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Abstract:  
In this paper, we present the design and verification of the H.264 video decoder algorithm on FPGAs. 
The primary difference compared to previously reported designs is that the communication between 
the decoder modules is done via a network-on-chip in our case. The proposed design is a complete 
system level hardware design described in VHDL and Verilog. We report experimental results for two 
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different implementations. The first implementation uses a 3×3 network-on-chip and is validated on 
the DE4 development board, which uses Altera's Stratix IV GX FPGA chip. The second implementation 
uses a 2×2 network-on-chip and is validated on the Cyclone V SoC FPGA, which is a smaller FPGA chip 
available on the DE1-SoC board. Both implementations will be released to the public domain with the 
hope that they will foster further research, in addition to facilitating replication and comparison to our 
results. 
 

SECTION I. 
Introduction 

The popularity of field programmable gate arrays (FPGAs) has continuously increased not only because 
of the reduced performance gap between FPGAs and application specific integrated circuits (ASICs) but 
also because of the great flexibility that reconfiguration offers when it comes to product development, 
maintenance and updates. Today, FPGAs are used in virtually all application domains. Examples of such 
applications include various algorithms used in image and video processing, computer vision, robotics, 
including video compression and decompression. An important development that has been taking 
place in the last decade or so is the emergence of networks-on-chip (NoCs) [1]. NoCs replace design-
specific global on-chip wires with a generic on-chip interconnection network implemented by 
specialized routers that connect processing elements (PEs) to the network and facilitate 
communications or links between them. NoCs are predicted to become the primary communication 
paradigm for integrated circuits with increasingly large number of cores, such as multiprocessor 
systems-on-chip (MPSoCs) and chip multiprocessors (CMPs). The benefits of the NoC based SoC design 
approach include scalability, predictability, and higher bandwidth with support for concurrent 
communications. 

In this paper, we present a complete implementation in VHDL of the H.264 video decoder algorithm, 
which we validate on two different FPGA chips. The novelty of our implementation is that the 
communication between the decoder modules is done using a network-on-chip. This makes our design 
scalable and easily integrated within larger future NoC based MPSoCs, where the same hardware 
platform would host other algorithms or applications such as compression, filtering, etc. To the best of 
our knowledge, our implementation of the H.264 decoder algorithm is the first such implementation 
validated on real FPGA hardware that is fully disclosed and made publicly available. 

SECTION II. 
Related Work 

Prior work on FPGA based implementations of the H.264 video decoder can be classified into three 
categories: 1) studies that target FPGA implementations, but stop at the simulation level (i.e., 
synthesis, place, and route steps performed using CAD tools such as Quartus II or Vivado), without 
actual validation on real hardware, 2) studies that do implement and validate portions of the H.264 



decoder algorithm on FPGA hardware, and 3) simulation level only studies of NoC based H.264 decoder 
solutions. 

Due to lack of space we do not review here studies in the first category. Examples of prior studies in 
the second category include [2]–[3][4][5]. The study in [2] presented implementations of IQIT, intra 
prediction, inter prediction, and deblocking modules. However, they did not report implementations of 
the entropy decoder or frame buffer. The solution in [3] provided optimization techniques for the 
entropy decoder and intra prediction modules. The study in [4] reported a pipelined design of the intra 
prediction module while the study in [5] reported a design solution for the CALVC decoder, which is a 
component of the entropy decoder module. 

Examples of previous work in the third category, with focus on simulations of NoC based H.264 
decoders, include [6]–[7][8]. The work in [6] studied area occupied by various NoC components on FPGAs. 
While [6] reported simulations on a 3×4 mesh NoC topology, the study in [7] focused on a network 
topology consisting of 2 star networks connected by a 3×3 NoC. A comparison between a generic NoC 
architecture based decoder and an NoC architecture tailored to the H.264 decoder is reported in [8]. 
The study in [9] reported synthesis results for an NoC based H.264 decoder targeting a Virtex 4 FPGA 
implementation. The work in [10] further discusses the H.264 implementation on an FPGA but reports 
only HDL level simulations. The study in [11] proposes a unified software and hardware architecture for 
video decoding where the communication infrastructure is implemented with an arrays of modified 
NoC routers. The processing elements are light weight processor tiles that enable software and 
hardware implementations to coexist, while a programmable interconnect enables dynamic 
interconnection of the tiles. While they reported an FPGA prototype, the source codes are not publicly 
available. 

SECTION III. 
The H.264 Video Decoder Algorithm 

The top level block diagram of the H.264 video decoder algorithm is shown in Fig. 1. The input to the 
decoding algorithm consists of network abstraction layer (NAL) units, which can be organized either as 
packets or as a stream of bytes [12]. The primary modules of the H.264 video decoder include: entropy 
decoder, inverse quantization and inverse transform (IQIT), intra prediction, inter prediction, and 
deblocking filter. Due to space limitations, we cannot describe the functionality of each of these 
modules in this paper. For a complete description and details please see references [12]–[13][14][15]. 
Noteworthy is that for the entropy decoder we use the context adaptive variable length coding 
(CAVLC) approach [16].  
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Fig. 1. The top level block diagram of the h.264 video decoder algorithm. 

SECTION IV. 
Partitioning of the H.264 Algorithm 

Before mapping the H.264 algorithm to a network-on-chip, the algorithm must first be partitioned into 
several components. Then, these components will be implemented as individual processing elements 
(PEs) attached to the routers of a regular mesh NoC architecture. Note that there may not be a one-to-
one correspondence between the blocks in the diagram from Fig. 1 and these partitions, as it will 
become clear below. In this paper, we use a partitioning into seven primary PEs. A separate PE is 
dedicated to each of these seven functions: IQIT, intra prediction, sub-pixel luma motion compensation 
(i.e., intra prediction), sub-pixel chroma motion compensation, frame buffers control and integer 
motion compensation, deblocking filter, and display driver (i.e., controller). In addition, we dedicate 
one more PE for NAL parsing and entropy decoding. Brief descriptions of these PEs are given below. 

1. NAL Parsing and Entropy Decoding PE 

The task of this PE is to parse the incoming NAL stream and perform necessary entropy decoding 
functions on the data. These 2 functions are grouped together because the entropy decoder is only 
required by the NAL parser. This PE interacts with two other PEs during normal operation. It sends 
transform domain residuals to the IQIT PE, which then processes them and forwards the results to the 
buffer node. The parser PE also sends information directly to the buffer PE. This information includes 
prediction modes, parameters for those prediction modes, and the coordinates of the macroblock to 
those predictions should be performed on. Additionally, the parser PE also sends commands to start a 
new frame and to start the video sequence. 



2. IQIT PE 

This PE receives transform domain residuals data from the parser PE. It then performs the inverse 
quantization and inverse transform procedures on the received data. After the IQIT process is 
completed, the residuals are sent to the buffer PE to be added to the prediction results. 

3. Intra Prediction PE 

The intra prediction PE processes one block of up to 16×16 pixels at a time. The reference pixels for this 
prediction are provided by the buffer PE, while the parameters for this prediction are provided by the 
parser PE, but are routed through the buffer node before arriving at the intra prediction PE. Because of 
this, the intra prediction PE only communicates directly with the buffer. Therefore, when the manual 
mapping of these PEs to the NoC will be performed (discussed later), these two PEs should be assigned 
to routers that are close to each other. 

4. Deblocking Filter PE 

The deblocking filter PE is used right before displaying the completed frame. This PE receives data of 
pixels near a macroblock boundary from the buffer PE, it performs the deblocking procedure on them, 
and then, it sends the results back to the buffer PE. 

5. Luma Motion Compensation PE 

The luma motion compensation algorithm is divided between two processing elements. Integer luma 
motion compensation occurs on the same PE as the reference buffer because this portion of inter 
prediction is bound exclusively by frame buffer access time. Sub-pixel motion is a separate PE because 
it is computationally intensive. In addition, it has good potential for parallelization, which is easier done 
if this procedure is separated from other computations. Sub-pixel motion compensation uses up to two 
successive six tap FIR filters to interpolate pixel values. Additionally, a third two point FIR filter may be 
used when quarter pixel accuracy is required. The luma motion compensation PE performs 
interpolation for eight luma samples at a time. By interpolating eight samples at a time, the luma 
motion compensation PE is able to match the filter output to the throughput of the network. Although 
some profiles of the H.264 standard use multiple reference frames for inter prediction, our 
implementation uses only a single reference frame for simplicity. 

6. Chroma Motion Compensationu PE 

The chroma motion compensation PE implements the sub-pixel motion compensation algorithm for 
chroma samples. Similarly to the luma motion compensation PE, this PE also performs interpolation for 
eight samples at a time. In this case, the eight samples are comprised of 2×2 blocks, one for each 
chroma channel. By implementing the chroma and luma motion compensation algorithms on different 
PEs allows for both of these algorithms to run in parallel, and thus, to take advantage of the parallel 
communication provided by the NoC. 



7. Buffer Control PE 

The buffer control PE controls access to both the current frame buffer and the reference frame buffer. 
This PE receives parameters from the parser PE, which trigger intra prediction, inter prediction, 
deblocking, and display events. This PE also receives residuals from the IQIT PE that are added to the 
working frame buffer at the specified location. When a packet containing a command to perform a 
prediction action is received, the buffer PE packages up any relevant information for that prediction 
and sends it to the respective node or nodes. Similarly, if residuals are received from the IQIT PE, the 
residuals are added to the working frame buffer at the specified location. Because the parser can 
actually overwhelm the rest of the network during certain algorithms, the buffer PE also controls the 
rate at which the parser PE sends commands using one flit acknowledgment packets. 

8. Display Driver PE 

The display driver PE is responsible for reading decoded frames from the decoded frame buffer and for 
converting them into signals to control an external display. The display driver PE receives eight bit 
LCbCr pixels and converts these values into six bit RGB values. The RGB data is stored in the RAM local 
to the display PE and used to drive the hardware VGA driver. 

SECTION V. 
Mapping to a Regular Mesh Network-on-Chip 
A. 3×3 Network-on-Chip 

In the final actual VHDL description of the top level design entity, we must specify the location of each 
of the PEs inside the regular mesh NoC architecture. Because we use eight PEs in total, initially, the 
NoC architecture is a 3×3 regular mesh topology. This NoC is small enough to fit on the target FPGA 
chip for this implementation, which is a Stratix IV FPGA, available on the DE4 development board. 

When we specify the location of the PEs inside the mesh topology (i.e., specify the NoC router to which 
a particular PE is assigned), we effectively solve what is commonly called a network-on-chip mapping 
problem. Thus, each of the PEs described in the previous section are mapped to the routers of the NoC. 
Because solving the NoC mapping problem is not the main focus of this paper, we use manual 
mapping, which is done intelligently based on information about the internal structure of the decoding 
algorithm. Noteworthy, when mapping the PEs onto the NoC, it is crucial to place PEs which share large 
amounts of communication close to each other. This helps to reduce the number of routers a packet 
must travel between source and destination through the NoC. In addition, based on our study of the 
decoding algorithm, we noticed that the Entropy Decoding PE sends most of its packets to the IQIT. 
Also, the Parser PE communicates almost exclusively with the IQIT and frame buffer control PEs. 
Hence, these PEs are placed as close to each other as possible. In addition, based on the partitioning 
used in our design, we know that both inter and intra prediction should be close to the reference 
frame controller. The deblocking filter and both prediction nodes are expected to communicate 
extensively with the reference frame controller. After taking into consideration the above 
observations, we arrived to the manual mapping solution shown in Fig. 2.  



 

Fig. 2. The proposed mapping of the h.264 decoder pes to a 3×3 regular mesh noc. This mapping was derived 
manually. 

Our VHDL implementation is modular and follows the architecture illustrated in Fig. 2. We have 
developed VHDL descriptions for each of the PEs shown in this diagram. The PEs implemented on Nios 
II soft cores execute portions of the decoding algorithm written in C and compiled using the tool chain 
available from Altera. The Verilog description of the network-on-chip was generated with the 
CONNECT tool from Carnegie Mellon University [17] and integrated within our project. The entire design 
was synthesized, placed, and routed with the Quartus II 16.1 Standard [18]. The design was tested and 
verified on the DE4 development board [19], which uses Altera's Stratix IV GX FPGA chip [20]. A summary 
of the resource utilization report is given in Table I.  

Table I Resource utilization of the 3×3 noc based H.264 decoder. 

 



B. 2×2 Network-on-Chip 

To study the scalability of our design, we also implemented a scaled down version of the decoder to 
target an SoC style FPGA from the Cyclone V SoC family, available on the DE1-SoC development board. 
This is a smaller FPGA chip. However, the SoC FPGA has a built-in hard processor system (HPS), which 
contains two ARM cores that will be used to implement the parser and buffer PEs. Three major 
changes were made to the initial design in order to be able to fit it on the smaller FPGA. First, the built-
in ARM cores instead of Nios II soft cores are used to implement the buffer and parser PEs. Second, the 
intra prediction functionality was moved to the buffer PE, which is performed in software (i.e., 
executed on the HPS). Finally, the NoC topology was changed to a 2×2 topology. Because of that, 
routers were changed to include more ports in order to be able to accommodate all the PEs in the 
design. 

The intra prediction was moved into software (i.e., added into the buffer PE) because, based on 
profiling results, it is not utilized as much as the inter prediction, but it still uses a large amount of area 
on the FPGA. The choice to reduce the number of routers, while increasing the number of ports per 
router was made because it saves on the number of resources greatly and was not expected to greatly 
degrade performance. Additionally, the software which controls the network interface needed to be 
modified to support the IO interface of the target processor. The final architecture for this design 
implementation is shown in Fig. 3, which also shows the manual mapping, which was done under the 
same considerations as before.  

 

Fig. 3. Mapping of the h.264 decoder pes to a 2×2 regular mesh noc. 

The scaled down version of the video decoder described in this section was also implemented using 
the Quartus II Prime tool. Testing and verification was done on the DE1-SoC development board [21], 
which uses Altera's Cyclone V SoC FPGA chip [22]. The resource utilization report is given in Table II.  
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Table II Resource utilization of the 2×2 noc based H.264 decoder.  

 

SECTION VI. 
Experimental Results 

In this section, we present the results of the performance testing and profiling performed on both 
versions of the NoC based H.264 decoder. To perform this profiling several counters were added to the 
Nios II PEs. These counters are read by the software running on the Nios II cores at a variety of 
locations in order to determine what the limiting factors of system performance are. Additionally, the 
timer is also used to determine the overall system performance in order to be able to compare against 
an all-software decoder implementation. 

A. Test Videos 

For testing purposes, we use five test videos (akiyo, foreman, highway, hall, and paris) from the online 
repository of YUV encoded video files available at [23]. The first three tests use the QCIF format with a 
resolution of 176×144. The remaining two tests use the CIF format, which has twice the horizontal and 
vertical resolution of the QCIF videos. An important note here is that, although the video decoder itself 
can decode CIF as well as higher resolution videos, the display PE only contains enough RAM to display 
320×200 videos. Therefore, for the CIF videos, the entire video is decoded, but, only the top left 
320×200 pixels are displayed from each frame. Each of the five test videos are encoded using the JM 
reference encoder available at [24]. The encoding settings use a modified baseline profile that uses a 
single reference image and a periodic intra prediction update to avoid accumulated errors in the 
output video stream. Selected frames of these test videos being decoded by each of our two 
implementations are shown in Fig. 4 and Fig. 5.  



 

Fig. 4. Operation of the 3×3 implementation on the hall video. 

 

Fig. 5. Operation of the 2×2 implementation on the akiyo video. 



B. Buffer PE Profiling 

Because the buffer PE controls access to resources used by nearly every algorithm in the system, the 
profiling measurements are taken at this PE. The block diagram that illustrates the profiling of different 
components of the system at the buffer PE level is shown in Fig. 6.  

 

Fig. 6. Simplified diagram of the buffer PE software to illustrate the timer start/stop positions used for profiling. 

A total of nine counters are included and monitored for profiling purposes. The first counter starts 
when the buffer PE receives an allocate frame command and stops when the buffer PE receives a 
special packet indicating the video stream is done. The purpose of this counter is to keep track of the 
total time it takes to decode the video sequence. Counters for deblocking, intra prediction, and inter 
prediction are included in order to keep track of the total time taken to perform each of these 
algorithms. An additional counter for each of these three algorithms is included to keep track of the 
amount of time the buffer PE idles while waiting for a response from the PE associated with each of 
these algorithms. A counter is also used to keep track of the duration of a write to the display PE. 
Another counter is used to determine the total time the buffer PE spends idling after completing a 
command before it receives another one. The IQIT algorithm is not profiled because this algorithm is 
essentially done by the time it reaches the buffer PE. 

The results of the profiling for both the 3×3 and 2×2 decoder implementations are summarized in 
Tables III and IV. All times in these tables are in units of seconds The average distribution for each 
decoder is shown in Fig. 7 for the 3×3 decoder and in Fig. 8 for the 2×2 decoder.  

  



Table III Profiling results of the 3×3 noc decoder. 

 

C. Discussion of Profiling Results 

The profiling results indicate that a large portion of total time is spent performing inter prediction and 
deblocking relative to time the buffer PE idles waiting for these algorithms PEs to respond. This 
indicates that the buffer PE is currently incapable of fully utilizing these PEs. Because the code on the 
buffer PE for dispatching either of these algorithms consists almost entirely of reading from memory 
and writing to the NoC through the NoC interface, architectural changes for improving performance in 
the future could focus on several aspects in order to improve the design. First, one could improve the 
total bandwidth to the memory if possible. Second, one should reduce the amount of activity or 
interaction required by the buffer PE to perform NoC reads and writes. Also, given that the buffer PE is 
relatively simple, one could implement its functionality completely in hardware. Finally, the parser PE 
could be a good target for improvement because the command wait time takes up a significant amount 
of the buffer PE time.  

Table IV Profiling results of the 2×2 noc decoder. 

 



 

Fig. 7. Average time spent in each section of the buffer PE code for the 3×3 noc based decoder. 

 

 

 

Fig. 8. Average time spent in each section of the buffer PE code for the 2×2 noc based decoder. 

SECTION VII. 
Performance Comparisons 

In this section, we conduct performance comparisons between our FPGA implementations and an 
open source all-software decoder implemented in C [25]. This decoder was executed separately on both 



the Nios II soft core and the HPS core. To do that, the decoder was modified to use the VGA display PE 
for video output. Additionally, the decoder was modified to use the available hardware timer to 
measure the total decoding time. Because reading from the counters has a performance impact, all of 
the profiling counters were removed from the NoC based decoders, except for the total decoding time 
timer. The test results are shown in Table V, where all reported numbers are in units of frames per 
second.  

Table V Comparison of the noc based decoders with the open source software based decoder, which is 
executed on NIOS II OR HPS. 

 

A. Discussion of Performance Comparisons 

As expected, the NoC based implementation outperforms the Nios II soft core processor running the 
full software decoder. An unexpected result is the performance of the software decoder running on 
the ARM core. One important difference between the software decoders and the NoC based decoders 
is that the software decoders do not implement a deblocking filter. However, even after accounting for 
this, a large performance discrepancy exists. Another noteworthy point is that the 2×2 decoder is 
slower than the 3×3 decoder, despite the fact that the software decoder is over three times faster on 
the ARM core compared to the Nios II soft core, and intra prediction is not a heavily utilized function. 
Based on the profiling results, this appears to stem from the fact that the communication between the 
HPS and the FPGA on the SoC style FPGA is slower than the the communication between the Nios II 
soft cores and the rest of the FPGA on the large scale design. Evidence of this can be seen in the 
relative time spent writing to the display PE in the case of each decoder. The 2×2 decoder spends 
about 26% of its time writing to the display PE, while the 3×3 decoder only spends about 8% of its time 
for the same activity. This indicates a large difference in the communication overhead between the 
two designs. Based on this information, efforts seeking to improve the NoC decoder implementations 
against the ARM core should focus on improving the processor to FPGA communication or removing it 
altogether by creating a hardware only implementation of the buffer PE. 

SECTION VIII. 
Conclusion 

We presented the design of an H.264 video decoder prototyped on the Altera's Stratix IV GX and 
Cyclone V SoC FPGA chips. Our main contributions can be summarized as follows: 1) The 
communication between the decoder modules is done via a network-on-chip, which makes our 
implementation suitable for integration into larger MPSoC solutions, 2) We provide a complete system 



level design solution that includes a partitioning of the decoding algorithm into eight processing 
elements and manual mappings of these PEs onto 3×3 and 2×2 NoC topologies, and 3) The entire 
project implementation will be made publicly available. 
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	Abstract:
	In this paper, we present the design and verification of the H.264 video decoder algorithm on FPGAs. The primary difference compared to previously reported designs is that the communication between the decoder modules is done via a network-on-chip in our case. The proposed design is a complete system level hardware design described in VHDL and Verilog. We report experimental results for two different implementations. The first implementation uses a 3×3 network-on-chip and is validated on the DE4 development board, which uses Altera's Stratix IV GX FPGA chip. The second implementation uses a 2×2 network-on-chip and is validated on the Cyclone V SoC FPGA, which is a smaller FPGA chip available on the DE1-SoC board. Both implementations will be released to the public domain with the hope that they will foster further research, in addition to facilitating replication and comparison to our results.
	SECTION I.
	Introduction

	The popularity of field programmable gate arrays (FPGAs) has continuously increased not only because of the reduced performance gap between FPGAs and application specific integrated circuits (ASICs) but also because of the great flexibility that reconfiguration offers when it comes to product development, maintenance and updates. Today, FPGAs are used in virtually all application domains. Examples of such applications include various algorithms used in image and video processing, computer vision, robotics, including video compression and decompression. An important development that has been taking place in the last decade or so is the emergence of networks-on-chip (NoCs) [1]. NoCs replace design-specific global on-chip wires with a generic on-chip interconnection network implemented by specialized routers that connect processing elements (PEs) to the network and facilitate communications or links between them. NoCs are predicted to become the primary communication paradigm for integrated circuits with increasingly large number of cores, such as multiprocessor systems-on-chip (MPSoCs) and chip multiprocessors (CMPs). The benefits of the NoC based SoC design approach include scalability, predictability, and higher bandwidth with support for concurrent communications.
	In this paper, we present a complete implementation in VHDL of the H.264 video decoder algorithm, which we validate on two different FPGA chips. The novelty of our implementation is that the communication between the decoder modules is done using a network-on-chip. This makes our design scalable and easily integrated within larger future NoC based MPSoCs, where the same hardware platform would host other algorithms or applications such as compression, filtering, etc. To the best of our knowledge, our implementation of the H.264 decoder algorithm is the first such implementation validated on real FPGA hardware that is fully disclosed and made publicly available.
	SECTION II.
	Related Work

	Prior work on FPGA based implementations of the H.264 video decoder can be classified into three categories: 1) studies that target FPGA implementations, but stop at the simulation level (i.e., synthesis, place, and route steps performed using CAD tools such as Quartus II or Vivado), without actual validation on real hardware, 2) studies that do implement and validate portions of the H.264 decoder algorithm on FPGA hardware, and 3) simulation level only studies of NoC based H.264 decoder solutions.
	Due to lack of space we do not review here studies in the first category. Examples of prior studies in the second category include [2]–[3][4][5]. The study in [2] presented implementations of IQIT, intra prediction, inter prediction, and deblocking modules. However, they did not report implementations of the entropy decoder or frame buffer. The solution in [3] provided optimization techniques for the entropy decoder and intra prediction modules. The study in [4] reported a pipelined design of the intra prediction module while the study in [5] reported a design solution for the CALVC decoder, which is a component of the entropy decoder module.
	Examples of previous work in the third category, with focus on simulations of NoC based H.264 decoders, include [6]–[7][8]. The work in [6] studied area occupied by various NoC components on FPGAs. While [6] reported simulations on a 3×4 mesh NoC topology, the study in [7] focused on a network topology consisting of 2 star networks connected by a 3×3 NoC. A comparison between a generic NoC architecture based decoder and an NoC architecture tailored to the H.264 decoder is reported in [8]. The study in [9] reported synthesis results for an NoC based H.264 decoder targeting a Virtex 4 FPGA implementation. The work in [10] further discusses the H.264 implementation on an FPGA but reports only HDL level simulations. The study in [11] proposes a unified software and hardware architecture for video decoding where the communication infrastructure is implemented with an arrays of modified NoC routers. The processing elements are light weight processor tiles that enable software and hardware implementations to coexist, while a programmable interconnect enables dynamic interconnection of the tiles. While they reported an FPGA prototype, the source codes are not publicly available.
	SECTION III.
	The H.264 Video Decoder Algorithm

	The top level block diagram of the H.264 video decoder algorithm is shown in Fig. 1. The input to the decoding algorithm consists of network abstraction layer (NAL) units, which can be organized either as packets or as a stream of bytes [12]. The primary modules of the H.264 video decoder include: entropy decoder, inverse quantization and inverse transform (IQIT), intra prediction, inter prediction, and deblocking filter. Due to space limitations, we cannot describe the functionality of each of these modules in this paper. For a complete description and details please see references [12]–[13][14][15]. Noteworthy is that for the entropy decoder we use the context adaptive variable length coding (CAVLC) approach [16]. 
	/
	Fig. 1. The top level block diagram of the h.264 video decoder algorithm.
	SECTION IV.
	Partitioning of the H.264 Algorithm
	1. NAL Parsing and Entropy Decoding PE
	2. IQIT PE
	3. Intra Prediction PE
	4. Deblocking Filter PE
	5. Luma Motion Compensation PE
	6. Chroma Motion Compensationu PE
	7. Buffer Control PE
	8. Display Driver PE


	Before mapping the H.264 algorithm to a network-on-chip, the algorithm must first be partitioned into several components. Then, these components will be implemented as individual processing elements (PEs) attached to the routers of a regular mesh NoC architecture. Note that there may not be a one-to-one correspondence between the blocks in the diagram from Fig. 1 and these partitions, as it will become clear below. In this paper, we use a partitioning into seven primary PEs. A separate PE is dedicated to each of these seven functions: IQIT, intra prediction, sub-pixel luma motion compensation (i.e., intra prediction), sub-pixel chroma motion compensation, frame buffers control and integer motion compensation, deblocking filter, and display driver (i.e., controller). In addition, we dedicate one more PE for NAL parsing and entropy decoding. Brief descriptions of these PEs are given below.
	The task of this PE is to parse the incoming NAL stream and perform necessary entropy decoding functions on the data. These 2 functions are grouped together because the entropy decoder is only required by the NAL parser. This PE interacts with two other PEs during normal operation. It sends transform domain residuals to the IQIT PE, which then processes them and forwards the results to the buffer node. The parser PE also sends information directly to the buffer PE. This information includes prediction modes, parameters for those prediction modes, and the coordinates of the macroblock to those predictions should be performed on. Additionally, the parser PE also sends commands to start a new frame and to start the video sequence.
	This PE receives transform domain residuals data from the parser PE. It then performs the inverse quantization and inverse transform procedures on the received data. After the IQIT process is completed, the residuals are sent to the buffer PE to be added to the prediction results.
	The intra prediction PE processes one block of up to 16×16 pixels at a time. The reference pixels for this prediction are provided by the buffer PE, while the parameters for this prediction are provided by the parser PE, but are routed through the buffer node before arriving at the intra prediction PE. Because of this, the intra prediction PE only communicates directly with the buffer. Therefore, when the manual mapping of these PEs to the NoC will be performed (discussed later), these two PEs should be assigned to routers that are close to each other.
	The deblocking filter PE is used right before displaying the completed frame. This PE receives data of pixels near a macroblock boundary from the buffer PE, it performs the deblocking procedure on them, and then, it sends the results back to the buffer PE.
	The luma motion compensation algorithm is divided between two processing elements. Integer luma motion compensation occurs on the same PE as the reference buffer because this portion of inter prediction is bound exclusively by frame buffer access time. Sub-pixel motion is a separate PE because it is computationally intensive. In addition, it has good potential for parallelization, which is easier done if this procedure is separated from other computations. Sub-pixel motion compensation uses up to two successive six tap FIR filters to interpolate pixel values. Additionally, a third two point FIR filter may be used when quarter pixel accuracy is required. The luma motion compensation PE performs interpolation for eight luma samples at a time. By interpolating eight samples at a time, the luma motion compensation PE is able to match the filter output to the throughput of the network. Although some profiles of the H.264 standard use multiple reference frames for inter prediction, our implementation uses only a single reference frame for simplicity.
	The chroma motion compensation PE implements the sub-pixel motion compensation algorithm for chroma samples. Similarly to the luma motion compensation PE, this PE also performs interpolation for eight samples at a time. In this case, the eight samples are comprised of 2×2 blocks, one for each chroma channel. By implementing the chroma and luma motion compensation algorithms on different PEs allows for both of these algorithms to run in parallel, and thus, to take advantage of the parallel communication provided by the NoC.
	The buffer control PE controls access to both the current frame buffer and the reference frame buffer. This PE receives parameters from the parser PE, which trigger intra prediction, inter prediction, deblocking, and display events. This PE also receives residuals from the IQIT PE that are added to the working frame buffer at the specified location. When a packet containing a command to perform a prediction action is received, the buffer PE packages up any relevant information for that prediction and sends it to the respective node or nodes. Similarly, if residuals are received from the IQIT PE, the residuals are added to the working frame buffer at the specified location. Because the parser can actually overwhelm the rest of the network during certain algorithms, the buffer PE also controls the rate at which the parser PE sends commands using one flit acknowledgment packets.
	The display driver PE is responsible for reading decoded frames from the decoded frame buffer and for converting them into signals to control an external display. The display driver PE receives eight bit LCbCr pixels and converts these values into six bit RGB values. The RGB data is stored in the RAM local to the display PE and used to drive the hardware VGA driver.
	SECTION V.
	Mapping to a Regular Mesh Network-on-Chip
	A. 3×3 Network-on-Chip
	B. 2×2 Network-on-Chip


	In the final actual VHDL description of the top level design entity, we must specify the location of each of the PEs inside the regular mesh NoC architecture. Because we use eight PEs in total, initially, the NoC architecture is a 3×3 regular mesh topology. This NoC is small enough to fit on the target FPGA chip for this implementation, which is a Stratix IV FPGA, available on the DE4 development board.
	When we specify the location of the PEs inside the mesh topology (i.e., specify the NoC router to which a particular PE is assigned), we effectively solve what is commonly called a network-on-chip mapping problem. Thus, each of the PEs described in the previous section are mapped to the routers of the NoC. Because solving the NoC mapping problem is not the main focus of this paper, we use manual mapping, which is done intelligently based on information about the internal structure of the decoding algorithm. Noteworthy, when mapping the PEs onto the NoC, it is crucial to place PEs which share large amounts of communication close to each other. This helps to reduce the number of routers a packet must travel between source and destination through the NoC. In addition, based on our study of the decoding algorithm, we noticed that the Entropy Decoding PE sends most of its packets to the IQIT. Also, the Parser PE communicates almost exclusively with the IQIT and frame buffer control PEs. Hence, these PEs are placed as close to each other as possible. In addition, based on the partitioning used in our design, we know that both inter and intra prediction should be close to the reference frame controller. The deblocking filter and both prediction nodes are expected to communicate extensively with the reference frame controller. After taking into consideration the above observations, we arrived to the manual mapping solution shown in Fig. 2. 
	/
	Fig. 2. The proposed mapping of the h.264 decoder pes to a 3×3 regular mesh noc. This mapping was derived manually.
	Our VHDL implementation is modular and follows the architecture illustrated in Fig. 2. We have developed VHDL descriptions for each of the PEs shown in this diagram. The PEs implemented on Nios II soft cores execute portions of the decoding algorithm written in C and compiled using the tool chain available from Altera. The Verilog description of the network-on-chip was generated with the CONNECT tool from Carnegie Mellon University [17] and integrated within our project. The entire design was synthesized, placed, and routed with the Quartus II 16.1 Standard [18]. The design was tested and verified on the DE4 development board [19], which uses Altera's Stratix IV GX FPGA chip [20]. A summary of the resource utilization report is given in Table I. 
	Table I Resource utilization of the 3×3 noc based H.264 decoder.
	/
	To study the scalability of our design, we also implemented a scaled down version of the decoder to target an SoC style FPGA from the Cyclone V SoC family, available on the DE1-SoC development board. This is a smaller FPGA chip. However, the SoC FPGA has a built-in hard processor system (HPS), which contains two ARM cores that will be used to implement the parser and buffer PEs. Three major changes were made to the initial design in order to be able to fit it on the smaller FPGA. First, the built-in ARM cores instead of Nios II soft cores are used to implement the buffer and parser PEs. Second, the intra prediction functionality was moved to the buffer PE, which is performed in software (i.e., executed on the HPS). Finally, the NoC topology was changed to a 2×2 topology. Because of that, routers were changed to include more ports in order to be able to accommodate all the PEs in the design.
	The intra prediction was moved into software (i.e., added into the buffer PE) because, based on
	/
	Fig. 3. Mapping of the h.264 decoder pes to a 2×2 regular mesh noc.
	The scaled down version of the video decoder described in this section was also implemented using the Quartus II Prime tool. Testing and verification was done on the DE1-SoC development board [21], which uses Altera's Cyclone V SoC FPGA chip [22]. The resource utilization report is given in Table II. 
	Table II Resource utilization of the 2×2 noc based H.264 decoder. 
	/
	SECTION VI.
	Experimental Results
	A. Test Videos

	B. Buffer PE Profiling
	C. Discussion of Profiling Results


	In this section, we present the results of the performance testing and profiling performed on both versions of the NoC based H.264 decoder. To perform this profiling several counters were added to the Nios II PEs. These counters are read by the software running on the Nios II cores at a variety of locations in order to determine what the limiting factors of system performance are. Additionally, the timer is also used to determine the overall system performance in order to be able to compare against an all-software decoder implementation.
	For testing purposes, we use five test videos (akiyo, foreman, highway, hall, and paris) from the online repository of YUV encoded video files available at [23]. The first three tests use the QCIF format with a resolution of 176×144. The remaining two tests use the CIF format, which has twice the horizontal and vertical resolution of the QCIF videos. An important note here is that, although the video decoder itself can decode CIF as well as higher resolution videos, the display PE only contains enough RAM to display 320×200 videos. Therefore, for the CIF videos, the entire video is decoded, but, only the top left 320×200 pixels are displayed from each frame. Each of the five test videos are encoded using the JM reference encoder available at [24]. The encoding settings use a modified baseline profile that uses a single reference image and a periodic intra prediction update to avoid accumulated errors in the output video stream. Selected frames of these test videos being decoded by each of our two implementations are shown in Fig. 4 and Fig. 5. 
	/
	Fig. 4. Operation of the 3×3 implementation on the hall video.
	/
	Fig. 5. Operation of the 2×2 implementation on the akiyo video.
	Because the buffer PE controls access to resources used by nearly every algorithm in the system, the profiling measurements are taken at this PE. The block diagram that illustrates the profiling of different components of the system at the buffer PE level is shown in Fig. 6. 
	/
	Fig. 6. Simplified diagram of the buffer PE software to illustrate the timer start/stop positions used for profiling.
	A total of nine counters are included and monitored for profiling purposes. The first counter starts when the buffer PE receives an allocate frame command and stops when the buffer PE receives a special packet indicating the video stream is done. The purpose of this counter is to keep track of the total time it takes to decode the video sequence. Counters for deblocking, intra prediction, and inter prediction are included in order to keep track of the total time taken to perform each of these algorithms. An additional counter for each of these three algorithms is included to keep track of the amount of time the buffer PE idles while waiting for a response from the PE associated with each of these algorithms. A counter is also used to keep track of the duration of a write to the display PE. Another counter is used to determine the total time the buffer PE spends idling after completing a command before it receives another one. The IQIT algorithm is not profiled because this algorithm is essentially done by the time it reaches the buffer PE.
	The results of the profiling for both the 3×3 and 2×2 decoder implementations are summarized in Tables III and IV. All times in these tables are in units of seconds The average distribution for each decoder is shown in Fig. 7 for the 3×3 decoder and in Fig. 8 for the 2×2 decoder. 
	Table III Profiling results of the 3×3 noc decoder.
	/
	The profiling results indicate that a large portion of total time is spent performing inter prediction and deblocking relative to time the buffer PE idles waiting for these algorithms PEs to respond. This indicates that the buffer PE is currently incapable of fully utilizing these PEs. Because the code on the buffer PE for dispatching either of these algorithms consists almost entirely of reading from memory and writing to the NoC through the NoC interface, architectural changes for improving performance in the future could focus on several aspects in order to improve the design. First, one could improve the total bandwidth to the memory if possible. Second, one should reduce the amount of activity or interaction required by the buffer PE to perform NoC reads and writes. Also, given that the buffer PE is relatively simple, one could implement its functionality completely in hardware. Finally, the parser PE could be a good target for improvement because the command wait time takes up a significant amount of the buffer PE time. 
	Table IV Profiling results of the 2×2 noc decoder.
	/
	/
	Fig. 7. Average time spent in each section of the buffer PE code for the 3×3 noc based decoder.
	/
	Fig. 8. Average time spent in each section of the buffer PE code for the 2×2 noc based decoder.
	SECTION VII.
	Performance Comparisons
	A. Discussion of Performance Comparisons


	In this section, we conduct performance comparisons between our FPGA implementations and an open source all-software decoder implemented in C [25]. This decoder was executed separately on both the Nios II soft core and the HPS core. To do that, the decoder was modified to use the VGA display PE for video output. Additionally, the decoder was modified to use the available hardware timer to measure the total decoding time. Because reading from the counters has a performance impact, all of the profiling counters were removed from the NoC based decoders, except for the total decoding time timer. The test results are shown in Table V, where all reported numbers are in units of frames per second. 
	Table V Comparison of the noc based decoders with the open source software based decoder, which is executed on NIOS II OR HPS.
	/
	As expected, the NoC based implementation outperforms the Nios II soft core processor running the full software decoder. An unexpected result is the performance of the software decoder running on the ARM core. One important difference between the software decoders and the NoC based decoders is that the software decoders do not implement a deblocking filter. However, even after accounting for this, a large performance discrepancy exists. Another noteworthy point is that the 2×2 decoder is slower than the 3×3 decoder, despite the fact that the software decoder is over three times faster on the ARM core compared to the Nios II soft core, and intra prediction is not a heavily utilized function. Based on the profiling results, this appears to stem from the fact that the communication between the HPS and the FPGA on the SoC style FPGA is slower than the the communication between the Nios II soft cores and the rest of the FPGA on the large scale design. Evidence of this can be seen in the relative time spent writing to the display PE in the case of each decoder. The 2×2 decoder spends about 26% of its time writing to the display PE, while the 3×3 decoder only spends about 8% of its time for the same activity. This indicates a large difference in the communication overhead between the two designs. Based on this information, efforts seeking to improve the NoC decoder implementations against the ARM core should focus on improving the processor to FPGA communication or removing it altogether by creating a hardware only implementation of the buffer PE.
	SECTION VIII.
	Conclusion

	We presented the design of an H.264 video decoder prototyped on the Altera's Stratix IV GX and Cyclone V SoC FPGA chips. Our main contributions can be summarized as follows: 1) The communication between the decoder modules is done via a network-on-chip, which makes our implementation suitable for integration into larger MPSoC solutions, 2) We provide a complete system level design solution that includes a partitioning of the decoding algorithm into eight processing elements and manual mappings of these PEs onto 3×3 and 2×2 NoC topologies, and 3) The entire project implementation will be made publicly available.
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