison for the predicted probabilities for the specimens based on the developed logistic 
model (denoted as ‘o’) and the lasso model (denoted as ‘*’). For probability prediction, if pull-out failure and 
splitting failure (shown in Fig. 10(a) and 10(b), respectively), the probability value of the y-axis is closer to one, 



yielding a better prediction. Overall, for most cases, the predictions from both models are fairly close, and both 
models provide better predictions for the splitting failure specimens. At lower corrosion levels (less than 10%), 
the prediction discrepancy between the predictions from the two models seems to be smaller, especially for the 
splitting failure mode. 

 
Fig. 10. Prediction plot for (a) pull-out failure and (b) splitting failure. 
 

Next, the prediction performance of the probabilistic models based on logistic and lasso classification is 
compared with other methods of classification and the two deterministic models in terms of MAE, PCD, PCD,pull-out, 
and PCD,splitting. Note that to calculate PCD for the deterministic criteria of CEB (Eq. (4)), Eq. (11) does not consider 
the cases if the criteria indicate unknown. Thus, to calculate PCD, a 50% of correct detection (i.e. reflecting a 
random guess) is assigned for the unknown cases. The prediction accuracy comparison is summarized in Table 7. 
It can be seen that the deterministic models (i.e., CEB and ACI-318) have much lower PCD values and 
higher MAE values compared to the classification methods, indicating a poor prediction capability. On the other 
hand, the performance of all the classification methods is reasonably close. While the accuracies of the logistic 
and lasso models are not among the highest in terms of PCD,pull-out, they both perform fairly well in terms 
of PCD,splitting, and PCD. In addition, the lasso classification performs best in terms of MAE. 

Table 7. Predictive accuracy of various prediction methods.  
Prediction method PCD,pull-out (%) PCD,splitting (%) PCD (%) MAE 

Deterministic methods CEB [15] 35 59 47 0.72  
ACI-318 [44] 41 58 49 0.75 

Classification methods Logistic 69 84 78 0.34  
Lasso 65 90 80 0.31  
Decision Tree 81 90 85 0.35  
Discriminant 69 88 79 0.36  
k-nearest 56 91 63 0.4  
Naïve Bayes 77 76 76 0.38  
Random forest 94 75 80 0.33  
Support vector machine 86 74 78 0.4 

 

As mentioned earlier, classification techniques other than logistic and lasso classification do not result in an 
explicit formulation. Thus, the logistic and lasso models are still preferred, considering their comparable 
performance to other classification techniques. In addition, as the lasso model shows better accuracy than the 
logistic model in terms of MAE and PCD, the model based on lasso classification is suggested to be used for the 
failure mode prediction. 



4. Case study 
Corrosion of steel reinforcement is one of the main deterioration mechanisms in RC structure performance, as it 
changes the material properties and weakens the bonding between rebar and concrete. Such deterioration can 
lead to insufficient rebar development length and, thus, can alter the performance and failure mode of the 
structure [6], [40], [41], [42]. Since the investigation has shown that corrosion of rebar may change the bond 
failure mode as shown in the developed probabilistic models, it is worth attempting to evaluate the impact of 
corrosion on the structural performance. 

In the literature, four-point testing is typically adopted by researchers to study rebar-concrete bond behavior. In 
this study, an RC beam with a lap splice studied by Abdel-Kareem et al. [43] is adopted to investigate how 
corrosion might impact the reliability of the beam flexural performance under a four-point lording through its 
impact on the bond failure mode. The geometry and reinforcement detailing of this beam are shown in Fig. 11. 
The support-to-support length of the beam is 3000 mm. Transverse stirrups with 100 mm spacing and a 
diameter of 8 mm are provided along the beam to avoid shear failure. As shown in Fig. 11, the lap-spliced rebar 
is distributed along with the constant moment region. The lap splice ls is calculated using ACI 318 [44], resulting 
in ls = 542 mm. The related equations for calculating ls are provided in Appendix C. In addition, the concrete 
compressive strength, f′c, is assumed to be 40 MPa. 

Fig. 11. Cross-section and longitudinal detailing of the beam (dimensions are in mm) [43]. 
 

In order to incorporate the stress-slip bond behavior, the nonlinear load-deflection behavior of the RC beams is 
obtained through an analytical procedure proposed by Sajedi and Huang [45]. This analytical procedure can be 
applied to lap-spliced beams or beams without lap splice, taking into account the effects of corrosion on the 
diameter of the reinforcements, the yield strength of bars, and the stress-slip bond behavior at the rebar-
concrete interface. This procedure utilizes the extension of steel reinforcement between flexural cracks that 
considers the bond-slip behavior at the rebar-concrete interface to estimate the nonlinear force-displacement of 
RC beams. The detailed information about this procedure is summarized in Appendix D. Next, the analytical 
procedure is embedded in the first-order reliability analysis (FORM) to obtain the probability of failure. 

The bond behavior under pull-out or splitting failure used in the analytical procedure is based upon the stress-
slip curve in the CEB code [15], where bond stress, τ, between rebar and concrete is determined as a function of 
relative slippage, s, as illustrated in Fig. 12, where τm is the maximum bond stress (i.e., bond strength) and s1 is 
the slippage when τ = τm. It is worth to note that the prediction performance of the CEB criteria for bond failure 
mode is not very good at all as shown in Table 9, but the CEB bond stress-slip model formula has been widely 
accepted and validated by many previous literature [46], [47], [48], [49], [50], [51], [52], and this stress-slip 
formula shown in Fig. 12 is consequently adopted in this research. 



 
Fig. 12. Adopted bond-slip curve based on CEB for (a) pull-out failure mode and (b) splitting failure mode [15]. 
 

To consider the effect of corrosion, the bond strength is calculated using a model previously developed by Sajedi 
and Huang [13], as shown in Eq. (D.2) in Appendix D. Since Eq. (D.2) is developed based on the specimens that 
failed in splitting failure modes, it can be used for assessing bond strength under splitting failure, τm,s, not for 
bond strength under pull-out failure, τm,p. By utilizing the ratio of the bond strength for pull-out failure (i.e., 
8.0(f′c/20)0.25) to the bond strength for splitting failure (i.e., 2.5f′c0.5) as suggested by 
CEB [15], η = 8.0(f′c/20)0.25/(2.5f′c0.5), one can set τm,p = η⋅τm,s. 

4.1. Flexural behavior 
Four levels of corrosion are studied and compared: 0% (intact beam), 5%, 10%, and 15%. First, the flexural 
behaviors for the intact and corroded RC beams under four-point loading are compared through deterministic 
analyses that consider the bond pull-out behavior and splitting behavior separately. Three criteria are used to 
stop the analysis as a flexural failure: the first criterion is when the ultimate bond stress, τu, becomes larger than 
the bond strength, τm (τu > τm); the second criterion is when the concrete reaches its allowable strain 
(i.e., εconcrete > 0.0038), at which point the concrete is considered to fail by crushing; and the third criterion is 
when the rebar stress reaches its ultimate tensile strength (fs > fu). Notice that the third failure criterion never 
occurred in the case study. Also, note that these failure scenarios (e.g., bond failure and concrete crushing) 
could occur before or after rebar yielding, and rebar yielding itself does not indicate a beam failure in this study. 

Fig. 13 shows the force-displacement curves for the RC beams and Table 8 summarizes the characteristics of the 
flexural behavior: modulus before yielding (E), yielding force (Fy), yielding displacement (Δy), rupture force (Fu), 
ultimate displacement (Δu), ductility (Δu/Δy), and hardening ratio (Fu/Fy). The results from both Fig. 13 and Table 
8 show that the structure performs differently when bond behaviors are in pull-out mode or splitting mode. 
Such a difference becomes more apparent when the corrosion level is increased. 



 
Fig. 13. Comparison of pull-out and splitting failure for different levels of corrosion. 
 

Table 8. Beam flexural behavior comparison for different scenarios. 
Corrosion level, Q Bond behavior E Fy Δy Fu Δu µ = Δu/Δy Fu/Fy 
Intact beam Pull-out 5.3 71 13.2 92 46.9 3.5 1.3  

Splitting 4.4 71 15.1 92 60.8 4.0 1.3 
Q = 5% Pull-out 4.9 67 13.5 88 49.1 3.6 1.3  

Splitting 3.8 67 17.6 73 25.7 1.5 1.1 
Q = 10% Pull-out 4.6 64 13.7 84 51.1 3.7 1.3  

Splitting 3.6 – 17.4 64 – <1 – 
Q = 15% Pull-out 5 60 13.4 81 55.5 4.1 1.35  

Splitting 3.78 – 17.7 60 – <1 – 
 

For the beams with the same level of Q except for Q = 15%, Fy is about the same regardless of the bond 
behavior. A beam with pull-out bond behavior will have a higher modulus, a higher ductility, and a higher 
hardening ratio as shown in Table 8. As expected, the performance of the beam with pull-out bond behavior is 
more desirable. In the flexural curves shown in Fig. 13, the stiffness of the beam initially changes when the load 
reaches around 11 kN, and this change at the beginning of the curve is due to the creation of initial cracks in the 
concrete considered in the analytical formulation. Furthermore, when the beam is under pull-out bond 
behavior, the flexural failure ends with concrete crushing; however, when the beam is under splitting bond 
behavior, the beam fails in bond except for the intact case. More importantly, for the beams with corrosion 
levels of 10% and 15% under splitting bond behavior, the bond failure occurs prior to yielding, which is a brittle 
failure, not a desirable type of failure. 

To avoid such brittle failure, one could increase the splice length as the value suggested by ACI 318 does not 
appear to be sufficient when corrosion is present [53] or design the beam so that the bond will exhibit in a pull-
out behavior. To ensure pull-out bond behavior, one could utilize the proposed model shown in Eq. (15) that is 
determined by four variables f′c, c/d, Q, and MC. In particular, one could determine the values of the two design 
parameters, f′c, and c/d, in order to ensure the desired probability level of achieving pull-out bond, with the 
consideration of the corrosion and loading scenarios that could happen in the service life. 



4.2. Reliability analysis 
To evaluate the reliability of the beam flexural performance, the probability of failure is calculated as:  

(16) 

𝑃𝑃𝑓𝑓 = 𝑃𝑃 ��𝑔𝑔𝑘𝑘 ⩽ 0
𝑘𝑘

� 

where gk is the limit-state function corresponding to the failure mode k and the subscript k denotes the failure 
mode of the beam (1 for bond being pull-out and 2 for bond being splitting). The limit state function is defined 
by: 

(17) 

𝑔𝑔𝑘𝑘 = 𝐶𝐶𝑘𝑘(𝒙𝒙𝑟𝑟) − 𝐷𝐷 

where Ck(⋅) refers to the capacity of the beam; xr is a random variable vector that includes all basic random 
variables such as material properties and geometric dimensions, and D is the force demand applied to the 
structure. Since bond behavior being pull-out or splitting are two mutually exclusive events, Eq. (16) can be 
written as: 

(18) 

𝑃𝑃𝑓𝑓 = 𝑃𝑃[(𝐶𝐶1(𝒙𝒙𝑟𝑟)− 𝐷𝐷 ⩽ 0|𝑌𝑌 = 1)] · 𝑃𝑃(𝑌𝑌 = 1)
+𝑃𝑃[𝐶𝐶2(𝒙𝒙𝑟𝑟)− 𝐷𝐷 ⩽ 0|𝑌𝑌 = 0] · 𝑃𝑃(𝑌𝑌 = 0)  

where P(Y = 1) and P(Y = 0) = 1 − P(Y = 1) refer to the probability of the bond being a pull-out behavior or a 
splitting behavior, respectively, which can be calculated based on the developed model shown in Eq. (6) and 
Eq. (14). The capacity C(xr), which is the maximum force the beam can resist before flexural failure is obtained 
from the analytical procedure in Appendix D. Note that when the failure occurs, it does not necessarily indicate 
bond failure. In practice, the reliability index, β, is typically used as the performance measure, and its 
relationship with Pf is as follows: 

(19) 

𝑃𝑃𝑓𝑓 = Φ(−𝛽𝛽) 

The basic random variables, xr, are adopted based on the literature [53], [54] and their probability information is 
provided in Table 9. Note that the model error, σɛ, in Table 9 refers to the model error in the bond strength 
model adopted from the literature [13] that is elaborated in Appendix D. 

Table 9. Probability information of the basic random variables. 
Type Random 

variable 
Distribution (Mean*, 
std.) 

Importance measure (Q = 5%, D = 60 
kN) 

 
   

Pull-out Splitting 
Geometrical db (mm) Normal (16, 0.32) [54] 0.078 0.031  

h (mm) Normal (250, 2.5) [54] −0.061 0.078  
b (mm) Normal (160, 0.32) [54] 0 0  
Cx (mm) Normal (16, 1.92) [53] 0 0  
Ct (mm) Normal (16, 1.92) [53] 0 0  
Cb (mm) Normal (16, 1.92) [53] 0 0  
dst (mm) Normal (8, 0.16) [54] 0 0 



Mechanical fy (MPa) Normal (440, 22) [53] 0.121 0.156  
fc (MPa) Normal (40, 7.2) [53] −0.729 −0.470  
fy,st (MPa) Normal (280, 14) [53] 0 0 

Model error σɛ Normal (0, 0.169) [53] −0.668 −0.861 
 

The contribution of each random variable to the variability of the limit state function (Eq. (17)) is also 
investigated based on the important measures of the random variables when considering 5% corrosion and a 
demand of 60 kN, and the results are shown in Table 9. A larger absolute value of importance measure indicates 
a greater contribution of the corresponding random variable on the variability of the limit state function. The 
detailed information of importance measures in reliability analysis can be found in related literature [55]. Table 
9 shows that for both cases (bond behaves in splitting and in pull-out), three variables, model error in bond 
strength, fy, and f′c (namely bond, concrete, and steel properties) dominates the contribution to the variability of 
the limit state function. 

Fig. 14 shows the fragility curves conditioned on demand values with corrosion levels of 0% (intact beam), 5%, 
10%, and 15%. For a given level of corrosion, the fragility curves show the differences in the structural 
performance due to different bond 

 
Fig. 14. Fragility curves under different corrosion levels: (a) Q = 0% (intact beam), (b) Q = 5%, (c) Q = 10%, and 
(d) Q = 15%. 
 

behaves in pull-out, splitting, or unknown (that is determined by the developed bond failure prediction model), 
and these differences become more apparent with the increase in corrosion. 

For the bond failure modes at each considered probability, the fragility curve for unknown bond failure mode 
(shown as a dotted line) is between the fragility curves for the bond in pull-out behavior (shown as a solid line) 
and the bond in splitting behavior (shown as a dashed line), as expected. In particular, the fragility curve with 
the unknown bond is closer to the curve for splitting bond behavior when the corrosion level Q is low, but it 



moves closer to the curve with pull-out bond behavior when Q increases. This is understandable, as the 
probability of being pull-out increases with the level of corrosion (as shown in Fig. 14). 

While compares the four plots in Fig. 14, the fragility curves with a given bond behavior shift to the left 
as Q increases. This shows the corrosion increases the probability of failure as expected. In particular, the 
fragility curves for splitting bond behavior are more distant from each other with the increase of Q. For example, 
at the lowest level of corrosion (Q = 5%) shown in Fig. 14(b), the fragility curve for splitting failure is significantly 
distant from the curve for the intact beam shown in Fig. 14(a). However, the fragility curves for pull-out bond 
behavior do not change dramatically with the change of Q. This indicates that corrosion has more impact on the 
performance of a structure with a splitting bond than the structure with a pull-out bond. It can also be seen that 
with the increase of the corrosion level, the fragility curves became steeper, indicating that the probability of 
failure becomes more sensitive to demand with more corrosion. 

Fig. 15 (a) and (b) show the reliability index curves with respect to the level of corrosion Q by setting the 
demand D as a deterministic value of 60 kN and as a random variable with mean µD = 60 kN and COV = 0.15, 
respectively. The purpose of Fig. 15 is to examine how the bond behavior impacts the structural performance 
with a progressing deterioration; thus, the demand used in Fig. 15 can be arbitrary. Moreover, the reliability 
index curve with the unknown bond failure mode is between the other two curves. The reliability index curve 
with splitting bond behavior is much lower than the one with pull-out bond behavior, and its rate of decrease is 
much greater. From Q = 0% to Q = 5%, β decreases from 3.3 to 1.8 in Fig. 15(a) and decreases from 3.1 to 2.1 
in Fig. 15(b). Consistent with the previous observations in Fig. 13, Fig. 14, the result from both Fig. 15(a) and (b) 
indicates that the bond behavior plays a critical role in the time-dependent performance evolution, particularly 
when the specimen is exposed to a high level of corrosion. In addition, the prediction of the bond failure 
behavior is important, as it determines the actual structural performance. 



 
Fig. 15. Reliability index curves under various corrosion levels conditioned on different bond behaviors under 
(a) D = 60 kN and (b) µD = 60 kN and COV = 0.15. 
 

5. Summary and conclusions 
Sufficient bonding of rebar to concrete is crucial to ensure the reliable performance of RC structures, particularly 
in the corroded structures. Whilst much research has investigated the bond strength, estimation of the bond 
failure mode (i.e. pull-out or splitting) considering corrosion has been given little attention. In this study, by 
taking advantage of machine learning classifications, a probabilistic model was developed to estimate the bond 
failure mode. specifically, logistic and lasso classification techniques are found to be suitable for engineering 
practice, as they provide explicit formulations. The developed model is based on the results of bond tests for 
132 beam-end specimens with various influencing parameters such as concrete compressive strength, rebar 
diameter size, cover size, corrosion level, and loading type (i.e., monotonic or cyclic). To evaluate if the bond 
behavior under corrosion affects the performance of a structure, the flexural performance of an RC beam with a 
lap splice under various levels of corrosion is evaluated by conducting a reliability analysis. The main findings of 
this study are summarized as follows: 

• Machine learning approaches such as logistic and lasso classification techniques provide probabilistic 
predictions of categorical variables such as the bond failure mode, and they provide explicit and easy-to-
implement formulations for engineering practice. 



• Both logistic and lasso classification methods have similar prediction performances: much better than 
the deterministic approaches and not worse than most of the other classification methods; however, 
lasso classification is found to be more accurate. 

• The parameters that influence the bond failure mode prediction are concrete compressive strength, 
cover to the rebar diameter ratio, corrosion level, and loading type (cyclic or monotonic). 

• Based on the developed probabilistic prediction models, the amount of transverse stirrup does not 
influence the bond failure mode. 

• At the structural level, the flexural performance of the beam in the case study shows the dependence on 
the bond behavior, and more so at higher levels of corrosion. In addition, for high levels of corrosion 
where the beams exhibit splitting bond behavior, the beam fails brittlely (that is failure occurs prior to 
rebar yielding), which is not a desirable type of structural failure. 

• The case study also shows that bond behavior has a great impact on the structural reliability index 
curves, and more so as the level of corrosion increases. Thus, the prediction of the bond failure mode is 
critical for time-dependent reliability-based analysis. 
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Appendix A. Designed specimen specifications 
See Table A1, Table A2, Table A3. 

Table A1. Specimen specifications (group 1). 
Group No. Rebar 

diameter, db 
[mm] 

Loading 
type* 

f′c 
[MPa] 

Bond 
length, lb 
[mm] 

Cover, c 
[mm] 

c/d Ktr Qtarget 
(%) 

Qactual 
(%) 

Failure 
Mode** 

Group 
1 

1 15.875 M 43 88.9 50.8 3.20 0.00 0% 0.0% S 
 

2 
    

63.5 4.00 0.00 10% 4.9% P  
3 

    
76.2 4.80 0.00 20% 7.6% S  

4 
    

50.8 3.20 5.89 0% 0.0% P  
5 

    
63.5 4.00 5.89 10% 5.3% P  

6 
    

76.2 4.80 5.89 20% 9.9% P  
7 

 
C 

  
50.8 3.20 0.00 0% 0.0% S  

8 
    

25.4 1.60 0.00 5% 10.3% P  
9 

    
63.5 4.00 0.00 10% 11.0% P  

10 
    

38.1 2.40 0.00 15% 10.1% P  
11 

    
76.2 4.80 0.00 20% 12.0% P  

12 
    

50.8 3.20 5.89 0% 0.0% P  
13 

    
25.4 1.60 5.89 5% 7.9% NA  

14 
    

63.5 4.00 5.89 10% 4.3% P  
15 

    
38.1 2.40 5.89 15% 8.2% S  

16 
    

76.2 4.80 5.89 20% 11.3% P  
17 19.05 M 

 
114.3 38.1 2.00 0.00 0% 0.0% S  

18 
    

25.4 1.33 0.00 10% 3.6% S  
19 

    
50.8 2.67 0.00 20% 15.6% P  

20 
    

38.1 2.00 4.91 0% 0.0% P  
21 

    
25.4 1.33 4.91 10% 3.2% S  

22 
    

50.8 2.67 4.91 20% 7.1% S  
23 

 
C 

  
38.1 2.00 0.00 0% 0.0% S  

24 
    

63.5 3.33 0.00 5% 8.5% NA  
25 

    
25.4 1.33 0.00 10% 7.6% P  

26 
    

76.2 4.00 0.00 15% 9.9% S  
27 

    
50.8 2.67 0.00 20% 13.4% P  

28 
    

38.1 2.00 4.91 0% 0.0% P  
29 

    
63.5 3.33 4.91 5% 8.6% P  

30 
    

25.4 1.33 4.91 10% 6.9% S  
31 

    
76.2 4.00 4.91 15% 7.7% P  

32 
    

50.8 2.67 4.91 20% 11.0% P  
33 25.4 M 

 
203.2 63.5 2.50 0.00 0% 0.0% S  

34 
    

50.8 2.00 0.00 10% 4.3% S  
35 

    
38.1 1.50 0.00 20% 10.2% S  

36 
    

63.5 2.50 3.68 0% 0.0% S  
37 

    
50.8 2.00 3.68 10% 7.7% S  

38 
    

38.1 1.50 3.68 20% 11.9% P  
39 

 
C 

  
63.5 2.50 3.68 0% 0.0% S  

40 
    

50.8 2.00 0.00 10% 5.2% NA  
41 

    
38.1 1.50 0.00 20% 13.1% NA 



 
42 

    
63.5 2.50 3.68 0% 0.0% NA  

43 
    

50.8 2.00 3.68 10% 5.7% P  
44 

    
38.1 1.50 3.68 20% 13.7% P 

* M (monotonic), and C (cyclic). 
** P (pull-out), S (splitting), and NA (not assigned). 
 

Table A2. Specimen specifications (group 2). 
Group No. Rebar 

diameter, db 
[mm] 

Loading 
type* 

f′c 
[MPa] 

Bond 
length, lb 
[mm] 

Cover, c 
[mm] 

c/d Ktr Qtarget 
(%) 

Qactual 
(%) 

Failure 
Mode** 

Group 
2 

1 15.875 M 36 88.9 25.4 1.60 11.73 5% 13.1% P 
 

2 
    

38.1 2.40 11.73 0% 0.0% P  
3 

    
38.1 2.40 11.73 10% 16.3% S  

4 
    

50.8 3.20 11.73 10% 14.9% P  
5 

    
50.8 3.20 11.73 15% 18.4% S  

6 
    

63.5 4.00 11.73 5% 13.0% S  
7 

    
63.5 4.00 11.73 15% 15.9% S  

8 
    

76.2 4.80 11.73 15% 18.8% P  
9 

 
C 

  
25.4 1.60 11.73 5% 16.3% P  

10 
    

38.1 2.40 11.73 0% 0.0% S  
11 

    
38.1 2.40 11.73 10% 15.7% S  

12 
    

50.8 3.20 11.73 10% 15.4% S  
13 

    
50.8 3.20 11.73 15% 17.2% P  

14 
    

63.5 4.00 11.73 5% 19.1% P  
15 

    
63.5 4.00 11.73 15% 16.5% S  

16 
    

76.2 4.80 11.73 15% 15.6% S  
17 19.05 M 

 
114.3 25.4 1.33 9.78 5% 6.3% P  

18 
    

38.1 2.00 9.78 0% 0.0% P  
19 

    
38.1 2.00 9.78 10% 11.2% P  

20 
    

50.8 2.67 9.78 10% 12.6% P  
21 

    
50.8 2.67 9.78 15% 25.8% S  

22 
    

63.5 3.33 9.78 5% 7.1% P  
23 

    
63.5 3.33 9.78 15% 10.5% S  

24 
    

76.2 4.00 9.78 15% 10.8% P  
25 

 
C 

  
25.4 1.33 9.78 5% 6.5% S  

26 
    

38.1 2.00 9.78 0% 0.0% S  
27 

    
38.1 2.00 9.78 10% 13.3% S  

28 
    

50.8 2.67 9.78 10% 12.8% S  
29 

    
50.8 2.67 9.78 15% 10.3% S  

30 
    

63.5 3.33 9.78 5% 5.4% S  
31 

    
63.5 3.33 9.78 15% 12.1% S  

32 
    

76.2 4.00 9.78 15% 11.4% S  
33 25.4 M 

 
152.4 76.2 3.00 7.33 5% 6.0% P  

34 
    

76.2 3.00 7.33 0% 0.0% P  
35 

    
88.9 3.50 7.33 5% 10.7% P  

36 
    

88.9 3.50 7.33 10% 7.4% S  
37 

    
101.6 4.00 7.33 5% 4.9% P 



 
38 

    
101.6 4.00 7.33 10% 7.7% S  

39 
 

C 
  

76.2 3.00 7.33 5% 5.7% S  
40 

    
76.2 3.00 7.33 0% 0.0% NA  

41 
    

88.9 3.50 7.33 5% 5.1% S  
42 

    
88.9 3.50 7.33 10% 7.5% NA  

43 
    

101.6 4.00 7.33 5% 5.4% NA  
44 

    
101.6 4.00 7.33 10% 8.1% S 

 

Table A3. Specimen specifications (group 3). 
Group No. Rebar 

diameter, db 
[mm] 

Loading 
type* 

f′c 
[MPa] 

Bond 
length, lb 
[mm] 

Cover, c 
[mm] 

c/d Ktr Qtarget 
(%) 

Qactual 
(%) 

Failure 
Mode** 

Group 
3 

1 15.875 M 27 88.9 25.4 1.60 11.73 5% 7.9% P 
 

2 
    

38.1 2.40 11.73 0% 0.0% P  
3 

    
38.1 2.40 11.73 10% 10.3% S  

4 
    

50.8 3.20 11.73 10% 11.2% S  
5 

    
50.8 3.20 11.73 15% 6.5% P  

6 
    

63.5 4.00 11.73 5% 4.8% S  
7 

    
63.5 4.00 11.73 15% 4.0% P  

8 
    

76.2 4.80 11.73 15% 7.8% S  
9 

 
C 

  
25.4 1.60 11.73 5% 6.2% P  

10 
    

38.1 2.40 11.73 0% 0.0% P  
11 

    
38.1 2.40 11.73 10% 7.7% P  

12 
    

50.8 3.20 11.73 10% 9.8% NA  
13 

    
50.8 3.20 11.73 15% 9.1% P  

14 
    

63.5 4.00 11.73 5% 3.4% P  
15 

    
63.5 4.00 11.73 15% 11.9% NA  

16 
    

76.2 4.80 11.73 15% 16.9% P  
17 19.05 M 

 
114.3 25.4 1.33 9.78 5% 5.2% P  

18 
    

38.1 2.00 9.78 0% 0.0% P  
19 

    
38.1 2.00 9.78 10% 6.2% S  

20 
    

50.8 2.67 9.78 10% 7.1% NA  
21 

    
50.8 2.67 9.78 15% 9.0% P  

22 
    

63.5 3.33 9.78 5% 5.4% P  
23 

    
63.5 3.33 9.78 15% 9.5% P  

24 
    

76.2 4.00 9.78 15% 7.2% P  
25 

    
25.4 1.33 9.78 5% 6.1% S  

26 
 

C 
  

38.1 2.00 9.78 0% 0.0% NA  
27 

    
38.1 2.00 9.78 10% 6.8% P  

28 
    

50.8 2.67 9.78 10% 6.6% S  
29 

    
50.8 2.67 9.78 15% 5.8% P  

30 
    

63.5 3.33 9.78 5% 8.0% S  
31 

    
63.5 3.33 9.78 15% 8.2% S  

32 
    

76.2 4.00 9.78 15% 8.3% S  
33 25.4 M 

 
152.4 76.2 3.00 7.33 5% 5.0% S  

34 
    

76.2 3.00 7.33 0% 0.0% P  
35 

    
88.9 3.50 7.33 5% 3.7% S 



 
36 

    
88.9 3.50 7.33 10% 7.4% S  

37 
    

101.6 4.00 7.33 5% 4.7% P  
38 

    
101.6 4.00 7.33 10% 6.7% S  

39 
 

C 
  

76.2 3.00 7.33 5% 4.7% P  
40 

    
76.2 3.00 7.33 0% 0.0% P  

41 
    

88.9 3.50 7.33 5% 4.6% P  
42 

    
88.9 3.50 7.33 10% 5.9% P  

43 
    

101.6 4.00 7.33 5% 5.6% P  
44 

    
101.6 4.00 7.33 10% 5.8% P 

 

Appendix B. Classification algorithms 
Decision tree 
A decision tree is a decision support, non-parametric method that uses a tree-like model constructed from the 
training data and includes a sequence of yes/no questions to classify all observations. Hence, the response is 
predicted using the tree graph. The decision tree consists of nodes and branches in which the nodes belong to 
the test condition and the branches represent the outcome of the test. By following the nodes and branches of 
the tree, a decision can be made [56]. 

Discriminant analysis 
In discriminant classification, different classes are assumed to generate data following various Gaussian 
distributions [57]. Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are two types of 
discriminant analysis. In LDA Bayes theorem is used to predict the probabilities of the output category, k, into 
the kth category given the input vector of x that can be written as: 

(B1) 

𝑃𝑃𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝐱𝐱) =
𝜋𝜋𝑘𝑘𝑓𝑓𝑘𝑘(𝐱𝐱)

∑𝑙𝑙=1 𝜋𝜋𝑙𝑙𝑓𝑓𝑙𝑙(𝐱𝐱)
 

where πk is the prior probability (in this study πk = 0.5) and fk(x) refers to the density function of x. In this 
study, fk(x) is considered to have a joint normal or Gaussian distribution, and πk is the prior probability of an 
observation belonging to the kth class. QDA is similar to LDA in that it assigns inputs to the kth category, but 
QDA considers each category as having a unique covariance matrix. Accordingly, classes in LDA have a linear 
boundary and quadratic boundary in QDA. This study adopts QDA for the class boundary due to its better 
prediction accuracy [58]. 

K-nearest neighbors classification 
K-nearest neighbors (KNN) classification is a non-parametric classification method [59]. Having a test 
observation of y0 and K as a positive integer, the KNN determines K observations in the training data nearest 
to y0 that are denoted as N0. It then predicts the conditional probability for class k as the fraction of data points 
in N0 as follows: 

(B2) 

𝑃𝑃𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝐱𝐱) =
1
𝐾𝐾
� 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑘𝑘)
𝑖𝑖∈𝑁𝑁0

 



where I(⋅) refers to the indicator variable. The main drawback of using the KNN method is that the chosen value 
of K is sensitive to the prediction performance. To deal with this issue, the approach of cross-validation is 
adopted in this study for different values of K, and the best model is selected. 

Naïve Bayes classification 
Naïve Bayes classification uses the Bayes theorem for classifying data by assigning an observation to a class 
when the probability belongs to that observation is larger than 50%. By assuming that the input vector x is 
independent for a given class, k, the probability of an observation pertains to that class can be formulated 
as [59]: 

(B3) 

Pr(𝑌𝑌 = 𝑘𝑘|𝐱𝐱) =
Pr(𝑌𝑌 = 𝑘𝑘)Pr(𝐱𝐱|𝑌𝑌 = 𝑘𝑘)

Pr(𝐱𝐱)
=

Pr(𝑌𝑌 = 𝑘𝑘)� Pr(𝐱𝐱|𝑌𝑌 = 𝑘𝑘)𝑁𝑁
𝑖𝑖=1

Pr(𝐱𝐱)
 

Random forest 
A random forest includes a group of decision trees in a way that each tree predictor produces a response based 
on a set of input variables [60]. A random forest creates many learning models (i.e., decision trees) that increase 
the classification accuracy. This process, also known as bagging, works by averaging noisy and unbiased models 
to create a model with low variance. The prediction of each observation is obtained from average of all decision 
trees and can be formulated using the following equation: 

(B4) 

𝑃𝑃𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝐱𝐱) =
1
𝐵𝐵
�𝑓𝑓𝑏𝑏(𝐱𝐱)
𝐵𝐵

𝑏𝑏=1

 

where B is the number of decision trees and fb is the decision tree prediction. 

Support vector machine 
A support vector machine (SVM) is a simple classifier generalization known as a maximal margin classifier for 
categorization [59]. This model builds a hyper-plane (e.g. a linear or polynomial equation of x) that has the 
maximum distance from the nearest point of each category based on the training data. SVM is a non-
probabilistic classification that constructs a classifier as follows: 

(B5) 

𝑃𝑃𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝐱𝐱) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ��𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖Ψ(𝐱𝐱, 𝐱𝐱𝑖𝑖) + 𝑏𝑏
𝑁𝑁

𝑖𝑖=1

� 

in which N is the number of training data, αi is a positive real factor, and b is a real constant. The parameter Ψ(·) 
is a defined function: for a linear SVM, Ψ(x,xi) = xi

Tx and for a polynomial SVM, Ψ(x,xi) = (xi
Tx + 1)d, in which d is 

an a priori value specified by the user. This study adopted a polynomial SVM to achieve the best accuracy. 

Appendix C. Lap splice length 
The designed lap splice length for the adopted beam from Abdel-Kareem [43] is from ACI 318-11 design code 
provisions [44], in which ld can be calculated as: 

(C1) 



𝑙𝑙𝑑𝑑 =
0.9𝑓𝑓𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚(𝜓𝜓𝑡𝑡𝜓𝜓𝑒𝑒 , 1.7)𝜓𝜓𝑠𝑠𝜆𝜆

�𝑓𝑓𝑐𝑐′𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐 + 𝑘𝑘𝑡𝑡𝑡𝑡
𝑑𝑑 , 2.5)

𝑑𝑑𝑏𝑏 

where Ψt, Ψe, and Ψs are modification coefficients to consider the location of reinforcement effects, coating, 
and size of reinforcement, respectively; λ is an aggregate concrete factor, and c is the smaller of the distance 
from the half of center-to-center spacing of the developed bars and the distance from the nearest concrete 
surface to the center of the rebar (units are based on SI units). Ktr is the calculated based on: 

(C2) 

𝐾𝐾𝑡𝑡𝑡𝑡 =
𝐴𝐴𝑡𝑡𝑡𝑡 · 𝑓𝑓𝑦𝑦𝑦𝑦

10.34𝑠𝑠 · 𝑛𝑛
 

where n is the number of rebars developed within the splitting plane. For the calculation of ld in Eq. (C.1), the 
values for the modification factors are Ψt = Ψe = Ψs = λ = 1.0. Note that to obtain the minimum splice 
length, ld can be replaced with ls [45]. 

Appendix D. Analytical procedure 
As mentioned in Eq. (18), it is necessary to calculate the capacity of the structure. The following procedure is 
used to obtain the capacity, C(xr). In this process, the beam is modeled as a series of elements having the length 
of crack sizes. The RC beam is assumed to be purely under a constant bending moment. The beam is assumed to 
have a single crack at its midpoint and, as the bending moments increase, the crack expands toward the 
supports. The rebar-concrete bonding transfers some portion of the tensile forces created by the bending 
moment and, thus, reduces the steel elongation and strain within each element, allowing the deflection and 
rotation be lowered. The midspan deflection, Δ, can be calculated as [61]: 

(D1) 

Δ = �
𝑒𝑒𝑖𝑖

𝑑𝑑 − 𝑐𝑐𝑐𝑐
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where n is the number of cracks, ei is the elongation of each individual crack, d is the height of the center of the 
tensile rebar to the top of the concrete section, and c is the difference between the height of the top of the 
section and the top of the crack in a crack element, as shown in Fig. D1. 

Fig. D1. (a) Typical cracked beam under flexural loading [19], and (b) typical crack element [61]. 
 



This procedure uses compatibility and equilibrium requirements, and interested readers could refer to the 
authors’ other publications [45], [61] for further details. The probabilistic model developed by Sajedi & 
Huang [13] is implemented to estimate the average bond strength, τm, that is a function of corrosion for intact 
and corroded specimens as: 

(D2) 
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where the predicted coefficients are: θ0 = −0.90, θ1 = 0.48, θ2 = 0.12, θ3 = 0.024, θ1 = −0.08, and θ2 = −0.148; µ = 
0.45 [62] is the rebar friction coefficient; Rr = 0.1 [63] is the relative lug area of the intact bar; be is the effective 
beam width (mm) (3c ≤ be ≤ 9c); γ = [8·db0/(ld or ls)]0.5 (≤1) is a reduction factor to long development length (ld) or 
splice length (ls); Ast is the area of two legs of the transverse reinforcement in the cross-section 
(mm2); s = transverse reinforcement spacing (mm); and σε is the model error where σ = 0.169 and ε = standard 
normal random variable [13]. 
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