
Marquette University
e-Publications@Marquette
Electrical and Computer Engineering Faculty
Research and Publications

Electrical and Computer Engineering, Department
of

8-1-2018

Apple Flower Detection Using Deep
Convolutional Networks
Philipe A. Dias
Marquette University

Amy Tabb
Marquette University

Henry P. Medeiros
Marquette University, henry.medeiros@marquette.edu

Accepted version. Computers in Industry, Vol. 99 (August 2018): 17-28. DOI. © 2018 Elsevier B.V.
Used with permission.

https://epublications.marquette.edu
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
http://dx.doi.org/10.1016/j.compind.2018.03.010


 

Marquette University 

e-Publications@Marquette 
 

Electrical and Computer Engineering Faculty Research and 
Publications/College of Engineering 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in th citation below. 

 

Computers in Industry, Vol. 99 (August 2018): 17-28. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express 
permission from Elsevier.  

Apple Flower Detection Using Deep 
Convolutional Networks 
 

Philipe A. Dias 
Marquette University, Department of Electrical and Computer Engineering, Milwaukee, WI 
Amy Tabb 
U.S. Department of Agriculture (USDA), Kearneysville, WV 
Henry Medeiros 
Marquette University, Department of Electrical and Computer Engineering, Milwaukee, WI  
 

Abstract 
To optimize fruit production, a portion of the flowers and fruitlets of apple trees must be removed early in the 
growing season. The proportion to be removed is determined by the bloom intensity, i.e., the number of flowers 
present in the orchard. Several automated computer vision systems have been proposed to estimate bloom 
intensity, but their overall performance is still far from satisfactory even in relatively controlled environments. 
With the goal of devising a technique for flower identification which is robust to clutter and to changes in 
illumination, this paper presents a method in which a pre-trained convolutional neural network is fine-tuned to 
become specially sensitive to flowers. Experimental results on a challenging dataset demonstrate that our 
method significantly outperforms three approaches that represent the state of the art in flower detection, with 
recall and precision rates higher than 90%. Moreover, a performance assessment on three additional datasets 
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previously unseen by the network, which consist of different flower species and were acquired under different 
conditions, reveals that the proposed method highly surpasses baseline approaches in terms of generalization 
capability. 

Keywords 
Bloom intensity estimation, Apple flower detection, Deep learning, Convolutional neural networks, Precision 
agriculture 

1. Introduction 
Various studies have established the relationships between bloom intensity, fruit load and fruit quality [[1], [2]]. 
Together with factors such as climate, bloom intensity is especially important to guide thinning, which consists 
of removing some flowers and fruitlets in the early growing season. Proper thinning directly impacts fruit market 
value, since it affects fruit size, coloration, taste and firmness. 

Despite its importance, there has been relatively limited progress so far in automating bloom intensity 
estimation. Currently, this activity is typically carried out manually with the assistance of rudimentary tools. 
More specifically, it is generally done by inspecting a random sample of trees within the orchard and then 
extrapolating the estimates obtained from individual trees to the remainder of the orchard [3]. As the example 
in Fig. 1 illustrates, obstacles that hamper this process are: (1) manual tree inspection is time-consuming and 
labor-intensive, which contributes to making labor responsible for more than 50% of apple production costs [4]; 
(2) estimation by visual inspection is characterized by large uncertainties and is prone to errors; (3) extrapolation 
of the results from the level of the inspected trees to the row or parcel level relies heavily on the grower's 
experience; and (4) inspection of a small number of trees does not provide information about the spatial 
variability which exists in the orchard, making it difficult to develop and adopt site-specific crop load 
management strategies that could lead to optimal fruit quality and yield. 

 

Fig. 1. Example of image from a flower detection dataset used in this paper. 

With the goal of introducing more accurate and less labor intensive techniques for the estimation of bloom 
intensity, machine vision systems using different types of sensors and image processingtechniques have been 
proposed [5]. Most existing methods, which are mainly based on simple color thresholding, have 
their applicability hindered especially by variable lighting conditions and occlusion by leaves, stems or other 
flowers [6]. 

Inspired by successful works using convolutional neural networks (CNNs) in multiple computer visiontasks, we 
propose a novel method for apple flower detection based on features extracted using a CNN. In our approach, 
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an existing CNN trained for saliency detection is fine-tuned to become particularly sensitive to flowers. This 
network is then used to extract features from portraits generated by means of superpixel segmentation. 
After dimensionality reduction, these features are fed into a pre-trained classifier that ultimately determines 
whether each image region contains flowers or not. The proposed method significantly outperformed state-of-
the-art approaches on four datasets composed of images acquired under different conditions. 

Our main contributions are: 

(1) a novel CNN-based flower detection algorithm; 
(2) an extensive evaluation on a challenging dataset acquired under realistic and uncontrolled 
conditions; 
(3) an analysis of the generalization capability of the proposed approach on additional datasets 
previously unseen by the evaluated models. 

 

The remainder of paper is organized as follows. Section 2 discusses the most relevant existing approaches for 
automated flower and fruit detection. Our proposed approach is described in Section 3, which also includes a 
description of three baseline comparison methods as well as implementation details. Experiments performed to 
evaluate the impact of specific design choices are described in Section 4, followed by an extensive comparison of 
our optimal model against the baseline methods on four different datasets. Our concluding remarks are 
presented in Section 5. 

2. Related work 
While existing techniques employed for flower detection are based only on color information, methods available 
for fruit quantification exploit more modern computer vision techniques. For this reason, in this section we first 
review the most relevant works on automated flower detection, followed by a discussion of the relevant 
literature on fruit quantification. Moreover, to make this article self-contained and therefore accessible to a 
wider audience, we also provide a brief introduction to the fundamentals of CNNs. 

2.1. Flower and fruits quantification 
Aggelopoulou and colleagues presented in [7] one of the first works using computer vision techniques to detect 
flowers. That method is based on color thresholding and requires image acquisition at specific daylight times, 
with the presence of a black cloth screen behind the trees. Thus, although its reported error in predicted yield is 
relatively low (18%), such approach is applicable only for that controlled scenario. 

Similar to the work of Thorp and Dierig [8] for identification of Lesquerella flowers, the technique described by 
Hočevar et al. [9] does not require a background screen, but it is still not robust to changes in the environment. 
The image analysis procedure is based on hard thresholding according to color (in the HSL color space) and size 
features, such that parameters have to be adjusted whenever changes in illumination (daylight/night), in 
flowering density (high/low concentration) or in camera position (far/near trees) occur. 

Horton and his team described in [10] a system for peach bloom intensity estimation that uses a different 
imaging approach. Based on the premise that the photosynthetic activity of this species increases during bloom 
period, the system relies on multispectral aerial images of the orchard, yielding an average detection rate of 
84.3% for 20 test images. Similarly to the aforementioned methods, the applicability of this method also has the 
intrinsic limitation of considering only color/spectral information (thresholding near-infrared and blue bands), 
such that its performance is sensitive to changes in illumination conditions. 

More advanced computer vision techniques have been employed for fruit quantification [5]. A multi-class image 
segmentation for agrovision is proposed by Hung et al. [11], classifying image pixels into leaves, almonds, trunk, 
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ground and sky. Their method combines sparse autoencoders for feature extraction, logistic regression for label 
associations and conditional random fields to model correlations between pixels. Some other methods are 
based on support vector machine (SVM) classifiers that use information obtained from different shape 
descriptors and color spaces as input [[12], [13]]. Compared to existing methods for flower detection, these 
methods are more robust since morphological characteristics are taken into account. As many other shape-
based and spectral-based approaches [[14], [15], [16], [17]], these techniques are, however, still limited by 
background clutter and variable lighting conditions in orchards [3]. 

Recent works on fruit quantification include the use of metadata information. Bargoti and colleagues [18] built 
on [11] to propose an approach that considers pixel positions, orchard row numbers and the position of the sun 
relative to the camera. Similarly, Cheng et al. [19] proposed the use of information such as fruit number, fruit 
area, area of apple clusters and foliage area to improve accuracy of early yield prediction, especially in scenarios 
with significant occlusion. However, the inclusion of metadata is highly prone to overfitting, particularly when 
limited training data is available and the variability of the training set is hence low [18]. 

2.2. Deep learning 
Following the success of Krizhevsky's model [20] in the ImageNet 2012 Challenge, deep learning methods based 
on CNNs became the dominant approach in many computer vision tasks. The architecture of traditional CNNs 
consists of a fixed-size input, multiple convolutional layers, pooling (downsampling) layers and fully connected 
layers [21]. Winner of the ImageNet 2013 Classification task, the Clarifai model is one such network [22]. 
Illustrated on the right side of Fig. 2, it takes input imageportraits of size 227 × 227 pixels, which traverse a 
composition of 5 convolutional layers (C1–C5) and 3 fully connected layers (FC6–FC7 and the softmax FC8). Each 
type of layer plays a different role within the CNN architecture: while convolutional layers allow feature 
extraction, the latter fully connected layers act on this information to perform classification. 

 

Fig. 2. Diagram illustrating the sequence of image analysis tasks performed by the proposed model for flower 
identification. Layers FC7–FC8 are used only during fine-tuning (training). For final prediction, features are 
collected from the output of layer FC6. Each task and its corresponding output (shown above the arrows) are 
described in Algorithm 1. 

In computer vision and image processing, a feature corresponds to information that is meaningful for describing 
an image and its regions of interest for further processing. Feature extraction is therefore crucial in image 
analysis, since it represents the transition from pictorial (qualitative) to nonpictorial (quantitative) data 
representation [23]. Rather than relying on hand-engineered features (e.g., HOG [24]), deep CNNs combine 
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multiple convolutional layers and downsampling techniques to learn hierarchical features, which are a key factor 
for the success of these models [25]. As described in [22], the convolutional layers C1–C2 learn to identify low-
level features such as corners and other edge/color combinations. The following layers C3–C5 combine this low-
level information into more complex structures, such as motifs, object parts and finally entire objects. 

Traditional deep CNNs are composed of millions of learned parameters (over 60 million in AlexNet [20]), such 
that large amounts of labeled data are required for network training. Deep learning modelsbecame feasible 
relatively recently, after the introduction of large publicly available datasets, of graphics processing units (GPUs), 
and of training algorithms that exploit GPUs to efficiently handle large amounts of data [25]. Nevertheless, 
gathering domain specific training data is an expensive task. One alternative to reduce the required amount of 
labeled data is data augmentation, a technique proven to benefit the training of multiple machine learning 
models [26]. It is typically performed by applying transformations such as translation, rotation and color space 
shifts to pre-labeled data. 

In addition, transfer learning approaches such as fine-tuning have been investigated. Earlier layers of a deep 
network tend to contain more generic information (low-level features), which are then combined by the latter 
layers into task specific objects of interest. Thus, a network that can recognize different objects present in a 
large dataset must contain a set of low-level descriptors robust enough to characterize a wide range of patterns. 
Under this premise, fine-tuning procedures typically aim at adjusting the higher-level part of a network pre-
trained on a large generic dataset, rather than training the full network from scratch. This greatly reduces the 
need for task-specific data, since only a smaller set of parameters has to be refined for the particular application 
[27]. 

At the classification side, most CNN architectures employ fully connected layers for final categorization. They 
determine which features are mostly correlated to each specific class employing a logistic regression classifier. 
For scenarios in which the output is binary, consistent albeit small improvements on popular datasets have been 
demonstrated by replacing the final CNN layer by a SVM classifier [28]. SVM models tend to generalize better 
than logistic regression, since they target a solution that not only minimizes the training error, but also 
maximizes the margin distance between classes. 

Following the success of CNNs on image classification tasks, the work of Girschick et al. [29] introduced the 
concept of region-based CNNs (R-CNN), outperforming by a large margin previous hand-engineered methods for 
object detection. In that work, a CNN is first pre-trained on a large auxiliary dataset (ImageNet) and then fine-
tuned using a smaller but more specific dataset (PASCAL dataset for object detection). The Faster R-CNN 
proposed in [30] improved this model by replacing selective search [31] with the concept of Region Proposal 
Network (RPN), which shares convolutional layers with the classification network. Both modules compose a 
single, unified network for object detection. 

Recent works adapt the Faster R-CNN for fruit detection. Bargoti and Underwood [32] present a Faster R-CNN 
trained for detection of mangoes, almonds and apples fruits on trees. Stein et al. [33] extended this model for 
tracking and localization of mangoes, combining it with a monocular multi-view tracking module that relies on a 
GPS system. Sa et al. [34] applied the Faster R-CNN to RGB and near-infrared multi-modal images. Each modality 
was fine-tuned independently, with optimal results obtained using a late fusion approach. Still in the context of 
agricultural applications, CNNs have been also successfully used for plant identification from leaf vein patterns 
[35]. 

In summary, existing methods for flower identification are based on hand-engineered image processing 
techniques that work only under specific conditions. Color and size thresholding parameters composing these 
algorithms have to be readjusted in case of variations of lightning conditions, camera position with respect to 
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the orchard (distance and angle), or expected bloom intensity. Recent techniques employed for fruit 
quantification exploit additional features and machine learning strategies, providing insights to further develop 
strategies for flower detection. Aiming at a technique for flower identification that is robust to clutter, changes 
in illumination and applicable for different flower species, we therefore propose a novel method in which an 
existing CNN trained for saliency detection is fine-tuned to become particularly sensitive to flowers. 

3. Proposed approach 
In this section, we first describe the prediction steps performed by our method, i.e., the sequence of operations 
applied to an image in order to detect the presence of flowers. Subsequently, we describe the fine-tuning 
procedure carried out to obtain the core component of our model: a CNN highly sensitive to flowers. We 
conclude with a discussion of alternative flower detection approaches against which we evaluate our proposed 
method and a brief mention of relevant details regarding the implementation of our methods. 

In the discussion that follows, we will refer to our proposed approach for flower detection as 
the CNN + SVM method. As illustrated in Fig. 2, our CNN + SVM method consists of three main steps: (i) 
computation of region proposals; (ii) feature extraction using our fine-tuned CNN, which follows the Clarifai 
architecture [22]; and (iii) final classification of each region according to the presence of flowers. The operations 
that comprise these steps are described in detail below. In our description, we make reference to Algorithm 1, 
which lists the operations performed by our method on each input image. The sensitivity of the method to 
specific design choices is detailed in Section 4.1. 

(1) Step 1 – Region proposals: The first step in the proposed method consists of generating region proposals by 
grouping similar nearby pixels into superpixels, which are perceptually meaningful clusters of variable size and 
shape (Line 1 of Algorithm 1). To this end, we use the simple linear iterative clustering (SLIC) superpixel 
algorithm. Currently one of the most widely-used algorithms for superpixel segmentation, it adapts k-means 
clustering to group pixels according to a weighted distance measure that considers both color and spatial 
proximity [36]. For additional information on superpixel approaches, we refer the reader to the review provided 
in [37]. The second leftmost image in Fig. 2illustrates the superpixels si∈S generated by the SLIC algorithm when 
applied to a typical image obtained in an orchard. 

Although other approaches such as the Faster R-CNN [30] provide a unified architecture in which both region 
proposal and classification modules can be fine-tuned for a specific task, they have more parameters that need 
to be learned in a supervised manner. Since in most cases flowers are salient with respect to its surrounding 
background, an unsupervised, local-context based approach such as superpixel segmentation should be 
sufficient to obtain region proposals suitable for flower detection. 

Algorithm 1 Proposed approach for flower detection 
Input: Image I.  
Output: Regions 
in I containing 
flowers. 

 

1: Segment I into set of superpixels S using SLIC. 
2: for each superpixel si∈S do 
3:  Crop smallest squared portrait pi enclosing si. 
4:  Generate piˆ by mean-padding the background surrounding si in pi. 
5:  Extract features fi from the mean-centered piˆ using the fine-tuned CNN. 
6:  Obtain fˆi by performing PCA analysis on fi. 
7:  Classify si by applying pre-trained SVM on fˆi. 
8: end for 
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Once the image is segmented into superpixels, as Algorithm 1 indicates, we iterate over each superpixel in the 
image. Since the input size required by the Clarifai CNN model is 227 × 227, we first extract the smallest square 
portrait enclosing the superpixel under analysis (Line 3), which we denote pi. The output of this step is illustrated 
in the third leftmost image of Fig. 2 for one superpixel. The background surrounding the superpixel of interest 
within a portrait is then padded with the training set mean, i.e., the average RGB color of all images composing 
the dataset (greenish color). Finally, the portrait is resized to 227 × 227 (Line 4). The resulting region 
proposal, pˆi, is illustrated in the fourth image of Fig. 2. 

(2) Step 2 – Feature extraction: In the feature extraction step (Line 5), each of the portraits generated above is 
mean-centered and then evaluated individually by our CNN. The mean-centering step consists of subtracting 
from the portrait the same average training set RGB mean used for padding its background. This procedure is 
commonly employed to facilitate training convergence of deep learning models, since it ensures similarly ranged 
features within the network. For each input portrait, we collect as features the output of the rectified linear 
unit (ReLU) associated with the first fully connected layer (FC6). With a dimensionality of N = 4096, the feature 
vector fi∈ℝN collected at this stage of the network encapsulates the hierarchical features extracted by 
layers C1–C5, which contain the key information required for accurate classification. 

(3) Step 3 – Classification: To classify each proposed region as containing a flower or not, we first 
perform principal component analysis (PCA) to reduce the feature dimensionality to a value k < N such that the 
new feature vector fˆi∈ℝk (Line 6). As demonstrated in our experimental evaluation in Section 4.1.1 a value 
of k = 69, which corresponds to approximately 94% of the original variance of the data, provides performance 
levels virtually identical to those of the original features. Finally, based on these features a pre-trained SVM 
model binary classifies superpixels according to the presence of flowers (Line 7). Details on SVM training are 
provided in the next section. 

3.1. Network fine-tuning and SVM training 
Based on the techniques introduced by Girshick et al. [29] and Zhao et al. [38] for object and saliency detection, 
in our model an existing CNN architecture is made particularly sensitive to flowers by means of fine-tuning. In 
the work of Zhao et al. [38], the Clarifai model [22] was adopted as the starting point and fine-tuned for saliency 
detection. We further tuned Zhao et al.'s model for flower identification using labeled portraits from our training 
set, which we describe below. 

The generation of training samples for network tuning takes place similarly to prediction. For each labeled image 
composing the training set, we computed region proposals according to Step 1 described above. Using 
these training examples, 10,000 backpropagation training iterations were performed in order to minimize the 
network classification error. After fine-tuning, we computed the CNN features of the training examples, reduced 
their dimensionality to k = 69, and used them to train the SVM classifier. 

Image dataset. Images of apple trees were collected using a camera model Canon EOS 60D under natural 
daylight illumination (i.e., uncontrolled environment). This dataset, which we refer to as AppleA, is composed of 
a total of 147 images with resolution of 5184 × 3456 pixels acquired under multiple angles and distances of 
capture. Fig. 3 shows some images that comprise this dataset. For performance evaluation and learning 
purposes, the entire dataset was labeled using a MATLAB GUI in which the user selected only superpixels that 
contain parts of flowers in approximately half of its total area. As summarized in Table 1, the labeled images 
were randomly split into training and validation sets composed of 100 and 47 images, respectively. This 
corresponds to a total of 91,488 training portraits (i.e., superpixels) and 42,430 validation ones. The training 
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examples were used to fine-tune the network and train the SVM as described above. The validation examples 
were used in the performance evaluation discussed in Sections 4.1 and 4.2. 

 

Fig. 3. Examples of images composing the AppleA dataset, with the corresponding detection provided by the 
proposed algorithm (more examples are available in the supplementary material). 

Table 1. Statistics of the training and validation dataset (AppleA). 
  

Portraits (i.e., superpixels)    
Images Positives Negatives Total 

Training 100 3691 (4%) 87,797 (96%) 91,488 
Validation 47 1719 (4%) 40,711 (96%) 42,430 
Total 147 5410 (4%) 128,508 (96%) 133,918 

 

Data augmentation. According to our labeling, only 4% of the samples contain flowers (positives). Imbalanced 
datasets represent a problem for supervised machine learning approaches, since overall accuracy measures 
become biased towards recognizing mostly the majority class [39]. In our case, that means the learner would 
present a bias towards classifying the portraits as negatives. To overcome this situation and increase the amount 
of training data, we quadrupled the number of positive samples using data augmentation. As illustrated in Fig. 4, 
this was accomplished by mirroring each positive sample with respect to: (i) the vertical axis, (ii) the horizontal 
axis, and (iii) both axes. 

 

Fig. 4. Example of data augmentation. (a) Original portrait, (b) portrait mirrored with respect to the vertical axis, 
(c) the horizontal axis, and (d) both axes. 

Parameters’ optimization. Support vector machines are supervised learning models that search for 
a hyperplane that maximizes the margin distance to each class. This characteristic allows SVM models to 
generalize better than classifiers such as the ones based on logistic regression. For non-linearly separable 
data, kernel functions such as the popular radial basis function (RBF, or Gaussian) are used. We refer to 
[[40], [41]] for further details on the formulation of SVMs. 
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Two main parameters control the performance of SVMs with a Gaussian kernel function, 
the regularization cost C and the width of the Gaussian kernel γ. By regulating the penalty applied 
to misclassifications, the parameter C controls the trade-off between maximizing the margin with which two 
classes are separated and the complexity of the separating hyperplane. The parameter γ regulates the flexibility 
of the classifier's hyperplane. For both parameters, excessively large values can lead to overfitting. 

The optimization of C and γ is a problem without straightforward numerical solution. Therefore, it is typically 
solved using grid search strategies [[40], [41]] in which multiple parameter combinations are evaluated 
according to a performance metric. We adopt this strategy in this work. 

3.2. Comparison approaches 
As has been noted in Section 2, current algorithms for automated identification of flowers are mostly based on 
binarization by thresholding information from different color-spaces (typically RGB or HSV) [[7], [8]], occasionally 
combined with size filtering [9]. We implement three alternative baseline approaches which reflect the state of 
the art in fruit/flower detection. The first implementation, which we call the HSV method, replicates the 
algorithm described by Hocevar and his team in [9]. Images are binarized at pixel-level based on HSV color 
information, followed by filtering according to minimum and maximum cluster sizes. 

We refer to the second baseline implementation as HSV + Bh. Similar to our proposed approach, the starting 
point for this method is the generation of superpixels using the SLIC algorithm. We then compute a 100-bin 
histogram of each superpixel in the HSV color space, which has the advantage of dissociating brightness 
from chromaticity and saturation. Studies on human vision and color-based image retrieval have demonstrated 
that most of the color information is contained in the hue channel, with the saturation playing a significant role 
in applications where identifying white (or black) objects is important [[42], [43]]. In our experiments, we 
construct a single 1-D histogram consisting of 100 bins, which corresponds to the concatenation of a 50-bin hue 
channel histogram, a 40-bin saturation histogram and a 10-bin value histogram. Afterwards, we use 
the Bhattacharyya distance [44] to compare each superpixel histogram against the histograms of all positive 
samples composing the training set. We compute the Bhattacharyya distance using a Gaussian kernel function, 
as formulated in [[45], [46]]. The average Bhattacharyya distance is taken as the likelihood that the superpixel 
includes a flower, and superpixels with distance lower than an optimal threshold are classified as flowers. 

Since the technique described above is based on the average Bhattacharyya distance in the HSV color space, it 
makes no distinction between poorly and highly informative training sample features. Its ability to make 
accurate classification decisions is therefore limited in such complex feature spaces. Inspired by works on 
fruit quantification [[12], [13]], we extend this method by combining the same HSV histograms with an SVM 
classifier for apple flower detection. That is, rather than determining whether a superpixel contains a flower 
based on the Bhattacharyya distance, we train an SVM classifier that uses the HSV histograms as inputs. We call 
this approach the HSV + SVM method. 

3.3. Implementation details 
Most image analysis tasks were performed using MATLAB R2016b. Additionally, we used the open source Caffe 
framework [47] for fine-tuning and extracting features from the CNN. To reduce computation times by 
exploiting GPUs, we used the cuSVM software package for SVM training and prediction [48]. 

4. Experiments and results 
Experiments were performed with three main goals. Our optimal CNN + SVM model extracts features from the 
CNN's first fully connected layer (FC6), reduces feature dimensionality to 69, and performs final classification 
using SVM. Thus, we first evaluated the impact of these specific design choices on the final performance of our 
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method. We then compared it against the three baseline methods (HSV, HSV + Bh and HSV + SVM). Finally, we 
evaluated the performance of the proposed approach on previously unseen datasets to determine its 
generalization capability. 

As described in Section 3.1, our datasets are severely imbalanced. In such scenarios, evaluations of performance 
using only accuracy measurements and ROC curves may be misleading, since they are insensitive to changes in 
the rate of class distribution. We therefore perform our analysis in terms of precision-recall curves (PR) and the 
corresponding F1 score [49]. Precision is normalized by the number of positives rather than the number of true 
negatives, so that false positive detections have the same relative weight as true positives. While the 
maximum F1 score indicates the optimal performance of a classifier, the area under the respective PR curve 
(AUC-PR) corresponds to its expected performance across a range of decision thresholds, such that a model with 
higher AUC-PR is more likely to generalize better. 

4.1. Analysis of design choices 
In order to validate our design choices, we performed experiments to evaluate how the final performance of the 
classifier is affected by: (i) the dimensionality of the feature space; (ii) the point where features are collected 
from the CNN; and (iii) the type of input portrait. 

4.1.1. Dimensionality analysis 
PCA is one of the most widespread techniques for dimensionality reduction. It consists of projecting N-
dimensional input data onto a k-dimensional subspace in such a way that this projection minimizes 
the reconstruction error (i.e., L2 norm between original and projected data) [50]. PCA can be performed by 
computing the eigenvectors and eigenvalues of the covariance matrix and ranking principal components 
according to the obtained eigenvalues [51]. 

In this application, the original dimensionality corresponds to the number of elements in the CNN vectors 
extracted from a fully connected layer, i.e., N = 4096 as represented for the two last layers in Fig. 2. The first two 
columns of Table 2 show the reduced dimensionality k of the feature vector and the corresponding ratio of the 
total variance of the N-dimensional dataset that is retained at that dimensionality for layer FC6. As the table 
indicates, the first most significant dimension alone already covers almost half of the total variance, and 23 
dimensions are sufficient to cover nearly 90% of it. 

Table 2. Classification performance according to the number of principal components (dimensions) selected 
after applying PCA to the extracted features. Best results in terms of F1 and AUC-PR are shown in boldface. 

No. of dimensions Variance ratio F1 Recall Precision AUC-PR 
1 48.3% 90.4% 92.2% 88.6% 96.5% 
2 63.7% 91.4% 92.7% 90.2% 94.0% 
5 79.9% 91.9% 92.3% 91.5% 96.9% 
15 87.4% 91.5% 92.6% 90.4% 94.3% 
23 89.6% 92.1 %  92.9% 91.2% 95.2% 
69 93.8% 91.9% 92.6% 91.2% 97.2% 
150 95.8% 91.3% 92.7% 90.0% 97.1% 
300 97.2% 91.6% 91.6% 91.7% 97.2% 
500 98.0% 91.8% 91.8% 91.8% 95.0% 
1080 99.0% 91.7% 91.5% 91.8% 94.9% 
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We investigated then how samples are mapped into the lower dimensional feature space. Fig. 5 shows the 
projections in dimensions 1 and 2 as well as dimensions 1 and 3. These plots illustrate how the convolutional 
network maps the samples into a space where it is possible to differentiate between multiple clusters. 
With dim. as an abbreviation for dimension, let ↓ denote low dimensionality values and ↑ high values, 
respectively. The following clusters can be identified: flowers (↓ dim.1, ↑ dim.2); grass/floor (↑ dim.1, ↑ 
dim.2); branches/leaves (↓ dim.2); sky (↑ dim.3). This indicates that positive and negative samples are almost 
linearly separable even for 2D projections of the original feature space. 

 

Fig. 5. Projections of samples on 2D feature spaces, with positive samples in blue and negatives ones in red. Left: 
sample distribution on the plane corresponding to dimensions 1 and 2 according to PCA. Right: sample 
distribution on the plane corresponding to dimensions 1 and 3. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

To quantitatively assess how the classification performance is affected by the dimensionality of the feature 
space, we trained SVM classifiers for different numbers of dimensions. For each dimensionality, Table 2 presents 
the optimal performance metrics and corresponding AUC-PR. As expected, these results demonstrate that the 
impact of dimensionality on the optimal performance of our method is rather low. A very good performance is 
already obtained using a 2D feature space, with both F1 score and AUC-PR only around 0.7% and 3.2% lower 
than the highest obtained values, respectively. In terms of optimal recall and precision, this is equivalent to 
missing extra 4 positive samples out of 1719, while including more 19 false-positives out of 40,711. Moreover, 
the table shows that a dimensionality of 69 is nearly optimal: the performance in terms of optimal F1 score is 
only 0.2% lower than the highest obtained value (23 dimensions) and it is optimal in terms of AUC-PR. 

Although in the discussion above we present results obtained using SVMs, such a high separabilityeven for low 
dimensionalities indicates that the final prediction accuracy of our model is almost independent of the type of 
classifier employed. This conjecture is validated in the next subsection, where we demonstrate that the 
performance of our system does not change significantly by either including an additional fully connected layer 
to our CNN or by carrying out classification using the using network's softmax layer directly. 

4.1.2. Feature analysis 

As explained in Section 3, after fine-tuning the model, we use it to extract features that allow the classification 
of superpixels according to the presence of flowers within them. Three combinations of features and 
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classification mechanisms were investigated: (A) predict using solely the neural network, by means of its 
softmax output layer; (B) train a SVM classifier on features collected after the last fully connected layer (FC7); (C) 
train a SVM classifier on features collected after the first fully connected layer (FC6). Fig. 6 shows the points 
where features are collected and how classification scores are computed using these features. Following the 
notation used in Fig. 2, C1–C5 correspond to the convolutional layers of the fine-tuned Clarifai network, FC6–FC7 
are the fully connected layers, and FC8 is the softmax layer. 

 

Fig. 6. Diagram illustrating how classification scores are computed using the extracted features. 

For approaches B and C, features are collected from the output of the rectified linear units (ReLUs) located right 
after the respective fully connected layers. The same sequence of operations is performed for both methods B 
and C, i.e., the framework is the same regardless of whether the features are collected from the last (FC7) or 
first fully connected layer (FC6). Based on the results obtained in the previous section, for both cases 69 
dimensions are kept after PCA analysis. 

Results obtained for classification on the validation set are summarized in Table 3 and Fig. 7. As Fig. 7indicates, 
all three approaches show very similar performance. A closer inspection of Table 3 reveals that the SVM-based 
approaches slightly outperform the direct use of the neural network softmax layer both in terms of 
optimal F1 score and AUC-PR. The performances obtained with methods B and C are very similar for both 
metrics. We therefore opted for method C, which uses features extracted from the earlier layer FC6 and 
provides slight increases in both optimal F1 score and AUC-PR. 

Table 3. Classification performance according to the CNN layer at which features are collected – methods A, B, C. 
 

AUC-PR F1 Recall Precision 
A (NN) 96.9% 90.6% 91.7% 89.6% 
B (FC7) 97.2% 91.6% 91.8% 91.4% 
C (FC6) 97.3% 91.9% 92.6% 91.2% 
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Fig. 7. PR curves illustrating the performance on the validation set according to the CNN layer at which features 
are collected. NN stands for prediction using solely the network softmax output layer, 
while FC6 and FC7 correspond to SVM classifiers trained on features collected at the first and second fully 
connected layers, respectively. 

4.1.3. Different types of portraits 
Using superpixels for region proposal computation and subsequent generation of portraits implies that our goal 
is to evaluate whether the superpixel itself is composed of flowers or not. In order to assess the influence of the 
local context surrounding the superpixel on the classification results, in addition to the approach based on 
replacing the region around the superpixel with the mean RGB value, two alternative approaches for portrait 
generation were considered. The first consists of retaining the unmodified image area surrounding the 
superpixel, whereas the second corresponds to blurring the background surrounding the superpixel with a low-
pass filter. For all three cases, the portrait is mean-centered before being fed into the neural network. The three 
types of evaluated portraits are illustrated in Fig. 8. 

 

Fig. 8. Example of the three types of portrait evaluated. (a) Original; (b) blurred background (Blur); (c) mean 
padded background. 

Fig. 9 shows the PR curves obtained for each portrait type. The best performance is obtained with mean-padded 
portraits, a behavior explained by the existence of cases such as the ones illustrated in Fig. 10. The superpixels 
highlighted in the images on the top row do not contain flowers in more than 50% of their area and should 
therefore not be classified as flowers. However, these superpixels are surrounded by flowers, as depicted in the 
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Fig. 13. Examples of images composing the additional datasets AppleB (left), AppleC (middle) and Peach (right), 
overlaid with the corresponding detections obtained by our method. (For interpretation of the references to 
colour in this figure citation, the reader is referred to the web version of this article.) 

Two of the additional datasets also correspond to apple trees, but with a blue background panel positioned 
behind the trees to visually separate them from other rows of the orchard, a common practice in 
agricultural vision systems. We denote the first dataset AppleB, which is composed of images with resolution 
2704 × 1520 acquired using a camera model GoPro HERO5. In this dataset there is a substantial number of 
occlusions between branches, leaves and flowers. 

The second dataset, which we call AppleC, is composed of images with resolution 2456 × 2058 acquired with a 
camera model JAI BB-500GE. In this dataset occlusions are less frequent but the saturation color component of 
the images is concentrated in a much narrower range of the spectrum than in the original AppleA dataset. The 
contrast between objects such as flowers and leaves is therefore significantly lower. 

The third additional dataset contains images of peach flowers (we therefore call it Peach) with resolution 
2704 × 1520 acquired using a camera model GoPro HERO5. Peach blossoms show a noticeable pink hue in 
comparison to the mostly white apple flowers composing the training dataset. Additionally, images were 
acquired during an overcast day, such that in comparison to the training set (AppleA) the illumination is lower 
and the sky composing the background is gray instead of blue. Although the main scope of this work is on apple 
flower detection, we ultimately aim at a highly generalizable system that can be applied by fruit growers of 
different crops without the need for species-specific adjustments. In fruit orchards, each species of tree is 
typically constrained to specific areas. Hence, rather than differentiating between flower species, it is preferable 
to have a system that can distinguish between flowers and non-flower elements (e.g., leaves, branches, sky) 
regardless of species. Thus, this dataset represents a good evaluation of detection robustness. 

Transfer learning steps. For all three additional datasets, both feature extraction and final classification were 
performed using the same parameters obtained by training with the AppleA dataset, without any dataset 
specific fine-tuning. Our transfer learning strategy relies solely on generic pre-processingoperations that 
approximate the characteristics of the previously unseen images to those of the training samples. 

Our first pre-processing step consists of removing the different backgrounds of the additional datasets. Whether 
the background is composed of a blue panel (AppleB and AppleC) or a gray sky (Peach), background 
identification for subsequent subtraction can be performed by means of texture analysis. For each image we 
compute the corresponding local entropy, which is then binarized using Otsu's threshold [52] to identify low 
texture clusters. We then apply morphological size filtering to the binarized image and model the background as 
a multimodal distribution. 



To model the background, we compute the RGB-mean of the n largest (in terms of number of pixels) low texture 
clusters to build a n-modal reference set. The likelihood that remaining low texture clusters belong to the 
background is estimated as the Euclidean distance between their means and the nearest reference in the RGB 
space. This metric allows differentiating between low texture components composing the background from the 
ones composing flowers, without any dataset specific color thresholding. For the AppleB and Peach datasets we 
adopted a bimodal distribution, where the modes correspond to the blue panel/gray sky and trunk/branches. 
Since the blue panel in the background of images composing the AppleC dataset is reflective, shadows are visible 
and therefore we included a third mode to automatically filter these undesired elements out. Automatically 
determining the number of background components is part of our future work. 

Afterwards, histogram equalization and histogram matching are performed on the saturation channel of each 
image. While equalization aims at spreading the histogram components, histogram matching consists in 
approximating its distribution to the characteristic form of the training set channel distribution [23]. Finally, to 
mitigate the effects of illumination discrepancies, we subtract the difference between the mean of the 
value channel components in the input image and in the training set. 

Fig. 14 shows the PR curves summarizing the performance on these datasets of our method (CNN + SVM) in 
comparison with the best performing baseline approach (HSV + SVM). The proposed method provides AUC-PR 
above 85% for all datasets, significantly outperforming the baseline method. Since the HSV + SVM method relies 
solely on color information, its results are acceptable only for the AppleB dataset, the one that most closely 
resembles the training dataset. Its performance is notably poor for the Peach set, as this species differs to a 
great extent from apple flowers in terms of color. A large performance difference is also evident for 
the AppleC dataset, in which flowers and leaves share more similar color components than in the training 
set. Table 5 shows that the proposed approach also outperforms the baseline by a large margin in terms of 
optimal F1 score and the corresponding precision and recall values. 

 

Fig. 14. PR curves expressing the performance of our method (CNN + SVM) and the optimal baseline 
(HSV + SVM) approach on the three additional datasets. The AUC-PR values associated with each curve are 
presented within parentheses. 

Table 5. Summary of results obtained for our approach (CNN + SVM) and the best baseline method (HSV + SVM) 
for the three additional datasets. Best results in terms of F1 are shown in boldface. 

  
F1 Recall Precision 

AppleB HSV + SVM 70.7% 69.8% 71.6%  
CNN + SVM 80.2 %  81.9% 78.5% 

AppleC HSV + SVM 48.6% 37.9% 68.0%  
CNN + SVM 82.2 %  81.2% 83.3% 

Peach HSV + SVM 49.0% 61.3% 40.8% 



 
CNN + SVM 79.9 %  81.5% 78.3% 

 

Additionally, it is noteworthy that a large number of superpixels classified as false positives by our proposed 
approach (CNN + SVM) correspond to regions where flowers are indeed present, but compose less than 50% of 
the corresponding superpixel total area. This is illustrated in Fig. 15, which contains examples for the three 
additional datasets. In other words, the sensitivity of the feature extractor to the presence of flowers is very 
high and the final performance would be improved if the region proposals were more accurate. 

 

Fig. 15. Example of false positives caused by poor superpixel segmentation. 

5. Conclusion 
In this work, we introduced a novel approach for apple flower detection, which is based on deep learning 
techniques that represent the state of the art for computer vision applications. In comparison with existing 
methods, which are mainly based solely on color analysis and have limited applicabilityin scenarios involving 
changes in illumination or occlusion levels, the hierarchical features extracted by our CNN effectively combine 
both color and morphological information, leading to significantly better performances for all the cases under 
consideration. Experiments performed on four different datasets demonstrated that the proposed CNN-based 
model allows accurate flower identification even in scenarios of different flower species and illumination 
conditions, with optimal recall and precision rates near 80% even for datasets significantly dissimilar from 
the training sequences. 

As part of our future work, we intend to explore existing datasets and state-of-the-art models for 
semantic image segmentation. Particularly successful strategies consist of end-to-end architectures that, 
without external computation of region proposals, generate pixel dense prediction maps for inputs with 
arbitrary size [[53], [54], [55]]. 

Moreover, similar to the approach proposed in [33] for fruits, we intend to extend our module for flower 
tracking and localization based on probabilistic approaches that use the estimated motion between frames (e.g., 
particle filtering [56]) to predict the location of flowers. To extend the applicability of our model to the detection 
of fruitlets as well as other flower species, we will consider additional transfer learning approaches such as data 
augmentation by affine transformations and the use of external datasets. 
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