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Abstract 
This paper presents the research results of using Google Earth imagery for visual condition surveying of 
highway pavement in the United States. A screenshot tool is developed to automatically track the 
highway for collecting end-to-end images and Global Position System (GPS). A highway segmentation 
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tool based on a deep convolutional neural network (DCNN) is developed to segment the collected 
highway images into the predefined object categories, where the cracks are identified and labeled in 
each small patch of the overlapping assembled label-image prediction. Then, the longitudinal cracks 
and transverse cracks are detected using the x-gradient and y-gradient from the Sobel operator, and 
the developed pavement evaluation tool rates the longitudinal cracking in 0.3048  m/
30.48  m-Station (linear feet per 100 ft. station) and transverse cracking in number per 30.48  m-
Station (100 ft. station), which can be visualized in ArcGIS Online. Experiments were conducted on 
Interstate 43 (I-43) in Milwaukee County with pavement in both defective and sound visual conditions. 
Experimental results showed the patch-wise highway segmentation in Google Earth imagery from 
the 16 × 16-pixel DCNN model has as precise pixel accuracy as the U-net-based pixelwise 
crack/noncrack classifier. Compared to the manually crafted label image in the experimental area, the 
rated longitudinal cracking has an average error of overrating 20%, while transverse cracking has an 
average error of underrating 7%. This research project contributes to visual pavement condition 
surveying methodology with the free-to-access Google Earth imagery, which is a feasible, cost-effective 
option for accurately rating and geographically visualizing both project-level and network-level 
pavement. 

Introduction 
The previously deep learning-based pavement evaluation research was conducted in pixelwise crack 
detection using RGB images (Ji et al. 2020), crack and noncrack classification using laser range images 
(Zhou and Song 2020a), and sealed and nonsealed cracking objects detection using RGB images (Huyan 
et al. 2019). These studies were limited to evaluating cracks in the close-range and small-scale images, 
which were acquired by smartphone (Huyan et al. 2019; Ji et al. 2020), vehicle-mounted camera 
(Huyan et al. 2019), and 3D laser camera (Zhou and Song 2020a, b). In addition, these studies neither 
addressed the network-level nor project-level pavement condition evaluations. Compared to close-
range photography, drone photography, aerial photography, and satellite photography have the 
advantage of enlarging a single image frame’s coverage, and this results in a smaller number of images 
necessary to cover an entire roadway project or roadway network. Considering the safety issue, 
surveying a highway with high traffic volume using drone photogrammetric orthophoto (Dadrasjavan 
et al. 2019) should be prohibited, while the high-resolution aerial imagery and satellite imagery would 
be the only choice. Google Earth, merged aerial images and satellite images, has a fast update 
frequency with a resolution range up to 15  cm in the United States (Google 2020; Wikipedia 2020), 
which would be an ideal data source for pavement evaluation with the advantage of cost-effectiveness 
and requiring limited traffic regulation. Moreover, the Google Street View provides close-range high-
resolution 360° views for verifying the highways’ pavement conditions (Majidifard et al. 
2020a, b; Maniat 2019; Mohammed 2017). 

Additionally, the computer vision community has developed several pixelwise image segmentation 
neural network (NN) architectures, including DeconvNet (Noh et al. 2015), FCN (Shelhamer et al. 2017), 
PSPNet (Zhao et al. 2017), RedNet (Mao et al. 2016), SegNet (Badrinarayanan et al. 2017), and U-net 
(Ronneberger et al. 2015). Those NNs have been adopted in crack detection, including an FCN based 
CrackPix for concrete crack detection with a pixel accuracy of 92.1% (Alipour et al. 2019), a U-net based 
concrete crack detection (Liu et al. 2019), a U-net based pavement crack detection with a pixel 



accuracy of 98.92% and an Intersection of Union (IoU) of 0.4850 (Augustaukas and Lipnickas 2019), and 
using U-net as the generator of a generative adversarial network CrackGAN for pavement crack 
detection (Zhang et al. 2020). These previous studies showed that the U-net has the advantage of 
reaching higher accuracy with smaller training data sets (image and manually annotated ground truth 
cracks) (Liu et al. 2019; Zhang et al. 2020). In addition, the SegNet has been adopted in identifying road 
networks in the large forested area from the RapidEye satellite imagery, and the segmentation result is 
a pixelwise annotated road and nonroad binary image (Kearney et al. 2020). However, caused by 
insufficient memory of GPU hardware, these NNs have the limitation of training with small-sized 
images, such as resizing images down to as small as 256 × 256-pixel (Zhao et al. 2017), or cropping 
into small patches (Kearney et al. 2020). Resizing down the close-range high-resolution images would 
not impact the efficiency of image semantic segmentation NNs in indoor scenes segmentation 
(Badrinarayanan et al. 2017), biomedical imagery segmentation (Ronneberger et al. 2015), and 
pavement crack detection (Huyan et al. 2019) and segmentation (Ji et al. 2020) because these scenes’ 
scales are smaller than the aerial and satellite imagery, and the geospatial information does not exist in 
close-range images. In contrast, reducing the size of the aerial and satellite imagery will impact the 
effectiveness of object detection and classification, which will result in the thin and small-sized objects 
being smoothed or misclassified (Kussul et al. 2017). Thus, in the preparation of NN’s training data sets 
for identifying thin and strip shape pavement cracking objects, the cropping option should be used to 
replace the resizing option. 

Furthermore, the remote sensing and geoscience communities have developed some intelligent 
approaches to utilize deep convolutional neural networks (DCNNs) to assist the large-scale land cover 
mapping in object classification to replace the traditional state-of-the-art classifier random forest and 
support vector machine (Kussul et al. 2017; Liu et al. 2018). Their research objectives include, but are 
not limited to, landscape classification (Buscombe and Ritchie 2018), vegetation classification (Liu et al. 
2018; Liu and Abd-Elrahman 2018), and crop classification (Kussul et al. 2017). In these research 
projects, the large-scale satellite and aerial images were processed, the DCNNs were used for image 
patch classification, and the spatial information was retained by the sliding window scheme (Kussul 
et al. 2017), object-based image analysis (Liu et al. 2018), and conditional random field (Buscombe and 
Ritchie 2018). The DCNN-based crack and noncrack classification in (Zhou and Song 2020a) also applied 
the sliding window scheme with a 256 × 256-pixel patch in the large-size laser range images. In 
addition, Jiang et al. (2020) compared different size small patches in construction site patch-wise 
segmentation using drone-captured top-views and concluded that assembling 32 × 32-pixel small 
patches (site size 17.28 × 17.28  cm2) with 50% overlapping ratio reached an average pixel accuracy of 
92.6% in identifying objects on the experimental site, which was better than 8 × 8-pixel, 16 ×
16-pixel, and 64 × 64-pixel patches (Jiang et al. 2020). Thus, the DCNN and sliding window scheme 
could be used for object (small-patch) classification and location in highway images from Google Earth 
and producing the patch-wise highway segmentation results. 

Fig. 1 shows an example of Google Earth imagery (camera at 275  m, 43°03′43″ N, 87°55′13″ W), which 
contains the roadway with pavement markings, vehicles, lights, traffic signs, concrete barriers, and 
vegetation zones. In this image, the cracks and sealed cracks, shades, and water stains could be 
distinguished by human eyes, but it is difficult as it requires frequent zooming in and zooming out. 
Therefore, to evaluate the pavement condition from Google Earth imagery, each highway image should 



be segmented at first, which requires the proposed DCNN model to detect and classify object 
categories more than crack and noncrack in (Zhou and Song 2020a) and to recover the geospatial 
information as much as possible. 

Objective and Scope 
This research project uses Google Earth imagery to survey highway pavement conditions in the United 
States. The proposed pavement evaluation tool rates the longitudinal cracking and the transverse 
cracking based on crack detection in Google Earth images. According to the Texas State Pavement 
Manual (Stacks 2019), longitudinal cracking (cracks or breaks run approximately parallel to the 
pavement centerline and may appear anywhere along a shoulder or driving lane) is measured in terms 
of 0.3048  m/30.48  m-Station (linear feet per 100-ft. station); transverse cracking (cracks or 
discontinuities travel at right angles to the pavement centerline) is measured in terms of the number of 
transverse cracks per 30.48  m-Station (100-ft. station), where a crack that does not extend across the 
full-lane width is counted as a partial crack (Stacks 2019). Due to the resolution limitation of Google 
Earth imagery (up to 15  cm) (Wikipedia 2020), it is impossible to classify any crack wider than 5.08 cm 
(2.0 in.) into the failures condition (pavement surface has been severely eroded, badly cracked, 
severely faulted, depressed, or severely shoved) (Stacks 2019); thus, all visible cracks and previously 
sealed cracks are rated as cracking in this research project. Moreover, the other flexible pavement 
conditions, such as rutting, patching, failures, block cracking, alligator cracking, raveling, and flushing 
(ASTM 2018; Stacks 2019), are not addressed in this research project. 

 

Fig. 1. Workflow of the proposed method. 
 

Fig. 1 shows a corresponding manually crafted label image for Google Earth imagery, where the 
longitudinal cracks and transverse cracks were marked with the same class label. The proposed DCNN 
model is planning to be trained with several Google Earth images and manually created label images; 
and then, cracks will be detected in the input highway images without distinguishing the longitudinal 
cracks and transverse cracks as well. Furthermore, the longitudinal and transverse cracks will be 
classified using the Sobel operator (TheSciPyCommunity 2019), where a longitudinal crack has 
horizontal derivative changes only, and a transverse crack has vertical derivative changes only. Finally, 
the longitudinal cracking and the transverse cracking can be rated in 0.3048  m/30.48  m-Station (ft./
100-ft. Station) and Num./30.48  m-Station (Num./100-ft. Station), respectively. 



Development of the Pavement Evaluation Tool 
Fig. 1 shows the workflow of using Google Earth and each step of the developed tool to survey the 
highway pavement condition, which includes Step 1: collecting highway images from Google Earth on 
the Internet, Step 2: labeling DCNN model training data sets, Step 3: DCNN model training and 
prediction, and Step 4: Crack rating and visualizing. To ensure that the developed tool is easy to use 
and could be adapted to different types of roadways at different locations, the DCNN model is 
designed to be trained with as few manually crafted label images as possible. In addition, the 
researchers use Python 3.6.8 as the coding language, Keras 2.3.1 (an open-source NN library written in 
Python) as the deep learning platform to conduct DCNN, which is the most convenient approach for 
beginners. The developed tool can run in any computer platform (Windows/MacOS/Linux) with the 
suitable hardware; the related Python packages including Matplotlib 3.1.1, OpenCV 3.4.2, SciPy 1.3.1, 
NumPy 1.16.4, pandas 0.25.2, pytesseract 0.3.6, and TensorFlow-GPU 1.14; and other software 
including Tesseract-OCR, CUDA 10.0, and cuDNN 7.6.4.38. 

Capture Images 
To make this step easy to implement, highway images are proposed to be captured from Google Earth 
on the internet. No software is required to install. The researchers recommend entering the full-screen 
model (use key “F11” in Google Chrome) and using an additional computer screen to access screenshot 
tools, such as the “Snipping Tool” (a Microsoft Windows screenshot utility included in Windows) and 
the developed Google Earth Screenshot Tool (Jiang 2020). To manually capture the full screen, like in 
Fig. 2(a), which has the camera at 275  m and the 1080p monitor yielding a 42.37  m (139  ft./
1048 pixels, excluding the bottom toolbar) longitudinal coverage, the following key points can be 
followed; 

1. Set clean map style and turn off 3D buildings, animated clouds, and gridlines. 
2. Set the 2D view (use key “U”) and rotate (use Key “Shift + Left” or “Shift + Right”) the 

highway traffic direction to parallel with the monitor’s vertical bezel as much as possible. 
3. Set the camera (use the mouse scroll wheel or Zoom buttons) at a suitable height (to cover 

the two directions and all lanes) and keep it constant as much as possible. 
4. Move (use Arrow keys) the pavement centerline to the screen center (undivided highway) 

or keep the grassy median or barrier in the screen center (divided highway). 
5. Add placemark and capture the full screen, and save the screenshot as “Capture*.PNG” file, 

where the “*” is the sequence ID. 
6. Move (use “Up” or “Down” Arrow key) to the next station and repeat the previous 

processes if necessary. 
 

For automatically tracking the roadway and capturing end-to-end images from Google Earth on the 
internet, the following algorithms were proposed in the Google Earth Screenshot Tool and its Python 
Code that can be accessed via (Jiang 2020). The algorithm starts at segmenting the roadway surfaces 
and the nonroadways via bilateral filter (Paris et al. 2009), which keeps edges but smooths the 
grayscale image (converted from the captured image) at first. In Fig. 2(b), the bilateral filtered image, 
pixels (grayscale value < 25) are replaced with 255 (to keep the shades, cracks, sealed cracks, and dark 
vehicles), and then, pixels (< 150) are replaced with 0 (to further smooth the nonpavement surface 
but retain the pavement markings different to pavement surfaces). Moreover, the filtered image is 



processed by the Sobel operator to return longitudinal edges in pavement markings, roadway edges, 
and other places that have pixel value changes. In addition, in the Sobel filtered image, pixels with 
negative gradient values are replaced with 0, and its left and right sides (200-pixel) are assigned with 0 
as well (to reduce the impacts from ramps and other neighboring nonroadways). Furthermore, by 
setting the row-column coordinate (origin 𝑦𝑦 = 0, 𝑥𝑥 = 0 at the top-left corner), for each row 𝑦𝑦𝑖𝑖, the 
pixels with positive gradient values have the mean 𝑥𝑥𝑖𝑖 that should be equal to (close to) the middle 
barrier because the two-direction roadway has similar longitudinal edges in general. From the top to 
the bottom, it has up to 1,024 𝑦𝑦𝑖𝑖 and their corresponding 𝑥𝑥𝑖𝑖, then a linear regression 𝑥𝑥 = 𝑏𝑏0 + 𝑏𝑏1𝑦𝑦 is 
used to build up their relationship [which is annotated in Fig. 2(b)]. Additionally, the vertical 
movements of Google Earth are supposed to capture end-to-end roadway images in continual stations. 
In each station, a GPS coordinate is recorded via OCR (optical character recognition), which uses the 
coordinate in the bottom toolbar [Fig. 2(a), which is the cursor’s position, keeping it in screen center as 
much as possible]; in each station, the middle barriers (or the regression line) are vertically kept in the 
center as much as possible via slight rotations and horizontal movements to satisfy the requirements 
of a 3° difference and a 15 pixels distance difference [Fig. 2(b)]. 

Label Images 
Fig. 3 shows the developed graphical user interface for labeling a collected Google Earth image with 
class label 0–5 defined in Table 1. The labeling starts with selecting a screenshot file from Google Earth 
on the internet, such as the “Capture2.PNG,” and then this selected 1,080 × 1,920-pixel image will be 
automatically cropped into a 1,024 × 1,408-pixel image and saved as “2Ortho_image.jpg,” where the 
toolbars [in Fig. 2(a)] have been removed. In addition, a same-sized blank label image will be created 
and shown on the right side of the panel, which is being fully marked with the default class label “0” at 
first. To create label images like Fig. 3, the following steps could be followed: 

1. Use the cursor (mouse pointer and left click) to point out vertices on the left image for 
identifying each object (right click to remove the last added vertex) and press the mouse middle 
button to confirm the selected vertices. 

2. Press key “D” to activate polygon label function (at least three vertices are required); type an 
abbreviation (in Table 1) to assign a predefined class label to the selected region, such as “t” in 
Fig. 3; if the object is not predefined, type any character to create a new class label, which is 
added into the class label dictionary file named as “Public_Object_Label_Dic.csv” for future 
usage. 

3. Press key “C” to activate the shortcut crack polyline label function (at least two vertices are 
required), such as “c” in Fig. 3, where the line has a width of 13-pixel. 

4. Press key “Z” to return the previous label result if an unexpected label error happens. Press key 
“0” to exit and save the label image as “2Label_image.csv” file. Saving as a spreadsheet file is 
necessary because the interpolation value appears on the boundaries of different objects in the 
image file. 

 

Table 1. Object class category 
Abbreviation Object class category Class label 
d Default, other undefined surfaces 0 



p Pavement, pavement markings 1 
t Cars, trucks, and buses 2 
l Lights, traffic signs 3 
c Cracks 4 
v Vegetation zones 5 

 

 
Fig. 2.(a) Google Earth on a web panel; and (b) images captured via Google Earth Screenshot Tool.  
 

Detect Cracks 
This research project proposed to use the DCNN model to classify each 16 × 16-pixel small patch from 
a large-size highway image into the predefined class labels “0” to “5” in Table 1. In the DCNN model 
prediction step, before the DCNN model, the highway segmentation tool disassembles the input 
Google Earth imagery into 50% overlapped 16 × 16-pixel small patches and records their locations in 
their sequence ID (Fig. 4). The adjacent two patches have a 50% overlap, which means 
the 16 × 16 window is moved with an 8-pixel step in the 1,024 × 1,408-pixel image to generate 
the 22,225 = (2 × 1,024/16 − 1) × (2 × 1,408/16 − 1) small patches of 16 × 16-pixel image 
and 16 × 16-pixel label-image pairs. As the proposed DCNN model starts with a convolution layer and 
ends with a fully connected layer (Fig. 5), then for a given image input, the “Output_0” is a binary class 
vector [𝑝𝑝0,𝑝𝑝1, … , 𝑝𝑝5], which only contains the probability values of the six predefined class labels. Thus, 
the following three processes are needed to create a patch-wise label-image prediction for the input 
highway image: 

1. Use the “Argmax” function to return “Output_1,” the index of the maximum value of the 
binary class vector, which is the class label prediction for the input image patch. For 



example, the “4/c” is the class label prediction for the input image patch in Fig. 5 because it 
has the maximum value of 0.99 among the six class labels. 

2. Assign the class label prediction “4/c” to the entire 16 × 16-pixel small patch as the label-
image patch prediction “Output_2.” 

3. Use small-patch label images to “overlapping” assemble the patch-wise label-image 
prediction “Output_3.” 

 

 
Fig. 3. Label image panel.  
 

In Fig. 4, the 50% overlapping disassembled 16 × 16-pixel small patches are considered as corner 
patches, edge patches, or regular patches, and only the filled rectangle region of each 16 ×
16-pixel label-image prediction will be used in the assembled label-image prediction. This assembly 
scheme is named “overlapping assembly” in (Jiang et al. 2020; Jiang and Bai 2020). For example, in the 
regular 16 × 16-pixel small-patch case, the useful label-image prediction region is the 
central 8 × 8-pixel patch. Thus, using the highway segmentation tool, each 8 × 8-pixel patch in the 
input highway image is linked with an 8 × 8-pixel patch in the overlapping assembled label-image 
prediction through a class label prediction from the proposed DCNN model in Fig. 5. Moreover, as the 
assembly of the large-size label-image prediction is based on the recorded sequence ID, the geospatial 
information is being recovered as well. Therefore, an assembled patch-wise label-image prediction is 
similar to resizing a 1,024 × 1,408-pixel image to a 128 × 176-pixel image for pixelwise image 
segmentation. 

Additionally, in the DCNN model training step, when creating model training data sets, 
each 16 × 16-pixel small-patch image’s class label is determined by the majority class label in its 
corresponding 16 × 16-pixel small-patch label image. For example, in Fig. 4, the selected 16 × 16 -
pixel small-patch includes a longitudinal crack (13 × 16-pixel), and then, this small patch is being 
assigned the class label “4/c.” Moreover, each collected Google Earth image and the manually created 
label image are rotated 90°, 180°, and 270° to augment data sets by four times (88,900 = 4 × 22,225), 
and then six images and label images could generate enough data sets (533,400 = 6 × 88,900) for 
training the proposed DCNN model. Moreover, as Google Earth has multiple suppliers, the image 



textures may be different among them to ensure that the highway segmentation tool can be adopted 
by different types of roadways at different locations. Additional manually crafted label images are 
required for training the proposed DCNN model for the network-level pavement evaluation. 

 
Fig. 4. Proposed highway segmentation tool based on Google Earth imagery and DCNN.  
 

 
Fig. 5. Proposed DCNN model architecture. 
 

Furthermore, the proposed DCNN model is being set up with Keras 2.3.1, which includes a feature 
learning block and a classification block. The detailed layer types and output shapes are shown in 
Fig. 5. In the feature learning block, four convolution layers learn a 16 × 16-pixel small-patch input as 
feature maps. Three max-pooling layers reduce feature maps’ sizes to their half-sizes without losing 
important features. The flattening layer transforms the feature map into a feature vector, which can be 
used in the classification block. Four fully connected layers (dense layers) translate feature-vectors to a 
binary class vector [𝑝𝑝0,𝑝𝑝1, … ,𝑝𝑝5] as the DCNN model output for each 16 × 16-pixel small-patch input. 
Furthermore, after each convolutional layer and dense layer, the rectified linear unit activation 
function (ReLU), 𝑓𝑓(𝑥𝑥) = max(0, 𝑥𝑥), is used in hidden layers for faster model training (Jiang et al. 2020). 
In addition, the SoftMax activation function is used for the end dense layer to calculate the 
probabilities of the six class labels and saved in the binary class vector [𝑝𝑝0,𝑝𝑝1, … ,𝑝𝑝5]; the dropout 
layers are used to prevent model overfitting (Chollet 2015). Moreover, when compiling the proposed 
DCNN model, the researchers recommend the settings 



only (set the other parts of a model training image as noncrack in default). In addition, to improve the 
U-net based crack/noncrack classifying accuracy, it is better to use thin width lines to craft cracks in 
label images, but that is harder in the relatively low-resolution Google Earth imagery than in the high-
resolution close-range RGB images acquired by a smartphone and camera in (Huyan et al. 2019; Ji et al. 
2020). Moreover, future research can consider rating the distresses of patching and block cracking in 
terms of feet of full-lane width (and in terms of the percentage of the rated lane’s total surface area in-
network level) by using polygons to label distresses and using a large-patch DCNN model to classify 
each large patch as patching/block cracking/nondistress; then, it can build up the relation between the 
longitudinal cracking index, transverse cracking index, patching index, and block cracking index with 
the PASER (pavement surface evaluation and rating) via regression models. As the developed tool in 
this research can extract the image and continuously rate the roadway, it will yield a good PASER 
prediction for the evaluated highway. Furthermore, Google Street View is a potential close-range high-
resolution image source for alligator cracking detection. However, for continuous and complete 
project/network evaluation, using drone orthoimagery is much better, and the drone photogrammetry 
point cloud is a good source to evaluate other pavement distresses, such as rutting and potholes, 
which are highly dependent on the pavement geometrical data. 

Table 7. Achievement in this work 
Performance Limitations in existing methods Fulfilled in this work 
Image 
accessible 

Google Street View images (top-down 
views) are only available at scattering 
stations along a roadway (clicking the 
forward and backward navigation 
arrows will move to those stations, 
interval about 14.5m), which may not 
exist in rural areas; a vehicle-mounted 
camera/ 3D laser camera need quite a 
lot of time to capture 2D/3D images 
to cover an entire project/network-
level roadway, which needs 
transportation professionals involved 

Google Earth (or other aerial and satellite 
imagery) high-resolution images available 
in the United States; the developed tool 
can automatically track the roadway, 
collect the end-to-end images along the 
roadway direction and record GPS 
information for each station; a 
transportation professional only has to 
monitor image acquisition 

Longitudinal 
coverage 

Each Google Street View image (top-
down view) only covers the length of 
a vehicle (Majidifard et al. 2020a, b) 

By setting the camera at 275  m, the 
longitudinal coverage of each collected 
image is about 41.4  m (135.82  ft./
1,024 − pixel) in vertical 

Transverse 
coverage 

Each Google Street View image (top-
down view) only covers one full lane 
and partially each side(Majidifard 
et al. 2020a, b); the laser camera has 
a transverse coverage of 
about 4  m4  m (Zhou and Song 
2020a, b) 

By setting the camera at 275  m, the 
collected image has the coverage of two 
directions and all lanes 



Image quality Google Street View has a lower 
resolution in the vehicle driving lane 
than other regions [where have been 
covered by the vehicle (which 
mounted the 360 camera) when 
capturing images, then images in 
there are generated from image 
projection and other 
transformations]; Google Street View 
has more chances to be impacted by 
vehicles and to have distortion 
somewhere 

Google Earth has a consistent resolution 
for both directions and all lanes; the 
resolution supports the detection, 
classification, and quantification of several 
pavement distresses, including longitudinal 
cracking and transverse cracking in this 
work; using the developed tool and a large 
patch size, the distresses of patching and 
block cracking can be detected, classified 
and quantified as well 

Image number Only a limited number of top-down 
Google Street View images can be 
extracted, which cannot provide the 
full coverage either in longitudinal or 
transverse; the vehicle-mounted 3D 
laser camera needs to scan the 
roadway [2 (directions)×number of 
lanes] times 

Uses fewer end-to-end images to cover an 
entire project/network-level roadway; an 
image can cover both directions and all 
lanes 

Timely Vehicle-mounted camera/3D laser 
camera can obtain timely 2D/3D 
images, while it is a time-consuming 
operation 

Google Earth has a year delay in general, 
while there are other aerial and satellite 
images available for use 

Quantification Quantified distresses via the “ratio of 
white pixel” which has no physical 
mean as the scale for each image is 
unknown (Majidifard et al. 2020a) 

Measures the physical length of the 
longitudinal cracks, and count of transverse 
cracks in each image; then, the longitudinal 
cracking is measured in terms 
of 0.3048  m/30.48  m-Station (linear feet 
per 100-ft. station), and the transverse 
cracking is measured in terms of Num./
30.48  m-Station (number of transverse 
cracks per 100-ft. station) 

Visualization Visualization limited to image level 
and summarized in 2D profile plots 
without geographic information 
(Majidifard et al. 2020a, b; Maniat 
2019) 

Each image’s GPS information is 
automatically detected via OCR during 
image collection, then the rated cracking 
index can be visualized in ArcGIS Online 
with a hot map 
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The model training and testing data sets are available from the corresponding author upon request. 
The Python codes are also available from the corresponding author upon request. 
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