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ABSTRACT

VERIFICATION OF A DUAL-STATE EXTENDED KALMAN FILTER WITH
LIDAR-ENABLED AUTONOMOUS HAZARD-DETECTION
FOR PLANETARY LANDERS

Peter J. Jorgensen, B.S.

Marquette University, 2015

This thesis presents a mathematical model for a LIDAR-enabled Terrain-
and Hazard-Relative Navigation sensor and the design and implementation of a
dual-state extended Kalman filter. The extended Kalman filter equations are
presented in summary. Mathematical models for an altimeter, a velocimeter, a star
tracker, and a lidar-enabled mapping/tracking sensor are presented in depth. An
explanation of the software designed for computer simulation is included.

It is proved through this analysis that, when implemented as part of a
well-tuned extended Kalman Filter and in combination with other sensors, the
proposed model for a lidar-enabled mapping/tracking sensor significantly reduces
estimation error. This enables accurate navigation capable of precision
descent-to-landing scenarios.
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CHAPTER 1

Introduction

1.1 Problem Statement and Motivation

Autonomous precision navigation is a capability that is indispensable for
space exploration[1]. Whether it is landing a rover on Mars or docking with the
International Space Station, guidance, navigation, and control (GN&C) require
accuracy and precision. The obstacles to overcome in descent-to-landing scenarios
are particularly complex, as delivering science or supplies to a specific point on the
surface requires knowledge of the state of both the spacecraft and the landing point.
This ideal of anytime, anywhere landing is achieved through the use of a dual-state

Extended Kalman Filter (EKF).

As exploration of space continues, placing vehicles and assets near points of
interest will be critical to efficient use of scientific resources. Current autonomous
landing capabilities yield asset placement with distances from the targeted landing
position measured in kilometers[2]. Any improvements in landing accuracy enable
better use of multi-million dollar assets that are sent to other planets, comets, or
asteroids, as the assets will require less time spent traveling to reach the ideal target
areas for their designated missions. The challenging constraint to achieving
anytime, anywhere landings is that the system must be able to operate in any

lighting conditions.



The problem of precision anytime, anywhere landings can be effectively
solved through use of a combination of navigation sensors including a vehicle-ground
relative altimeter, doppler-lidar velocimeter, star-tracker attitude sensor, and a
lidar-enabled mapping/tracking sensor to be known as the Terrain/Hazard Relative
Navigation (THRN) sensor. Fusing these sensors’ measurements into the vehicle’s
estimated state is done by the EKF system. To prove that this combination of
sensors is effective in producing an accurate navigation solution, the vehicle, sensor,
and environment dynamics must be modeled and the dual-state EKF implemented

in simulation.

1.2 State of the Art

The current sophistication of autonomous landing systems was proven in
August of 2012, when the Mars Science Laboratory (MSL) landed on the Martian
surface just 2385 m from the intended target inside the Gale Crater. Previous
landings on Mars were characterized by large footprints, on the order of a 100 x 15
km ellipse. The predicted footprint for MSL was 21 x 7 km. This increase in
accuracy was made through extensive use of computer simulation and new landing
technologies, such as the “Sky Crane.”[2] Previously, the Apollo Lunar landings

were characterized by landing accuracies of 1 km with a pilot in-the-loop.

Hazard detection systems have been employed in aerospace systems for

decades, including but not limited to landing-assistance systems for airplanes [3]



and vision-based hazard detection[4][5]. However, these systems rely on
pre-deployed navigation assets or the requirement to land in well-lit conditions.

Therefore, they cannot be used for anytime, anywhere landing scenarios.

The NASA Autonomous Landing Hazard Avoidance Technology (ALHAT)
project is the main project underway seeking to develop transformational navigation
techniques for use aboard spacecraft during rendezvous and entry, descent, and
landing scenarios. The objectives are to operate autonomously, perform precision
landing, detect hazards and avoid hazards. The ALHAT development project was
chartered by NASA Headquarters in October 2005. The ALHAT sensor consists of a
lidar system that creates a digital elevation map of a targeted landing surface.
Additional sensors include a Doppler-lidar instrument capable of providing precision
velocity vectors, vehicle ground relative altitude, and attitude.[6] As of June 2014,
the sensor was tested unsuccessfully in closed-loop flight tests aboard the Morpheus
vehicle at Kennedy Space Center, Florida. Reasons for the unsuccessful test include
image clarity issues, image correlation issues, and that the sensor drove the

navigation solution away from a GPS-based solution[7].

1.3 Objectives

To enable autonomous landing for future missions, the proposed

lidar-enabled mapping/tracking navigation system must be able to:

e land autonomously anywhere, anytime within tens of meters if there are



navigation assets in place and/or precise maps

e land autonomously anywhere, anytime within 1 kilometer in the absence of

navigation assets or precise maps

e detect 0.5 m tall surface features, 10-degree slopes, and pre-deployed assets.

Feature recognition must be done at sufficient altitude to enable trajectory diversion
to avoid undesirable landing areas and to efficiently maneuver to the re-designated
target. It is assumed that this sensor exists and can provide the required
measurement to the EKF system, based on published information on the ALHAT

project sensor.

This thesis provides a summary of the EKF equations, a derivation of system
dynamics, the mathematical formulation of sensor models, and an overview of the
developed simulation for testing the EKF. Filter verification testing is done through
simulation analysis including Monte Carlo covariance analysis, the development of

an error budget, and sensitivity analysis.

1.4 Thesis Outline

Chapter 2 discusses the claimed contributions this thesis makes to the state
of the art. Chapter 3 covers the motivation behind using an estimator and the
estimation framework of the EKF, including both the propagation and update

phases of the filter. This is directly followed by Chapter 4, the mathematical



derivation of the spacecraft dynamics, including translational, rotational, and error
dynamics. Chapter 5 describes the mathematical derivations of the sensor models.
Chapters 6 and 7 respectively give an overview of the simulation software
framework and simulation results. The conclusion in Chapter 8 summarizes the

results and outlines possible extensions to this thesis.

1.5 Mathematical Notation

The mathematical notation used throughout this thesis is as follows:

- Vector quantities are in lowercase boldface, i.e. r

- Scalar quantities are in lowercase normal weight, i.e. ag

- Matrix quantities are in uppercase boldface, i.e. T

- Quaternions are indicated by a vector quantity with an overbar, i.e. q.

Also, the vector part of a quaternion is simply the same boldface variable without

the overbar i.e. q, and the scalar part is the same variable, but normal weight i.e. q.

Unless indicated, all quaternions adhere to the unity norm constraint.

Quaternion multiplication is defined:

p q rq+qp—pxq

ko]
®
QI
I
®
I

(1.1)
p q pa—pP-q



This definition of quaternion multiplication differs from Hamilton’s original
definition with the negative cross-product quantity. This is done because it allows
the composition of a sequence of quaternion rotations to be written in the same

order as a sequence of transformation-matrix rotations|8].

Several symbols are used to denote specific attributes of a variable. The hat
{*} indicates an estimated quantity, while the same variable without the hat is the
true quantity. The dot {‘} indicates the temporal derivative. The double vertical
bars || - || indicate the vector or matrix 2-norm. The transpose is indicated by a

superscript “T” {-}7, and the inverse is indicated by the superscript “-1”7 {-}71.

The cross-product matrix [-x] is defined for two vectors a, b € R? such that

a x b = [ax]b, where

0 —das a9
[ax] = as 0 —a |- (1.2)
—a9 aq 0

Note that this follows the anticommutative property of the cross product where

[ax]b = —[bx]a.

The diagonal matrix of a vector is defined as:

aq 0 0
[ax]=10 a 0 |- (1.3)
0 0 as

Note that [ax]b = [b\]a.



The off-diagonal symmetric matrix is defined as:

Note that [a | x ||b=[b |

1.6 Reference Frames

_ 0 a3 as -
alxll=1a 0 a (1.4)
as a; O
X |]a.

Reference frames are denoted by a series of letters. Table 1.1 indicates the

superscript-frame pairings.

Table 1.1: Reference frame definitions

Superscript | Reference frame
1 Earth-centered inertial
f Earth-centered Earth-fixed
Uvw Takeoff-position-fixed
ilp Initial-landing-position-fixed frame
b Spacecraft body-fixed
sr Star-map fixed
thrn Lidar-enabled mapping/tracking sensor fixed
vel Velocimeter sensor fixed
alt Altimeter sensor fixed
sc Star-tracker camera fixed

The transformation

with a subscript to specify

between two reference frames is denoted by a capital “T”

the from-frame and a superscript to specify the to-frame.

For example, the transformation from the inertial frame to the spacecraft body

frame is T?.



1.7 Tools and Software

All simulation software is written and developed in MATLAB version
2014b[9]. The simulation encompasses the environmental modeling of Earth’s
rotation and gravity, nominal flight trajectory generation, EKF implementation,

and post-flight analysis including generation of figures.



CHAPTER 2
Contributions to State of the Art

There are two main contributions this thesis makes to the state of the art:
first, a mathematical model for a Terrain/Hazard-Relative Navigation (THRN)
sensor is proposed and its derivation shown; second, software to implement an
Extended Kalman Filter (EKF) is written to test the proposed sensor model in a
complex, dual-state estimation system. The software implements the standard EKF
propagation and update equations as well as the sensor models as derived for this
thesis. The sensor models are based on basic principles of the functionality for each
sensor, and were derived specifically for this thesis. Using estimation filter analysis
techniques the simulation is tested, and the resulting performance of the EKF

implementation and the proposed THRN sensor model are analyzed for effectiveness.

2.1 A Terrain/Hazard-Relative Navigation Sensor Model

A sensor capable of mapping surface features and tracking them for
navigation purposes exists and is being tested by the NASA Autonomous Landing
Hazard Avoidance Technology (ALHAT) project. However, as of June 2014, the
sensor was unsuccessful in flight tests, plagued by image correlation issues and
image clarity issues|7]. This thesis derives a mathematical model for a sensor similar
to the ALHAT sensor in functional capabilities of mapping, feature detection, and

feature tracking.
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The proposed model differs from the model used during the flight tests of the
ALHAT system on board the Morpheus vehicle. The ALHAT sensor depends on a
current state estimate in order to produce a new measurement because the sensor is
on a gimbal and must be pointed to the estimated position of the tracked feature.
Thus, in order to operate properly, the ALHAT sensor requires a very accurate state
estimate, otherwise the image it produces for each measurement may not correlate

to the previous image, resulting in a failed measurement.

It is believed that the model presented in this thesis implements the idea of
Terrain/Hazard-Relative Navigation for inertial navigation better than the ALHAT
system; the proposed THRN sensor model relies solely on output from the sensor, in
the form of a vector to the tracked feature, and assumes that the sensor operates
independently from the navigation state estimate. The resulting mathematical
model is presented in full and in-depth and is one part of the contributions this

thesis makes to the state of the art.

2.2 Dual-State Extended Kalman Filter

This thesis covers the design and implementation of a dual-state Extended
Kalman Filter for state estimation, including the derivation of spacecraft system
dynamics, estimation error dynamics, and sensor models. Since the EKF is a
model-dependent filter, the modeling of the system and sensors is described

in-depth. It is not claimed that the system dynamics or sensor models for the
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accelerometer, gyroscope, altimeter, velocimeter, and star camera are novel or
unique. However, the models were derived from a basic understanding of the
measurements they produce, and therefore the models and their derivations are
included in full. Where the models were adapted from other sources, proper

citations are made.

The dual-state nature of the proposed EKF is a new concept in inertial
navigation. Historically, guidance and navigation for rendezvous requires knowledge
of the spacecraft state relative to the target’s state; this effectively assumes that the
target’s state is known[10][11]. Extending the rendezvous scenario to inertial
navigation requires assuming the inertial state of the target is perfectly known,
which is unrealistic in real-life scenarios. The navigation system and EKF proposed
by this thesis estimate the inertial position of the intended landing position, which
is corrupted by map-tie errors, in addition to the inertial spacecraft state. This
enables rendezvous in an inertial navigation system. The software implementation
of this dual-state EKF is the second major contribution of this thesis and is used to

prove the THRN sensor model in simulation.

Figure 2.1 shows the portions of a control scheme that the software covers,
including the related system inputs and outputs. Note that in a typical control
scheme, there is a modeled system or plant and a controller included; they are
greyed-out in the diagram to indicate that they are not included in this thesis. The
simulation inputs include the true state vector x;, (fed through the sensors to create

measurements) and measurement noise 7,. These two quantities are added together
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X
K
—> Sensors
X +
k+1 Observer +

ER [y, N,

Figure 2.1: Control scheme diagram and focus of simulation software

and the noisy measurement is processed by the EKF, which has access to the prior

estimated state X, to create the new state estimate Xy 1.

The simulation software was developed with filter verification and tuning in
mind. Therefore, the ability to selectively activate sensors, noise sources, and
inclusion of initial estimation error is built-in. The simulation does not include
modeling of the system’s environment, removing the need to include a controller
and system model as part of the simulation loop. This simplified the software and

focused analysis efforts on filter verification and tuning.
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CHAPTER 3

Estimation Framework

This chapter covers the basics behind estimation theory, including why an
estimator is used and a summary of the Kalman filter equations. Further, filter
design is explained in the context of this problem. The chapter ends with a section

on filter tuning and explanation of why this is an “art” rather than a science.

3.1 Motivation: What Is Estimation?

In control theory, an observer yields an estimate of the internal state of the
system based on measurements of the input to and output from the system. Many
forms of observers are available, and the Extended Kalman Filter (EKF) is one of
these forms. The EKF is an extension to the optimal estimator for linear systems

with additive white noise, known as the Kalman Filter.

There are multiple methods for obtaining a state quantity such as altitude
above the ground for a given system, including model-based integration. For
example, a rocket’s altitude above a planet after takeoff is governed by equations of
motion relating thrust, the vehicle’s mass, and environmental effects such as gravity
and atmospheric drag. A model of all of these effects can be produced, and, given
an initial vehicle state, the vehicle’s position at a future time can be computed.
Similarly, the same rocket system’s altitude above the ground can be directly

measured by various sensors such as a laser altimeter, GPS receivers, and
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barometric sensors.

Sensors and models can both be used to get quantitative information about
the rocket’s state; however, sensors and models are of varying accuracy. For
example, the model may be corrupted by numerical integration errors or effects that
were not modeled; likewise, the sensors may be biased and include measurement
noise. In both cases, the end-result solution for the rocket’s altitude will include
error. For accurate guidance and controls, it is desired to keep this error as small as

possible.

The best way to reduce state estimation error is to combine the model
solution with the measurement from sensors. In practice, sensor noise parameters
can be known with relative certainty through pre-flight testing. Incorporating the
sensor measurements of relatively-known noise characteristics into a current state
estimate requires knowledge of how accurate the current state estimate is. If the
measurement noise is known, and the current estimate accuracy is known, then the
two can be combined optimally based on the relative statistics. For example, if the
measurement noise on the rocket’s altimeter is +5m, and the current estimated
altitude is thought to be accurate to +2m, the estimated state, after being updated,

will be based more on the previous state estimate than the new measurement.

The Extended Kalman Filter is capable of processing measurements like the
example rocket’s altimeter; further, as long as there exists a mathematical model for
a sensor, the EKF is capable of processing its information. Statistical weighting of

the state updates is done based on known sensor measurement noise characteristics
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and the current filter solution for state-estimate accuracy. The EKF depends on
accurate models of the system dynamics and sensors; given both, the EKF estimator

fuses model and sensor information to provide the best possible state estimate.

3.2 Motivation: Why Estimate?

For some systems, it is simple to directly measure quantities of interest.

Many robots are used in conjunction with position and velocity sensors to provide
direct, accurate state information. For other systems, measurements might
indirectly provide the information that is desired or the proper sensors may be too
expensive to incorporate into the system. Sensors may not provide measurements
that are accurate enough to control the system, or measurements may be obtained
too infrequently. Finally, where accurate state information is required, it may be
necessary to model sensors with biases and other errors, which are parameters that
cannot be known in advance. In these cases, it is imperative to use a state
estimator. State estimation fuses prior knowledge of the system states with
incoming measurement information. Various measures of error exist, and therefore
there are different possible methods for minimizing this error. However, all

estimators attempt to minimize the chosen definition of state error.

In the specific case of autonomous precision spacecraft descent and landing,
two quantities are of interest: the spacecraft position and the position of the landing

site. Sensors on the spacecraft measure quantities such as altitude, attitude, and
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velocity relative to the planetary surface. The focus of this thesis, a Terrain/Hazard
Relative Navigation (THRN) sensor, measures the position of the landing site and
selected features relative to the spacecraft. However, there is no sensor that exists
that can definitively measure the inertial position of the spacecraft and the position
of the landing site. Therefore, state estimation is necessary for fusing the available

measurements together to produce the desired control information.

In short, estimation is not always a requirement for accurate control of a
system. However, inertial guidance, navigation, and control is one area where
estimation is fundamental to success, because directly measuring system state

values is impossible.

3.3 The Extended Kalman Filter

Following the presentation of what estimation is and why it is required for
inertial navigation, the next sections explain the Extended Kalman Filter
propagation and state update equations. The equations as presented are not novel;
their expression in detail in this thesis, however, builds a fundamental understanding
of how the simulation software was developed to test the THRN sensor and this
EKF estimator. As such, the equations are presented in-depth enough to provide

the basis of understanding to be able to translate them into software.

In 1960, R. E. Kalman published his work on linear filtering and

prediction[12], leading to what has become known as the Kalman filter, an
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algorithm that optimally fuses measurements into a non-stationary system’s state
based on the statistical measures of the system mean and covariance. The
derivation of the Kalman filter is readily available, so it is not repeated here. For
in-depth analysis, see Kalman’s original paper among other sources[13][14][15].
Many variations on the original Kalman filter exist; the proposed navigation system
uses the extended Kalman filter (EKF) which enables modeling of system dynamics
and measurements as nonlinear equations while still using the optimality of the
Kalman filter equations to update the system state and covariance through

state-localized linearization using Taylor-series approximations[16].

Navigation is based on the combination of measurements from sensors and
knowledge of the physical system and environment, such that the system states can
be propagated forward in time while minimizing the accumulation of errors. The
EKF is a recursive data processing algorithm that fuses asynchronous nonlinear
measurements from sensors with potentially time-varying noise characteristics to

update state variables[17][18].

The EKF uses prior knowledge of the system states and the associated error
statistics. Although the EKF can fuse asynchronous measurements with prior state
information, it is heavily dependent on accurate modeling of the sensors and
environment. Application of the EKF is done in two stages: propagation, where
state information and inertial measurement unit (IMU) data is used to predict
future states, and update, where sensor measurements are used to alter state

information and reduce accumulated errors. The propagation stage is most often
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done using the nonlinear models of the environment and the linear models of the
error dynamics. The update stage uses the nonlinear measurement models and the

linearized measurement sensitivities.

The EKF equations are very similar to those of the standard Kalman filter,
although the dynamics are allowed to be nonlinear. Two Jacobian matrices are used
to linearize the dynamics and measurement equations about the current state
vector, used to generate the Kalman gain and propagate the system covariance. The

nonlinear system model is assumed to be of the form:

X(t) = £(x(t), ) + M(t)w(t) (3.1)

where x(t) is the state of the system, f(x(t),t) is the nonlinear system model, and

w(t) is the zero-mean, white-noise sequence process noise such that:

E{w(t)} =0, E{w()Ww' (1)} = Qqecd(t —7) (3:2)

where E{-} is the expected value operator, §(t — 7) is the Dirac delta function, and
Qjpec is @ constant-power spectral density which is an input to the Kalman filter.

Finally, M(¢) is the process noise mapping matrix.

Similarly, the nonlinear measurement model is assumed to be of the form:

Y = hp(xi) + vy (3.3)

where the subscript £ denotes a discrete moment in time ¢ = ¢;, and the nonlinear

measurement model evaluated at the state x; = x(t)) is defined as hy(xy).
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Furthermore, v} is the measurement noise which is assumed to be a zero-mean

white noise sequence:

E{Vk} = 0, E{Vng/} = Rkékk/ (34)

where Ry, is the noise covariance and is an input to the filter, and 0y is the
Kronecker delta. Additionally, it is assumed that the process noise and

measurement noise are not correlated in time, or:

E{w(t)\WI}=0 VY tt, (3.5)

3.3.1 EKF Propagation Stage

The first step of the EKF cycle is propagation, where the state estimate after
the previous update is integrated over time to create a new estimate to which the
next update is applied. Propagation is done at a faster rate than state updates to
emulate the continuous dynamics of the system. This generally enables more

accurate solutions of the differential equations of motion governing the spacecraft.

Given a time interval such that ¢t € {tx_1, ¢}, the state estimate dynamics of

the form:

X(t) = £(&(t), 1) (3.6)

are numerically integrated from t = ¢,_; to t = t; with initial condition X(t;_1).
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Similarly, in order to propagate the state estimation error covariance, the equation:
P(t) = F(&(1),)P(t) + P()FT (X(1),1) + Qupec(t) (37)

must be numerically integrated from t = t;_; to t = t;, where:

O (x(t), 1) ] 38)
x(t)=%(t)

3.3.2 EKF Update Stage

When a discrete measurement comes into the filter at time ¢ = t;, the most
up to date state estimate (from the propagation stage) is used along with the
measurement to create an updated estimate of the state and state error covariance.
The values immediately preceding an update are called a priori and denoted with a
superscript (—), and those immediately proceeding are a posteriori and denoted
with a superscript (4). The state estimate and state estimation error covariance

update are calculated using the Joseph formula[17]:

(+) (N ] p) NENE T
P = (Lo — KeHW (&) PO [T - KiHW(R()] + KiRiK]

and the Kalman gain is calculated:

—1
K, = PUHL ) [Hu (& )PUHL ) + Ry (3.10)
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and Hj, is the measurement sensitivity matrix defined as:

Oxp, 2(—)

xk:xk

H(R() - lah—b‘) ] (3.11)

3.4 Filter Design

The Kalman filter equations are well-known, but each implementation of the
filter must be independent. This is because the filter’s performance relies heavily on

how well the system is modeled and how the filter is tuned.

3.4.1 Filter Modeling

Modeling of the system for descent-to-landing navigation requires knowledge
of the spacecraft and of the environment. Translational dynamics are formed based
on the planet’s gravitational characteristics and non-gravitational accelerations
measured by the Inertial Measurement Unit (IMU), and rotational dynamics are
formed based on angular velocity measurements by the IMU. Sensors are modeled
using system state variables, and for simulation purposes the sensor models include

both truth models and models based on estimated quantities.

It is important to have models that accurately reflect the physical system,
but some quantities cannot be measured, including sensor biases, scale-factor errors,
and other sources of systematic error. Other parameters of the system may be

variable and hard to measure, such as sensor noise characteristics. Thus, the state
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vector is augmented with systematic error variables to capture these effects.

Chapters 3 and 4 cover the modeling of the system dynamics and sensor

measurements.

3.4.2 Filter Tuning

If the system were perfectly known, the models would lead to a perfect
implementation of the EKF. However, due to uncertainties in the sensor models and
the process of linearization to compute the Kalman gain, unknown errors are
embedded in the filter. Two primary characteristics are used to compensate for
these unknown errors: process noise in the form of a spectral density matrix Q.

and sensor noise covariance matrix R;. Both matrices are assumed to be constant

for this analysis.

The spectral density matrix Q. .. serves to increase the system covariance in

spec
combination with the system dynamics. This helps to prevent the system covariance
from becoming too small, which would lead to a false sense of security in the system
state estimate, ultimately rejecting new measurement data. In theory, if the system
covariance converges to zero, the filter assumes it knows the system states perfectly.
Thus, introducing process noise requires at least a minimum level of measurement

processing, which means that the filter will be forced to continually update the state

estimate.

The measurement noise covariance matrix R accounts for unknown errors
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introduced in the sensor models as well as sensor measurement noise. As can be
seen in Eq. 3.10, Ry is in the denominator of the Kalman gain calculation. Thus,
for increased values of measurement noise covariance, the Kalman gain is reduced,
leading the filter to use less of the measurement residual to update the state during
each filter cycle. The corollary is that for smaller measurement noise covariance
values, the sensors are trusted more and the measurement residuals are more

directly included in the state update[13].

The matrices Q and Ry can be manipulated to ensure that, for designed

spec

trajectories, the filter state covariance always encapsulates the state error; this is

the primary measure of a filter that performs well.
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CHAPTER 4

System Dynamics

For effective navigation, an accurate model of the system must be known.
This includes physical and propulsive characteristics of the spacecraft as well as
knowledge of the environment including gravity and atmospheric interaction.
Additionally, without accurate measurement of the non-gravitational acceleration
and angular velocity of the spacecraft by an accelerometer/gyroscope package,

precision landing would be impossible.

In addition to having a model for the translational and rotational system
dynamics, a model for the estimation error dynamics is required to be able to
predict new system states. The estimation errors describe the difference between the
true spacecraft states and what is estimated, and knowledge of how these errors

dynamically evolve is important to estimating new state values.

This chapter presents the translational, rotational, and estimation error
dynamics for a general spacecraft in terms of the estimation errors and systematic

errors such as sensor alignment biases.

4.1 Translational Dynamics

The translational dynamics of a spacecraft are effectively described with the

two quantities of position and velocity. It is these two that are most important for
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precise control of a spacecraft, especially in a precision descent-to-landing scenario.

This section yields the translational-state differential equations, or the part

of X = f (x,t) relating to position and velocity.

In dynamics, it is often easiest to derive equations of motion about the
body’s center of gravity (CG). This is useful, especially because gravitational forces
are a function of the position of the CG. However, inertial navigation is more often
done from the vantage point of the inertial measurement unit (IMU). This is
because the IMU does not move relative to the spacecraft body, while the CG can
due to burning fuel, moving payloads, etc. (although the relative position of the CG
and the IMU was assumed to be static for this analysis). However, the position of
the CG must be known to calculate the gravitational acceleration, so it is included

in the derivation:

Timu = Teg + Timu/cg- (41)
Taking the first temporal derivative of the IMU position yields:
I"imu = i'cg + Vimu/cg + wyp X rimu/cg (42)

where T, is the velocity of the CG, Vi e is the velocity of the IMU relative to the
(potentially moving) CG, and wy, is the angular velocity of the spacecraft relative to

the inertial frame, resulting in another velocity term for the IMU about the CG.



26

Differentiating again with respect to time yields:
rzmu = .I:cg + QAimu/cg + 2wb X Vimu/cg + (-;Jb X Timu/cg + wp X ((—Ub X rimu/cg) . (43)

Note that ¥, is the same as a.,. This can be expanded into gravitational and

non-gravitational acceleration:

Ay = Ag + Acgne (4.4)

where the “nc” subscript is used for any non-gravitational acceleration acting on the

CG.
Substituting terms into Eq. 4.3 means that it can be written:
Fimu = ag + apg (4.5)
where
a, = f(re)=f (rimu - rimu/cg) (4.6)
and

Apg = Acgne + QAjmu/cg + 2wy, X Vimu/cg + wp X Timu/cg + wp X (wb X rimu/cg) . (47)

It is this term, a,,4, that is sensed by the IMU.
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4.2 Rotational Dynamics

The rotational dynamics of spacecraft are relatively simple in that the
angular velocity of the body is the same about the CG or the IMU. Thus, for
simplicity, the IMU is used as the point of reference. The rotational quantity of
most significance for inertial navigation is the rotation of the spacecraft relative to
the inertial frame. The two methods used to deal with attitude are the rotation
transformation matrix and the attitude quaternion. See [19] or [20] for in-depth
information and derivation of the rotation transformation matrix and attitude

quaternion with relation to dynamics.

This section yields the rotational-state differential equations, or the part of

x = f (x,t) relating to attitude.

The rotation transformation matrix is a 3 by 3 matrix and is used to rotate
vector quantities between frames of reference. Euler’s theorem states that an angle
of rotation and axis of rotation are all that is needed to completely describe an
arbitrary attitude. This leads to Euler’s formula for representing the rotation

matrix as[21]:

T = I3 +sinf [ex] + (1 — cos ) [ex]? (4.8)

where 6 is the angle of rotation, e is the axis of rotation, and [- x| represents the
cross-product matrix. The rotation transformation matrix is subject to the

constraints of a proper orthogonal transformation.
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The attitude quaternion is used to describe the spacecraft’s angular position.
Euler angles are less effective due to singularities that can occur in certain
spacecraft orientations. The inertial-to-body quaternion is made up of two parts;
the vector quantity describing the axis of rotation, q, and the scalar quantity

describing the angle of rotation, g. These are written in column form:

where the over-bar is used to denote a quaternion,

q = sin (g) e, (4.10)

and

~ cos <g> | (4.11)

Euler’s formula may be written in terms of the quaternion quantities q and ¢:
T = (¢ +q’q) Isxs — 2q[ax] + 2 [qx]*. (4.12)

For small angles of rotation, the quaternion can be approximated by a Taylor

series expansion, to first order, as:

oo
5q = = (4.13)

(%)
lo}
N |#—=

where da is a vector of small angle deviations, commonly ordered as roll-pitch-yaw
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angles.

Combining Eq. 4.13 and Eq. 4.12, the small-angle approximate rotation

transformation matrix is:

0T = ngg — [5@)(] . (414)

Returning to Eq. 4.9, differentiating with respect to time yields:

N 1 0 A . 0 o
q scos (5)ef +sin(3)é
[peos@eiran(y -

q —%sin (g)Q

Ll
I

where
1 0
é==|[ex]—cot | =] [ex]|ws (4.16)
2 2
with wy as the spacecraft angular velocity, and

é = ewa, (417)

Making some final substitutions using Eqs. 4.10, 4.11, 4.16, and 4.17, into

Eq. 4.15 yields:

.1 |9% —wWr X q
—w;q
which, when examined, is the definition of quaternion multiplication:
=b _ —
q; QWII;/z’ ® qfa (4.19)
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where @ is the pure quaternion created from the angular velocity of the spacecraft

body relative to the inertial frame, as defined in the body-fixed frame:

Wp

€
Il

(4.20)

Thus, for any attitude quaternion @ and angular velocity wy, the quaternion

dynamics are known and can be used to propagate the attitude quaternion.

Finally, it is important to note that the attitude quaternion is constrained to
be a unit quaternion, and therefore its vector norm must remain 1. Under time
propagation, it is possible that the future attitude quaternion is non-unitary, and

thus must be unitized by brute-force methods to maintain validity.

4.3 Estimation Error Dynamics

Now that the translational and rotational dynamics have been detailed, the
spacecraft’s inertial state can be propagated forward in time. For inertial
navigation, however, the estimated errors for each state must also be propagated.
This enables the filter to properly scale new measurement processing based on how
accurate the known state is, especially if measurements are not processed regularly.
In other words, if no new measurements come in for a given time, the state error
estimate can grow accordingly, which factors into how the current state and new

measurements are weighted in the state update phase.
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Because this derivation is for an inertial navigation system, the superscript °

will be used to indicate a vector in the inertial frame. Rotation transformation

matrices are used to convert non-inertial vectors into the inertial frame for

consistency.

The results of this section yield the makings of the Jacobian matrix F, or the

matrix of partial derivatives of the state dynamics equations with respect to the

state vector. This Jacobian matrix is used in the EKF to propagate the estimation

error covariance.

4.3.1 Position Error Dynamics

The position error is defined as the true position minus the estimated

position, and symbolized by dr. Differentiating yields:

Oy = Ty — Py = Vi — V1
Tmu 1mu mu mu mu’

which finally simplifies to

Oorl = v

imu imu

i

where, in this case, orj,,,

velocity error.

is the rate of change of the position error, and év

(4.21)

(4.22)

i is the

mu
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Following a similar formula, the velocity error is defined as the true velocity

minus the estimated velocity. Differentiating yields:

Recalling that v%,  is the summation of gravitational and non-gravitational

acceleration, this equation can be written:

N i b Al mlab
Vi = a, + Tya,, —a, — Tya, .

imu

Expanding az into a first-order Taylor series approximation gives:

i i Oay, 5r
a; = a, + ort i Tegs
cg lpi =i
cg cg
where

i
Gi — aag

aréQ ri =il

cg— Tc

9

The gravity gradient matrix G* is readily calculable granted the gravity

(4.23)

(4.24)

(4.25)

(4.26)

environment and spacecraft position are known. Thus, substituting Eq. 4.26 and

Eq. 4.25 into Eq. 4.24 simplifies to:

i (i i b =0 A b
Vi = G'or,, + Ta, — Ta, .

imu

(4.27)

Since rig is not a part of the state vector, it must be rewritten in terms of state



vector quantities. Recall that

b

Ty = Tipn T Tbrcg/imu

cg

and, evaluating at the estimated state,

" " ~ i
¥ =1 T

cg imu cg/imu®

b

It is assumed that r o imu

approximation for the error rotation transformation matrix is:

T, — T, = 0T = T} [5a’x]

is well-known. Further, the first-order Taylor series
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(4.28)

(4.29)

(4.30)

where da’ is the small-angle deviation of the spacecraft attitude in the body-frame.

Recalling that the error is defined as truth minus estimate and substituting Eqgs.

4.29 and 4.30 into Eq. 4.28 yields:
5rig = 5r;mu - T; [rlc)g/imux] 5ab'
Substituting Eq. 4.31 into Eq. 4.27 yields:

ovi =Gir! — G’Tz [rb x} sa’ + Téagg — T:)éflg.

imu imu cg/imu

Recalling Eq. 4.30 and applying it to the last two terms in Eq. 4.32 yields:

ib “iab b e b b XN
Tbang - Tbang = Tbang + T, [(504 x} a,, — Tbang

(4.31)

(4.32)

(4.33)
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which, to first order, expands and simplifies to:

Tial, — T, = T,0a, + T, [a’x] a’,. (4.34)
Applying Eq. 4.34 to Eq. 4.32 yields:
OV = GU0Tl, — GITy [18 %] 0a? + Tyoa0, + T, [0’ x] &, (4.35)

Considering that a’ is not part of the state vector, da’ must be rewritten in terms
ng ng

of state variables. The true measured acceleration is:

aELg = ag,g,m - [al;zg,mx} mz - [a

b
ng,m

| x [Jn’ —[a},,,\] st — bl —n} (4.36)

ng,m a a

and the estimated measured acceleration is:

a’ =ab ~— [a’, . %] m’ — [ m | n’ — [a’, . ~] & —b (4.37)

ng — “ngm ng,m a

where the subscript ,,.qs Signifies a measured quantity, b, is the constant
accelerometer bias term, and 7, is the accelerometer measurement noise.

Differencing Eqs. 4.36 and 4.37 yields:
dal, = —[al,,,x] ém) — [a,blg’m | x |] om} — [a0,,,~] dsl — ob —nb (4.38)

ng ng,m ng,m

Substituting Eq. 4.38 into Eq. 4.35 yields the velocity error dynamics in terms of
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state variables and known quantities:

5 =Giorl, — G, [rb . x] dab — T, [al, x] dab — T, [at, , x] om?

mu mu cg/imu ng X ng,m

- TZ [al, . | x [] én} — Tz [al,,.~] dsb — TZébZ — TZnZ

ng,m ng,m

4.3.3 Attitude Error Dynamics

Unlike vector quantities, quaternions cannot be added or subtracted. The

difference between two quaternions is found by the multiplicative error quaternion,

deﬁlled as:
b b ~b 1
g =q. ® [qz} . (4.40)

Differentiating the multiplicative error quaternion yields:
.b . b ~p] 1L b xb -t
od —d e @] +de M (1.41)
recalling from Eq. 4.18 that (_15 = %‘-‘_’2/1' ® . This leads to Eq. 4.41 being:

~b 1 _ — 2b -1 1_ 2b
08; = 5@ 0 & ® [q@-] + 58 ® [q@-]

-1 -1

which can be rewritten again using the definition of the multiplicative error

quaternion as:

. 1 1 R -1
08, = 5 @ 0T + 508, © |By] (4.43)

Because the quaternion can be broken into a vector part and a scalar part, the error
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quaternion can similarly be broken up:

—b 5q
0q; = (4.44)

0q
which can then be substituted into Eq. 4.43 as part of the definition of quaternion
multiplication:

1 |0qbowsy,; — 205, X 6 — 0w}, x g
T2

=b

0q; (4.45)

b 17 s b
The angular velocity error is defined as the true angular velocity minus the

estimated quantity, where:
wg/i = “’Z/z‘,m - [Wg/i,mx} m‘; - [“’g/z’,m | ] ng - [wfi/i,m\} SZ - bg - 772 (4.46)
and
Wy = Whjim — [Whjim x| g = (Wi | % |0y = [w});,N] 8 — b, (4.47)
and therefore the angular velocity error is:
[wz/i,m | x |] om) — [wg/iym\] Jsy — 5bg —n’. (4.48)

Assuming small angles for each propagation step (recall Eq. 4.13) and neglecting
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higher-order terms, the attitude error quaternion dynamics simplify to:

(4.49)

Extracting the terms that are directly related to the state vector yields the

final attitude error dynamics equation:

sal = [d:lg/ix} sal — [WZ/i,mX] om’ —

; [wlg/im | % |] 51’13 - [wg/i’m\] 5sz — 5bg — ”72

(4.50)

where cbg/i was defined in Eq. 4.47.

4.3.4 Bias Error Dynamics

Since sensors cannot be perfect, a large portion of the state vector is
dedicated to estimating sensor biases. This enables the filter to correct for
misaligned sensor axes, rate biases, etc. However, it is assumed that all biases are
constant, and therefore when the bias terms are differentiated with respect to time,

the results are all zero:

5By = Oy (4.51)

5B, = 031 (4.52)

:wlb’/iymx} om’ — [wg/i’m | x |] onb — [w’b’/im\] §st — 0b) —mb — @y x [6a]
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Oy = O (4.53)
5b53 = 031 (4.54)
oy = Og1 (4.55)
Shiyy = 0 (4.56)
0b, = 031 (4.57)
Sl = 03,; (4.58)
on = 03, (4.59)
68" = 03,1 (4.60)
o) = 03, (4.61)
o0l = 0351 (4.62)
80 = 03,1 (4.63)

which correspond to the accelerometer bias, gyro bias, THRN-sensor bias,
velocimeter bias, ILP bias, altimeter bias, accelerometer axis misalignment,
accelerometer axis nonorthogonality, accelerometer measurement scale factor, gyro
axis misalignment, gyro axis nonorthogonality, and gyro measurement scale factor

bias, respectively.

4.4 System Dynamics Summary

The previous sections detail the derivation of system dynamics for a
spacecraft, including translational motion, rotational motion, and systematic error

dynamics. The results are summarized here for readability.
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4.4.1 State Dynamics Summary

The differential equations for position and velocity are:

where a/ is a function of the position of the CG and al,, is sensed by the IMU.
The differential equation for attitude is:

b, b b b
b Wy — Wy X A

- b 17 b
_[""b/z] q;

%

b
Why/i

where @} i = . Note that the resulting quaternion must be normalized after

0

each propagation step.

4.4.2 Error Dynamics Summary

The error dynamics for position, velocity, and attitude are:

ot = v



5 =Gisrl G [eh o x] dad — Ty [a8, x| dab — T [l x] om!,

cg/imu ng,m

— T, [al, ., | x |] 60 — T, [a,,,~] dst — Ty0b" — Tymp.

sab = [cbg/ix} sab — [wz/iymx] (5mg — [wz/iym | % |] (5n2 — [wg/im\] 553 — (5bz —n

Finally, the bias error dynamics are:
‘b
5bg = 03><1

- thrn

5bth7‘n = 03x1

- vel

6bvel = 03><1
- ilp

5bilp - 03><1
Sy =0

Sbo. = 05,1

- b

om, = 03,
- b

(5na = 03><1

-b
5sa = 03><1

40

b
g
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CHAPTER 5
Sensor Modeling

Successful estimation relies on models of the sensors to create estimated
measurements. The models are also differentiated with respect to the state vector to
create a Jacobian matrix for computing the Kalman gain. The state variables used

are shown in Table 5.1.

Table 5.1: State variable definitions

State variable | Definition

T Inertial position of the IMU

vi o Inertial velocity of the IMU

ol /i Body-fixed attitude deviation

b, Body-fixed accelerometer bias

bzym Body-fixed gyroscope bias

biprn THRN-frame THRN sensor bias

b2 Velocimeter-frame velocimeter sensor bias
bZﬁ ILP-frame ILP bias (map-tie error)

bl Altimeter-frame altimeter sensor bias

b Star-camera frame star-camera sensor bias
m’ . Body-fixed accelerometer misalignment bias
n’, Body-fixed accelerometer nonorthogonality bias
S Body-fixed accelerometer scale-factor bias
mgym Body-fixed gyroscope misalignment bias
ngym Body-fixed gyroscope nonorthogonality bias
sgyw Body-fixed gyroscope scale-factor bias
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5.1 Accelerometer

The three-axis accelerometer is a necessary sensor for navigation as it
provides the basis for translational dead-reckoning, where only the acceleration is
integrated to propagate the system states. High-accuracy, high-precision
accelerometers reduce error growth during dead-reckoning, but the measurements
may be corrupted by axis misalignment, nonorthogonality of the axes, scale factor
errors, random biases, and measurement noise. These error sources are estimated by
the navigation filter and applied to the measured acceleration to provide a more

accurate measurement.

The true measured acceleration can be written:

Angm = (13><3 + Fa) (I3><3 + Sa) (ang + ba + 77a) (51)

where a4 is the true non-gravitational acceleration of the IMU, b, is the random

bias error, 1, is the random noise, I', represents the axis-related errors:

0 Ya,zz —Ya,zy

Lo=| = 0 Yo (5.2)
| Yazy TTaze 0 |
and S, represents the measurement scale factor errors:
- Sax 0 0 -
Sa=1| 0 S, O (5.3)
0 0 Sa-




43

The T', matrix can be decomposed into a skew-symmetric matrix M, = —MaT and a
symmetric matrix N, = NaT. Then, the matrices M,, N,, S, can be parameterized

as three 3 x 1 vectors, m,, n,,s,, under the definitions found in Eqs. 1.2 - 1.4:

M, = — [m,x] (5.4)
N, = [na | X H (55)
Sa = [Sa~]. (5.6)

Thus, substituting the parameterized quantities into the model yields:
angm = Ty — My x] + [0 | % []) (Tys + [a]) (@ng +ba+m,)  (57)

A small-angle rotation matrix can be written as T = I3.3 — [#x], and so it can be
seen that m, corresponds to the axis-misalignment parameters and n, corresponds

to the axis-nonorthogonality parameters.

The axis-error parameters, expanded and simplified to first-order terms, can

be approximated by:

(Isys — Mg x] 4 [ng | X []) (Tsxs + [sax]) ~ (Tsxs + Ay) (5.8)

where

A, =M, +N,+S, (5.9)



which leads to:

Apgm = (ISXS + Aa) (ang + ba + na) .

Using the matrix inversion lemmal[22]:

(Isxs + Ay) = Isxs — Ap (Inxs + Aa)_l

and applying the lemma recursively:

n

(Isxs + Ay) = Z (_Aa)k + (—Aa)l~C+1 (Ixs + Aa)_k :

k=0

To first order, this yields the approximation:
(Isxz + Aq) = Izxz — A,
Solving Eq. 5.10 for a,, and substituting in Eq. 5.13 yields:

Apg = (I3><3 - Aa) Angm — ba — 1N,

which expands and simplifies to:

Ang = Angm + [MaX] Angm — [a [ X [Jangm = [Sa]angm —ba =7,

Finally, rewriting gives the final form of the corrected measured acceleration:

Ang = Ang,m — [ang,mx} m, — [ang,m | x |Jn, — [ang,m\] Sa — by — 1,

where m,, n,, s,, and b, are all estimated in the filter state vector.
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(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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5.2 Gyroscope

The three-axis gyroscope measures angular velocity of the sensor, which is
the same as the angular velocity of the spacecraft to which it is attached. These
angular velocity measurements can be corrupted by axis misalignment, axis
nonorthogonality, random biases, and noise. It is important to estimate these
quantities, as the gyroscope is used to propagate the spacecraft attitude during

dead-reckoning (in the absence of measurements).

The true measured angular velocity is written in terms of these errors:

wy/im = (Isxs +Ty) (Isxs 4+ Sy) (weyi + by +1,) (5.17)

where wy,; is the true angular velocity of the gyroscope, b, is the random bias error,

7, 1s the measurement noise error, I'y is the axis-related error:

0 Yogzz  —Vgzy

r,= gy 0 Yoo (5.18)
| Yoy Ve 0]
and S, is the measurement scale-factor error:
Sgx 0O 0
Sg=1 0 S,, 0 |- (5.19)
0 0 Sy

The I'; matrix can be decomposed into a skew-symmetric matrix and a
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symmetric matrix, defined M, and N, respectively, where M, = —Mg and
N, = NgT. Further, using the definitions in Eqgs. 1.2 - 1.4, M, N/, S, can be

rewritten in terms of three 3 x 1 vectors mg, ng, sg:

M, = — [m, ] (5.20)
Ny = [ng | x ] (5.21)
S, = [sy~]. (5.22)

This yields the true measured angular velocity as:
wo/im = (Taxa — [myx] + [0 | X []) (Taxz + [84\]) (Wi + by +my) - (5.23)

For small angles, a rotation transformation matrix can be written as
T = I35 — [@x]. This means that the quantity [mgx] corresponds to the axis

misalignment error, while [n, | x |] is the axis nonorthogonality error.

Expanding the axis and scale factor error terms and keeping only the

first-order terms allows writing them as a lump-sum parameter:
(Inxs — [myx] + [ng | X []) (Isxs + [s,N]) = (Isxs + Ay) (5.24)
where

A, =M, +N,+8, (5.25)
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which leads to a simplification of the true measured angular velocity:
Wijim = (Tsxs + Ag) (Wi + by +1,) - (5.26)

Utilizing the matrix inversion lemma and applying it recursively yields an

approximation for inverting the (Isxs+ A,) term:

(I3><3 + Ag) =I5435 — Ag <13><3 + Ag)_l , (5.27)

Loz + Ag) = 3 (=2 + ()" (Toeg + A,) 7, (5.28)
k=0

(I3><3 + Ag) ~ I3><3 - Ag. (529)

Applying this approximation to the solution of Eq. 5.26 for the true angular

velocity wy; yields:
Wy/i = (I3xs — Ag) Wo/im — b, — ny- (5.30)
Expanding A, as in Eq. 5.24 yields:
Wi = Wi m + (Mg X] Wh/im — My | X || @hjim — [Sg~] Wrjim — by —m,.  (5:31)
Finally, this is rearranged according to Eqgs. 1.2 - 1.4 as:

Wh/i = Whjim — [Wo/im X ]| My — [Whyim | X |] 0y — [wWo/im~] 8g — by — n, (5.32)

where mg, n,, s,, and b, are estimated in the state vector.
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5.3 Slant-Range Altimeter

Various forms of range finding exist, from radar to laser. Specifically, laser
range finding using a lidar sensor has been useful to scientists for decades; the
Apollo program placed a retroreflective array on the moon to enable high-accuracy
earth-to-moon ranging[23]. Laser ranging is also used in navigation, and laser
altimetry is one method of gathering highly accurate, very fast altitude

measurements|24].

The purpose of an altimeter is to generate data about the distance from the
sensor to the ground. There are two main kinds of altimeter: first-return, where a
flash is output from the sensor and the first signal return is counted; and
slant-range, where a focused beam is pointed at the target and only the return along
that beam is counted. The slant-range altimeter is a more focused sensor, and the
model is slightly more complicated as a result. For this analysis, a slant-range laser

altimeter measurement model is derived.

5.3.1 Altimeter Measurement Model

In general, a slant-range altimeter returns a scalar quantity of distance to
ground. To model this accurately, a few things must be known: altimeter pointing
direction, altimeter position with respect to the planet’s center, and information

about the local terrain altitude. This derivation assumes that the local terrain is
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well-modeled by the oblate spheroid model of Earth, where two axes’ radii are equal
(co-planar with the equator) and greater than the radius to the north/south poles.
Although the Earth’s actual surface varies greatly, the modeled flight path across
just hundreds of meters over a generally flat section of ground enables this
simplifying assumption. The altimeter pointing direction is assumed well-known and
static in the body-frame of reference. Finally, the altimeter position relative to the
planet center is a function of the IMU position, the position of the altimeter with

respect to the IMU, and the spacecraft attitude.

The derivation is done in the planet-fixed (ECEF) frame, since the spacecraft
position is easily converted into the ECEF frame and the planetary parameters are

well-defined in the ECEF frame.

The measurement distance to ground magnitude is defined as the scalar, p.

Thus, the measurement is written:
Y = p (rglta kglt) + balt + Nalt (533)

where b, is the altimeter bias, 7y is the altimeter measurement noise, rglt is the

altimeter position in the ECEF frame defined as:

vl =T/r 4 TITix? (5.34)

alt i T imu alt/imu

where T/ is the planet-centered-inertial (ECI) to ECEF rotation transformation
matrix, T} is the spacecraft body frame to ECI rotation transformation matrix, and

ert Jimu is the altimeter position with respect to the IMU in the spacecraft body
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frame and is assumed well-known. Then, k£1t is the altimeter beam direction vector

in the the ECEF frame, defined as:

ki, = T/ Ty Tk (5:35)

alt

where T?, is the altimeter frame to spacecraft body frame rotation transformation

matrix, and k! is the altimeter pointing direction in the altimeter frame. Note that

for simplicity, it is common to define k%! as wholly in a principle direction of the

altimeter frame, i.e.:

k= 191 . (5.36)

The estimated measurement quantity is equivalent to Eq. 5.33 evaluated at

the estimated values for altimeter position and pointing direction:

~ AN ~ f A
Y =p (rtjzclta kalt) + balt (537)
where
f‘g:lt - TZmeu + T{Tzrglt/imu (538>
and

~

kilt - T{TZTthkZZ‘ (5'39)
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5.3.2 Computing the Altimeter Measurement Magnitude

To create a valid measurement, the point of intersection on the planet’s
surface must be found. A geometrical approach to the problem leads to finding the
intersection point(s) between a vector and the reference surface, most likely a
spheroid or ellipsoid. Since the altimeter beam direction is known relative to the
planetary body and the magnitude of a planet-center-to-surface vector is readily

computable, equating vector magnitudes provides the answer.

The vector from the planet center to the altimeter beam intersection point,

r}; must be equivalent regardless of what path is taken to the point:
_ f
rg =1y, + Pk (5.40)
A point r = [zy2]" is on the reference ellipsoid with semi-principal a, b, ¢ if:

() oo

The Earth is modeled as an oblate ellipsoid where a = b > ¢. A diagonal scaling

matrix is defined:

Q=
ja=)
[am)

0 (5.42)

o=
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such that

ISt = 1. (5.43)

Applying the scaling matrix S to Eq. 5.40 yields:
Srl, + pSk/,, = Srg (5.44)
which under the definition in Eq. 5.43 can be written:

2
HSrglt + pSkglt y HSI']]:H; =1 (5.45)

since r]J; is defined as a point on the reference ellipsoid surface.

The vector dot product is equivalent to the vector 2-norm squared, so Eq.

5.45 can be expanded to an equation that is quadratic in p:
P (Skz]:lt> : (Skaflt> +2p <Sr£lt> ) <Sk£lt> + (Srglt) : (Sr£1t> =1 (5.46)

Defining the quantities

o - (Sr51t> : (Skglt) (5.47)

(Skaflt> ’ <Sk£lt>

and

L= (Srgh‘) ' (Sr(]:lt>
() (sw) o

and substituting into Eq. 5.46 yields:

0=p>=2yp -5, (5.49)
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which can then be solved for p:

By geometry, this is a solution for where a vector intersects an ellipsoid. The

desired result is the first intersection, so the final solution for p is:
p=7-vV"12+8 (5.51)

This ends the solution for calculating the measurement vector magnitude. To
generate the estimated measurement, simply substitute the estimated quantities f'glt

nfo .
and k;, in for rf:lt and kﬁlt respectively.

5.3.3 Altimeter Measurement Deviation

The previous two sections define how to calculate the measurement vector
magnitude and generate a true or estimated measurement. The final requirement
for the estimation framework is a measurement deviation matrix, H, or the partial
derivative matrix of the measurement error with respect to the state vector

deviation (also known as the Jacobian matrix).

Solving for the deviation is similar to differentiating an equation. Since there
are multiple variables in the measurement equation, this results in a partial
differential equation. The deviation is defined by 6 {-}, and it is used as an operator

on terms of an equation. All rules of differentiation hold, such as the chain rule and
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quotient rule.

Measurement deviation is defined as the true measurement minus the

estimated measurement. For the altimeter measurement model, this yields:

OYyr = 0p + 0bary + Nae (5.52)
where dp = p (rflclt, kflclt> —p (ff:lt, f‘in) and 0by = bayr — i)alt.

Some mathematic rules simplify the calculation of this Jacobian matrix.
First, the vector dot product can be written using the vector transpose, and the

order does not change the result:
q-v=q'v=vlq. (5.53)

Next, the partial derivative of two vector’s dot product is obtained by the chain
rule. However, since the other vector is assumed independent of the first, one of the

two terms resulting from the chain rule drops out:

0 ov 0
(@ v)=a- - +v: 8—3 = s+ v 05y = 7 (5.54)

v

which extends to the deviation operator as:
§(q-v)=q'év+vliiq. (5.55)

Finally, S is a diagonal matrix, so the transpose operator does nothing to change it.
Also, taking the transpose of quantities that are multiplied reverses the order and

transposes each quantity, i.e. (ab)T = bTa”. When S premultiplies into a vector,
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and that quantity is part of a dot product, the result simplifies to:
(Sa) - (Sv) = (Sq)" (Sv) = ¢"SSv. (5.56)

Returning to Eq. 5.46 and substituting in Eqs. 5.34 and 5.35 brings the
equation for p into terms of the state vector only:

o (STITyT ki) - (ST Tyl ki)

+ 29 (ST/xl, + ST/ Tixl o, ) - (STITITL KEE) (5.57)

K3 zmu

7 zmu 3 1mu

- (STIxl + ST T i) - (STl + STI T ) =1
which expands and rearranges to:
2 frimb 7.alt T frimb alt
P (Ti TbTaltkalt> SS <Ti TbTaltkalt>
20 (T/ei,) 8 (T/TiTh k)
+ 2p (Tszralt/zmu> SS (T{T;)T(gltkg%)
+ (/) ss (Tl

+2 <T'{ 1mu) SS <TfT alt/zmu)

(5.58)

+ (TfT alt/zmu) SS (TfT alt/zmu) =1

Taking the deviation of Eq. 5.58 is done under the fact that 6T} = Tz [dax],

and dr!,  and &p are also defined as p — p and %, — ., respectively. After

mu mu’

taking the deviation with extensive use of the rules outlined in Eqs. 5.53, 5.55, and
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5.56, and substituting the following terms:
i W\ T ~ib 1.0l
ap =p (T{TbTthkZli) SS (T{TbTaZthﬁ)
T{Azmu> SS <T{Tngltkgﬁ)

T; Tbralt/zmu> SS <T{T2T2ltkgﬁ>

=
= (
(/T Tgltkgﬁg) ss (1)
(
(

bo =
b =(T! rmu> Ss (Tf )
~d T
by = TfTerlt/imu) SS (T{)

(5.59)
o= (T/T, Tg,tkgg) SS (T/T, T, [kifix] )
T/ i ) SS (T/T, T, [kifix] )

ChL=—0p i Yimu

== p (TS Tpi) 55 (TITLTY, (i)

/N 7 N N

(T T’;Ztk‘;§§> SS (T T, [r au/zmuXD
. T
Cy = — (Tsz‘zmu> SS (TZTb [ert/imuX}>

~ T ~d
sz‘chert/imu> SS (T{Tb [rglt/imux]> )

the result yields an equation in dp, dr,,,, and da:

(a0+a1+a2)5p+(bo+b1+bg)5 Zmu+(Co+01+62+03+C4+C5)5a =0.
(5.60)

Solving for dp yields:

jp= thiths, L otatoatatatos, (5.61)
ag + a1 + a9 ag + a1 + as

Finally, substituting FEq. 5.61 into Eq. 5.52 yields the final altimeter



57

measurement deviation (or Jacobian) matrix:

bo+bl+b251» co+cr+ceotcezteg+os

5yk:— rimu+
a0+a1—|—a2 CL()+G1+CL2

Yo + 6balt + Nalt- (562)

There are scenarios where this measurement model will yield a measurement
even if the hardware sensor does not. Specific for an altimeter, there are minimum
and maximum range constraints. A validity check to ensure beam intersection with
the planetary body is also required. These must be implemented in the sensor

modeling code to return an invalid measurement when appropriate.

5.4 Velocimeter

Light Detection and Ranging (LIDAR) velocimetry provides a relative
velocity measurement of the velocimeter sensor relative to the planetary body
surface. The LIDAR velocimeter may have multiple sensing beams, resulting in
multiple individual measurements. These are combined into a single measurement

vector of the relative velocity of the sensor with respect to the ground.

5.4.1 Velocimeter Measurement Model

The relative velocity can be easily computed using the known information of

inertial velocity of the sensor and planetary angular velocity. The true relative



velocity measurement is defined in the velocimeter frame of reference as:

Yk = TvelTb |: Vel — ;J/ vel] + bvel + 7753

where

i b
Vel = Vimu T T (wb/z X rvel/imu)

and

r, = TZ

vel = Yimu vel/zmu
Recall Eq. 5.32 that defines wg/i.

The estimated measurement is then:

~ vel

yk_T“Ti[” — Wl X ] + by

Vel

where

b
vel — Vimu + Tb (wb/z X rvel/imu)

and

+T

vel = Timu 'Uel/zmu

o8

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

The rotation transformation from the spacecraft body frame to the velocimeter

frame T”el the rotation transformation from the planet-fixed frame to the inertial

frame T%, the position vector from the IMU to the velocimeter rvel Jimu

angular velocity of the planet in the inertial frame w£

and the

/i are assumed well-known.
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5.4.2 Velocimeter Measurement Deviation

The previous section defines how to calculate the velocimeter measurement,
or the velocity of the velocimeter sensor relative to the planetary body surface. To
complete the modeling for integration into the Extended Kalman Filter framework,
the measurement deviation matrix, H, also known as the Jacobian matrix, has to be

calculated.

The velocimeter measurement deviation is found by differencing the true and
estimated measurement equations. This is done using a few definitions:

Tb = (ngg — 5a><) Tf

~

T) = T, (Isx3 + dax)

(5.69)
Vi = Ve + 0Vl
Tl = Thy + 000y
Then, the measurement deviation, to first order, becomes:
OYr =Yk — Uk
= TzelT%Viez - TZGIT?W;/i X 0ty — Ty [darx] T?‘A’j}el (5.70)

+ b ; ~1 ve ve
+ Tgel [5a><] Tz (w;/z X rvel) + 6bv g + n l

e vel*

However, this equation contains variables that are not a part of the state
vector, and so must be changed accordingly. Returning to Eqs. 5.64, 5.67, and 5.69,

the velocity terms are differenced to yield the velocimeter velocity deviation in
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terms of state variables:

7 ) ~1
5vvel = Vel = Vel

(5.71)

= 0v; Vimu Tb [ vel/lmu } 5"‘12/@ - T;) [(wb/z X rvel/zmu) X} oox.

where Eq. 4.48 defines 5(.02/2..

Examining Eqgs. 5.65, 5.68, and 5.69, the position terms are differenced to

yield the velocimeter position deviation:

i I Al
5rvel = Tyer = Yoyel

(5.72)

:5zmu_Tb[ x| der.

vel/zmu

These expansions allow Eq. 5.70 to be written in terms of the state vector
only. After substituting and simplifying, the final measurement deviation equation
is:

Oy = = Ty T (Wl xX] 0ty + | T3 T | 0V + T [t X] [0 e <] O

+ Ty r vel/lmux} [wb/z meas | X 1] 5“ + T} r vel/zmux} [wg/i,meas\} 552
x] T [x b

+ T3 [ ] D]+ T3 [1 ] 010+ T [, b o ¥] 502

Loel /imu
= T [ 2 ehgan) X 00+ T [T [V = (e x 1,0)] | G+ b il
(5.73)
This concludes the velocimeter model derivation. Note that this model may return a
numerical result in spite of a meaningful measurement not existing due to sensor
limitations or the lack of beam intersection with the planet surface. Proper
precautions must be included in the flight software to handle these edge cases

gracefully.
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5.5 Terrain/Hazard Relative Navigation Sensor

The Terrain/Hazard Relative Navigation (THRN) sensor is a lidar-enabled
camera system that serves two functions: first, it creates a digital elevation map
(DEM) of the potential landing area, recognizing safe landing surfaces based on a
maximum slope criteria and the lack of hazards and also selecting and computing
intended landing position (ILP)-relative positions of features, such as rocks or
craters, to track; then, it continuously tracks the selected features during the
landing approach and returns a THRN-sensor-to-feature vector measurement.
Figure 5.1 details the two measured vector types as found during DEM creation:
the vector from the sensor to the ILP, and the vectors from the ILP to the detected
features. Since this DEM-creation is done based on an estimated position that
includes map-tie errors, the true inertial position of the ILP and tracked features is
not known; this results in the b;; term for map-tie error, which is estimated as part
of the state vector. The technology capable of this type of sensing is possible the

topic of current research[25][26][27][28][29].
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The sensor is called THRN because it can function as both a terrain-relative
sensor and a hazard-relative sensor. THRN acts as a terrain-relative and
hazard-relative sensor when it is given a predefined map of the landing area. In this
sense, an ILP can be chosen to be near an asset or feature that is of interest. This
type of map-predefinition is inherently flawed by map-tie errors, which are estimated
by the bzflp state variable. Note that in Figure 5.1, the bzflp vector is shown to specify
the map tie error between the true feature positions in the true ILP frame, and the
estimated feature positions as predefined by some map of the surface. In reality, the
true position of a predefined ILP cannot be known, which is why this bzflp term is
estimated. This sensor is considered to do both terrain-relative navigation (TRN)
and hazard-relative navigation (HRN) because the sensor fuses the tracked feature

positions, which are relative measurements, to both reduce position estimate error

in the inertial frame and map-tie error in the planet-fixed frame.

There are two parts to consider for the THRN model: the truth model and
the measurement model. The truth model is used in simulation to create the sensor
measurement, and the measurement model is used by the filter to calculate an
expected measurement so it can then compute the measurement residual. Once
defined, the truth and measurement models are differenced and, using Taylor-series
small angle approximations, the partial derivative model is created. Finally, from

the measurement model the measurement mapping matrix is created.

The THRN sensor outputs two different measurements; the feature position

~ilp

with respect to the ILP frame center in the ILP frame, r 1l and the feature
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position with respect to the THRN sensor in the THRN sensor frame, f‘ﬁfﬁﬁm Both
are estimated vectors because they require knowledge of the THRN sensor position,
which is only known as a function of the estimated states. The feature position

vectors are assumed to be fixed in the ILP frame, and thus once calculated they are

used to create measurement estimates for hazard-relative navigation.

Part of the inputs to the navigation system is an intended landing point, or
ILP. This is the landing target, and could be a point of interest for science or
rendezvous for example. The ILP position is based on map knowledge of the target,
and thus is subject to map-tie error. The ILP position relative to other prominent
features is assumed well-known, but the inertial position of these features may be
skewed. Since all navigation is done in the inertial frame, it is important to drive
these map-tie errors to zero to enable precise landing in a safe zone. This is done by

use of the blflp term.

To illustrate the THRN sensor measurements, Figure 5.2 shows both the true

spacecraft trajectory, the estimated trajectory, and the resulting measurement

[ ailp ~thrn

differences incorporating by, r; Jilp: and T,
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Figure 5.2: THRN overview illustration
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5.5.1 THRN Measurement Model

The true THRN measurement is a vector from the sensor to the tracked
feature in the THRN sensor frame and is a function of the ILP position, the THRN
sensor position, and the feature position with respect to the ILP, which is defined by
the THRN sensor during the DEM creation phase. The true THRN measurement

model is then:

rn rn i rn i Al rn ) rn rn
Y = r?};thrn = Tih T?Tfrflp + Tih T?Tszflprffilp - Tih T?rth’/‘n + binn + ninn

(5.74)

where the ILP position is the predefined ILP position estimate plus the true map-tie

error bias:

o f f
I‘ilp - rilp,preload + bilp

(5.75)

and the THRN sensor position is the inertial position of the IMU plus the position

of the THRN sensor relative to the IMU:

i b (5.76)

% i
Cihrn = Tipa T Tbrthrn/imu'

The estimated THRN measurement is:

A ath _ mthrneplmi o f thrnenlrm mf sl thrnrsd i ~ thrn
Yi. = rf/tt?zrn - Tb TnTi T;‘rilp + Tb TnTi T;Tilpr}filp - Tb TnTirIthrn + bthrn (577)

where the estimated ILP position is the predefined ILP position plus the estimated
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map-tie error bias:

SR A (5.78)

rilp - rilp,preloa ilp

and

(5.79)

N N Tl b
Tinrn = Timu + Tbrthrn/imu‘

5.5.2 THRN Measurement Deviation

The measurement deviation is found by differencing the true and estimated
measurements, and is done using the following definitions for state variable

deviations:
Ti) = (ngg + 5CX><> Ts

L= T, (Isys + dax)
(5.80)

) Y )
Yivrn = Yihrn + 5rthrn

I _af f
I‘ilp - I‘ilp + (5rilp

The THRN measurement deviation is:

b . b . b .
5y, = T T Tioes, — T ise),  — T [Ti T/

ilp

f
i x} oo

b ; b
= Ty [TV 6, x| e+ T [Tk, x| da+ bl + i,
(5.81)

This equation contains deviation terms that are not state variable deviations, so
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further substitutions are required. Egs. 5.75 and 5.78, when differenced, yield:

Fo_f _of _f f Fo_y/f
§rilp - rilp - I.ilp - rilp,preload - rilp,preload + bilp - bilp
(5.82)
I _ swf
5rilp - 5bz’lp7

which is a defined in the state vector, and then Eqs. 5.76 and 5.79 are differenced to

provide:

5rihrn = rihrn - f'ihrn = rému - IA‘;mu + Tiri)hrn/imu - Tzr?hrn/imu (583>
which, when simplified using Eq. 5.80 yields:
5rihrn = 5r2mu - Tz [rghrn/imux} oo (584)

Making substitutions of Egs. 5.82 and 5.84 into Eq. 5.81 yields the final
THRN measurement deviation equation in terms of the state variable deviations:
09 =T ([Ehprn i) + [ TElp x| = [T, x| = [TV T 7, | ) b

~b . ~b .
— T} T, orl,,, + T T, Tiobl + sbyrr + nipre.

mu

(5.85)
This finalizes the THRN measurement derivation.

This derivation assumes that the THRN sensor properly tracks a selected
feature, and is smart enough to redefine the f"’;fﬂp vector if a new feature is chosen
mid-descent. Also, proper methods must be programmed into the flight software to

handle cases where the sensor cannot return a valid measurement.
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5.6 Star Camera

A star camera sensor uses an imaging sensor and a preloaded map of star
positions to calculate a pointing vector from the sensor to a star in the star camera
frame. This pointing vector is used to calculate the sensor’s attitude relative to the
star map. Various star tracking methods exist for multiple imaging sensor
types[30][31]. For this analysis, it is assumed that the sensor sends a measured

attitude quaternion to the filter.

5.6.1 Star Camera Measurement Model

The star camera measurement is a direction vector to the star in the star

camera frame:

u’,, = T°TVTE u? (5.86)

s/sc srrs/sc

where ui’/"sc is the true vector direction from the star camera to the measured star,
in the star-reference (SR) frame. The SR frame is a well-known reference frame in
which relative star positions are mapped. The rotation transformation from the SR

frame to the inertial frame is also well-known.

The measurement can also be written as a the rotation transformation

matrix from the SR frame to the star camera frame since :

T3 = T{TVT, (5.87)
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which can further be written using rotation quaternions, required for updating the

spacecraft attitude quaternion:

A =q°®q ®4,.

(5.88)

The true measurement may be corrupted by random bias and measurement

noise, parameterized by:

0. = b + g

This is written as the bias quaternion:

where
Osc = [0l
Thus, the true quaternion measurement from the star camera is:
4 =G, 0a4° 04 g,
and the estimated measurement is:

2 8C

= —=sc 2b —1
qsr = qZ?n ® qp ® q; ® qQsr

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)
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where:
Apy = o <%> i (5.94)
COS (%C>
0..=b,, (5.95)
and
Osc = 10| (5.96)

5.6.2 Star Camera Measurement Deviation

The star camera measurement deviation is unlike the deviations for the other
sensors because quaternions cannot be differenced. The quaternion deviation is

defined by quaternion multiplication:
ba=aqoa (5:97)
Thus,

oy =a® [dy] (5.98)

ST

and the quaternion inverse is defined[19]:

(5.99)
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Note that a quaternion multiplied by or into its inverse is the unit quaternion:
aolal™ =gl *og= T (5.100)
qelq =la ©gq=[0001]".

Thus, substituting Eqs. 5.92 and 5.93 into 5.97 yields:

=sc =sc ~sc = =1 —; 11 ~p] 7t —sc|— asc -1
Q=g 0 0q0d,® [d,] ® [qi} ® @] " @ [a, . (5101
The above equation simplifies using Eq. 5.100 and the definition of the quaternion

deviation in Eq. 5.97 to:
=sc —sc —sc — —sc|— asc1—1
0 =5 @@ © 6, ® [@] 7 ® [Ghy] - (5.102)

Then, the quaternion multiplication series G ® 6q° ® [q;]" can be
simplified to the quaternion deviation with the vector part transformed by a

rotation matrix as follows:

T{s)ca‘qb

i

4 @0 ® [gy]) ' = (5.103)
5q?

and so the quaternion measurement deviation becomes:

TZC(Sq? ~sc1—1
0qs = a5, ® ® [ay,] - (5.104)
8!

Next, the true bias quaternion @, can be written in terms of the estimated

bias quaternion and a deviation term:

a, = oas, © &y, (5.105)
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which, when substituted into Eq. 5.104, lends to further simplification of the form
found in Eq. 5.103, yielding:

Tb,nTicqu?
0qs, = 5(_1,‘3’67, ® (5.106)

g}

Under a small angle assumption, the scalar of a quaternion deviation

becomes unity and the vector portion is the small-angle vector:

5q = (5.107)

Expanding Eq. 5.106 under the definition of qauternion multiplication, and

applying the small angle approximation, yields:

S, + T 0!
sge = | T (5.108)

1

As previously defined in Eq. 4.13, the small angle quaternion-vector becomes:

1
Sqp’, = 556’36 (5.109)

and

oq) = %504. (5.110)

~ SC

Recalling the definition of 8,. = b, + 13 and 0,.=b

C

Eq. 5.109 further reduces

sc)
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to:

1 1
odti;, = 50 + 5 mi: (5.111)

Finally, substituting Eqs. 5.110 and 5.111 into 5.108 and writing only the
vector part of the quaternion deviation yields the final form of the star camera
measurement deviation. Note that since all quantities on the right hand side of the
equation are small angles, the left hand side is also small angles, which means that

dqss can be written as %6’)/. Substituting and simplifying yields:

0y = Ty, T + 0b% + 0 (5.112)

C

5.6.3 Star Camera Measurement Residual

The difference between two quaternions is determined through quaternion
multiplication rather than subtraction, and thus the star camera measurement
residual is computed by multiplying the measured quaternion and the inverse of the
estimated measurement. Since the attitude quaternion is a unit quaternion, the
quaternion inverse simplifies, yielding:

pesianar = A5 © [A] =G ® | | (5.113)

AS8C

qST‘

Assuming that the resulting quaternion represents a set of small-angle

deviations between the measured and estimated quaternions, the vector part can be
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taken as the small-angle attitude deviation, defined in the filter as da:

o
(_lresidual ~ (5114)
1
which implies:
S = 2 (425 + 42 (—) + [als x (—a9))). (5.115)

The residual value as computed above is combined additively to the most
current state values for da, which are then updated as per the Kalman Filter

equations outlined in Section 2.2.

Finally, since the attitude quaternion cannot be updated additively, the
post-update filter state values for da are applied to the estimated attitude
quaternion q? multiplicatively (assuming that da can be represented as a
small-angle quaternion), and the filter states for da are zeroed-out, as attitude

deviation does not carry between time steps.
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CHAPTER 6

Simulation Framework

To ensure that a filter design works as expected, and to aid in the tuning
process, the filter is simulated for some nominal trajectory. This chapter explains
the development of the simulation software, properties and capabilities of the filter

simulation, and the simulated trajectory.

6.1 Simulation Overview

The simulation software is written entirely in MATLAB version 2014b[9].
This section aims to provide an understanding of the simulation framework, as the
software was developed to prove the THRN sensor model’s effectiveness as part of
the Extended Kalman Filter navigation system. Functional descriptions of the
different simulation modules are provided, as well as high-level flow diagrams to

illustrate the information pathways in the simulation.

The main parts of the simulation framework are described in Table 6.1. Each
module is made up of many functions that together make up the simulation. For
example, the Initialization module preallocates memory based on the predefined
time step size and length of time to simulate, which are set as inputs in the main
simulation driver file to enable quick and easy adjustment. Most of the simulation is
modular, and the user-changeable parameters are in only three files that feed all the

pertinent information into the rest of the simulation. In this way, it is easy to turn a



7

particular sensor on or off, enable or disable sensor measurement noise, and change

the nominal trajectory that is simulated.

Table 6.1: Main simulation framework modules

Module Description
Initialization | Setting of simulation parameters and flags,
preallocation of memory, trajectory creation
Simulation | Looping through propagation and update phases
for all time steps
Analysis End-result data manipulation, error data computation,
plotting, and report generation

The simulation can run in one of three modes defined in Table 6.2. Each
individual mode is used to verify the sensor models and filter tuning in different
ways. A separate simulation driver file is used for each mode since they all require
special runtime configurations, but the underlying simulation module is unchanged
for each of the modes. This ensures that the simulation, trajectory, and filter tuning
parameters are constant throughout testing of the single-run, Monte Carlo, and
error-budget modes. It is also important to note that the different simulation modes
are performed at the same time step resolution to provide the most consistent data

for post-processing and analysis.

Figure 6.1 shows the series of steps that each simulation goes through to
complete a single run. Because there are different possible simulation modes as
shown in Table 6.2, there are multiple paths available as the software goes through
each module. Activation flags set at the beginning of each simulation run define

what specific path is followed.
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Table 6.2: Simulation testing and verification modes

Mode Description
Single-run | A single flight is simulated and state error and
measurement residual information analyzed
Monte Carlo | Hundreds of single-run simulations are done
with different initial state errors, then aggregate
error and covariance data is analyzed
Error-budget | A series of single-runs are done with all error
sources turned off except the ones corresponding
to the tested error group, then complete error
data is put through sensitivity analysis

The “Simulation Configuration” step includes user input to activate the
proper simulation flags, which select the activated sensors, noise sources, and
simulation mode. Once the simulation is configured, the proper data structures and
initial conditions are set based on the previously selected simulation flags. The
choice between each of the three simulation modes defines particular simulation
looping logic that is followed during the “Simulation Loop” phase. The Loop phase
includes the logic to operate the EKF, mainly the propagation and state update
equations. All data is accumulated during the Loop phase. Finally,
“Post-Processing and Plotting” computes the required outputs which may include
state error vectors and error budget tables. Any required figures are generated
during this phase, and depending on a simulation flag, MATLAB generates a PDF

report for easy viewing of the results.

Functions handle the input, processing, and output for each of the phases
above. Each phase is further broken into different functions to complete the requisite

tasks. The specific function names and tasks are not included, as the information
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Figure 6.1: Software flow diagram

would replicate the derived system dynamics, sensor models, and Extended Kalman
Filter equations found in previous chapters. However, the software is broken into
logical chunks; for example, each sensor model is written as two functions: one for
creating the true measured quantity, and one for creating the filter’s estimate of the
measurement. Although this results in some code redundancy, the inputs to each

truth or estimate function differ, so the functions are separated for clarity.

The software, as created, can easily be included as part of a larger simulation
that includes the controller and system blocks as seen in Figure 2.1. This would

require writing software to implement a controller, as well as a system model that
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could be of varying complexity, including or excluding the following parts: a thrust
model, variable vehicle CG position based on fuel loading, environmental effects
such as wind and dust clouds, and system fault modeling, among others. As the
focus of this thesis is to prove that the proposed THRN sensor model is effective in
an EKF navigation system, the larger simulation is deemed unnecessary and left for

future work.

A final note about using MATLAB for this simulation: beyond the
well-known optimizations to be made to any MATLAB code (preallocation of
memory and vectorization), the simulation time was reduced by more than fifty
percent when all but the simulation driver file were converted into functions rather
than scripts. Once optimized in this fashion, a single-run simulation would take
approximately ten seconds, while each single-run in a Monte Carlo simulation
(which utilized all eight 2.6GHz cores in the computer) took approximately five
seconds. Compared to the total simulated time of 130 seconds, this is a 13x-26x

speedup over real-time.

6.2 Simulation Parameters

The following simulation time parameters found in Table 6.3 were held
constant throughout each simulation mode. Their variables, values, and descriptions

are summarized.

Table 6.4 indicates time values for important trajectory-related events.
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Table 6.3: Constant simulation parameters

Variable | Value | Description
to 0 (s) | Simulation start time
ty 130 (s) | Simulation end time
t0.thrn 70 (s) | THRN sensor activation time
tf.thin 100 (s) | THRN sensor deactivation time
dtpop | 0.02 (s) | Propagation time step size
dtiy 0.2 (s) | Filter time step size

These event times were also held constant for each simulation mode, yielding the

exact same true trajectory for each single-run, Monte Carlo single-run, or

error-budget series single-run.

Table 6.4: Key trajectory timed events

Event description

Simulation start

Liftoff to ascent

Begin commanded pitch-over

Pitch-over recovery for slant-range descent
Begin slant-range descent

Final descent preparation pitch-over recovery
Begin final descent

Final touchdown

Finally, the flight test is simulated on Earth, so the Earth-specific values for

gravitational parameters, reference ellipsoid parameters, and angular velocity were

used. Adapting these values for a different planet would be trivial.
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6.3 Modeled Trajectory

The trajectory used to simulate a landing scenario is modeled after an
ascent, slant-range descent, descent flight plan, where an initial altitude is achieved,
lateral motion begins with gradual descent, and final descent occurs to touchdown
on the landing site. The slant-range descent models an atmospheric entry and is

where the THRN sensor is active.

The trajectory shown here is anchored in the planet-fixed frame with axes
aligned with the vehicle’s initial UVW axes, where U is the “up” direction and is
found by taking the position vector of the IMU in the planet-fixed frame over its
magnitude:

S
i (6.1)

1mu||

U=—

x

The V direction is found by unitizing the initial IMU velocity vector as found by
taking its position vector cross-product with the planet’s angular velocity, wj: Ji

which is assumed known based on previously-made astronomical measurements:

{mu X w){/z

f

mu

~ r
V =
r

. (6.2)
X w;ﬁ/l.n

The final direction, W, is found to complete the right-handed coordinate system by
means of a unitized cross-product between U and V:

. UxvVv

W= "7 (6.3)
U x V|
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This coordinate system is denoted with a superscript VYW, and is fixed in the
planet-fixed frame, because it is defined at the initial position of the spacecraft and
held static. As such, the transformation between the ECEF frame and the UVW

frame is a constant matrix.

In real test flight scenarios, it is desirable to control not only the position
and velocity, but acceleration and jerk too, imposed by thrust limitations of the
engine, controller time constants, or chosen to limit wear on the vehicle. An 8th
order spline was used to achieve control over the change in acceleration. At the
start and end of each spline section, the position, velocity, acceleration, and/or
change in acceleration can be defined and a trajectory meeting those conditions is
created. Using an analytic formula also allows for perfect derivative information,
which is useful for computing state errors. The trajectories are first generated in the
UVW frame and then transformed into the inertial frame, as the accelerometer and
gyroscope measure acceleration and angular velocity of the IMU relative to the fixed

inertial system.

The same spline formula was used to create the translational trajectory and

rotational trajectory.

6.3.1 Trajectory Plots

In creating the trajectory, a set of initial and final position, velocity,

acceleration, and jerk values were input for each section of the flight: pre-ascent,
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ascent, slant-range descent, and final descent. The rotational trajectory had more
sections: pre-ascent, ascent, pitch-over, slant-range descent part 1, slant-range
descent part 2, pitch-over recovery, and final descent. Figure 6.2 shows the ascent,
slant-range descent, and final descent flight path in UVW coordinates. The middle

vertical lines are included to improve readability of the graph.

300 —
250 —| —

200 - T~

— 150 —

100 —

Figure 6.2: Three-dimensional fight path in UVW coordinates

The following Figures 6.3 and 6.4 break down the translational trajectory
into position, velocity, and acceleration all defined in the UVW frame, followed by

the rotational trajectory about the body-fixed frame.
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Figure 6.3: UVW-frame translational trajectory

6.3.2 Trajectory Integration Error

Although the perfect states are known for position, velocity, acceleration,
and attitude, the only measured quantities are acceleration and angular velocity of
the IMU relative to the inertial system. The propagation stage uses a 4th-order
Runge-Kutta integration method for accuracy with the understanding that the time
steps over which integration occurs are small enough to accumulate very little error.
The following plots are given to show the scale of the error due to numerical
integration under an assumption of perfect measurements. The input acceleration
and angular velocity were taken from the true state values. Also, each state was

initialized with the true state values. There is no attitude integration error, as the
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true attitude quaternions are created using the same integration method as is used

to propagate the estimated attitude quaternion.
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CHAPTER 7

Simulation Results

This chapter presents the results from each simulation mode. First, the
Monte Carlo aggregate error and covariance results are shown, proving that the
filter accurately estimates the error statistics of the state variables. Next, the
error-budget table is shown for two key moments of the flight, showing error sources
and total estimation error right before the THRN sensor activates, and as final
descent begins. This is followed by select figures from the sensitivity analysis,
showing the major contributors to state estimate error. Finally, some of the
pertinent single-run figures are shown, proving that the THRN sensor effectively
reduces state estimate error, ultimately proving that the sensor model formulation is

effective.

7.1 Monte Carlo Analysis

The Monte Carlo analysis is done to ensure the filter functions properly
based on two main measures. First, the mean estimation error across all simulations
is calculated. A mean of zero verifies that the filter is acting as an unbiased
estimator. Second, the estimation error variance is calculated across all simulations.
If the calculated variance matches the diagonal covariance values for each state, the

filter accurately estimates the state variable error.

These tests are necessary for verifying the performance of an extended
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Kalman filter because of the inherent nonlinearity of nature and the systems that
are modeled. Thus, if the EKF passes these two tests, the statistical parameters
within the filter, many of which are initialized or set as tuning parameters, account

for nonlinearities that are not modeled or linearized during filter processing.

The nominal values used to create the varying initial error conditions are in
Table 7.1. The values given for initial state errors are the square-root diagonal
initial covariances, effectively used as the standard deviation values for transforming
normally-distributed random variables with unit variance to be of matching variance
to the initial state covariance diagonal value. For example, the position state
variables are initialized with an error standard deviation of 25(m), so to create one
initial position error value, the nominal (true) state value is modified by adding a
random value created by multiplying 25(m) by some random variable sampled from
~ N(0,1) where ~ N(Z,0) is the normal distribution with mean  and standard

deviation o.

Then, once the initial errors are created, they are processed to ensure that
the both the variance truly matches the initial state error covariance value and that
the mean is zero[32]. These processed initial error values are then fed to the Monte

Clarlo simulation runs.

Table 7.2 holds the sensor standard deviation values. These values are
applied to the true measured quantities similarly to how the initial errors are
created, by starting with a zero-mean normally-distributed variable and modifying

its variance to match the noise characteristics of the sensor.
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Table 7.1: Initial state error standard deviations

State | Variable | Initial uncertainty standard deviation
Position r 25(m)
Velocity \% 0.1(m/s)
Attitude «a 0.001(rad)
Accelerometer bias bace 1 x 107°(m/s?)
Gyroscope bias | by, | 1 x 107%(rad/s)
THRN bias | b 0.1(m)
Velocimeter bias byer 0.005(m/s)
ILP bias (map-tie error) b, 1(m)
Altimeter bias b 0.1(m)
Star camera bias by, 5 x 1075 (rad)
Accelerometer misalignment | 1M, 1 x 107%(rad)
Accelerometer nonorthogonality Ngee 1 x 107%(rad)
Accelerometer scale factor Sace 1 x 107%(ppm)
Gyroscope misalignment | myg,,, 1 x 107%(rad)
Gyroscope nonorthogonality Ngyro 1 x 107%(rad)
Gyroscope scale factor Sgyro 1 x 107%(ppm)

Table 7.2: Sensor noise standard deviations

IMU noise
Accelerometer | m,.. | 1 x 107*(m/s?)
Gyroscope | 1., | 1 x 107°(rad/s)
Sensor Noise
THRN MNihrn 1<m)
Velocimeter | n,,., | 0.05(m/s)
Altimeter | 1, | 1(m)
Star Camera | n,. | 5 x 107*(rad)

Figure A.1 shows a sample of the plots that are generated from the Monte

Carlo analysis data. These plots show the mean estimation error, variance of the

error vectors across all simulation runs, and the mean estimation covariance values.

The rest of the plots of this type are included in Appendix A. The error-variance

and covariance values match very closely for the inertial X-position estimate,
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showing that the filter is tuned properly to account for nonlinearities that are not
modeled, and it is acting as an unbiased estimator. The same close matching is seen
across all plots for the first nine state variables, showing that the filter is accurately

estimating position, velocity, and attitude.
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Figure 7.1: Monte Carlo inertial X position mean error, error variance, and mean
covariance

The rest of the state variables follow suit, with the mean estimate error
about zero and the error variance matching the state covariance. Most of the other
estimated states do not see a marked reduction in estimation error covariance, likely
due to the states not being highly observable. However, the ILP (map-tie error) bias
states and the velocimeter bias states do show a reduction in estimation error

covariance, and so these are shown.
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The graphs shown in Figures 7.2 and 7.3, show the ILP bias states and
velocimeter bias states. The reduction in error covariance in the ILP bias graphs
occurs as the THRN sensor activates, proving that the THRN sensor does reduce
the map-tie errors that may be associated with a preloaded intended landing
position. The velocimeter graphs show a similar reduction in error covariance over
all time. It is interesting to see a larger reduction in the velocimeter Z-channel error
covariance which is caused by the large amount of measurement information in that

channel, including the altimeter, velocimeter, and THRN sensor when active.

The velocimeter bias state plots are followed by Figures 7.4 through 7.6,
which show the mean velocimeter residual data for all Monte Carlo simulation runs,
as well as the standard deviation for all residuals. This is to prove that the
measurement noise is truly zero-mean, with a standard deviation prescribed by the

sensor noise values found in Table 7.2.

The figures show that the extended Kalman filter is well-tuned, as all error
means are zero, proving the filter is an unbiased estimator, and the error variance
matches the filter covariance, proving that the filter accurately estimates the state

error uncertainty.
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ILP-frame ILP bias mean error, error variance, and mean
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Figure 7.4: Monte Carlo velocimeter-frame X velocimeter residual and standard de-
viation
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7.2 Error-Budget Analysis

Once the filter is confirmed to be well-tuned through Monte Carlo covariance
analysis, an error budget is created to show the effect of different error groups on
the total estimation error at some point in time. The process for completing an

error budget analysis is as follows:

1. Complete a single-run with all error sources active

2. From the single-run, save the Kalman gain matrix for all time, as well as the
covariance matrix diagonal for times of interest

3. For each error group, do the following:

(a) Zero all error sources that are not part of the error group being tested,
including process noise, initial covariance values, and measurement noise
variance for all states and sensors

(b) Run the simulation, using the saved Kalman gain matrix to update the
state and covariance values

(c) Once the run is complete, save the covariance matrix diagonals for the
times of interest

4. Create a table with rows dedicated to error groups and columns to state
variables, and populate the cells with each error group’s affect on that state
variable’s estimation error, which are the square-root values of the associated
covariance diagonals

5. Compute the root-sum-square value for each column of error group values and
compare to the root-covariance values from the initial full single-run. If they
are close, the error sources are well-accounted for

Figure 7.7 illustrates the error budget simulation process and looping structure.
Completing this process allows the filter designer to understand which error groups

affect which estimated states the most. In some cases, an error group may greatly
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impact the estimation error for certain states. To mitigate the effects of these error
groups on the overall state estimate, sometimes more information can be included in

the filter by means of higher-fidelity models or more measurements.

[Full Single Run]

l

Save K-Matrix ‘
Zero-out Error Groups

l

Loop

Activate 1 Error Group )

[Simulate with Saved K-Matrix )

[Save Covariance Matrix DiagonaD

Deactivate Error Group )

l

[Post-Processingj

Figure 7.7: Error budget simulation flow

Error groups are chosen based on combinations of sources of uncertainty in
the filter. This means that some state variables are grouped together; for example,
the three dimensions of inertial position uncertainty may make up one error group.
Other groups can be made for process noise and measurement noise variance values.

Table 7.3 shows the error groups used for this analysis.

Table B.1 shows a sample part of the complete error budget table for the
system at the simulation time immediately preceding THRN activation. The
complete error budget tables for this time and for the simulation time immediately

before final descent are located in Appendix B. For compactness, the state variables



Table 7.3: Error group descriptions

Error group

Description
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Inertial position uncertainty

Inertial velocity uncertainty

Body-fixed attitude uncertainty

Accelerometer bias uncertainty

Gyroscope bias uncertainty

THRN sensor bias uncertainty

Velocimeter sensor bias uncertainty

ILP bias (map-tie error) uncertainty

Altimeter sensor bias uncertainty

Star camera sensor bias uncertainty

Accelerometer misalignment uncertainty
Accelerometer nonorthogonality uncertainty
Accelerometer scale factor uncertainty

Gyroscope misalignment uncertainty

Gyroscope nonorthogonality uncertainty

Gyroscope scale factor uncertainty

THRN sensor measurement noise variance uncertainty
Velocimeter measurement noise variance uncertainty
Altimeter measurement noise variance uncertainty
Star camera measurement noise variance uncertainty

as found in Table 7.1

are used to label each column.

101

It is clear that only some error groups greatly affect each state variable. The

summary Tables 7.5 and 7.6 show the five error groups that affect each state

variable the most for the pre-THRN time and as final descent begins, while Figures

7.8 and 7.9 show histograms of the error groups’ overall top effects. It can be seen

that error groups corresponding to the velocimeter measurement noise variance, the

star camera measurement noise variance, and the inertial position error uncertainty

affect the state estimate the most before the THRN sensor activates, while as final

descent begins the greatest effects are seen from the THRN, velocimeter, and star

camera measurement

noise variance values.
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Figure 7.8: Error budget greatest-effect group count - pre-THRN



Table 7.5: Error budget greatest-effect summary - pre-THRN

Primary Second Third Fourth Fifth

1 7 2 18 9
1 2 7 18 9
1 7 2 18 9
1 7 18 19 4
7 1 18 19 2
7 1 18 19 4
20 10 ) 18 3
20 10 ) 18 3
20 10 5 3 18
4 18 11 12 2
4 18 11 12 2
4 18 1 19 7
20 ) 18 3 10
20 ) 18 3 10
20 ) 3 10 18
6 1 2 3 4
6 1 2 3 4
6 1 2 3 4
7 2 18 1 19
7 2 18 1 19
1 7 19 18 2
8 1 2 3 4
8 1 2 3 4
8 1 2 3 4
9 19 1 7 18
10 3 20 18 19
10 3 20 18 1
10 20 3 18 )
11 18 4 12 2
11 18 4 12 2
11 18 4 12 20
12 18 4 11 2
12 18 4 11 2
12 18 4 1 11
13 18 4 12 11
13 18 4 12 11
13 18 1 19 7
14 20 ) 10 18
14 20 10 ) 18
14 20 18 5 10
15 20 5 10 18
15 20 5 10 18
15 20 18 5 10
16 20 18 ) 10
16 20 5 18 10
16 20 10 18 )
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Table 7.6: Error budget greatest-effect summary - final descent
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Figure 7.9: Error budget greatest-effect group count - final descent

7.3 Sensitivity Analysis

The sensitivity analysis follows directly from the error budget. Once an error
budget is made, and the greatest sources of estimation error are determined, it is
useful to know how the estimation error might change as a result in more or less
uncertainty in the greatest-effect error groups. The process for sensitivity analysis is

as follows:

1. Determine for which state variables and related error groups the sensitivity
should be calculated based on greatest-effect (or compute sensitivity for all
pairings)

2. For the designated state variable and error group, do the following:

(a) Take the column of error group values for a single state variable, and
single out the error group value being tested
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(b) Scale the error group value along the desired test range (e.g. from 0.1x
to 10x)

(c) Recompute the total estimation error of the column via the
root-sum-square method used for the error budget

(d) Plot the total estimation error (or a measure of the change) as a
function of scale-factor

The end result of the sensitivity analysis is to find which error sources affect
the overall state estimation error the least, which would enable the designer to
remove those error sources from the filter design. This results in a simpler filter,
which takes less memory and computational power to operate. Finally, with a more
efficient filter, the navigation system may be able to run state updates more often,
potentially taking in more measurement data and resulting in a better overall

navigation solution.

For this thesis, the sensitivity was computed for all state variables an error
group pairs. However, for brevity, the following pairs are presented to illustrate the
greatest-effect sensitivities, and all plots can be found in Appendix C: position and
velocity error sensitivity to position and velocimeter bias uncertainty for pre-THRN
activation in Figures C.1 and C.2, attitude error sensitivity to star camera bias and
noise variance uncertainty for pre-THRN activation in Figures C.3 and C.4, followed
by position and velocity error sensitivity to velocimeter bias, ILP (map-tie) error,
and THRN sensor noise variance uncertainty for final descent in Figures C.5, C.6,
and C.7, and finally attitude error sensitivity to star camera bias and noise variance
uncertainty for final descent in Figures C.8 and C.9. The first of this series of plots

is provided here for reference.
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Figure 7.10: Position and velocity estimation error variance sensitivity to error group
1, pre-THRN

In general, high sensitivity to an error group means that that error groups’
parameters should be as close to truth as possible; in some cases, this is dependent
on accurately portraying a sensor’s capabilities including the measurement noise
variance and sensor bias uncertainty. In other cases, such as for the ILP (map-tie)
error uncertainty, the THRN sensor reduces the bias error variance, which would in
turn reduce the estimation error variance for other states of interest such as position
and velocity. As seen in Figure C.6, an increase of 10x for the ILP (map-tie) error
variance amounts to a 9x increase in position estimate error variance. As such, the
fact that the THRN sensor reduces the ILP bias error greatly impacts the end-game

navigation solution.
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Following the sensitivity curves that show the highest changes in error
variance, Figures 7.11 through 7.14 show how little the error variance changes due
to one error group, the gyroscope misalignment error states. The greatest increase
in estimation error variance due to this error group is seen in the final descent
attitude states, with a maximum of 0.004% increase. Since the sensitivity for this
error group is low for the attitude, and other, state variables, the next revision of
this filter’s design would likely take this error group out entirely. The same trend
holds for the gyroscope nonorthogonality error states and the gyroscope scale factor
error states, which affected the state estimation error variance very little. These

error groups are also candidates for removal from the state vector.
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Figure 7.11: Position and velocity estimation error variance sensitivity to error group
14, pre-THRN
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CHAPTER 8

Conclusion

8.1 Thesis Results

The purpose of this thesis was to verify a dual-state extended Kalman filter
(EKF) navigation system for planetary landing utilizing a lidar-enabled feature
mapping/tracking sensor known as the Terrain/Hazard Relative Navigation
(THRN) sensor. Through software simulation of the EKF, including a velocimeter,
altimeter, star camera, and THRN sensors, the effectiveness of the THRN sensor
was examined through Monte Carlo covariance analysis, error budget analysis, and

sensitivity analysis.

The simulated trajectory included an ascent phase, a long slant-range
descent, and a final descent phase. This simulated entry-descent-landing trajectory
was chosen to model a flight test that might be done on Earth for a vehicle that
may be used on other planets. Simulation performance was exceptional, with a
single simulation covering 130 seconds of flight taking only 10 seconds to compute.

This indicates the filter can be used for real-time flight applications.

The Monte Carlo covariance analysis proved that the filter worked properly
and was well-tuned by matching the covariance values to the variance of estimation
error across all Monte Carlo runs. The error budget and sensitivity analyses showed

that for the controllable states of position, velocity, and attitude, the greatest
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sources of estimation error were the position, velocity, velocimeter bias, star camera
bias, velocimeter measurement variance, and star camera measurement variance
errors (pre-THRN activation) and position, ILP (map-tie) bias, star camera bias,
THRN measurement variance, and star camera measurement variance errors (final

descent).

The THRN sensor worked as expected, greatly reducing positional estimate
error variance upon activation. It also reduced the ILP (map-tie) errors, but not to
the same degree as the position states. This was done over a timespan of 30 seconds
with the THRN sensor running at 1Hz. In spite of the small operational window,
the THRN sensor was able to greatly decrease navigation error, enabling precision

landing.

8.2 Future Work

This thesis covers the initial filter design and verification, with emphasis put
on complicated modeling of the sensors and environment. To extend this work, a
natural next step to take would be simplifying the filter by reducing the length of
the state vector. This requires analysis of the error budget and sensitivity data and
and intelligent choice of state variables to remove. Then, the navigation system has
to be verified again through similar Monte Carlo, error budget, and sensitivity
analyses. If the resulting navigation system meets the mission-specific estimation

error requirements, the reduced filter may be used.
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Further, the tested Extended Kalman Filter implementation could be paired
with a modeled control system, with the filter estimate feeding into the controller
and a thrust model, atmosphere model, wind model, and other disturbance models
providing trajectory feedback. This would further prove the THRN sensor in a more
complex simulation environment. Success with a more complicated, complete

simulation environment would prime the system for testing in real flight conditions.

Finally, the THRN sensor model requires the use of a LIDAR camera system
to produce its measurements. This work may be extendable to other means of

distance measurement such as sonar, radar, or multi-camera image processing.
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APPENDIX A
Monte Carlo Plots

The following plots show the Monte Carlo analysis results for the first nine
state variables covering position, velocity, and attitude state estimation. They prove
the Extended Kalman Filter is behaving nominally, as the mean estimation error is

zero and the error-variance and mean-covariance values match closely.
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Figure A.1: Monte Carlo inertial X position mean error, error variance, and mean
covariance
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Figure A.2: Monte Carlo inertial Y position mean error, error variance, and mean

covariance
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Figure A.3: Monte Carlo inertial Z position mean error, error variance, and mean

covariance
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Figure A.4: Monte Carlo inertial X velocity mean error, error variance, and mean
covariance
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Figure A.5: Monte Carlo inertial Y velocity mean error, error variance, and mean
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Figure A.8: Monte Carlo body-fixed Y attitude mean error, error variance, and mean

covariance
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APPENDIX B
Error Budget Tables

The full error budget tables that were created during the error budget
analysis are shown here. The first set is for the simulation time immediately
preceding THRN sensor activation, and the second set covers the simulation time
right before final descent begins. Due to the length of the state vector and number

of error groups, the tables are broken into six parts for each simulation time.
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Sensitivity Analysis Plots
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The following plots show sensitivity graphs for selected error group and state

variable pairs. These all illustrate pairs where the error groups have a relatively

high effect on the estimation covariance for the given state variable.
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Figure C.1: Position and velocity estimation error variance sensitivity to error group
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Figure C.2: Position and velocity estimation error variance sensitivity to error group

7, pre-THRN
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Attitude estimation error variance sensitivity to error group 10,
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Attitude estimation error variance sensitivity to error group 20,
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Figure C.5: Position and velocity estimation error variance sensitivity to error group
7, final descent
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Figure C.6: Position and velocity estimation error variance sensitivity to error group
8, final descent
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Figure C.7: Position and velocity estimation error variance sensitivity to error group
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Figure C.9: Attitude estimation error variance sensitivity to error group 20, final

descent
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