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In this paper, we present a new software framework for the optimization of the design of microstrip patch
antennas. The proposed simulation and optimization framework implements a simulated annealing algo-
rithm to perform design space exploration in order to identify the optimal patch antenna design. During
each iteration of the optimization loop, we employ the popular MEEP simulation tool to evaluate
explored design solutions. To speed up the design space exploration, the software framework is devel-
oped to run multiple MEEP simulations concurrently. This is achieved using multithreading to implement
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- : a manager-workers execution strategy. The number of worker threads is the same as the number of cores
Microstrip patch antennas . . . .
FDTD of the computer that is utilized. Thus, the computational runtime of the proposed software framework
enables effective design space exploration. Simulations demonstrate the effectiveness of the proposed
software framework.
© 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open
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access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Microstrip or patch antennas are becoming increasingly popular
because they can be printed directly onto circuit boards. Patch
antennas are low cost, have a low profile and can be easily fabri-
cated. They are becoming very widespread within the mobile
phone market. The design process is affected by many parameters
that control the properties of such antennas. To identify the param-
eters that offer the best performance requires the exploration of
the design solution space defined by such parameters. Such explo-
ration implies multiple numerical simulations, which can take long
computational runtimes.

In this paper, we present a software framework that imple-
ments an automated design space exploration (DSE) for patch
antennas. The exploration is done with a multithreaded simulated
annealing (SA) optimization algorithm. Each explored design solu-
tion is evaluated with the MEEP simulator. To this end, the main
contributions of this paper include: (1) The SA based tool that
can seek and identify the optimal patch antenna design and (2)
The SA algorithm is implemented with a multithread approach,
which provides a speed-up of the execution time by a factor of
7.56x when executed on an 8-core processor compared to the exe-
cution on only one thread on a single core.

Peer review under responsibility of Society for Computational Design and
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The remainder of this paper is organized as follows. In the next
section, we briefly review related literature. Then, we present
background information and formulate the problem of optimiza-
tion for patch antennas. In Section 4, we present the proposed soft-
ware framework, which consists of a parallel via multithreading
implementation of a simulation annealing optimization algorithm
to solve the patch antenna design problem. Section 5 reports sim-
ulation results obtained on a machine running on a processor with
eight cores, followed by a discussion in Section 6. Finally, we con-
clude and summarize our contributions in Section 7.

2. Related work

With the advent of wireless communication systems, there has
been significant work done on the design of antennas. Particularly,
research efforts were focused on antennas used in wireless local
area network (WLAN) and Bluetooth applications. Instances of
such efforts include Gondarenko and Lipson (2008), Hansen,
Zheng, Perederey, and Hesselink (2011), Jayasinghe and
Uduwawala (2015) and Meng and Sharma (2016) and the refer-
ences therein. For example, the recent study in Jayasinghe and
Uduwawala (2015) presented the design of a compact planar
inverted F antenna (PIFA) for 2.4 GHz and 5 GHz bands. In order
to optimize the geometry (the shorting pin position and the feed
position of their patch antenna), the authors used a genetic algo-
rithm (GA) optimization approach that employed simulations with
the Ansys’ high frequency structure simulator (HFSS). However,
they did not report computational runtimes of their optimization
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approach, which is not publicly available. In addition, HFSS is a
commercial tool, which is not free. As another recent example,
the study in Meng and Sharma (2016) reported the design of a sin-
gle feed dual-band miniaturized microstrip patch antenna for
WLAN communications. They also use Ansys HFSS and several
manual design optimization techniques including the creation of
selected slots to the E-shaped inner patch and the adoption of a
non-homocentric design style.

In contrast with these works, the core simulator that we use to
evaluate each design solution point during separate iterations of
the SA algorithm is MEEP (MEEP, 2017; Oskooi et al., 2010). MEEP
is a popular open-source free implementation of the finite-
difference time-domain (FDTD) method for simulating electromag-
netics problems. It can be used to conduct a variety of simulations
but for given specific design problems only; it does not include
optimization algorithms to seek optimal solutions. Noteworthy is
that its implementation is very efficient due to various code opti-
mization techniques. Thus, it serves well the purpose of being an
efficient simulator that we can call multiple times to evaluate
patch antenna designs.

However, if simulations are required to be done for three
dimensional structures, such as in the case of numerical electro-
magnetic calculations in nanophotonics, the computational run-
times of such FDTD simulators can increase significantly due to
large number of variable parameters. Moreover, when applying
optimization schemes that require a full-field solution at each iter-
ation of the optimization loop, such as genetic algorithms
(Gondarenko & Lipson, 2008; Jayasinghe & Uduwawala, 2015),
adjoint optimization methods (Hansen et al., 2011), or simulated
annealing in the case of this paper, the ability to efficiently find a
solution becomes limited by the computational speed of the full-
field simulator. To address such computational runtime issues,
one can pursue one of the following two approaches. The first
approach is to focus on the FDTD simulator itself in order to speed
it up via some parallelization technique. In this category, the study
in Wahl, Ly-Gagnon, Debaes, Miller, and Thienpont (2013) uses
CUDA programming to speed-up a 3D-FDTD solver by running it
on computers equipped with Graphical Processing Units (GPUs).
The authors benchmark their GPU based implementation against
MEEP and reported significant speed-up for computing the absorp-
tion efficiency of a metallic nanosphere.

Note that these FDTD simulators are designed to be used for just
a single simulation of a design or structure of interest at a time.
They do not conduct any optimization in the sense of seeking to
identify the best combination of design parameters that would
provide the desired design characteristics. Such design parameters
are assumed to be known and directly specified as input to these
simulators. Therefore, the second approach to address computa-
tional runtime issues, applicable in the case of iterative optimiza-
tions is to parallelize the optimization algorithm itself. The
simulation and optimization framework proposed in this paper
falls in this category. We employ MEEP as a point-tool simulator
to develop an optimization approach whose objective is to find
the best solution for a patch antenna design. To make it computa-
tionally efficient, we use multithreading as a parallelization tech-
nique, which is implemented using a manager-workers strategy
that allows us to run multiple MEEP simulator instances concur-
rently, thereby speeding up the design solution space exploration.
We would like to emphasize that, aside from finding the optimal
patch antenna design via the simulated annealing optimization,
actually, equally important contributions of our work include:
our approach is efficient because it uses the multithreading based
speed-up technique, the implementation is versatile in that it can
easily be changed to replaced the open-source MEEP simulator
with other simulators such as Ansys’s HFSS used by previous

works, it will be made publicly available as it is constructed with
only free tools.

3. Background on patch antennas
3.1. The MEEP model for patch antennas

The MEEP C++ source code is freely available under the GNU
GPL license. Documentation is available on the MEEP Wiki pages
(MEEP, 2017), including tutorials and reference material. Several
examples are also part of the software package. The software can
be executed using a script file in the Scheme language, or by writ-
ing C++ code that performs the simulation. In this paper, we use
the C++ interface.

In MEEP, the fundamental geometric size is the block. One typ-
ically chooses a distance a that is one block. All quantities are then
based off the block size. Each block is broken into cells using the
resolution parameter. MEEP also uses dimensionless units,
€ = U, = ¢ = 1, where c is the speed of light. All distances are con-
verted by multiplying the number of blocks by a, and frequencies
are converted using f .., = fa/c, where f ., is the MEEP frequency
and fis the frequency in Hz.

A typical microstrip patch antenna consists of a rectangular
patch of metal over a dielectric substrate backed by a ground plane.
The patch has length L and width W, as shown in Fig. 1. The dielec-
tric height is h, as shown in Fig. 2. Roughly speaking, L is near one
half-wavelength. The radiation can be modeled as the fringing of
the electric field along thin slots of length W at the two edges sep-
arated by the distance L. The radiation pattern of the antenna is
typically a broad beam with maximum near broadside. The pattern
resembles an array of two elements (the slots) separated by L and
fed in phase. The bandwidth of a rectangular patch antenna is typ-
ically quite small. Design equations for patch antennas are avail-
able and can be found in Balanis (1997) and Stutzman and Thiele
(1998).

PML
L
Ymax
df
S Pl w
r

max

Fig. 1. Geometry and dimensions for the MEEP model of the L x W patch antenna.
The source (S) is dTL from the PML edge; port 1 (P1) is dS from the source; and the
patch antenna is dP1 from port 1.
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Fig. 2. Cross section of the MEEP model.

The MEEP model for the patch antenna is shown in Figs. 1 and 2.
The patch is fed using a 50Q microstrip line. The antenna impe-
dance at the edge of the antenna is typically around 2509, and
the impedance falls to zero as the feed point moves to the center
of the patch. To match the antenna impedance to the 50Q feed line,
arecess gap is cut into the patch antenna by a distance r, as shown
in Fig. 1.

The cross section shown in Fig. 2 includes a ground plane and
the dielectric substrate. The substrate has a relative permittivity
of 2.33 and a loss tangent 6 = 0.0011. The height h is 0.1575 cm.
The metallization for the feed line and patch have a thickness of
a single cell (0.3 mm in our simulations). The model extends above
the antenna by TopSpace = 0.8 cm. On all sides of the model, except
the ground plane, there is a perfectly matched layer (PML) to
absorb waves and avoid reflections off the ends of the model.

Simulation of the patch antenna requires three general tasks:
defining the geometry and materials in the model; specifying the
source or incident field; and declaring the desired output data. In
MEEP, the size of the structure is defined and the geometry is spec-
ified using material functions. Material functions are passed a loca-
tion within the structure and return the material parameter at that
location. Dielectric functions are used to describe both the sub-
strate and the metallization (using € = —cc0). We assume perfectly
conducting metal for the patch and microstrip.

The source is a Gaussian pulse of the electric field in the z direc-
tion (perpendicular to the plane of Fig. 1). The source location is
under the feed line at the “Source” location indicated in the figure.
A MEEP flux plane is defined in the cross section of the substrate at
the Port 1 location. The flux plane is slightly wider than the feed
line and is entirely within the substrate. The output is the net
power passing through the flux plane over the frequency range
specified by the Gaussian pulse source.

To collect reflection coefficient data |S;1], a reference MEEP sim-
ulation is performed once. The reference model consists of no
patch antenna and the 50 Q line extends across the entire model
space. The source launches a wave that is absorbed at both ends
by the PML layer. The power measured at port 1 for the reference
simulation is the input power to the antenna, P;. The reference
simulation data is collected and stored in a file that is read by every
patch antenna simulation.

Each simulation of a candidate patch antenna also collects the
net power at port 1. Net power means the power flowing toward
the antenna (equal to P;) minus the power that is reflected by
the antenna (Py). Denote the power data for an antenna simulation
as Pqy. The power reflection coefficient is the power reflected nor-
malized by the power incident on the antenna. Therefore, since

Pane = Pin — Py, the reflection coefficient (in dB) denoted as [S11] is
computed by Balanis (1997) and Stutzman and Thiele (1998):

Py, — P,
S — mn ant 1
S11] P (1)

Table 1
Dimensions used in MEEP model of patch antenna.

Fixed dimensions Distance (cm)

Xinax 9.8

Y max 17.0

dP1 0.63

ds 0.47

dTL 0.32

PML thickness 0.16

For example, consider a matched antenna. The power reflected
would be 0. Therefore, Pi, = Pgne and |Sq4| is zero. If the antenna is
not matched, the reflected power reduces P, and |Sq;| increases.
Note that the use of power means that no phase information is
available.

As an illustrative example, we simulated a patch antenna design
whose model parameters are shown in Figs. 1 and 2. The recess dis-
tance r has a gap on each side of the line of width d. The distances
Xmax and Yo are chosen so that there is at least 6h of additional
ground plane (Garg, Bhartia, Bahl, & Ittipiboon, 2001). The fixed
dimensions in the MEEP model are listed in Table 1.

The results of an example MEEP simulation are shown in Fig. 3.
This is just an illustrative example, whose center frequency is
f.=2400 MHz and the bandwidth is BW = 63 MHz (2.6%). The
bandwidth is calculated as the frequency bandwidth given by the
two intersection points between the plot from Fig. 3 and the hori-
zontal line at the —6 dB threshold. Such a resonance frequency is
used for example in Bluetooth wireless communications. In this
particular example (a simple textbook design), the dimensions of
the patch antenna are L=4cm, W=49cm, r=1cm, and
d = 0.2 cm. The figure shows |S;1], the reflection coefficient in dB
for the frequency range of 2.1 GHz to 2.7 GHz.

3.2. Patch antenna design space

The model that we use in this paper has four key dimensions
that affect the performance of the antenna, including: length L,
width W, recess r, and gap width or depth d. The length L of the
patch strongly influences the resonant frequency; variations in
the width W will vary the edge impedance, Z4. As the edge impe-
dance changes, the recess distance changes to remain near the
50 Q feed point. The gap width d maintains isolation between
the antenna and the feed line.

To sample the space of solutions, a range of values for each of
the four parameters has been chosen, as listed in Table 2. The
ranges of these parameters were selected based on our prior expe-
rience and familiarity with this antenna design. While these ranges

[S11] (dB)

2300 2400 2500 2600

Frequency (MHz)

2200

-10
2100 2700

Fig. 3. Sample data from a single patch antenna MEEP simulation example showing
the reflection coefficient |Sy;| vs. frequency.
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Table 2
Parameter Ranges for Antenna Optimization.
Parameter Range (cm) Delta (cm)
Length L 3.8-4.2 0.05
Width W 2.0-7.25 0.75
Recess r 0.0-2.1 0.3
Depth d 0.05-0.4 0.05

are selected such that they make sense, they should also be con-
strained also by the geometry of the space where the actual
antenna is to be used. These four parameters with their ranges of
values effectively define the solution space, which we explore
using the simulated annealing (SA) based design space exploration
(DSE) implemented by the software framework presented in the
next section.

4. Proposed software framework for automated design space
exploration for patch antennas

In this section, we present details on the proposed simulation
and optimization framework. We first describe its block diagram.
Then, we discuss the simulated annealing algorithm used for the
optimization of the search process. Finally, we present details on
the multithreaded implementation for speed up.

4.1. Block diagram of proposed framework

In this paper, we propose to search for the optimal design of a
patch antenna like the one described in the previous section using
an automated design space exploration. The top-level block dia-
gram of the proposed software framework is shown in Fig. 4.

The core of the proposed software framework is the simulated
annealing algorithm (described later in the next subsection) shown
in the center of the diagram from Fig. 4. This algorithm consists of
an optimization loop, where during each iteration a new solution
point from the design space is generated and evaluated. The design
solution space is defined by the antenna parameters that are pro-
vided as permissible ranges, which need to be swept during the
search. Thus, a solution point is completely determined by actual
values of these parameters, selected from within their ranges of
permissible values. These ranges are provided by the user and
are represented by the box at the top of the diagram in Fig. 4.

The evaluation of a solution point is done by running a complete
MEEP simulation. The MEEP simulation is done by invoking an
instance of the MEEP simulator (MEEP, 2017; Oskooi et al., 2010).
At the end of each MEEP simulation we have calculated the center
frequency, f., and the bandwidth, BW, for the current design point

1
| Automated |
! design space Design variables to sweep: !
1 exploration Length, Width, Recess, Depth |
| framework !
| 4 g |
] ]
1 1
1 1
| MEEP 4\ Simulated annealing !

imulat timizati
1| simulator —‘/ optimization !
l )

Optimal solution

Fig. 4. Proposed software framework for optimization of patch antennas.

characterized by a given set of design parameter values. The center
frequency and the bandwidth will then be utilized to calculate the
cost of the current design point, which in turn will be used inside
the simulated annealing algorithm to derive a probability to accept
this design solution.

4.2. Simulated annealing optimization

We have chosen simulated annealing (SA) for our optimization
because of its popularity for solving multi-objective problems and
because it is relatively easy to implement. SA is a probabilistic
algorithm that has been around for several decades (Cerny, 1985;
Kirkpatrick, Gelatt, & Vecchi, 1983). It is especially known for the
inherent ability of finding the global minimum in optimization
problems that also have multiple local minima. To work with only
one total cost, the SA approach expresses the total cost of a multi-
objective optimization problem as a weighted sum of the individ-
ual costs.

The pseudocode of the SA algorithm is shown in Fig. 5. SA is
essentially an iterative algorithm that conducts a random search
through multiple solutions toward the best solution. It starts with
one or more initial solutions. Then, it continuously generates new
solutions from the previous ones. This generation is achieved by
calling the function GenerateNeighborSolution() in Fig. 5. New solu-
tions are initially accepted even if their overall cost increased com-
pared to previous solutions. As the algorithm progresses, such
solutions are less likely to be accepted and only solutions that
improve the cost are more likely to be accepted. In this way, if
the search initially gets trapped in local minima, the algorithm
escapes by allowing the acceptance of worse solutions also during
the first part of the annealing process.

The temperature variable inside the algorithm is a critical com-
ponent as it is employed in calculating the probability to accept
newly generated solutions. It is updated during each iteration by
a call to the function CalculateTemperature(), which in our imple-
mentation is subtracting a constant amount from the previous
value. However, this could be changed such that the annealing is
steeper in the beginning and more leveled towards the end. The
acceptance probability is computed such that to be high during
the early iterations and to be low during the final iterations of
the algorithm. In this way, during the early iterations, even solu-
tions that do not improve the total cost can be accepted. This, in
turn, helps to move away and escape getting trapped in potentially
local minima solutions.

The process of generating new solutions during the iterative
search involves moves done on the previously generated solutions.
The meaning of a move depends on the application at hand, but it
is usually some form of local alteration or change of previous solu-
tions. For instance, the process of swapping the visiting order of
any two successive cities can represent a move in the well known
traveling salesman problem (TSP). In the TSP, a solution is defined
as the order in which all the cities will be visited. Changing the
order in which two cities are visited is an effective move, which
is also easily implemented in computer programs.

In the case of our problem in this paper, a solution is defined as
a given set of selected values for the parameters to sweep. This set
of values represents a point in the four dimensional solution space,
which needs to be explored. To generate a new solution point, we
randomly select one of the four design parameters and change its
values to a different one (also selected randomly) from the permis-
sible ranges. Each new solution must be evaluated by calculating
its total cost, which requires a new MEEP simulation to be able to
calculate individual costs first. The MEEP simulation is performed
by a call to the function RunMEEPSimulation(), which, under the
hood of the multithreaded framework described later in Fig. 6,
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Algorithm: Simulated Annealing
1: In: Define  cost, Cost;

Cooling  strategy,
CalculateTemperature; Initial high temperature, Tinaz;
Max number of iterations, M

2: Out: Best solution, Spest

3: k<« 0

4: Scurrent < Generatelnitial Solution() // radomly

5. RunM EEPSimulation(Scurrent)

6: CalculateCosts(Scurrent)

: Spest = Scurrent

: while k<M do

© o

// Implement a move by randomly selecting one of the
four parameters and also randomly selecting a new value
for it
10: Sk < GenerateNeighbor Solution(Scurrent)
fL1: RunM EE P Simulation(Sy)

12: CalculateCosts(Sy)
13: Teurrent < CalculateT emperature(k, Tnaz)
[L14: if Cost(Sk) < Cost(Scurrent) then

15 // Downbhill move: accept it all the time
[16: Scurrent < Sk

7: if Cost(Sy) < Cost(Spest) then

18: Spest < Sk

19: end if

p0: else

R1: // Uphill move: accept it sometimes only
p2: r < Random(0,1)

p3: if r< Exp(%) then
R4: Securrent < Sk

R5: end if

p6: end if

R7: k—k+1

p8: end while

29: Return Shest

Fig. 5. Pseudocode of the simulated annealing (SA) algorithm for finding the best
patch antenna design characterized by the optimal set of parameters that minimize
both Costcenterrreq and Costp .

) Manager-
ilnr;ulit'ed 5 Tasks Workirs
5 z:;ng < Multithreaded
Engine

Queue of Tasks

Worker Worker Worker
Thread 1 Thread 2 Thread n

Multithreaded simulated annealing optimization

Fig. 6. The simulated annealing optimization block from Fig. 4 is implemented on
top of a manager-workers multithreaded engine.

translates into the execution of the MEEP simulator instance on
one of the worker threads. We express the total cost as the
weighted summation of the individual costs:

Cost = ot * CoStcenterrreq + (1 — o) * Costpw (2)

where o € [0, 1] is a weighting parameter, which can be used to give
higher priority to any of the two individual cost components. For
example, if we wanted to give a higher priority to the center fre-
quency as an objective, we could use o = 0.75. In this way, the
weight for the bandwidth individual cost will be 0.25. Because in
our case both individual costs are equally important, we use
o = 0.5. In the above equation, the center frequency and bandwidth
individual costs are calculated at the end of the MEEP simulation for
the current design solution point. More specifically, the CoStcenterfreq
is defined as the absolute difference between the desired center fre-
quency and the center frequency of the current design solution
point. The Costpy is defined as the absolute difference between an
ideal large bandwidth and the current bandwidth. By defining this
cost also as a difference or distance from an ideal bandwidth we
effectively transform the objective of bandwidth maximization into
a minimization problem. Noteworthy, in the actual implementation,
the above costs are normalized so that their absolute numerical val-
ues are always in the range (0, 1). The normalization is necessary
because individual costs may have values that are not comparable
as a range and that could result in situations where an individual
cost could overwhelm the others. We do normalization by taking
the ratio between individual costs as calculated from the data
obtained from the MEEP simulation and their maximum possible
value. The calculation of normalized individual costs as well of
the total cost of a given solution is done by calling the function
CalculateCosts() in Fig. 5. Randomness is achieved by using the stan-
dard function rand() available with the C++ compiler; this function
is seeded differently with the current time during each execution of
our tool.

Another key aspect in implementing an effective SA algorithm is
the ability to initially generate solutions that may be far from the
existing solutions while gradually restricting the distance between
the parent and child solutions. In this way, a good coverage of the
solution space and rapid convergence is ensured. In our case, that
is achieved in the following way. The new values for the randomly
selected parameters can be selected from vicinities of their current
values and these vicinities can be allowed to be large at the begin-
ning of the annealing process and then be restricted to smaller val-
ues during subsequent iterations.

4.3. Parallelization via multithreading

One of the main contributions of this paper is that we provide a
parallel implementation of the the simulated annealing based
design space exploration (DSE) algorithm in order to reduce the
overall computational runtime by taking benefit of the readily
available multicore processors today. Despite the fact that parallel
computing has been thought of for a long time (Gill, 1958; Wilson,
1994) it is still a challenging task to find the most appropriate par-
allelization technique and application transformation that would
maximize the benefit of parallelism. Common parallelization tech-
niques include distributed computing, multithreading (Ababei,
2009; Andrews, 1999; Yang, 1991), and graphics processing units
(GPUs) (Owens, 2007; Owens et al., 2008).

Here, we opt for a multithreaded implementation of the main
loop of the simulated annealing algorithms because of two reasons.
First, it does not require us to modify the MEEP source code, which
has been already optimized for runtime. This has also the benefit
that the overall proposed framework can be easily extended by
replacing the MEEP tool with another if so desired. Second, the
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simulated annealing algorithm itself through its iterative nature
lends itself nicely to parallelization via multithreading. Indeed,
we can launch multiple threads to perform multiple MEEP simula-
tions concurrently in order to evaluate multiple design solution
points, thereby speeding up significantly the solution space search
process.

The multithreaded implementation of the design solution space
exploration through the simulated annealing optimization algo-
rithm is shown in Fig. 6. In this figure, we describe in greater detail
the central block from the diagram in Fig. 4 in order to illustrate
the mechanics of the multithreading approach.

The proposed multithreaded implementation uses a manager-
workers multithreading approach. The manager thread is responsi-
ble with the communication between the multithreading engine
and the host application, which in this case is the simulated
annealing loop, as shown in Fig. 6. The host application creates
tasks, which are taken by the manager thread and placed into a
queue. Each task basically represents a patch antenna design solu-
tion point, which we need to evaluate through a MEEP simulation
as part of the design solution space exploration process. Running a
MEEP simulation instance and collecting the results from the sim-
ulation is done via tasks, which facilitate the cost calculations dis-
cussed in the previous section and Fig. 5. The tasks from the queue
then are processed individually by the worker threads. In our
implementation, we create a number of worker threads equal to
the number of cores on the processor that the user’s machine
has. In this way, we maximize the benefits of parallelization. The
worker threads, basically, run separate MEEP simulations concur-
rently for the corresponding design solution points on all cores of
the processor. After a given worker thread finishes a task from
the queue, the manager thread dispatches the result back to the
host application. In our case, the host application is responsible
with implementing the logic of the simulated annealing algorithm
that we described in the previous section and illustrated in Fig. 5.
Thus, it is the host application that interprets the results received
from the manager thread and decides if a certain design solution
becomes the current and/or the best solution so far. The host appli-
cation continues to generate tasks that are passed to the manager
thread until a maximum number of tasks has been created or the
annealing temperature has reached zero or no improvement in
solution quality (measured through cost) has been observed over
a prescribed number of recent solution evaluations.

5. Simulations results

In this section, we present simulation results that we obtained
using the proposed software framework. All our simulations are
done on a machine that has an Intel Xeon CPU E5-1620 processor,
3.60 GHz x 8 cores, 16 GB memory, and runs Linux Ubuntu 14.04
operating system. We set-up the optimization problem for the
patch antenna design, where the design parameters that define
the solution space are as shown in Table 2 discussed in Section 3.
In other words, during the design solution space exploration done
as part of the simulated annealing optimization algorithm, we
sweep four design parameters that include antenna length, width,
recess, and depth. The maximum number of iterations inside the
SA algorithm is set to 100. The desired (i.e., ideal) characteristics
for the patch antenna are a center frequency of f. = 2400 MHz
and a bandwidth of BW = 100 MHz. These ideal values are used
in the cost calculations inside the SA algorithm. The execution of
our tool is done with the maximum number of possible threads
on the machine that is used. In our case, that is a number of 8
threads, equal to the number of available cores. The total execution
time measured as wall time is 6.95 days. The total cpu time is
52.59 days. This means that running the multithreaded simulation
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Fig. 7. Reflection coefficient |S;;| vs. frequency for the patch antenna MEEP
simulation of the best solution found during the design space exploration.
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Fig. 8. SA evaluated 100 different solution points during the SA based design space
exploration process. The best solution is indicated with a red circle.

provided a speed up of 7.56x on the 8 core processor. The best solu-
tion found at the end of the design space exploration is character-
ized by a center frequency f.=2406 MHz and bandwidth of
BW = 93.41 MHz. The actual values of the design parameters cor-
responding to this best solution are: length L = 3.95 cm, width
W = 7.25 cm, recess r = 0.6 cm, and depth d = 0.15 cm. The sam-
ple data corresponding to this best solution is shown in Fig. 7.

Our simulation and optimization framework is orchestrated to
record detailed information about the evaluated solution points
as well as the evolution of the cost inside the simulated annealing
algorithm. For example, Fig. 8 shows all solution points evaluated
during 100 iterations. The x axis of this plot represents the center
frequency cost and the y axis represents the BW cost, both mea-
sured as absolute distances from the ideal/desired values. The best
solution point is the one indicated by the data point on the bottom
left-hand side of this plot.

Finally, Fig. 9 shows how the normalized cost varied during the
annealing process. This plot provides useful information about the
convergence of the annealing process. In our context, we say that
the algorithm converged when the change in the cost value does
not change significantly anymore. We can see that the algorithm
converged roughly after about 80 iterations. The cost value does
continue to fluctuate even after, but these fluctuations are small
and they would continue for more iterations due to the discrete
nature of the problem, which works with four design parameters
taking discrete values from pre-defined ranges. This information
can be utilized to gain further insights into how one could calibrate
and fine-tune the design space exploration to further improve
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Fig. 9. Variation of the normalized cost values during the design space exploration.
The red line is a logarithmic trend-line.

solution quality and to reduce total execution time. Such fine-
tuning can be done for example by implementing different types
of moves inside the simulated annealing algorithm, or different
temperature cooling strategies, etc.

6. Discussion

Noteworthy, the design space exploration (DSE) is very effective
in finding excellent desired solution points for relatively a small
number of 100 iterations allowed inside the simulated annealing
algorithm. The best solution found is satisfactorily close to the tar-
get one. Furthermore, we note that this type of DSE formulation is
very parallelization friendly to the multithreading parallelization
approach that we employed. Our simulation provided a speed up
of 7.56x on the 8 core processor.

The entire design solution space exploration framework pre-
sented in this paper is implemented in C++. In addition, it is imple-
mented to be extendable in the following sense. On one hand, the
MEEP simulator is a plug-and-play simulator. It can be replaced by
any other simulator if that is desired. Thus, if one needs to use a
different FDTD simulator with features that MEEP may not have,
replacing the MEEP core simulator with another simulator is easily
done. On the other hand, the type of design that is investigated can
also be changed easily by changing the source code of a dedicated
class inside the source code. We hope that this versatile software
framework will foster further research into electromagnetic sys-
tems, which increasingly depend on complex simulations.

7. Conclusion

We presented a software tool for the automated design opti-
mization of microstrip patch antennas. The optimization consists
of a parallel implementation of simulated annealing based design
space exploration. The solution space is defined by four different
design parameters that can take discrete values from prescribed
permissible ranges. During each iteration of the simulated anneal-

ing loop, we employ the popular MEEP simulation tool to evaluate
explored design solutions. To speed up the design space explo-
ration, the software framework is developed to run multiple MEEP
simulations concurrently. This is achieved using multithreading
that uses a number of worker threads equal to the number of cores
of the computer that is utilized. Simulation results demonstrate
the effectiveness of the proposed tool in finding optimal designs
in significantly shorter times, i.e., 7.56x faster when executed on
an 8-core processor compared to the execution on only one core.
The tool will be released to the public domain.
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