
Marquette University
e-Publications@Marquette
Electrical and Computer Engineering Faculty
Research and Publications

Electrical and Computer Engineering, Department
of

4-1-2017

An efficient and cost effective FPGA based
implementation of the Viola-Jones face detection
algorithm
Peter Irgens
Marquette University

Curtis Bader
Marquette University

Theresa Lé
Marquette University

Devansh Saxena
Marquette University

Cristinel Ababei
Marquette University, cristinel.ababei@marquette.edu

Published version. Procedia Engineering, Vol. 1 (April 2017): 68-75. DOI. © 2017 Elsevier. Used with
permission.

https://epublications.marquette.edu
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
http://www.doi.org/10.1016/j.ohx.2017.03.002


Hardware Article

An efficient and cost effective FPGA based implementation
of the Viola-Jones face detection algorithm

Peter Irgens, Curtis Bader, Theresa Lé, Devansh Saxena, Cristinel Ababei ⇑
Dept. of Electrical and Computer Engineering, Marquette University, Milwaukee, WI, USA

a r t i c l e i n f o

Article history:
Received 12 September 2016
Received in revised form 17 March 2017
Accepted 25 March 2017

Keywords:
Face detection
Viola-Jones algorithm
Field programmable gate arrays
Parallelization
Open source

a b s t r a c t

We present an field programmable gate arrays (FPGA) based implementation of the
popular Viola-Jones face detection algorithm, which is an essential building block in many
applications such as video surveillance and tracking. Our implementation is a complete
system level hardware design described in a hardware description language and validated
on the affordable DE2-115 evaluation board. Our primary objective is to study the achiev-
able performance with a low-end FPGA chip based implementation. In addition, we release
to the public domain the entire project. We hope that this will enable other researchers to
easily replicate and compare their results to ours and that it will encourage and facilitate
further research and educational ideas in the areas of image processing, computer vision,
and advanced digital design and FPGA prototyping.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Field programmable gate arrays (FPGAs) have become extremely popular in virtually all application domains. An example
of such an application domain is computer vision, where one often finds object detection and tracking as basic techniques
that are used to create more complex systems. The realtime performance of such systems crucially depends on highly effi-
cient and cost effective implementations of those basic techniques. For example, in systems that deal with airport security
where one may be interested in object or activity recognition and tracking, face detection is a crucial technique.

One of the most popular face detection algorithms for realtime applications is the Viola-Jones (VJ) algorithm [1]. While
other variations of this algorithm have been proposed [2] in this paper, we present a complete hardware implementation of
the Viola-Jones face detection algorithm on a low-end FPGA chip. We focus on the Viola-Jones face detection algorithm due
to its popularity and efficiency and because it underlies a lot of other face detection algorithms. Our hardware implemen-
tation is described entirely in a hardware description language (HDL). We compare our HDL implementation to software
based executed on general purpose processors or CPUs. The hardware FPGA based implementation offers a lower
performance measured as frames per second (fps) compared to the software CPU-alone implementations for an image size
of 320 � 240 pixels. However, it represents a good solution from a performance-power-price point of view. In addition, the
FPGA based implementation has the potential to improve performance if deployed with greater parallelism and especially
for larger image sizes on more complex but also more expensive FPGA chips. As such, we release the FPGA based implemen-
tation to the public domain.

http://dx.doi.org/10.1016/j.ohx.2017.03.002
2468-0672/� 2017 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: cristinel.ababei@marquette.edu (C. Ababei).

HardwareX 1 (2017) 68–75

Contents lists available at ScienceDirect

HardwareX

journal homepage: www.elsevier .com/locate /ohx

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ohx.2017.03.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ohx.2017.03.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cristinel.ababei@marquette.edu
http://dx.doi.org/10.1016/j.ohx.2017.03.002
http://www.sciencedirect.com/science/journal/24680672
http://www.elsevier.com/locate/ohx


While there are previous studies that reported FPGA based implementations of the Viola-Jones algorithm or of portions of
it [3–5], to the best of our knowledge, our contribution is the first such implementation that is fully disclosed and made pub-
licly available. This ensures that our results can be replicated and hopefully will encourage further research and educational
projects in the areas of image processing, computer vision, and advanced HDL design and FPGAs.

Background on Viola-Jones face detection algorithm

In this section, we present a high level description of the Viola-Jones face detection algorithm. This description is kept to a
minimum and is necessary as it will help us better understand how to port and describe in HDL key tasks for the FPGA based
implementation. For more details on this algorithm, please see [1]. The pseudocode description of the Viola-Jones algorithm
is presented in Fig. 1.

In a face detection algorithm, we must use an accurate numerical description such that it sets human faces apart
from other objects in a given image. Such characteristics can be extracted with a committee algorithm called Adaboost
[6]. Such a committee can be created with weak classifiers to form a strong classifier by employing a voting mech-
anism. The Viola-Jones algorithm uses Haar-like rectangle features to construct classifiers. A Haar-like rectangle feature
is a scalar product between the image and some Haar-like pattern. An example of a Haar-like pattern is shown in
Fig. 2.

A crucial element of the Viola-Jones algorithm is a technique to compute rectangle features very rapidly [1]. This tech-
nique uses an intermediate representation for the image, the so called integral image.

The integral image at location (x, y) contains the sum of the pixels above and to the left of (x, y).
Instead of summing up all the pixels inside a rectangular window, this technique mirrors the use of cumulative

distribution functions. Using the integral image any rectangular sum can be computed in four array references as
shown in Fig. 2.

The Viola-Jones algorithm uses so called cascade classifiers. A cascade classifier is constructed as a sequence of stages. At
each stage a list of filters are applied to the area within the sliding sub-window. An example of such a multistage filter
with 25 stages is shown in Fig. 3. Each time the sliding sub-window shifts (typically pixel by pixel, but it can be more
pixels at a time to further speed things up), the new region within the sliding sub-window is processed through the cas-
cade classifier stage-by-stage. At each stage, the rectangle feature is evaluated and the weak classifier is computed. Then, a
threshold check is used to see if the region is rejected as a face candidate or if it needs to continue to be processed in the
next stage.

To be able to detect faces of different sizes, the algorithm works with a pyramid of scaled images. This allows sweeping
using the same set of Haar-like patterns different scaled versions of the initial image. Thus, sliding sub-windows will sweep
each of the images from the pyramid. When the outer-most for loop in the pseudocode description from Fig. 1 finishes its
execution, the Viola-Jones algorithmwould have found and marked with rectangle indicators all faces present in the original
test image as well as in the scaled versions of the image.

Fig. 1. Pseudocode description of the popular Viola-Jones face detection algorithm.

P. Irgens et al. / HardwareX 1 (2017) 68–75 69



Hardware description

Upon careful study of the actual algorithm described in Fig. 1, we conclude that two of the most important aspects of the
Viola-Jones algorithm are:

(1) The cascade classifier described in Fig. 3 must be applied to each sub-window during the scanning process of a given
image from the pyramid of scaled images. Thus, it is desirable to implement this classifier in HDL as a kernel, which is
then instantiated or deployed as many times as possible in order to perform multiple sub-window evaluations
concurrently.

(2) The same algorithm logic is essentially applied in exactly the same way to each of the images from the pyramid of
scaled images. Hence, if the target FPGA chip is large enough, we could run the same top-level Viola-Jones implemen-
tation on multiple images from the pyramid at the same time.

The simplified block diagram of the structural description in HDL of the entire Viola-Jones algorithm is shown in Fig. 4. To
keep the block diagram readable, many details related to the control signals are omitted. Such details can be found and better
understood by studying the HDL source code, which we make publicly available. Note that our implementation captures the
entire logic of the algorithm (as described in Fig. 1) and thus it could be referred to as a complete baremetal implementation.
That is, there is no connection to a host computer, no portion of the VJ algorithm is done on any computer; everything is
inside the FPGA.

In our experimental setup for testing and validation, we use the OV7670 CMOS camera module [7] for capturing realtime
video. The video is at the same time displayed on a generic VGA monitor connected to the DE2-115 FPGA evaluation board

Fig. 3. Illustration of a cascade classier with 25 stages as a decision tree, where at each node a threshold check is done to decide if the sub-window is
rejected as no face (False, F) or if it is passed for further processing to the next stage (True, T), which means that the sub-windows still has chances to
contain a face.

Fig. 2. (a) Haar-like rectangle feature is calculated only by using the pixels inside the Haar-like pattern (i.e., black and white rectangles). This example
pattern illustrates that the area covering the eyes is usually darker than the area just above the cheeks. (b) The sum of the pixels inside rectangle D can be
computed with four array references on values of the so called integral image: 4 + 1 � (2 + 3).

70 P. Irgens et al. / HardwareX 1 (2017) 68–75



[8]. The face detection portion of our design draws red squares, overlaid on the video frames themselves, to indicate faces
detected in each frame of the video.

The face detection algorithm operates in parallel with the main datapath of the system shown in Fig. 4. The main datapath
includes the Capture Logic block, which retrieves the video stream coming out of the OV7670 CMOS camera module and buf-
fers it inside the random access memory (RAM) Frame Buffer. This buffer is implemented using existing embedded RAM
memory blocks inside the Cyclone IV FPGA, which is the target FPGA chip in our hardware implementation. These buffers
can be written and read asynchronously at different write and read clocks. Each video frame is used to drive, via the video
graphics array (VGA) Driver, the VGA display monitor connected to the DE2-115 evaluation board.

By default, the video stream is captured from the camera module at a rate of 30 frames per second (fps) and a frame size
of 320 � 240 pixels.

The face detection portion of the system is implemented by the following component blocks in Fig. 4: ii-gen, ii buffer, ii (x)2

buffer, Subwindow-top, and FaceBox. The ii-gen block is responsible for the linear scaling and integral image generation. While
the Frame Buffer stores an entire frame of 320 � 240 pixels, the ii buffer and ii (x)2 buffer store only 39 � 59 pixels, which are
dynamically updated on the fly during the sub-window sweeping process that covers the entire image. We do this because
there is no need to compute and store the integral images for all 320 � 240 pixels. In addition, the Cyclone IV target FPGA
chip does not have enough embedded RAM blocks to allow us to implement three full size 320 � 240 buffers.

The Subwindow-top block from Fig. 4 is the most important component of the face detection datapath. In our current
implementation, it contains 16 copies (indicated as sw0, sw1, . . ., sw15) of the cascade classifier kernel applied to 16 sub-
windows in parallel. In other words, in this implementation we run concurrently 16 classifiers whose outputs indicate
whether any of the 16 sub-windows contains a face or not. For each classifier that detects a face, the FaceBox block then
draws the square indicators by updating the appropriate pixels (i.e., changes their color to red) directly inside the Frame buf-
fer, which is displayed on the VGA monitor. The red square indicators are drawn by the FaceBox block at the correct coordi-
nates (xpos, ypos) with the appropriate scaling factor, which corresponds to the currently processed image from the pyramid
of scaled images of a given frame.

In our current implementation, we use 16 classifiers because we are limited by the available resources, including embed-
ded multipliers, available on the Cyclone IV FPGA chip. The number of classifier instances can be easily extended to further
increase the hardware parallelism if more complex FPGA chips are utilized. The Control block from Fig. 4 is responsible with
the generation of all necessary control signals that orchestrate the correct operation of both datapaths, i.e., the main video
buffering datapath and the face detection datapath, respectively. The phase locked loop (PLL) block uses one of the embedded
PLL cores inside the Cyclone IV FPGA chip to generate all the necessary clock signals.

Experimental results

Connections

The experimental setup requires connections that must be created as shown in Fig. 5. The setup includes the DE2-115
FPGA board that has connected the OV7670 camera to it as well as a regular monitor. The board itself comes with its
own power adapter and the board has a power switch. The connection between the board and the monitor is made through
a standard video graphics array (VGA) cable, which comes with by default with any monitor. The connection between the
camera module and the board is done using regular jumper wires. The jumper wires connect the pins of the camera (shown
at the bottom, left in Fig. 5) to general purpose input/output (GPIO) pins on the board (shown to the right in Fig. 5). The one-
to-one connections between these pins are listed in Table 1 below.

Fig. 4. Block diagram of the top-level HDL description of the design entity that implements the VJ algorithm.

P. Irgens et al. / HardwareX 1 (2017) 68–75 71



Hardware design

The entire design from Fig. 4 was coded in the very high speed integrated circuit (VHSIC) hardware description language
(VHDL), synthesized, placed, and routed with Quartus II Web Edition 15.1 tool [9]. These design steps are typical in the
design of digital circuits where the specification is done in VHDL. Detailed tutorials on how to accomplish that can be found
on the tool’s website [9]. The design was tested and verified on the DE2-115 development board [8], which uses Altera’s low-
end Cyclone IV FPGA chip [10].

Our actual experimental setup is shown in Fig. 6. It includes the DE2-115 evaluation board with the low-end OV7670
camera module attached to the board, which also has connected to the VGA port a regular computer monitor. In our

Fig. 6. (a) The experimental setup of the face detection design. Images are captured by the camera module and displayed on the VGA display as 320 � 240
pixel images. (b) Close-up of the display monitor.

Fig. 5. Connections between board and camera module and display monitor.

Table 1
One-to-one connections between camera and board pins.

Camera pin Board pin Camera pin Board pin Camera pin Board pin Camera pin Board pin

3V3 3.3V VSYNC AF25 D7 AE16 D3 Y17
GND GND HREF AC22 D6 AD21 D2 AB21
SCL AF24 PCLK AC19 D5 Y16 D1 AC15
SDA AE21 XCLK AF16 D4 AC21 D0 AB22
RESET AF15 PWDN AD19

72 P. Irgens et al. / HardwareX 1 (2017) 68–75



experiments, we worked with an image size of 320 � 240 pixels and a pyramid of scaled images containing four images,
which turned out to provide good performance in practice.

Key data of the summary report provided by Quartus II tool are presented in Table 2. Note the overall low resource (i.e.,
logic elements) utilization, which is 29%. While we have plenty of logic elements left to implement more than 16 kernel clas-
sifiers, we used the majority of the integrated embedded multipliers. Also note that the design uses 55% of embedded block
memory bits. This rather high memory utilization is due to the buffers, with the Frame Buffer taking the lion share because it
stores the pixel data for an entire frame of 320 � 240 pixels. This is the reason for which we do not work with larger image
sizes; we do not have sufficient RAMmemory inside the FPGA to store more pixels. For example, if we wanted to work with a
frame size of 640 � 320 pixels, we would need four times as much memory bits, but we already used more than half of all
that are available when working with a frame size of 320 � 240 pixels.

The final design has a performance of 30 fps in the default mode of operation where the video stream from the camera
module is directly displayed onto the monitor. In the face detection mode, the performance is 4.4 fps, irrespective of the
number of faces in the video frame, for tests that we performed with up to ten faces in the video frame.

Comparison to a software implementation

To get further insight into the performance of the FPGA based implementation, we compared it to a software implemen-
tation, which we ran on a computer (Intel Quad-core i7-2600 processor, 3.4 GHz, 6 GB of DRAM memory, and Linux Ubuntu
14.04 operating system). This software implementation is a computer program written in the C++ programming language.
The program is a direct implementation of the Viola-Jones algorithm as described in Fig. 1. The comparison between the soft-
ware computer program and the FPGA hardware implementation is shown in Table 3, where the performance is reported as
frames per second (fps), which is better when it is higher. For reference only, we also include performance numbers achieved
with graphics processing unit (GPU) based implementations reported in previous work, and discussed more in the next
section.

The first test image contains just one face, the second test contains 6 faces, and the third test contains 10 faces. We look at
images with different numbers of faces because we expect that images with more faces to require longer computational run-
times. That is because the cascade classifier from Fig. 3 needs to go more times (proportional to the number of faces that
need to be detected) through the evaluation of each of the 25 stages. We note that as the number of faces in the test image
increases, the performance of the software program degrades (i.e., the number of fps decreases) while the performance of the
FPGA design remains stable. This indicates that the proposed FPGA hardware implementation has the potential to provide a
bigger acceleration impact for large images containing many faces. That is because the scalability of the FPGA based imple-
mentation can be improved by increased hardware parallelism, i.e., by instantiating a larger number of kernel classifiers.
However, we currently do not have data to support that because the low-end FPGA chip that we use does not have available
more embedded memory bits, as discussed in the previous section. We would need to buy a more expensive FPGA for that.

Discussion

First, we would like to emphasize that the target audience for the proposed design includes educators, researchers, and
industry practitioners who have the minimum necessary background on digital logic design and HDL programming. In this
context, the proposed face detection design can be used to construct laboratories that deal with image processing concepts

Table 2
Summary of the report from the Quartus II tool.

Item Report

Family Cyclone IV E
Device EP4CE115F29C70

Total logic elements 33,327/114,480 (29%)
Embedded multipliers 369/532 (69%)
Total memory bits 2,175,501/3,981,312 (55%)
Total pins 56/529 (11%)

Table 3
Comparison of performance achieved by the hardware FPGA design with software solutions.

Test Software GPU program Software C++ computer program Hardware FPGA design

Image 320 � 240, 1 face NA 7.76 fps 4.4 fps
Image 320 � 240, 6 faces NA 6.43 fps 4.4 fps
Image 320 � 240, 10 faces NA 6.41 fps 4.4 fps
Image 640 � 480 (unknown number of faces) 12.2 fps [11] NA NA
Image 1280 � 1024 (unknown number of faces) 5.02 fps [12] NA NA

P. Irgens et al. / HardwareX 1 (2017) 68–75 73



and can use this design as a platform to showcase the face detection algorithm or to verify new ideas. The design can be
extended or integrated in larger systems for research purposes on computer vision topics as well. Practitioners can use it
for practical applications too. However, as already mentioned, some minimum background on digital design, HDL program-
ming, and FPGA tools is necessary. This design is not intended for anyone in the general public.

Finally, we would like to make a couple of observations that list the main takeaway’s about our design:

� The presented FPGA hardware implementation of the Viola-Jones face detection algorithm achieves a performance of 4.4
fps for image sizes of 320 � 240 pixels. When the image under test contains a relatively small number of faces, the soft-
ware implementation runs faster. However, that requires a general purpose computer, which is significantly more expen-
sive than the FPGA board. When the image under test contains a large number of faces the performance of the FPGA
design becomes comparable to that of the software implementation. In addition, we project that for larger image sizes
and larger number of faces, the FPGA design can potentially offer better performance because the FPGA design can exe-
cute in parallel more computations by exploiting the hardware parallelism offered by the FPGAs. However, this is only a
projection because we do not have a bigger (and more expensive) FPGA board to verify that. While we do not have exper-
imental results to verify this prediction, we observe that the performance of the FPGA implementation is relatively stable
while that of the software implementation degrades with the increase in image size as well as with the increase in the
number of faces in the image.

� We would like to mention that yet another approach to implement the Viola-Jones algorithm is to use the recently pop-
ular graphics processing units (GPUs). GPUs have become increasingly popular and can be utilized for general purpose
computations as well. For example, the study in [11] presented such a GPU implementation and reported a performance
of 15.2 fps using a system with 4 T GPUs. However, the price of one single Tesla GPU card is more than USD 2000.

� While, generally, FPGA based solutions offer better face detection performance, it is still unclear about which solution,
GPU based or FPGA based, typically offers a better performance-price solution point.

� For example, the study in [11] makes a case for GPU based solutions because the price of low-end GPUs (such as GeForce
GTX285) is in the USD 300–500 price range (but that does not include the price of the computer that is needed to host the
GPU card), while the price of a Virtex-5 FPGA evaluation board may vary within USD 995–3995 price range. However, the
price of the DE2-115 board that we use in this paper is about USD 600 (or USD 300 as academic price). Hence, it is just
difficult to say which solution is better.

� However, from a power consumption point of view, GPUs consume tens of times more power than FPGAs. This makes for
the FPGAs to be a more desirable solution especially in battery operated systems.

Specifications table, design files, and bill of materials

Specifications table

Hardware name FPGA based implementation of Viola-Jones face detection algorithm
Subject area � Engineering and material science

� Educational tools and open source alternatives to existing infrastructure
Hardware type � Imaging tools

� Electrical engineering and computer science
Open source license Creative Commons Attribution 4.0 (CC-BY)
Cost of hardware USD 310
Source file repository http://dejazzer.com/hardware.html (see project Face Detection on FPGA)

Design files summary

Design file name File type Open source
license

Location of the file

Multiple hardware
description VHDL
source files

VHDL description of all
the components from
Fig. 4

CC-BY 4.0 http://dejazzer.com/hardware.html (see project Face
Detection on FPGA)https://github.com/eigenpi/Face-
Detection-on-FPGA(back-up copy of entire project)

E50FinalReport.pdf Detailed description of
design and experiments

CC-BY 4.0 http://www.dejazzer.com/eigenpi/facedetection/
E50FinalReport.pdf

Youtube video Video demonstration CC-BY 4.0 https://youtu.be/aj4FEovXVXM

The VHDL source files contain abundant code comments to aid in understanding the overall design. There are in total 43
VHDL source files that make up the complete description of the entire project. However, the main archive (available at

74 P. Irgens et al. / HardwareX 1 (2017) 68–75

http://dejazzer.com/hardware.html
http://dejazzer.com/hardware.html
https://github.com/eigenpi/Face-Detection-on-FPGA
https://github.com/eigenpi/Face-Detection-on-FPGA
http://www.dejazzer.com/eigenpi/facedetection/E50FinalReport.pdf
http://www.dejazzer.com/eigenpi/facedetection/E50FinalReport.pdf
https://youtu.be/aj4FEovXVXM


http://dejazzer.com/hardware.html) and its backup copy at Github contain the complete Quartus II project directory for con-
venience or reuse. In this way, the user only needs to only open the project with the Quartus II tool and program the FPGA
board directly without the need to create a new Quartus project from scratch to which the VHDL files could be added.

Note that the user needs to download and install first the Quartus II tool, which is free and available here: https://www.
altera.com/downloads/download-center.html

Basic knowledge of VHDL and digital design as well skills to use the Quartus II tool are required. Therefore, this project is
not intended for the wide general audience but rather for educators, researchers, and practitioners in the field of digital
design, computer vision, and FPGA prototyping.

The report file E50FinalReport.pdf provides further design details as well as instructions on how to build the experimental
setup.

Bill of materials

Designator Component Number Cost per unit –
currency

Total
cost

Source of
materials

Material type

Board DE2-115 FPGA
board

1 USD 300
(academic)
USD 600
(regular)

USD
300

www.terasic.com Printed circuit board
(PCB),
semiconductor

Camera OV7670 camera
module

1 USD 10 USD 10 www.amazon.com PCB, semiconductor

Wires Jumper wires
pack of 20,
female to
female

1 USD USD 6 www.amazon.com Metal, plastic

Conclusions

We presented a new FPGA based hardware implementation of the popular Viola-Jones face detection algorithm. The
implementation was verified on the affordable DE2-115 evaluation board. We found that for an image size of 320 � 240 pix-
els the hardware FPGA based implementation is providing a performance of 4.4 frames per second. We expect that the
benefits of the FPGA based implementation to be even larger for larger image sizes. As another contribution, we release
the complete implementation to the public domain. We hope that this will enable easy replication and comparison of results,
and more importantly, will encourage further research and educational ideas in the area of hardware acceleration with appli-
cation in computer vision and related topics.

References

[1] P.A. Viola, M.J. Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition (CVPR), 2001.

[2] S. Zafeiriou, C. Zhang, Z. Zhang, A survey on face detection in the wild: past, present and future, J. Comput. Vision Image Underst. (2015).
[3] J. Cho, B. Benson, S. Mirzaei, R. Kastner, Parallelized architecture of multiple classifiers for face detection, in: IEEE Int. Conf. on Application-specific

Systems, Architectures and Processors (ASAP), 2009.
[4] A. Acasandrei, A. Barriga, Design methodology for face detection acceleration, in: IEEE Conf. of the Industrial Electronics Society (IECON), 2013.
[5] V. Suse, D. Ionescu, A real-time reconfigurable architecture for face detection, in: Int. Conf. on ReConFigurable Computing and FPGAs (ReConFig), 2015.
[6] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (SS971504)

(1997) 119–139.
[7] OV7670, Camera module with OmniVision CMOS sensor, Datasheet, 2015. Available on-line at <http://www.cutedigi.com/pub/sensor/Imaging/

OV7670-Datasheet.pdf>.
[8] DE2-115, Development and education board, 2016. Available on-line at <http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-

115-board.html>.
[9] Quartus II Web Edition Software 15.1 tool, 2016. Available on-line at <http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-

index.html>.
[10] Cyclone IV FPGA family: lowest cost, lowest power, integrated transceivers, 2016. Available on-line at <http://www.altera.com/devices/fpga/cyclone-

iv/cyiv-index.jsp>.
[11] D. Hefenbrock, J. Oberg, N. Thanh, R. Kastner, S. Baden, Accelerating Viola-Jones face detection to FPGA-level using GPUs, in: IEEE Int. Symposium on

Field-Programmable Custom Computing Machines, 2010.
[12] J. Kong, Y. Deng, GPU accelerated face detection, in: Int. Conf. on Intelligent Control and Information Processing, 2010.

P. Irgens et al. / HardwareX 1 (2017) 68–75 75

http://dejazzer.com/hardware.html
https://www.altera.com/downloads/download-center.html
https://www.altera.com/downloads/download-center.html
http://www.terasic.com
http://www.amazon.com
http://www.amazon.com
http://refhub.elsevier.com/S2468-0672(16)30011-6/h0010
http://refhub.elsevier.com/S2468-0672(16)30011-6/h0030
http://refhub.elsevier.com/S2468-0672(16)30011-6/h0030
http://www.cutedigi.com/pub/sensor/Imaging/OV7670-Datasheet.pdf
http://www.cutedigi.com/pub/sensor/Imaging/OV7670-Datasheet.pdf
http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html
http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/devices/fpga/cyclone-iv/cyiv-index.jsp
http://www.altera.com/devices/fpga/cyclone-iv/cyiv-index.jsp

	Marquette University
	e-Publications@Marquette
	4-1-2017

	An efficient and cost effective FPGA based implementation of the Viola-Jones face detection algorithm
	Peter Irgens
	Curtis Bader
	Theresa Lé
	Devansh Saxena
	Cristinel Ababei

	An efficient and cost effective FPGA based implementation �of the Viola-Jones face detection algorithm
	Introduction
	Background on Viola-Jones face detection algorithm
	Hardware description
	Experimental results
	Connections
	Hardware design
	Comparison to a software implementation

	Discussion
	Specifications table, design files, and bill of materials
	Specifications table
	Design files summary
	Bill of materials

	Conclusions
	References


