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Abstract 
An analytical expression for static stability of a rectangular slab with two simply supported and two 
elastically restrained edges is presented. The linear elastic isotropic slab can represent a rigid 
pavement resting on an elastic foundation and loaded by a uniform in-plane axial load per unit length 
along the edges. The partially restrained edges are connected to the ground by translational and 
rotational elastic springs; an appropriate magnitude of the springs can capture classical boundary 
conditions such as free, simply supported, and clamped edges. Results from classical boundary 

https://doi.org/10.1061/JPEODX.0000072
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conditions and a finite-element model were used to validate the proposed stability equation. The 
generalized boundary conditions were found to change the critical load by a factor of two and greatly 
affected the first buckling mode shape of a typical concrete pavement. The critical load was not 
sensitive to the slab’s geometry if the length was four times longer than the width, but this was not the 
case for small aspect ratios. Finally, the translational spring was found to be a defining factor in 
determining the influence of the other variables on the critical load. 

Introduction 
Analytical models aimed at studying concrete pavement blowup lack a proper representation of the 
boundary conditions. Regardless of slab geometry, material properties, and loading conditions, existing 
approaches have focused on slabs with classical boundary conditions (i.e., simply supported, clamped, 
or free). For certain slab geometries, such as circular and rectangular, there are exact stability 
equations as long as the boundaries are either free or fully restrained (Wang et al. 2005). 

The buckling of a long slab resting on an elastic foundation, considering the potential detachment 
between slab and foundation, has been studied (Seide 1958), but the stability equation was limited to 
simply supported slabs. Similarly, the stability of an infinitely long and wide slab has been addressed 
using the Fourier transform (Kim 2004). The model considered a moving load of constant amplitude, a 
stationary harmonic load, and a moving harmonic load. Even though static and dynamic stability was 
captured, the solution could not be applied to slabs with finite dimensions, such as concrete 
pavements. Yu and Wang also studied rectangular slabs on elastic foundations (Yu and Wang 2008); 
however, the stability equations were different for the various combinations of classical boundary 
conditions, which complicated their implementation. There are procedures to analyze the stability of 
beam-columns on elastic foundations with generalized boundary conditions (Areiza-Hurtado et al. 
2005), but there are none for slabs. 

Rigid pavement blowup can be understood by studying the stability of slabs on elastic foundations 
(also known as liquid or Winkler foundations). Rigid pavements contract in cold temperatures, 
increasing joint spacing. The space between slabs might be filled with incompressible debris, 
constraining pavement expansion in high temperatures. Restrained expansion translates into axial 
forces in the concrete slab, which might increase until reaching buckling load. Some attempts have 
been made to provide a theoretical explanation of pavement blowup, mainly by Kerr and coauthors 
(Kerr and Shade 1984; Kerr and Dallis 1985; Kerr 1994, 1997). This work revolved around determining 
safe temperature increments before rigid pavement buckling, and it assumed uniform temperature 
increments. Long pavement was considered, and the analysis was performed on a unit-width slab 
supported on an infinitely rigid base. In addition, nonlinear pavement-base shear interface forces were 
included (Kerr and Shade 1984; Kerr and Dallis 1985). The solution was used to determine the 
relevance of different variables on rigid pavement stability such as coefficient of thermal expansion, 
pavement thickness and stiffness, and pavement-base interface forces (Kerr and Dallis 1985). The 
methodology was extended to quantify the influence of an adjacent rigid structure on pavement 
blowup (Kerr 1994). Probably the main drawback of this work lays on assuming long pavement and 
infinitely rigid base support. 



The solution presented here addresses the aforementioned limitation. On the one hand, using the 
proposed equation to calculate blowup load, concrete pavement could have any in-plane dimensions, 
in particular infinitely long or wide. On the other hand, two opposite edges of the slab were partially 
restrained to rotation and displacement by assigning translational and rotational elastic springs. 
Consequently, any combination of classical boundary conditions could be captured in a single stability 
equation, including interaction with a rigid structure. Furthermore, the obtained results were 
successfully compared with expressions assuming classical boundary conditions and values from a 
finite-element model. 

Structural Model and Stability Equation 
Consider a slab of length 𝐿𝐿 and width 2𝑏𝑏𝑏𝑏 (aspect ratio = 2𝑏𝑏) made of a linear elastic material with 
elastic modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈. The slab, whose thickness ℎ is small compared to the shortest 
plan dimension, is supported on an elastic foundation with modulus of subgrade reaction Λ. The origin 
of the coordinate system is located at the midpoint of the left-hand edge of the slab, with the 𝑥𝑥′- 
and 𝑦𝑦′-axes pointing along the length and width of the slab, respectively, as shown in Fig. 1. 

The slab is loaded along the 𝑥𝑥′ - and 𝑦𝑦′- directions by in-plane load per unit length 𝑁𝑁. The slab is 
assumed simply supported along edges parallel to the 𝑦𝑦′-axis. Along the edges parallel to the 𝑥𝑥′-axis, 
generalized boundary conditions are assumed; the vertical displacement and the rotation are partially 
restrained by translational and rotational springs of magnitude 𝑆𝑆𝑎𝑎, 𝑆𝑆𝑏𝑏, 𝜅𝜅𝑎𝑎, and 𝜅𝜅𝑏𝑏, respectively, as 
shown in Fig. 1. Traditional boundary conditions can be captured assigning appropriate values to the 
spring constants. For instance, if 𝑆𝑆𝑎𝑎 and 𝑆𝑆𝑏𝑏 are significantly large, the edge of the slab does not have 
any vertical displacement. If 𝜅𝜅𝑎𝑎 = 𝜅𝜅𝑏𝑏 = 0, the slab is free to rotate, which constitutes a simply 
supported condition. On the other hand, if both rotational springs approach infinite, the edge cannot 
rotate and a clamped boundary condition is obtained. 

Based on thin slabs theory, the partial differential equation for the vertical deflection 𝑤𝑤 of a slab 
resting on a elastic foundation is given by 

(1) 

𝐷𝐷 �
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥′4

+
𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥′2𝜕𝜕𝑦𝑦′2
+
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦′4

� + 𝑁𝑁 �
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥′2

+
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦′2

� + Λ𝑤𝑤 = 0 

where 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2) = slab bending stiffness. Along the elastically restrained edges, the shear force and 

bending moment are 

(2) 

𝑉𝑉(𝑥𝑥′, 𝑏𝑏𝑏𝑏) = 𝑆𝑆𝑎𝑎𝑤𝑤(𝑥𝑥′, 𝑏𝑏𝑏𝑏) 

(3) 

𝑉𝑉(𝑥𝑥′,−𝑏𝑏𝑏𝑏) = −𝑆𝑆𝑏𝑏𝑤𝑤(𝑥𝑥′,−𝑏𝑏𝑏𝑏) 

(4) 

𝑀𝑀(𝑥𝑥′, 𝑏𝑏𝑏𝑏) = 𝜅𝜅𝑎𝑎𝜃𝜃(𝑥𝑥′, 𝑏𝑏𝑏𝑏) 



(5) 

𝑀𝑀(𝑥𝑥′,−𝑏𝑏𝑏𝑏) = −𝜅𝜅𝑏𝑏𝜃𝜃(𝑥𝑥′,−𝑏𝑏𝑏𝑏) 

where 𝑉𝑉, 𝑀𝑀, and 𝜃𝜃 = shear force, bending moment, and rotation of the slab. Normalizing lengths with 
respect to 𝐿𝐿, the partial differential equation for 𝑤𝑤 becomes 

(6) 

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+
𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2
+
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4

+ 𝑘𝑘 �
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

� + 𝜆𝜆4𝑤𝑤 = 0 

where the dimensionless buckling load coefficient 𝑘𝑘 and the dimensionless subgrade stiffness 
coefficient 𝜆𝜆 are 

(7) 

𝑘𝑘 =
𝑁𝑁𝐿𝐿2

𝐷𝐷
 

(8) 

𝜆𝜆4 =
Λ𝐿𝐿4

𝐷𝐷
 

Because edges parallel to the 𝑦𝑦′-axis are simply supported, the solution of Eq. (6) can be assumed as 

(9) 

𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑦𝑦) sin(𝛼𝛼𝛼𝛼) 

where 𝛼𝛼 = 𝑛𝑛𝑛𝑛, with 𝑛𝑛 being an integer. Replacing Eq. (9) in Eq. (6) and Eqs. (2)–(5), the differential 
equation for 𝑓𝑓(𝑦𝑦) is 

(10) 

𝑑𝑑4𝑓𝑓
𝑑𝑑𝑦𝑦4

+ (𝑘𝑘 − 2𝛼𝛼2)
𝑑𝑑2𝑓𝑓
𝑑𝑑𝑦𝑦2

+ (𝛼𝛼4 − 𝑘𝑘𝛼𝛼2 + 𝜆𝜆4)𝑓𝑓 = 0 

and its boundary conditions are 

(11) 

𝑓𝑓′′′(𝑏𝑏) − [𝛼𝛼2(2 − 𝜈𝜈) − 𝑘𝑘]𝑓𝑓′(𝑏𝑏) = 𝑇𝑇𝑎𝑎𝑓𝑓(𝑏𝑏) 

(12) 

𝑓𝑓′′′(−𝑏𝑏) − [𝛼𝛼2(2 − 𝜈𝜈) − 𝑘𝑘]𝑓𝑓′(−𝑏𝑏) = −𝑇𝑇𝑏𝑏𝑓𝑓(−𝑏𝑏) 

(13) 

𝑓𝑓′′(𝑏𝑏) − 𝜈𝜈𝛼𝛼2𝑓𝑓(𝑏𝑏) = −𝑅𝑅𝑎𝑎𝑓𝑓′(𝑏𝑏) 

(14) 



𝑓𝑓′′(−𝑏𝑏) − 𝜈𝜈𝛼𝛼2𝑓𝑓(−𝑏𝑏) = 𝑅𝑅𝑏𝑏𝑓𝑓′(−𝑏𝑏) 

where 𝑇𝑇𝑎𝑎 = 𝑆𝑆𝑎𝑎𝐿𝐿3

𝐷𝐷
, 𝑇𝑇𝑏𝑏 = 𝑆𝑆𝑏𝑏𝐿𝐿3

𝐷𝐷
, 𝑅𝑅𝑎𝑎 = 𝜅𝜅𝑎𝑎𝐿𝐿

𝐷𝐷
, and 𝑅𝑅𝑏𝑏 = 𝜅𝜅𝑏𝑏𝐿𝐿

𝐷𝐷
 = translational and rotational stiffness indexes 

along both edges of the slab, respectively. Eq. (10) is a fourth-order linear differential equation with 
constant coefficients and characteristic equation: 

(15) 

𝛽𝛽4 + (𝑘𝑘 − 2𝛼𝛼2)𝛽𝛽2 + (𝛼𝛼4 − 𝑘𝑘𝛼𝛼2 + 𝜆𝜆4) = 0 

then 

(16) 

𝛽𝛽2 =
1
2
�−(𝑘𝑘 − 2𝛼𝛼2) ± �𝑘𝑘2 − 4𝜆𝜆4� 

The solution 𝑓𝑓(𝑦𝑦) depends on the nature of the roots 𝛽𝛽, and three cases are identified: 

• Case 1: if Δ > 0 and 2𝛼𝛼2 − 𝑘𝑘 > √Δ, then the roots are real and the solution is 
(17) 

𝑓𝑓(𝑦𝑦) = 𝑐𝑐1𝑒𝑒𝛽𝛽1𝑦𝑦 + 𝑐𝑐2𝑒𝑒(−𝛽𝛽1𝑦𝑦) + 𝑐𝑐3𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝑐𝑐4𝑒𝑒−𝛽𝛽2𝑦𝑦 
with 
(18) 

𝛽𝛽12 =
2𝛼𝛼2 − 𝑘𝑘 + √Δ

2
 

(19) 

𝛽𝛽22 =
2𝛼𝛼2 − 𝑘𝑘 − √Δ

2
 

• Case 2: If Δ > 0 and 2𝛼𝛼2 − 𝑘𝑘 < √Δ, then the roots are complex and the solution is 
(20) 

𝑓𝑓(𝑦𝑦) = 𝑐𝑐1𝑒𝑒𝛽𝛽1𝑦𝑦 + 𝑐𝑐2𝑒𝑒𝛽𝛽2𝑦𝑦 + 𝑐𝑐3 sin(𝛽𝛽2𝑦𝑦) + 𝑐𝑐4 cos(𝛽𝛽2𝑦𝑦) 
with 
(21) 

𝛽𝛽12 =
2𝛼𝛼2 − 𝑘𝑘 + √Δ

2
 

(22) 

𝛽𝛽22 = −
2𝛼𝛼2 − 𝑘𝑘 − √Δ

2
 

• Case 3: if Δ < 0, then the roots are complex conjugate and the solution is 
(23) 

𝑓𝑓(𝑦𝑦) = 𝑐𝑐1𝑒𝑒𝑠𝑠𝑠𝑠 cos(𝑡𝑡𝑡𝑡) + 𝑐𝑐2𝑒𝑒𝑠𝑠𝑠𝑠 sin(𝑡𝑡𝑡𝑡) + 𝑐𝑐3𝑒𝑒−𝑠𝑠𝑠𝑠 cos(𝑡𝑡𝑡𝑡) + 𝑐𝑐4𝑒𝑒−𝑠𝑠𝑠𝑠 sin(𝑡𝑡𝑡𝑡) 
with 
(24) 

𝛽𝛽12 =
2𝛼𝛼2 − 𝑘𝑘 + √4𝜆𝜆4 − 𝑘𝑘2𝑖𝑖

2
= 𝑠𝑠 + 𝑡𝑡𝑡𝑡 

(25) 



𝛽𝛽22 =
2𝛼𝛼2 − 𝑘𝑘 − √4𝜆𝜆4 − 𝑘𝑘2𝑖𝑖

2
= −𝑠𝑠 + 𝑡𝑡𝑡𝑡 

 
Replacing 𝑓𝑓(𝑦𝑦) from Eqs. (17), (20), and (23) in the boundary conditions in Eqs. (11)–(14), a 
homogenous system of equations of the form [𝐴𝐴]4×4 · [𝐶𝐶]4×1 = [0]4×1 can be built, 
where [𝐴𝐴]4×4 stores the coefficients of 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, and 𝑐𝑐4, which are grouped in [𝐶𝐶]4×1. The critical axial 
load 𝑁𝑁critc is the value of 𝑁𝑁 that makes the determinant of [𝐴𝐴] equal to zero. Equating the 
determinant [𝐴𝐴] to zero results in the characteristic stability equation, which, regardless of the form 
of 𝑓𝑓(𝑦𝑦), can be written as 

(26) 

[𝑅𝑅𝑅𝑅]1×16[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]16×𝑡𝑡[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑡𝑡×1 + [𝑅𝑅𝑅𝑅]1×16[𝑅𝑅𝑅𝑅𝑅𝑅]16×1 = 0 

where 𝑡𝑡 = integer whose value depends on the type of roots: 𝑡𝑡 = 4 for real roots (Case 1), 𝑡𝑡 = 8 for 
complex roots (Case 2), and 𝑡𝑡 = 11 for complex conjugate roots (Case 3); [𝑅𝑅𝑅𝑅]1×16 = vector containing 
combinations of 𝑅𝑅𝑎𝑎, 𝑅𝑅𝑏𝑏, 𝑇𝑇𝑎𝑎, and 𝑇𝑇𝑏𝑏; [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑡𝑡×1 = vector of trigonometric functions; [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]16×𝑡𝑡 = 
matrix storing coefficients of trigonometric functions in [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]𝑡𝑡×1; [𝑅𝑅𝑅𝑅𝑅𝑅]16×1 = terms not multiplying 
trigonometric functions. 

The values of [𝑅𝑅𝑅𝑅], [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇], [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶], and [𝑅𝑅𝑅𝑅𝑅𝑅] for the three types of solution are provided in the 
Tables 5–11 and definitions in the Appendix. Corresponding to the first columns in the tables, [𝑅𝑅𝑅𝑅] is 
the same for all cases; [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇] depends on the solution for 𝑓𝑓(𝑦𝑦) and is given by the column headings in 
Tables 5–10; [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] are the entries in the tables; and [𝑅𝑅𝑅𝑅𝑅𝑅], which is different from zero only when 
the roots are real, is given in Table 10. The buckling mode shapes are obtained by replacing the critical 
load in the homogeneous system [𝐴𝐴] · [𝐶𝐶] = [0], solving for one of the four constants in [𝐶𝐶], and 
replacing in the corresponding 𝑓𝑓(𝑦𝑦) [Eqs. (17), (20), or (23)]. 

A finite-element model was developed using ABAQUS to verify the results of the proposed equations. 
Four-node full-integration shell elements were used to model the slab resting on an elastic foundation. 
Two-node three-dimensional (3D) connector elements with translational and rotational spring 
constants simulated the semirigid connections. A biaxial uniform load per unit length was applied along 
the edges of the slab, and an eigenvalue buckling analysis was performed. The vertical displacements 
of the simply supported edges, the ones parallel to the 𝑦𝑦′-axis, were fully restrained to vertical 
displacement. In addition, a kinematic constraint was created to guarantee that the two opposite 
edges would have negligible displacement in the 𝑦𝑦′-direction. The resulting critical loads were 
compared with results obtained using the stability equation in Eq. (26). 

Slab with Classical Boundary Conditions 
Consider a slab with the simply supported edges parallel to the 𝑦𝑦′-axis and the other two edges fully 
restrained to vertical displacement (i.e., 𝑆𝑆𝑎𝑎 = 𝑆𝑆𝑏𝑏 tending to infinite). When Δ > 0 and 2𝛼𝛼2 − 𝑘𝑘 > √Δ, 
the terms in Eq. (26) are obtained by finding the limit when 𝑆𝑆𝑎𝑎 = 𝑆𝑆𝑏𝑏 → ∞. From Table 11 and replacing 
into Eq. (26) 

(27) 

[𝑅𝑅𝑅𝑅]1×4[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]4×4[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]4×1 + [𝑅𝑅𝑅𝑅]1×4[𝑅𝑅𝑅𝑅𝑅𝑅]4×1 = 0 



(28) 

�

𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏
𝑅𝑅𝑎𝑎
𝑅𝑅𝑏𝑏
1

�

𝑇𝑇

⎝

⎜
⎛

−2𝐵𝐵𝑝𝑝2 2𝐵𝐵𝑚𝑚2 0 0
0 0 −2𝐵𝐵𝑚𝑚𝐵𝐵𝑝𝑝2 2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝
0 0 −2𝐵𝐵𝑚𝑚𝐵𝐵𝑝𝑝2 2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝

−2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝2 2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝2 0 0 ⎠

⎟
⎞

⎝

⎛

cosh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2)
cosh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)
sinh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2)
sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)⎠

⎞ + �

𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏
𝑅𝑅𝑎𝑎
𝑅𝑅𝑏𝑏
1

�

𝑇𝑇

�

8𝛽𝛽1𝛽𝛽2
0
0
0

�

= 0 

where 𝐵𝐵𝑝𝑝 = 𝛽𝛽1 + 𝛽𝛽2 and 𝐵𝐵𝑚𝑚 = 𝛽𝛽1 − 𝛽𝛽2. After performing the matrix operations, Eq. (28) becomes 

(29) 

−2 cosh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2)𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝2 + 2 cosh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝2

+ 𝑅𝑅𝑎𝑎�2 sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝 − 2 sinh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2)𝐵𝐵𝑚𝑚𝐵𝐵𝑝𝑝2�
+ 𝑅𝑅𝑏𝑏�2 sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝 − 2 sinh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2)𝐵𝐵𝑚𝑚𝐵𝐵𝑝𝑝2�
+ 𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏�2 cosh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)𝐵𝐵𝑚𝑚2 − 2 cosh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2)𝐵𝐵𝑝𝑝2 + 8𝛽𝛽1𝛽𝛽2� = 0 

If the slab is simply supported along all edges, the stability equation when the roots are real is obtained 
making 𝑅𝑅𝑎𝑎 = 𝑅𝑅𝑏𝑏 = 0. Then Eq. (29) becomes 

(30) 

(𝛽𝛽12 − 𝛽𝛽22)2 sinh(2𝑏𝑏𝛽𝛽1) sinh(2𝑏𝑏𝛽𝛽2) = 0 

In addition, 𝑅𝑅𝑎𝑎 = 𝑅𝑅𝑏𝑏 → ∞ provides the equations for a clamped slab. A similar procedure can be 
followed for the other cases (i.e., complex and complex conjugate roots). Tables 1 and 2 summarize the 
stability equations for a slab with two edges simply supported and clamped, respectively. 

Table 1. Stability equations for a slab with all edges simply supported 
Case Equation 
Δ > 0, 2𝛼𝛼2 − 𝑘𝑘 > √Δ (𝛽𝛽12 − 𝛽𝛽22)2 sinh(2𝑏𝑏𝛽𝛽1) sinh(2𝑏𝑏𝛽𝛽2) = 0 
Δ > 0, 2𝛼𝛼2 − 𝑘𝑘 > √Δ 4(𝛽𝛽12 + 𝛽𝛽22)2 sin(𝑏𝑏𝛽𝛽2) cos(𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1) = 0 
𝛥𝛥 < 0 8𝑠𝑠2𝑡𝑡2[cos(4𝑏𝑏𝑏𝑏) − cosh(4𝑏𝑏𝑏𝑏)] = 0 

 

Table 2. Stability equations for a slab with two edges simply supported and two edges clamped 
Case Equation 
Δ > 0, 2𝛼𝛼2 −
𝑘𝑘 > √Δ 

2(𝛽𝛽1 + 𝛽𝛽2)2 cosh[2𝑏𝑏(𝛽𝛽1 − 𝛽𝛽2)] − 2(𝛽𝛽1 − 𝛽𝛽2)2 cosh[2𝑏𝑏(𝛽𝛽1 + 𝛽𝛽2)] = 0 

Δ > 0, 2𝛼𝛼2 −
𝑘𝑘 > √Δ 

4𝛽𝛽1𝛽𝛽2 cos2(𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1) − 4𝛽𝛽1𝛽𝛽2sin2(𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1)
− 4(𝛽𝛽12 − 𝛽𝛽22) sin(𝑏𝑏𝛽𝛽2) cos(𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1) = 0 

𝛥𝛥 < 0 4𝛽𝛽1𝛽𝛽2 cos2(𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1) − 4𝛽𝛽1𝛽𝛽2sin2(𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1)
− 4(𝛽𝛽12 − 𝛽𝛽22) sin(𝑏𝑏𝛽𝛽2) cos(𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1) = 0 

 

Table 3 compares the critical load calculated using the proposed equations, the finite-element method, 
and the values reported by Yu and Wang (2008) for two boundary conditions: simply supported and 
clamped. The slab’s length is twice its width (𝑏𝑏 = 0.25), and three support conditions are assumed 



(𝜆𝜆 = 0, 2, and 5). The table also shows the percentage difference with respect to the proposed 
method. As can be observed, the agreement is excellent. 

Table 3. Comparison between Proposed equation, Yu and Wang, and ABAQUS for b=0.25 
Boundary condition 𝜆𝜆 Equation Yu and Wang (2008)  ABAQUS  

  𝑘𝑘 𝑘𝑘 Difference (%) 𝑘𝑘 Difference (%) 

Simply Supported 0 49.3475 49.35 −0.005 49.2219 0.255 
 2 49.6722 49.67 0.004 49.5546 0.237 
 5 62.0136 62.02 −0.010 62.2191 −0.331 
Clamped 0 150.9549 150.99 −0.023 149.7369 0.807 
 2 151.2148 151.24 −0.017 150.0006 0.803 
 5 158.1408 158.13 0.007 159.9969 −1.174 

 

Critical Load of Concrete Pavement 
Consider a square slab (𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠 = 4.0  m) of a rigid pavement whose longitudinal joints are assumed 
simply supported. The slab has a thickness of ℎ = 0.3  m, and it is resting on a elastic foundation with 
modulus of subgrade reaction Λ = 18.2  MN

m3 . The concrete has an elastic modulus of 𝐸𝐸 =
25,000  MPa and a Poisson’s ratio of 𝜈𝜈 = 0.15. The transverse joint ahead of traffic is in good 
condition, meaning that there is a good transfer of shear force and bending moment to the next slab 

(𝜅𝜅𝑎𝑎 = 1.439 × 106  kN × m
rad/m

 and 𝑇𝑇𝑎𝑎 = 8.991 ×
105  N
m
m

). Conversely, the other transverse joint is 

progressively deteriorating to the point that there is no load transfer to the adjacent slab. The 
objective is to find the effect of joint deterioration on the critical load and the first mode of buckling. 

The bending stiffness of the slab is 𝐷𝐷 =
𝐸𝐸ℎ3

12
1−𝜈𝜈2

= 57.5  MN · m. The translational and rotational stiffness 

indexes of the joints ahead of traffic are 𝑇𝑇𝑎𝑎 = 𝑆𝑆𝑎𝑎𝐿𝐿3

𝐷𝐷
= 100 and 𝑅𝑅𝑎𝑎 = 𝜅𝜅𝑎𝑎𝐿𝐿

𝐷𝐷
= 1,000. The parameter 

associated with the elastic foundation is 𝜆𝜆 = Λ𝐿𝐿4

𝐷𝐷
= 3.0. Six joint deterioration conditions are 

considered by assigning different values to the parameters 𝑇𝑇𝑏𝑏 and 𝑅𝑅𝑏𝑏. The values range between 𝑅𝑅𝑎𝑎 =
0.001 and 𝑆𝑆𝑎𝑎 = 0.01, which represent no load transfer between slabs, to 𝑅𝑅𝑎𝑎 = 200 and 𝑆𝑆𝑎𝑎 = 2,000. 

The blowup loads 𝑁𝑁critc for the various joint conditions are calculated using Eq. (26) and are 
summarized in Table 4. As the stiffness of the joint is reduced, the slab’s restriction to motion also 
decreases. This reduction in stiffness, as expected, decreases the magnitude of the critical load. It is 
also observed that for the selected values of 𝑅𝑅𝑎𝑎 and 𝑆𝑆𝑎𝑎, the change in 𝑁𝑁critc is almost linear, 
highlighting the relevance of accurate characterization of joint deterioration for the prediction of 
concrete pavement critical load. 

Table 4. Effect of joint deterioration on critical load 
Deterioration 𝑘𝑘 𝑁𝑁critc (kN/m) 
𝑅𝑅𝑎𝑎 = 0.001, 𝑆𝑆𝑎𝑎 = 0.01 18.10 65,110.22 



𝑅𝑅𝑎𝑎 = 10, 𝑆𝑆𝑎𝑎 = 1 21.51 77,377.14 
𝑅𝑅𝑎𝑎 = 20, 𝑆𝑆𝑎𝑎 = 10 24.36 87,605.53 
𝑅𝑅𝑎𝑎 = 50, 𝑆𝑆𝑎𝑎 = 100 29.16 104,861.5 
𝑅𝑅𝑎𝑎 = 100, 𝑆𝑆𝑎𝑎 = 1000 34.24 123,156.9 
𝑅𝑅𝑎𝑎 = 200, 𝑆𝑆𝑎𝑎 = 2000 37.80 135,912.0 

 

Fig. 2 shows the effect of joint deterioration on normalized buckling mode shapes. If the joint is in good 
condition (𝑆𝑆𝑏𝑏 = 2,000 and 𝑇𝑇𝑏𝑏 = 200), the maximum deflection is located toward the center of the 
slab. As the transverse joint deteriorates, the point of maximum deflection shifts toward the weaker 
joint. For the weakest joint condition, not only is the maximum deflection located at the joint but the 
curvature of the slab has changed. The deformed shaped shown in Fig. 2 agrees with the deformation 
of concrete pavement when it fails by buckling. 

It should be highlighted that the proposed method has the capability of considering rotational and 
translational spring stiffness independently. However, in the case of actual concrete pavements, joint 
deterioration causes stiffness reduction in a coupled fashion, indicating that a function 
relating 𝑅𝑅𝑎𝑎 to 𝑆𝑆𝑎𝑎 and 𝑅𝑅𝑏𝑏 to 𝑆𝑆𝑏𝑏 must be included. Consequently, some of the 𝑅𝑅𝑏𝑏 − 𝑆𝑆𝑏𝑏 combinations in 
Fig. 2 are not likely to occur in real life. This observation also applies to the results in the following 
sections. 

Effect of Joint Stiffness on Concrete Pavement Blowup 
The influence of degree of vertical displacement and rotation restrain on the critical load of a square 
slab was studied. Two support cases were considered: for the first one, no elastic foundation was 
considered (𝜆𝜆 = 0); for the second one, slab geometry, material properties, and modulus of subgrade 
reaction provided 𝜆𝜆 = 2. Slab edges not being simply supported were assumed to have the same 
degree of restrain (𝑅𝑅𝑎𝑎 = 𝑅𝑅𝑏𝑏 and 𝑆𝑆𝑎𝑎 = 𝑆𝑆𝑏𝑏); 𝑅𝑅𝑎𝑎 ranged between 10−3 and 104, whereas 𝑆𝑆𝑎𝑎 varied 
between 10−2 and 104. The range of values for 𝑅𝑅𝑎𝑎 and 𝑆𝑆𝑎𝑎 could be physically interpreted as various 
joint deterioration degrees. 

Figs. 3 and 4 show the variation in the dimensionless buckling load coefficient  
𝑘𝑘 with 𝑆𝑆𝑎𝑎 and 𝑅𝑅𝑎𝑎 for both values of 𝜆𝜆. If the vertical restraint is low (𝑆𝑆𝑎𝑎 < 20), the rotational restraint 
has a negligible effect on the critical load. For instance, when 𝜆𝜆 = 2, 𝑘𝑘 increases by only 0.02% 
after 𝑅𝑅𝑎𝑎 increases from 10−3 to 104, indicating that vertical displacement of the edges is more 
important than rotation. On the other hand, the relevance of 𝑅𝑅𝑎𝑎 is very high because the magnitude 
of 𝑆𝑆𝑎𝑎 is higher, with 𝑘𝑘 almost doubled as the magnitude of the rotational stiffness index changes 
between its extreme values when 𝑆𝑆𝑎𝑎 = 104 (increments of 91% and 87% for 𝜆𝜆 = 0 and 2, 
respectively). 

Similarly, the greatest influence of the translational restraint is seen for the highest magnitude of 𝑅𝑅𝑎𝑎. 
If 𝑅𝑅𝑎𝑎 = 10−3, the increment of 𝑘𝑘 is 15% when there is no elastic foundation and 𝑆𝑆𝑎𝑎 changes from 50 
to 104. On the other hand, for the same change in 𝑆𝑆𝑎𝑎 but 𝑅𝑅𝑎𝑎 = 104, the dimensionless buckling load 
coefficient doubles from 𝑘𝑘 = 18.73 to 𝑘𝑘 = 37.67. In general, three zones can be identified as 
characterizing the effect of 𝑅𝑅𝑎𝑎 and 𝑆𝑆𝑎𝑎 on critical load. If 𝑅𝑅𝑎𝑎 < 0.1 and 𝑅𝑅𝑎𝑎 > 100, the rotational 
stiffness index has no effect on the critical load regardless the magnitude of 𝑆𝑆𝑎𝑎. Conversely, if 10 <



𝑅𝑅𝑎𝑎 < 100, the change in 𝑘𝑘 with 𝑅𝑅𝑎𝑎 is almost linear in the semilogarithmic scale. These results indicate 
that preventive measures against concrete pavement blowup should include joint quality inspection. 

Fig. 5 compares the results from the proposed equation and ABAQUS. The continuous line represents 
the values predicted by the finite-element model. The figure also shows the equation of a linear fit to 
the cloud of points, which identifies good agreement between the results obtained using Eq. (26) and 
ABAQUS. However, the proposed solution does not need any special-purpose software such as 
ABAQUS and can be easily implemented. 

Effect of Slab Size on Concrete Pavement Blowup 
The effect of a slab’s aspect ratio on the critical load under various restraint conditions was analyzed. 
Fig. 6 shows such variation when bb changes between 0.3 and 2.0; 𝑏𝑏 = 0.3 represents a slab whose 
width is 60% longer than its length. Variation in half the aspect ratio can be physically interpreted as a 
slab with a fixed length whose width continuously decreases. Aspect ratio values that are too small or 
too big represent structural behavior different from that of a slab, which is out of the scope of this 
work. The presented results were obtained assuming 𝑆𝑆𝑎𝑎 = 𝑆𝑆𝑏𝑏 and 𝑅𝑅𝑎𝑎 = 𝑅𝑅𝑏𝑏. 

The dimensionless buckling load coefficient 𝑘𝑘 is insensitive to aspect ratio if 𝑆𝑆𝑎𝑎 is low, regardless of the 
rotational restraint for both values of 𝜆𝜆 considered. For instance, if 𝑅𝑅𝑎𝑎 = 104, 𝑆𝑆𝑎𝑎 = 1, and 𝜆𝜆 = 2,  
𝑘𝑘 changes 2.6% between the two extreme values of bb. As vertical restraint increases, critical load is 
augmented and the aspect ratio’s influence becomes significant. For the same case (𝜆𝜆 =
2 and 𝑅𝑅𝑎𝑎 = 104) and 𝑆𝑆𝑎𝑎 = 50, critical load decreases 42% when bb changes from 0.3 to 2.0. Similarly, 
the impact of 𝑅𝑅𝑎𝑎 on the critical load increases as 𝑆𝑆𝑎𝑎 increases. These results show that proper 
characterization of vertical displacement at the edges of the slab is crucial for accurate calculation of 
the critical load. 

Most of the influence of the semirigid connections derives from 𝑏𝑏 less than 1.2. As 𝑏𝑏 increases beyond 
1.2, the influence of the rotational and translational stiffness indexes decreases to the point that all 
lines become almost coincidental and parallel to each other. In other words, the boundary conditions 
of the edges that are not simply supported become irrelevant once the bending of the slab is 
predominantly in one direction—that is, when the slab’s width is significantly greater than its length. 

To summarize, a slab’s aspect ratio is a relevant factor when determining critical load, and its influence 
is coupled with the boundary conditions. Consequently, care should be exercised when using solutions 
that consider slabs with infinite in-plane dimensions. In addition, in the design of concrete pavement, 
the aspect ratio should be kept small to minimize the likelihood of blowup. 

Practical Implementation 
Rigid pavement design methodologies such as found in the Guide for Mechanistic-Empirical Pavement 
Design of New and Rehabilitated Pavement Structures (MEPDG) account for joint deterioration using 
empirical equations (ARA 2004). In MEPDG, joint deterioration is related to load transfer efficiency LTE, 
which is defined as the ratio between percentage approach-slab deflection 𝑤𝑤𝑎𝑎 and percentage leave-
slab deflection 𝑤𝑤𝑙𝑙 (Fig. 7). In other words 

(31) 



𝐿𝐿𝐿𝐿𝐿𝐿 =
𝑤𝑤𝑎𝑎
𝑤𝑤𝑙𝑙

× 100 

Load transfer efficiency is affected by aggregate interlock, the quality of the concrete slab support, and 
details of the dowel system connecting the two slabs. It can be calculated as (ARA 2004): 

(32) 

𝐿𝐿𝐿𝐿𝐿𝐿 = 100 �1 − �1 −
𝐿𝐿𝐿𝐿𝐸𝐸dowel

100
� �1 −

𝐿𝐿𝐿𝐿𝐸𝐸agg
100

� �1 −
𝐿𝐿𝐿𝐿𝐸𝐸base

100
�� 

 

where 𝐿𝐿𝐿𝐿𝐸𝐸dowel, 𝐿𝐿𝐿𝐿𝐸𝐸agg, and 𝐿𝐿𝐿𝐿𝐸𝐸base = contribution to dowel system 𝐿𝐿𝐿𝐿𝐿𝐿, aggregate interlock, and 
supporting base, respectively. 

The spring connecting the two slabs in the vertical direction develops a force 𝑉𝑉𝑠𝑠 equals to 

(33) 

𝑉𝑉𝑠𝑠 = 𝑘𝑘𝑠𝑠 × Δ = 𝑘𝑘𝑠𝑠 × (𝑤𝑤𝑙𝑙 − 𝑤𝑤𝑎𝑎) = 𝑘𝑘𝑠𝑠 × �1 −
𝐿𝐿𝐿𝐿𝐿𝐿
100

�𝑤𝑤𝑙𝑙 

where 𝑘𝑘𝑠𝑠 = spring stiffness; and 𝛥𝛥 = spring deformation. The shear equilibrium at the joint between the 
approach and leave slabs requires 

(34) 

𝑉𝑉𝑙𝑙 − 𝑉𝑉𝑎𝑎 = 𝑉𝑉𝑠𝑠 = 𝑘𝑘𝑠𝑠 × �1 −
𝐿𝐿𝐿𝐿𝐿𝐿
100

�𝑤𝑤𝑙𝑙  

where 𝑉𝑉𝑙𝑙 and 𝑉𝑉𝑎𝑎 = shear at the edges of the approach and leave slabs. In Eq. (34), 𝑉𝑉𝑙𝑙, 𝑉𝑉𝑎𝑎, and 𝑤𝑤𝑙𝑙 can be 
calculated by setting the equilibrium equations for each slab and using the appropriate boundary 
conditions. Joint deterioration can be accounted for through changes in 𝐿𝐿𝐿𝐿𝐿𝐿 as implemented 
in MEPDG. MEPDG does not take into account the transfer of rotation, but similar continuity conditions 
as in Eq. (34) can be established for rotation at slab joints. 

Summary and Conclusions 
The stability equation, derived for a linear elastic slab resting on an elastic foundation with two simply 
supported and two partially restrained edges, enables critical load calculation using a single expression 
for various boundary conditions, including classical cases (simply supported, free, and clamped). In 
addition, the presented solution was verified using published results for the classical boundary 
conditions and a finite-element model that considers edges elastically restrained to translation and 
rotation. An example of a slab with simply supported and clamped edges also demonstrated a step-by-
step procedure to implement the derived stability equation. 

The coupled effect of semirigid connections on critical load was showed; the rotational spring greatly 
influences critical load as long as the translational spring has relevant magnitude. Furthermore, when 
analyzing a typical concrete pavement, the high relevance of the boundary conditions is found, not 
only to the buckling load but also to the first buckling mode shape. As joint deficiency diminishes 



(i.e., reducing spring constants), the point of maximum deflection in buckling mode shape shifts from 
the slab’s center to its edges. Finally, the influence of the slab’s aspect ratio on static buckling increases 
as boundary conditions become stiffer. However, this influence significantly decreases for large aspect 
ratios. From a practical point view, it can be concluded that the likelihood of concrete pavement 
blowup can be reduced by reducing the slab’s aspect ratio in the design phase and by keeping the 
joints in good condition in the maintenance stage. 

Appendix. 
Terms in the Characteristic Stability Equation 
The following definitions were used in Tables 5–11: 

(35) 

𝐹𝐹 = 𝑘𝑘 − 𝛼𝛼2(2 − 𝜈𝜈) 

(36) 

𝐶𝐶 = 𝑘𝑘 − 2𝛼𝛼2(1 − 𝜈𝜈) 

(37) 

𝐺𝐺 = 𝛽𝛽12(𝛼𝛼2𝜈𝜈 − 𝛽𝛽22) − 𝛽𝛽1𝛽𝛽2𝐶𝐶 + 𝛼𝛼2𝜈𝜈(𝛽𝛽22 + 𝐹𝐹) 

(38) 

𝐻𝐻 = 𝛽𝛽12(𝛼𝛼2𝜈𝜈 − 𝛽𝛽22) + 𝛽𝛽1𝛽𝛽2𝐶𝐶 + 𝛼𝛼2𝜈𝜈(𝛽𝛽22 + 𝐹𝐹) 

(39) 

𝐽𝐽 = (𝐹𝐹 + 𝛽𝛽12)(𝛼𝛼2𝜈𝜈 + 𝛽𝛽22) 

(40) 

𝐾𝐾 = (𝐹𝐹 − 𝛽𝛽22)(𝛼𝛼2𝜈𝜈 − 𝛽𝛽12) 

(41) 

𝐿𝐿 = 2𝛼𝛼2𝐹𝐹𝐹𝐹 + 𝛽𝛽22(𝑘𝑘 − 2𝛼𝛼2) + 𝛽𝛽12(2𝛼𝛼2 + 2𝛽𝛽22 − 𝑘𝑘) 

(42) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(5,6) = −𝛽𝛽14(𝛼𝛼2𝜈𝜈 + 𝛽𝛽22) + 𝛽𝛽12(−𝛽𝛽24 + 𝛼𝛼2𝐹𝐹𝐹𝐹 + 2𝛽𝛽22𝐹𝐹) + 𝛼𝛼2𝛽𝛽22𝜈𝜈[−𝛼𝛼2 − (𝜈𝜈 − 2) + 𝛽𝛽22 − 𝑘𝑘] 

(43) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,(5,16) = 𝛽𝛽16(𝛼𝛼2𝜈𝜈 + 𝛽𝛽22)2 − 𝛼𝛼4𝛽𝛽22𝜈𝜈2(𝐹𝐹 − 𝛽𝛽22)2 + 𝛽𝛽12{2𝛼𝛼2𝛽𝛽26𝜈𝜈 + 𝛼𝛼4𝐹𝐹2𝜈𝜈2 + 4𝛼𝛼2𝛽𝛽22𝐹𝐹2𝜈𝜈 + 𝛽𝛽24𝐹𝐹[𝑘𝑘
− 𝛼𝛼2(3𝜈𝜈 + 2)]} + 𝛽𝛽14{−𝛽𝛽26 + 2𝛼𝛼4𝐹𝐹𝜈𝜈2 + 4𝛽𝛽24𝐹𝐹 + 𝛽𝛽22𝐹𝐹[𝛼𝛼2(3𝜈𝜈 + 2) − 𝑘𝑘]} 

(44) 

COEF𝐶𝐶𝐶𝐶,(7,6) = 2𝛽𝛽14 + 𝛽𝛽24 − 2𝛼𝛼2𝐹𝐹𝐹𝐹 + (𝛽𝛽12 − 𝛽𝛽22)(𝑘𝑘 − 2𝛼𝛼2) 

(45) 



𝑃𝑃 = 2𝛼𝛼2 − 𝑘𝑘 + 𝑠𝑠2 + 𝑡𝑡2 

(46) 

𝑄𝑄 = −2𝛼𝛼2 + 𝑘𝑘 + 4𝑠𝑠2 

(47) 

𝑅𝑅 = 𝛼𝛼4𝜈𝜈2 − 𝑃𝑃(𝑠𝑠2 + 𝑡𝑡2) + 𝛼𝛼2𝜈𝜈𝜈𝜈 

(48) 

𝑃𝑃
¯

= −2𝛼𝛼2 + 𝑘𝑘 + 𝑠𝑠2 + 𝑡𝑡2 

(49) 

𝑄𝑄
¯

= 2𝛼𝛼2 − 𝑘𝑘 + 4𝑡𝑡2 

(50) 

𝑅𝑅
¯

= 𝑃𝑃
¯
(𝑠𝑠2 + 𝑡𝑡2) + 𝛼𝛼2𝜈𝜈𝑄𝑄

¯
2 − 𝛼𝛼4𝜈𝜈2 

(51) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) = −𝛼𝛼4𝜈𝜈2 + (𝑠𝑠2 + 𝑡𝑡2)(2𝛼𝛼2 − 𝑘𝑘 − 7𝑠𝑠2 + 𝑡𝑡2) − 𝛼𝛼2𝜈𝜈𝜈𝜈 

(52) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶,(11,6) = 4𝛼𝛼2𝜈𝜈[−𝑘𝑘(4𝑠𝑠2 + 𝑡𝑡2) + 2𝛼𝛼2(4𝑠𝑠2 + 𝑡𝑡2) + 12𝑠𝑠2𝑡𝑡2] − 4𝛼𝛼4𝜈𝜈2(4𝑠𝑠2 + 𝑡𝑡2) + 4(𝑠𝑠2

+ 𝑡𝑡2)[𝑘𝑘(4𝑠𝑠2 − 𝑡𝑡2) + 4𝑠𝑠4 − 𝑠𝑠2(8𝛼𝛼2 + 3𝑡𝑡2) + 𝑡𝑡4 + 2𝛼𝛼2𝑡𝑡2] 

(53) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(11,16)

= 𝑘𝑘2[4𝑠𝑠6 + 𝑠𝑠4(9𝑡𝑡2 − 8𝛼𝛼2𝜈𝜈) + 𝑠𝑠2(4𝛼𝛼4𝜈𝜈2 + 6𝑡𝑡4 − 6𝛼𝛼2𝜈𝜈𝑡𝑡2) + (𝑡𝑡3 + 𝛼𝛼2𝜈𝜈𝜈𝜈)2] + 4𝑠𝑠10
+ 𝑠𝑠8(17𝑡𝑡2 − 16𝛼𝛼2) + 4𝑠𝑠6{−2𝛼𝛼4[(𝜈𝜈 − 2)𝜈𝜈 − 2] + 7𝑡𝑡4 + 𝛼𝛼2(6𝜈𝜈 − 11)𝑡𝑡2}
+ 2𝑠𝑠4{8𝛼𝛼6(𝜈𝜈 − 2)𝜈𝜈 + 11𝑡𝑡6 + 6𝛼𝛼2(4𝜈𝜈 − 3)𝑡𝑡4 − 𝛼𝛼4[𝜈𝜈(𝜈𝜈 + 22) − 18]𝑡𝑡2}
+ 4𝑠𝑠2[𝛼𝛼8(𝜈𝜈 − 2)2𝜈𝜈2 + 2𝑡𝑡8 + 𝛼𝛼2(6𝜈𝜈 − 1)𝑡𝑡6 + 𝛼𝛼4(𝜈𝜈(13𝜈𝜈 − 14) + 6)𝑡𝑡4
− 3𝛼𝛼6(𝜈𝜈 − 2)𝜈𝜈(2𝜈𝜈 − 1)𝑡𝑡2] + 𝑡𝑡2(−𝛼𝛼4(𝜈𝜈 − 2)𝜈𝜈 + 𝑡𝑡4 + 2𝛼𝛼2𝑡𝑡2)2
+ 2𝑘𝑘{4𝑠𝑠8 + 𝑠𝑠6[11𝑡𝑡2 − 4𝛼𝛼2(𝜈𝜈 + 2)]}
+ 2𝑘𝑘{𝑠𝑠4[−4𝛼𝛼4(𝜈𝜈 − 4)𝜈𝜈 + 9𝑡𝑡4 + 𝛼𝛼2(11𝜈𝜈 − 18)𝑡𝑡2] − [𝑡𝑡2 − 𝛼𝛼2(𝜈𝜈 − 2)](𝑡𝑡3 + 𝛼𝛼2𝜈𝜈𝜈𝜈)2}
+ 2𝑘𝑘{𝑠𝑠2[4𝛼𝛼6(𝜈𝜈 − 2)𝜈𝜈2 + 𝑡𝑡6 + 2𝛼𝛼2(7𝜈𝜈 − 6)𝑡𝑡4 + 3𝛼𝛼4(4 − 5𝜈𝜈)𝜈𝜈𝑡𝑡2]} 

 



Table 5. Terms in characteristic stability equation when 𝛥𝛥 > 0 and 2𝛼𝛼2 − 𝑘𝑘 > √Δ (Case 1: real roots) 
[RT] [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]1 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]2 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]3 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]4 
 cosh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 2(𝛽𝛽1 + 𝛽𝛽2)2 −2(𝛽𝛽1 + 𝛽𝛽2)2 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 0 0 2(𝛽𝛽1 − 𝛽𝛽2)(𝛽𝛽1 + 𝛽𝛽2)2 sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏 0 0 −2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)2 −2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)2𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑅𝑅𝑎𝑎 0 0 −2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)2 −2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)2𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑇𝑇𝑎𝑎 0 0 2(𝛽𝛽1 − 𝛽𝛽2)(𝛽𝛽1 + 𝛽𝛽2)2 −2(𝛽𝛽1 − 𝛽𝛽2)2(𝛽𝛽1 + 𝛽𝛽2) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎 −2(𝛽𝛽1 + 𝛽𝛽2)2𝐺𝐺 2(𝛽𝛽1 − 𝛽𝛽2)2𝐻𝐻 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 −2(𝛽𝛽1 + 𝛽𝛽2)2𝐺𝐺 2(𝛽𝛽1 − 𝛽𝛽2)2𝐻𝐻 0 0 
𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 2𝛽𝛽12𝛽𝛽22(𝛽𝛽12 − 𝛽𝛽22)2 −2𝛽𝛽12𝛽𝛽22(𝛽𝛽12 − 𝛽𝛽22)2 0 0 
𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 2(𝛽𝛽12 − 𝛽𝛽22)2 −2(𝛽𝛽12 − 𝛽𝛽22)2 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑎𝑎 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 − 𝛽𝛽22)2 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 − 𝛽𝛽22)2 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑏𝑏 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 − 𝛽𝛽22)2 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 − 𝛽𝛽22)2 0 0 
𝑅𝑅𝑎𝑎 0 0 2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)2𝐺𝐺 2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)2𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)𝐻𝐻 
𝑅𝑅𝑏𝑏 0 0 2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)2 2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)2𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)𝐻𝐻 
𝑇𝑇𝑎𝑎 0 0 −2(𝛽𝛽1 − 𝛽𝛽2)(𝛽𝛽1 + 𝛽𝛽2)2𝐺𝐺 2(𝛽𝛽1 − 𝛽𝛽2)2(𝛽𝛽1 + 𝛽𝛽2)𝐻𝐻 
𝑇𝑇𝑏𝑏 0 0 −2(𝛽𝛽1 − 𝛽𝛽2)(𝛽𝛽1 + 𝛽𝛽2)2 2(𝛽𝛽1 − 𝛽𝛽2)2(𝛽𝛽1 + 𝛽𝛽2)𝐻𝐻 
1 2(𝛽𝛽1 + 𝛽𝛽2)2𝐺𝐺2 −2(𝛽𝛽1 − 𝛽𝛽2)2𝐻𝐻2 0 0 

 

Table 6. Terms in characteristic stability equation when 𝛥𝛥 > 0 and 2α2−k<Δ (Case 2: complex roots): Part 1 
[𝑅𝑅𝑅𝑅] [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]1 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]2 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]3 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]4 

 sin2(𝑏𝑏𝛽𝛽2)sinh(2𝑏𝑏𝛽𝛽1) cos2(𝑏𝑏𝛽𝛽2)cosh(2𝑏𝑏𝛽𝛽1) sin2(𝑏𝑏𝛽𝛽2)cosh(2𝑏𝑏𝛽𝛽1) cos2(𝑏𝑏𝛽𝛽2)sinh(2𝑏𝑏𝛽𝛽1) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 0 −4𝛽𝛽1𝛽𝛽2 4𝛽𝛽1𝛽𝛽2 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 0 0 −2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏 −2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 0 0 2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑅𝑅𝑎𝑎 −2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 0 0 2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑇𝑇𝑎𝑎 2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 0 0 −2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎 0 2𝛽𝛽1𝛽𝛽2𝐿𝐿 −2𝛽𝛽1𝛽𝛽2𝐿𝐿 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 0 2𝛽𝛽1𝛽𝛽2𝐿𝐿 −2𝛽𝛽1𝛽𝛽2𝐿𝐿 0 
𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 0 0 0 0 
𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 0 0 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑎𝑎 0 2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)2 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)2 0 



𝑅𝑅𝑎𝑎𝑇𝑇𝑏𝑏 0 2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)2 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)2 0 
𝑅𝑅𝑎𝑎 2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 0 0 −2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 
𝑅𝑅𝑏𝑏 2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 0 0 −2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 
𝑇𝑇𝑎𝑎 −2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 0 0 2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 
𝑇𝑇𝑏𝑏 −2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 0 0 2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 
1 0 −4𝛽𝛽1𝛽𝛽2𝐽𝐽𝐽𝐽 4𝛽𝛽1𝛽𝛽2𝐽𝐽𝐽𝐽 0 

 

Table 7. Terms in characteristic stability equation when 𝛥𝛥 > 0 and 2α2−k<Δ (Case 2: complex roots): Part 2 
[𝑅𝑅𝑅𝑅] [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]5 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]6 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]7 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]8 

 sin (𝑏𝑏𝛽𝛽2)cos(𝑏𝑏𝛽𝛽2)sinh(2𝑏𝑏𝛽𝛽1) sin (𝑏𝑏𝛽𝛽2)cos(𝑏𝑏𝛽𝛽2)cosh(2𝑏𝑏𝛽𝛽1) sin2(𝑏𝑏𝛽𝛽2) cos2(𝑏𝑏𝛽𝛽2) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 −4(𝛽𝛽22 − 𝛽𝛽12) 0 4𝛽𝛽1𝛽𝛽2 4𝛽𝛽1𝛽𝛽2 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 0 4𝛽𝛽1(𝛽𝛽12 + 𝛽𝛽22) 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏 0 4𝛽𝛽1𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22) 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑅𝑅𝑎𝑎 0 4𝛽𝛽1𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22) 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑇𝑇𝑎𝑎 0 4𝛽𝛽1(𝛽𝛽12 + 𝛽𝛽22) 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎 4𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,(5,6) 0 𝛽𝛽1𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,(7,6) 𝛽𝛽1𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,(7,6) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 4𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,(5,6) 0 𝛽𝛽1𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,(7,6) 𝛽𝛽1𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,(7,6) 
𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 −4𝛽𝛽12𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22)2 0 0 0 
𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 4(𝛽𝛽12 + 𝛽𝛽22)2 0 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑎𝑎 0 0 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑏𝑏 0 0 0 0 
𝑅𝑅𝑎𝑎 0 −4𝛽𝛽1𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 0 0 
𝑅𝑅𝑏𝑏 0 −4𝛽𝛽1𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 0 0 
𝑇𝑇𝑎𝑎 0 −4𝛽𝛽1(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 0 0 
𝑇𝑇𝑏𝑏 0 −4𝛽𝛽1(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 0 0 
1 4𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,(5,16) 0 4𝛽𝛽1𝛽𝛽2𝐽𝐽𝐽𝐽 4𝛽𝛽1𝛽𝛽2𝐽𝐽 

 

Table 8. Terms in characteristic stability equation when Δ<0 (Case 3: complex conjugate roots): Part 1 
[𝑅𝑅𝑅𝑅] [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]1 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]2 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]3 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]4 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]1 

 cosh(4𝑏𝑏𝑏𝑏)cos4(𝑏𝑏𝑏𝑏) sinh(4𝑏𝑏𝑏𝑏)cos4(𝑏𝑏𝑏𝑏) cosh(4𝑏𝑏𝑏𝑏)sin4(𝑏𝑏𝑏𝑏) sinh(4𝑏𝑏𝑏𝑏)sin4(𝑏𝑏𝑏𝑏) sin3(𝑏𝑏𝑏𝑏)cos(𝑏𝑏𝑏𝑏) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 −2𝑡𝑡2 0 −2𝑡𝑡2 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 0 −4𝑠𝑠𝑡𝑡2 0 −4𝑠𝑠𝑡𝑡2 −16𝑠𝑠2𝑡𝑡 



𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏 0 −4𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −4𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 16𝑠𝑠2𝑡𝑡(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑅𝑅𝑎𝑎 0 −4𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −4𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 16𝑠𝑠2𝑡𝑡(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑇𝑇𝑎𝑎 0 −4𝑠𝑠𝑡𝑡2 0 −4𝑠𝑠𝑡𝑡2 −16𝑠𝑠2𝑡𝑡 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎 2𝑡𝑡2𝑅𝑅 0 2𝑡𝑡2𝑅𝑅 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 2𝑡𝑡2𝑅𝑅 0 2𝑡𝑡2𝑅𝑅 0 0 
𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 0 0 
𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 −8𝑠𝑠2𝑡𝑡2 0 −8𝑠𝑠2𝑡𝑡2 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑎𝑎 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑏𝑏 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 0 
𝑅𝑅𝑎𝑎 0 4𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 0 4𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 16𝑠𝑠2𝑡𝑡𝑅𝑅�(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑏𝑏 0 4𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 0 4𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 16𝑠𝑠2𝑡𝑡𝑅𝑅�(𝑠𝑠2 + 𝑡𝑡2) 
𝑇𝑇𝑎𝑎 0 4𝑠𝑠𝑡𝑡2𝑅𝑅 0 4𝑠𝑠𝑡𝑡2𝑅𝑅 −16𝑠𝑠2𝑡𝑡𝑅𝑅� 
𝑇𝑇𝑏𝑏 0 4𝑠𝑠𝑡𝑡2𝑅𝑅 0 4𝑠𝑠𝑡𝑡2𝑅𝑅 −16𝑠𝑠2𝑡𝑡𝑅𝑅� 
1 −2𝑡𝑡2𝑅𝑅2 0 −2𝑡𝑡2𝑅𝑅2 0 0 

 

Table 9. Terms in characteristic stability equation when Δ<0 (Case 3: complex conjugate roots): Part 2 
[𝑅𝑅𝑅𝑅] [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]6 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]7 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]8 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]9 [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]10 

 sin(𝑏𝑏𝑏𝑏)cos3(𝑏𝑏𝑏𝑏) cosh (4𝑏𝑏𝑏𝑏)sin2(𝑏𝑏𝑏𝑏)cos2(𝑏𝑏𝑏𝑏) sinh (4𝑏𝑏𝑏𝑏)sin2(𝑏𝑏𝑏𝑏)cos2(𝑏𝑏𝑏𝑏)  sin4(𝑏𝑏𝑏𝑏) cos4(𝑏𝑏𝑏𝑏) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 0 −4𝑡𝑡2 0 2𝑡𝑡2 2𝑡𝑡2 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 16𝑠𝑠2𝑡𝑡 0 −8𝑠𝑠𝑡𝑡2 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏 −16𝑠𝑠2𝑡𝑡(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑅𝑅𝑎𝑎 −16𝑠𝑠2𝑡𝑡(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑇𝑇𝑎𝑎 16𝑠𝑠2𝑡𝑡 0 −8𝑠𝑠𝑡𝑡2 0 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎 0 4𝑡𝑡2𝑅𝑅 0 2𝑡𝑡2𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) 2𝑡𝑡2𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 0 4𝑡𝑡2𝑅𝑅 0 2𝑡𝑡2𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) 2𝑡𝑡2𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) 
𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 0 −16𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 0 8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 
𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 0 −16𝑠𝑠2𝑡𝑡2 0 8𝑠𝑠2𝑡𝑡2 8𝑠𝑠2𝑡𝑡2 
𝑅𝑅𝑏𝑏𝑇𝑇𝑎𝑎 0 −16𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑏𝑏 0 −16𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑎𝑎 −16𝑠𝑠2𝑡𝑡𝑅𝑅�(𝑠𝑠2 + 𝑡𝑡2) 0 8𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 0 0 
𝑅𝑅𝑏𝑏 −16𝑠𝑠2𝑡𝑡𝑅𝑅�(𝑠𝑠2 + 𝑡𝑡2) 0 8𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 0 0 
𝑇𝑇𝑎𝑎 16𝑠𝑠2𝑡𝑡𝑅𝑅� 0 8𝑠𝑠𝑡𝑡2𝑅𝑅 0 0 
𝑇𝑇𝑏𝑏 16𝑠𝑠2𝑡𝑡𝑅𝑅� 0 8𝑠𝑠𝑡𝑡2𝑅𝑅 0 0 



1 0 −4𝑡𝑡2𝑅𝑅2 0 2𝑡𝑡2𝑅𝑅2 2𝑡𝑡2𝑅𝑅2 
 

Table 10. Terms in characteristic stability equation when 𝛥𝛥 < 0 (Case 3: complex conjugate roots): Part 3 
[𝑅𝑅𝑅𝑅] [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]11 

 sin2(𝑏𝑏𝑏𝑏)cos2(𝑏𝑏𝑏𝑏) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 4(4𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑅𝑅𝑎𝑎 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑇𝑇𝑎𝑎 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(11,6) 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(11,6) 
𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 −48𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 
𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 −48𝑠𝑠2𝑡𝑡2 
𝑅𝑅𝑏𝑏𝑇𝑇𝑎𝑎 48𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑎𝑎𝑇𝑇𝑏𝑏 48𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑎𝑎 0 
𝑅𝑅𝑏𝑏 0 
𝑇𝑇𝑎𝑎 0 
𝑇𝑇𝑏𝑏 0 
1 4𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶,(11,16) 

 

Table 11. Terms in characteristic stability equation not multiplying trigonometric functions when 𝛥𝛥 > 0 and 2𝛼𝛼2 − 𝑘𝑘 > √Δ (Case 1: real 
roots) 

[𝑅𝑅𝑅𝑅] [𝑅𝑅𝑅𝑅𝑅𝑅] 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 −8𝛽𝛽1𝛽𝛽2 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎𝑅𝑅𝑏𝑏 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑅𝑅𝑎𝑎 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏𝑇𝑇𝑎𝑎 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑎𝑎 −4𝛽𝛽1𝛽𝛽2[𝛽𝛽14 + 𝛽𝛽24 − 2𝛼𝛼2𝐹𝐹𝐹𝐹 + 𝛽𝛽12(𝑘𝑘 − 2𝛼𝛼2) + 𝛽𝛽22(𝑘𝑘 − 2𝛼𝛼2)] 
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏 −4𝛽𝛽1𝛽𝛽2[𝛽𝛽14 + 𝛽𝛽24 − 2𝛼𝛼2𝐹𝐹𝐹𝐹 + 𝛽𝛽12(𝑘𝑘 − 2𝛼𝛼2) + 𝛽𝛽22(𝑘𝑘 − 2𝛼𝛼2)] 



𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 0 
𝑇𝑇𝑎𝑎𝑇𝑇𝑏𝑏 0 
𝑅𝑅𝑏𝑏𝑇𝑇𝑎𝑎 0 
𝑅𝑅𝑎𝑎𝑇𝑇𝑏𝑏 0 
𝑅𝑅𝑎𝑎 0 
𝑅𝑅𝑏𝑏 0 
𝑇𝑇𝑎𝑎 0 
𝑇𝑇𝑏𝑏 0 
1 −8𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝐹𝐹)(𝛽𝛽22 + 𝐹𝐹)(𝛼𝛼2𝜈𝜈 − 𝛽𝛽12)(𝛼𝛼2𝜈𝜈 − 𝛽𝛽22) 
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Notation 
The following symbols are used in this paper: 

[𝐴𝐴] = matrix storing coefficients of 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, and 𝑐𝑐4; 
𝐵𝐵𝑝𝑝, 𝐵𝐵𝑚𝑚 = addition and subtraction between 𝛽𝛽1 and 𝛽𝛽2; 
𝑏𝑏 = twice the ratio between slab width and length; 

𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4 = constants in general solution of differential equation; 
[𝐶𝐶] = vector storing 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4; 

[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] = vector of trigonometric functions; 
𝐷𝐷 = slab flexural stiffness; 
𝐸𝐸 = slab elastic modulus; 
ℎ = slab thickness; 
𝑖𝑖 = √−1, complex unity; 
𝑘𝑘 = dimensionless buckling load coefficient; 
𝐿𝐿 = slab length; 
𝑀𝑀 = slab bending moment; 
𝑁𝑁 = axial load per unit length along slab edges; 

𝑅𝑅𝑎𝑎, 𝑅𝑅𝑏𝑏 = rotational stiffness indexes; 
[𝑅𝑅𝑅𝑅𝑅𝑅] = terms not multiplying trigonometric functions; 
[𝑅𝑅𝑅𝑅] = vector containing combinations of 𝑅𝑅𝑎𝑎, 𝑅𝑅𝑏𝑏, 𝑇𝑇𝑎𝑎, and 𝑇𝑇𝑏𝑏; 
𝑆𝑆𝑎𝑎 , 𝑆𝑆𝑏𝑏 = translational springs; 
𝑠𝑠, 𝑡𝑡 = real and complex part in roots of characteristic equation for Case 3; 
𝑇𝑇𝑎𝑎, 𝑇𝑇𝑏𝑏 = translational stiffness indexes; 

[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇] = matrix storing trigonometric function coefficients; 
𝑉𝑉 = slab shear force; 
𝑤𝑤 = slab vertical deflection; 
𝑥𝑥,  𝑦𝑦 = normalized coordinates along slab length and width, respectively; 
𝑥𝑥′ , 𝑦𝑦′ = coordinates along slab length and width, respectively; 
𝛼𝛼 = nπnπ, with 𝑛𝑛 an integer; 
𝛽𝛽 = unknown in characteristic equation; 

𝛽𝛽1,  𝛽𝛽2 = roots of characteristic equation; 
𝜃𝜃 = slab rotation; 

𝜅𝜅𝑎𝑎, 𝜅𝜅𝑏𝑏 = rotational springs; 
𝛬𝛬 = elastic foundation constant; 
𝜆𝜆 = dimensionless subgrade stiffness coefficient; and 
𝜈𝜈 = slab Poisson’s ratio. 
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