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Abstract 
To enhance the efficiency of bridge construction, the wireless real-time video monitoring system 
(WRITE) was developed. Utilizing the advanced technologies of computer vision and artificial neural 
networks, the developed system first wirelessly acquired a sequence of images of work-face 
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operations. Then human pose analyzing algorithms processed these images in real time to generate 
human poses associated with construction workers who performed the operations. Next, a portion of 
the human poses were manually classified into three categories as effective work, contributory work, 
and ineffective work and were used to train the built-in artificial neural networks (ANN). Finally, the 
trained neural networks were employed to decide the ongoing laborers’ working status by comparing 
the in coming images to the developed human poses. The developed system was tested for accuracy 
on a bridge construction project. Results of the test showed that efficiency measurements by the 
system were reasonably accurate when compared to the measurements produced by the manual 
method. Thus, the success of this research indicates promise for enabling project managers to quickly 
identify work-face operation problems and to take actions immediately to address these problems. 

Introduction 
Construction of highway bridges has been closely monitored by government agencies, the engineering 
and construction communities, and the general public, particularly after the September 11, 2001, 
terrorist attacks, Hurricane Katrina, the I-35W bridge collapse, the 2004 tsunami in South Asia, and the 
2010 Haiti earthquake. Highway bridges are the critical components of the nation’s transportation 
network because a bridge controls the capacity of the highway system; A bridge is the highest cost per 
mile element of the highway system; and if a bridge fails, the highway system fails (Barker and Puckett 
1997). 

Previous research results show that to enhance the efficiency of highway bridge construction, there is 
a need to develop innovative technologies to provide real-time information to engineers and project 
managers so that they are able to make quick decisions regarding the efficiency of work-face 
operations (Bai and Burkett 2006). To address this urgent need, the wireless real-time video 
monitoring system (WRITE) was developed. Although the proto type WRITE is more advanced than the 
traditional efficiency measurement techniques employed in the construction industry, engineers and 
project managers still need to look at the images to manually interpret the working status of a 
construction laborer (e.g., effective work, contributory work, or ineffective work) (Kim et al. 2009). 
Because the process of determining working status is time-consuming and subject to human errors and 
biases as a result of a lack of the required skills, the ideal situation would be to fully and automatically 
detect the working status of a laborer on the basis of the human poses shown on the captured images. 
This paper presents the development of human pose analyzing algorithms using artificial neural 
networks (ANN) that can be employed by the WRITE to automatically determine the efficiency of work-
face operations. The developed algorithm was tested in a highway bridge construction project in 
Kansas. 

The rest of the paper is organized as follows. First, the research objective will be outlined. Second, the 
results of previous research on construction efficiency measurement methods and human tracking will 
be briefly reviewed. Third, the development of the WRITE will be described. Fourth, the human pose 
analyzing algorithms using ANN will be presented. Fifth, the experimental study of the WRITE and the 
developed algorithms in a bridge construction project will be discussed. Finally, the conclusions and 
recommendations will be provided. 



Objective and Scope 
The primary objective of this research project was to use ANN to develop human pose analyzing 
algorithms that can be employed to automatically determine the efficiency of work-face operations on 
the basis of the images of laborers captured by the WRITE in the construction site. The developed 
algorithms were tested in a steel girder bridge reconstruction project to determine its accuracy. The 
work breakdown structure (WBS) was used to break down the steel girder bridge into four levels, 
including Level 1 (project), Level 2 (work zone), Level 3 (activity), and Level 4 (operation). WBS is 
defined as “a deliverable-oriented grouping of project elements,” which organizes and defines the 
hierarchical structure of the entire project (Jung and Woo 2004). It is often used in complex 
construction projects to identify project information and improve the efficiency of control processes. 
Examples of the levels of the steel girder bridge WBS are shown in Table 1. With the WBS, it was 
possible to systematically measure on-site labor working efficiency at the operational level. For this 
research project, the operation of tying rebar was selected to develop and test the human pose 
analyzing algorithms because this operation was a labor-intensive task. If additional resources are 
available in the future, the human pose analyzing algorithms should be tested using the other bridge 
operations listed in Table 1. 

Table 1. Examples of WBS for Steel Girder Bridge Reconstruction 
Level 1 (project) Level 2 (work 

zone) 
Level 3 (activity) Level 4 (operation) 

Steel girder 
bridge 

General Mobilization Set up crane 
 

Abutment Traffic control Moving concrete safety barrier  
Pier 1 Demolition Driving pile  
Pier 2 Excavation Forming  
Pier 3 Abutment 1 Structural excavation  
Pier n Abutment 2 Slope protection (filter fabric and 

rock)  
Span 1 Pier drill shafts Set bearing devices  
Span 2 Pier columns Unload beams  
Span 3 Pier cap Set beams  
Span n Slope protection Install diaphragms   

Beam setting Bolting and tightening splice   
Deck forming Ground splice   
Reinforcing deck Prepare deck material   
Bridge barrier rail Prepare deck forming   
Concrete barrier Overhangs   
Backfill 
abutments 

Strip 
  

Approach road Place backwall (strip drain and 
backfill)    
Tying rebar    
Pouring and curing    
Strip and check elevation 



   
Other 

 

The success of this research project contributes to the advancement of the bridge construction 
industry in two ways. First, it applies advanced technologies, such as computer vision and ANN, in 
construction operations. Second, the results of this research project make it possible to automatically 
determine the efficiency of work-face operations in real time. Thus, engineers and project managers 
will be able to quickly identify on-site labor efficiency problems and to take actions immediately to 
address these problems. As a result, the developed WRITE and algorithms enhanced the contractors’ 
capability of managing bridge construction projects. 

Literature Review 
Literature review for this research project included two major topics: on-site construction efficiency 
measurement methods and human tracking. Efficiency or productivity data have been widely used as 
performance indicators to evaluate construction operations throughout the entire phase of 
construction (Thomas et al. 2003). Construction companies must continuously track operation 
efficiency to monitor their performance (Goodrum and Haas 2004). Hence, measuring efficiency at a 
project site has been an important task in the construction industry. Over the years, several on-site 
efficiency measurement techniques have been developed, including the stopwatch study and the time-
lapse video. These techniques can also be utilized to measure on-site construction productivity. In this 
research project, the efficiency measurement is viewed as an indirect measure of productivity. 

Stopwatch study, also known as time study, has been used as the fundamental approach to measure 
efficiency since its invention in 1880 by Frederick W. Taylor, the father of scientific management 
(Meyers 1992). This is the oldest and most simple measurement method of efficiency for recording the 
duration of various construction activities. 

The time-lapse video technique, one of the photographic techniques, has been used since the 1960s to 
view lengthy construction operations in a short period of time (Fondahl 1960). Pictures are taken using 
a special camera with 1–5 s intervals and are then converted to a video (Sprinkle 1972; Oglesby et al. 
1989). Not only can a time-lapse video reduce the time spent viewing a construction operation, but it 
can also provide an accurate interpretation of a construction operation (Adrian 2004). 

Since 2000, wireless technologies, such as the global positioning system (GPS), have been utilized to 
track the status of resources and construction operations. Navon and Shpatnitsky (2005) used GPS 
technology to automatically measure earthmoving performance by identifying the locations of 
equipment at regular time intervals and converting the information into project productivity. 

All available efficiency measurement methods have some common limitations. First, these methods 
are unable to provide data for engineers and project managers to use to analyze the on-site 
construction operations in real time. Therefore, actions to address the on-site efficiency problems 
cannot be taken immediately. Although GPS technology can be used to transfer construction 
operational data in real time, these data cannot be utilized to analyze the on-site labor efficiency. 
Second, current methods do not provide a platform to share the real-time efficiency data among 



owners, engineers, contractors, and material suppliers. As a result, communication and coordination 
among project participants suffers. 

Human tracking is a branch of computer science known as computer vision and has been a pressing 
research topic for many years. Results of previous research indicate that existing computer vision 
technologies have the required capabilities of successfully recognizing objects such as flowers, soccer 
balls, tools, and materials (Brilakis et al. 2005; Shapiro and Stockman 2001); human parts such as the 
limbs, torso, and head (Mori and Malik 2002; Ramanan and Forsyth 2003); and human motions such as 
walking, running, kicking, and jumping (Bohn and Teizer 2009; Ioffe and Forsyth 2001; Lan and 
Huttenlocher 2005; Lim et al. 2006). Building on these successes, computer scientists have also 
developed technologies to automatically detect human actions such as dancing and playing tennis and 
football (Efros et al. 2003; Han et al. 2006; Yilmaz and Shah 2005). However, technologies that can 
automatically detect a construction activity and lead to the determination of the efficiency of work-
face operations do not exist. A construction operation could be very complicated because of the mixed 
motion of human parts, tools, and materials that takes place at any given time and place. 

To address the current shortfalls in construction efficiency measurement, the WRITE, along with 
human pose analyzing algorithms, was developed using advanced technologies such as computer 
vision and ANN. The framework of the WRITE will be introduced first, followed by the development of 
the human pose analyzing algorithms. 

Development of the WRITE 
The WRITE can provide pictorial data through a wireless network so that anyone in the construction 
field office or home office can monitor construction activities and analyze the efficiency of work-face 
operations in real time as long as there is an Internet connection. The WRITE offers several unique 
advantages. First, there is no disruption to construction operations. Second, the on-site construction 
efficiency can be determined in real time so that the engineers and project managers will be able to 
take actions immediately if necessary. Third, all participants involved in a construction project can 
share the collected data through the Internet at any time and at any location. 

The WRITE is composed of four major components, including the video camera house, the data 
processor, the ac transformer, and the computer. Along with these major components, additional 
items are required to operate the WRITE. These items include the wireless modems, a generator, a 
steel pole, and cables to connect the components. The framework of the WRITE, which shows the 
connection of the major components, is presented in Fig. 1. 

Once the video camera has taken pictures from a construction site, the data processor immediately 
saves the pictorial data into files. These files are then transmitted in real time using wireless modems. 
An engineer or a project manager with the IP address at another location can access the data files with 
a wireless modem or a local area network (LAN) to conduct efficiency analysis. After finishing the data 
analysis, efficiency data and live pictures can be presented on a website so that other users, including 
the owners, engineers, contractors, and material suppliers, can share the information as long as they 
have an Internet connection. Although the proto type WRITE is more advanced than the traditional 
efficiency measurement methods employed in the construction industry, engineers or project 
managers still need to look at the video images to manually interpret the working status of a 



construction laborer. Because the process of determining working status is time-consuming and 
subject to human errors and biases, the ideal situation would be to the automatic detection of the 
working status of a laborer on the basis of the human poses shown in the captured images. 

Development of Human Pose Analyzing Algorithms 
In this research project, the human pose analyzing algorithms were developed to automatically 
determine the efficiency of a work-face operation (specifically, tying rebar in concrete bridge deck 
construction) using the images captured by the WRITE. The development of the human pose analyzing 
algorithms includes three major steps: (1) image processing, (2) human pose creation, and (3) human 
pose classification. 

Image Processing 
Fig. 2 shows an example of tying rebar images acquired by using the WRITE. The incoming images were 
processed to identify and extract the construction workers captured in the photographs. When 
identifying workers, it was assumed that the workers were in motion over a period of time when 
performing a construction operation. Hence, a motion segmentation algorithm similar to the one in Lin 
etal. (2006) was developed to identify all the moving objects in these images. 

However, as this approach captures several other moving objects that are irrelevant to the study (such 
as swaying trees and birds) an algorithm to filter the workers from a set of moving objects was also 
developed. First, if moving objects are of interest in an image, then all the other regions that are static 
are collectively classified as background. A moving average model, defined as follows, is used to 
compute this background. 

Definition 1: If 𝐼𝐼𝑁𝑁(𝑥𝑥,𝑦𝑦) is the intensity of the pixel at location (𝑥𝑥, 𝑦𝑦) on the NNth frame, then the 
intensity of the pixel on its background (BG) image for BGNBGNth at the same location (𝑥𝑥, 𝑦𝑦), 
computed over 𝐾𝐾 frames is defined as 

𝐼𝐼𝐵𝐵𝐵𝐵(𝑥𝑥, 𝑦𝑦) = 1 𝐾𝐾 � � 𝐼𝐼𝑖𝑖(𝑥𝑥,𝑦𝑦)
𝑖𝑖=𝑁𝑁+𝐾𝐾 2⁄

𝑖𝑖=𝑁𝑁−𝐾𝐾 2⁄

��  

Second, before filtering out the irrelevant objects such as swaying trees and flying birds, the 
environmental noises need to be removed. When the background is computed, it is subtracted from 
the current frame (𝑁𝑁th) to extract the workers from the image. This method focuses on a simple pixel-
to-pixel subtraction holding a fixed threshold, which is good for noiseless environments. However, the 
construction operation (tying rebar) was performed outdoors, and the wind created a jitter in the 
camera’s focus as a result of its mounted elevation. To overcome the inevitable sources of noise, a 
mask level background subtraction was developed. 

Definition 2: If 𝐼𝐼avg𝑁𝑁  and 𝐼𝐼avg𝐵𝐵𝐵𝐵  denote the average of pixel intensities of the mask M (typically 5) in 
the NNth frame and its background, respectively, then the intensity of a pixel 𝐼𝐼𝑆𝑆𝐵𝐵  of the segmented 
image (SG) over the same mask is defined as 

𝐼𝐼𝑆𝑆𝐵𝐵(𝑥𝑥 − 𝑖𝑖, 𝑦𝑦 − 𝑖𝑖) = 1; 𝑖𝑖𝑖𝑖 1/𝑀𝑀|𝐼𝐼avg𝑁𝑁 − 𝐼𝐼avg𝐵𝐵𝐵𝐵 | > 𝑇𝑇 = 0; otherwise 



where 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁 = � 𝐼𝐼𝑁𝑁  (𝑥𝑥 − 𝑗𝑗,𝑦𝑦 − 𝑗𝑗)
𝑗𝑗=𝑀𝑀/2

𝑗𝑗=−𝑀𝑀/2

 

𝐼𝐼avg𝐵𝐵𝐵𝐵 = � 𝐼𝐼𝐵𝐵𝐵𝐵(𝑥𝑥 − 𝑗𝑗,𝑦𝑦 − 𝑗𝑗)
𝑗𝑗=𝑀𝑀/2

𝑗𝑗=−𝑀𝑀/2

 

where 𝑖𝑖 = [−𝑀𝑀/2,𝑀𝑀/2] and 𝑇𝑇 is a predetermined threshold (typically 25). 

Finally, once the moving objects are segmented and the environmental noises are removed, the 
irrelevant objects such as swaying trees and flying birds were filtered through the use of pattern 
matching. The assumption in filtration was that every worker in the crew wore identifiable clothing. 
The pattern of the clothing was determined, and a match was run over all the objects, considering a 
threshold 𝑇𝑇𝑉𝑉 (typically 40). The pattern of an object was modeled as its statistical color variance 
described in definition 3 as follows. 

Definition 3: If 𝑉𝑉 denotes the variance over a mask 𝑀𝑀𝑉𝑉 (typically 7) in the segmented image, 
and 𝑉𝑉Standard denotes the standard variance, then the intensity of a pixel 𝐼𝐼𝐹𝐹 of the filtered 
image 𝐹𝐹 over the same mask is defined as where 

𝐼𝐼𝐹𝐹(𝑥𝑥 − 𝑖𝑖, 𝑦𝑦 − 𝑖𝑖) = 1; 𝑖𝑖𝑖𝑖 (1/𝑀𝑀𝑉𝑉)|𝑉𝑉 − 𝑉𝑉𝑆𝑆tan 𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑| ≤ 𝑇𝑇𝑉𝑉 = 0; otherwise 

where 

𝑉𝑉 = � (𝐼𝐼𝑆𝑆𝐵𝐵(𝑥𝑥 − 𝑘𝑘,𝑦𝑦 − 𝑘𝑘) − 1/𝑀𝑀
𝑘𝑘=𝑀𝑀𝑉𝑉/2

𝑘𝑘=−𝑀𝑀𝑉𝑉/2

� 𝐼𝐼(𝑥𝑥 − 𝑗𝑗,𝑦𝑦 − 𝑗𝑗))2
𝑗𝑗=𝑀𝑀/2

𝑗𝑗=−𝑀𝑀/2

 

where 𝑖𝑖 = [−𝑀𝑀𝑉𝑉/2,𝑀𝑀𝑉𝑉/2]; and 𝑇𝑇𝑉𝑉 is a predetermined threshold (typically 40). 

After filtering the irrelevant objects, an image of a person can be described by using a 256 ×
256 matrix. Each entry of this matrix could be any number from 0–255. The next step was to 
characterize the workers and to assign them a specific identity. The outline of each worker was 
identified, and a silhouette was created by clustering pixels in the outline with the region growing 
technique, in which similar pixels are grouped together to form a single region and are then given a 
distinct color (Adams and Bischof 1994). Certain attributes for each silhouette (such as centroid 
location, area, and the minimum and maximum along both the axes) were computed and stored 
dynamically in a database. Fig. 3 presents silhouettes corresponding to three workers shown in 
Fig. 2 (where they are identified by an arrow). 

Human Pose Creation 
The poses of construction workers were extracted in every image by skeletonizing their corresponding 
silhouettes using the fast parallel algorithm for image silhouette thinning developed by Zhang and Suen 
(1984). This algorithm involves two subiterations, one for deleting the northwest corner points and 
southeast boundary points and another for deleting the southeast corner points and northwest 



boundary points. Each silhouette is thinned to form a pose (skeleton) that is 1 pixel thick. The end 
points and the pixel connectivity are preserved so that a continuous pose is obtained and the distortion 
is minimal. Each pose was represented using a 1 × 256 matrix. Fig. 4 shows poses obtained from 
silhouettes in Fig. 3. 

The extracted poses are categorized into three groups on the basis of performance, including effective 
work, contributory work, and ineffective work. Any motion that is essential for progress and that adds 
to the completion of a construction operation is defined as effective work. Conversely, any motion that 
does not add to the completion of a construction operation is referred to as ineffective work. 
Contributory work is defined as any motion that is essential for progress but does not directly add to 
the completion of a construction operation. Because there are no precise, agreed-upon definitions of 
effective, contributory, and ineffective human postures in the construction industry, in this research 
project, effective, contributory, and ineffective poses were classified based on experience, on-site 
observations, images of workers, and consultations from industry experts. In addition, the same 
standard was kept throughout the entire project. For the construction operation of tying rebar, the 
ironworkers tie rebar by hand with pliers and tie wire. This work requires repeated fast hand and arm 
movements while applying high force. If ironworkers tie rebar at ground level (e.g., for a concrete 
bridge deck or concrete highway pavement), they also have to work in a stooped position with their 
bodies bent deeply forward. Through field observations, an ideal working cycle for tying rebar, along 
with working status, can be described in Table 2. In the real world, there will be ineffective work 
actions in between the effective work and contributory work operations. An example of ineffective 
work is the act of standing at a location doing nothing. 

Table 2. Ideal Working Cycle for Tying Rebar 
Number Description of action Working status 
1 Back bending body to a tie position Effective work 
2 Tying rebar Effective work 
3 Body adjustment (such as bending back the body) Contributory work 
4 Move to the next tie position Effective work 

 
Human Pose Classification 
An ANN was employed to classify human poses into effective, contributory, and ineffective categories. 
Several reasons exist for why ANN technology is suitable for this research project. First, an ANN can be 
used to model complex relationships between inputs and outputs and to find patterns in data. Second, 
algorithms can be designed to alter the weights of the connections in the network to produce a desired 
result. Finally, there is the possibility of learning, which has attracted the most interest in ANN. The 
learning capability enables researchers to use a small amount of captured data to predict the 
characteristics of a large amount of new data. 

An ANN contains a large number of processing elements called neurons that are grouped in layers and 
linked together by weighted connections called synapses. A neuron performs two basic functions. It 
sums up the values at each input multiplied by the weight associated with each interconnection, and 
then it generates an output by passing the sum through an activation function. The interconnecting 
weights begin at random and are adjusted when the network undergoes training for a specific 



application. There are several algorithms available to adjust these weights and minimize the training 
error. The algorithm developed for this research project is based on the back-propagation learning 
method (Amin and Shekhar 1994). In this algorithm, the training of the network begins by feeding the 
inputs through the input layer. The inputs were a sequence of human poses, and each pose was 
represented in a 1 × 256 matrix. The network output is then computed and compared with the 
desired output, which was manually annotated as effective work, contributory work, or ineffective 
work. The resulting error is fed back to the network using the input layer. This process is repeated 
iteratively until the resulting training error is acceptable or the specified number of iterations has been 
completed. 

The implementation of the developed algorithm undergoes two working phases: the learning phase 
and the execution phase. In the learning phase, training data sets (human poses) are first manually 
annotated such that each pose is assigned to one of the three classes: effective work, contributory 
work, or ineffective work. The annotated training data sets are the used to train the neural networks. 
In the execution phase, the trained neural networks will classify the incoming human poses (new 
poses) into the categories of effective work, contributory work, or ineffective work. During this 
process, the developed algorithm will update the records of a construction worker with the total 
number of effective, contributory, and ineffective corresponding poses. The efficiency of the 
worker 𝑃𝑃𝐴𝐴(𝑊𝑊) is defined and computed as: 

(1) 

𝑃𝑃𝐴𝐴(𝑊𝑊) = �
1
2
� [𝑃𝑃𝐴𝐴1(𝑊𝑊) + 𝑃𝑃𝐴𝐴2(𝑊𝑊)] = ∑𝑃𝑃𝐴𝐴𝐴𝐴(𝑊𝑊) 𝑛𝑛⁄  

where 

𝑃𝑃𝐴𝐴1(𝑊𝑊) =
[𝐼𝐼effective(𝑊𝑊) + 𝐼𝐼contributory(𝑊𝑊)]

[𝐼𝐼effective(𝑊𝑊) + 𝐼𝐼contributory(𝑊𝑊) + 𝐼𝐼ineffective(𝑊𝑊)]
 

𝑃𝑃𝐴𝐴2(𝑊𝑊) =
[𝐼𝐼effective(𝑊𝑊)]

[𝐼𝐼effective(𝑊𝑊) + 𝐼𝐼contributory(𝑊𝑊) + 𝐼𝐼ineffecti𝑎𝑎𝑣𝑣(𝑊𝑊)]
 

𝐼𝐼effective(𝑊𝑊) = total effective instances of the worker 𝑊𝑊 𝐼𝐼ineffective(𝑊𝑊) = total ineffective instances of 
the worker 𝑊𝑊 𝐼𝐼contributory(𝑊𝑊) = total contributory instances of the worker 𝑊𝑊. 

Experimental Study 
A bridge construction project was utilized for the experimental study to determine the accuracy of the 
developed algorithms. The construction operation, tying rebar, was recorded using the WRITE as a 
series of images at a rate of 1 frame per s. These images were 720 × 480 pixels in size, with a 
resolution of 96 dots per inch (dpi). Two workers performing the same operation, shown in Fig. 2, were 
chosen and labeled as W1 (left) and W2 (right), respectively. A set of 1,000 image frames for both W1 
and W2 was selected for the experimental study. The respective poses of each worker were manually 
classified to generate the ground truth data shown in Table 3. 

Table 3. Ground Truth Data for Experimental Study 
Worker ID Number of frames Effective frames Contributory frames Ineffective frames 



W1 1,000 637 180 183 
W2 1,000 717 48 235 

 

The poses obtained from W1 were used to train the neural networks. These poses were manually 
divided into three groups as effective, contributory, and ineffective. Each pose was represented by 
using a 1 × 256 matrix, and the matrix was input into the neural networks for training. Training data 
sets were created by randomly selecting an equal number of poses from each group. The neural 
networks were first trained over these selected training sets. Then the trained neural networks were 
tested for accuracy by using them to analyze and classify all of the poses of W1 and W2 (training data 
sets were returned to the original groups). Because these neural networks were trained on W1 poses, 
testing them on W1 poses was straight testing and testing them on W2 poses was cross testing. It 
should be noted that W2 performed the same operation as W1. This entire procedure of training and 
testing formed a single experimentation cycle. For this research project, each cycle was repeated 200 
times. Through the trial-and-error method, it was determined that when the size of the training data 
set was 26 from each group, the developed algorithm produced reliable, stable, and maximum 
performance (Peddi et al. 2009). Continuously increasing the size of the training data set had no 
significant improvement on the final results and only increased the time necessary to complete the 
experimentations. 

Work-face efficiency measurements for W1 and W2 using the manual method and the developed 
algorithms using ANN with a training data set size of 26 are presented in Table 4. As indicated, by using 
the developed algorithms to predict the efficiency of W1 (straight-testing method), the result of the 
algorithm method was almost the same as the outcome of the manual method (74 versus 73%). When 
using the algorithms to predict the efficiency of W2 (cross-testing method), the result of the algorithm 
method was 81% of the measurement of the manual method (60% versus 74%). In general, the 
straight-testing method produced more accurate results than the cross-testing method based on the 
percentage of accuracy measurements. The developed algorithms had the highest accuracy in 
predicting the effective work and the lowest in predicting contributory work. 

Table 4. Efficiency Measurements Using Manual and ANN Methods 
Worker 
ID 

Number of 
frames 

Analysis 
method 

Effective 
frames 

Contributory 
frames 

Ineffective 
frames 

Efficiency 
(%) 

W1 1,000 Manual 637 180 183 73   
ANN 583 312 105 74   
% of 
accuracy 

92 58 57 99 

W2 1,000 Manual 717 48 235 74   
ANN 531 147 322 60   
% of 
accuracy 

74 33 73 81 

Note: % of Accuracy = (ANN)/(Manual), if (ANN) < (Manual); % of Accuracy = (Manual)/(ANN), if 
(ANN)>(Manual); Manual and ANN efficiency rates were calculated using Eq. (1). 



Conclusions and Recommendations 
All of the available efficiency measurement methods in construction have some common limitations. 
First, these methods are unable to provide data for engineers and project managers to analyze the 
efficiency of work-face operations in real time. Therefore, actions to address the on-site efficiency 
problems and to improve construction operations cannot be taken immediately. Second, current 
methods do not provide a platform to share the real-time efficiency data among owners, engineers, 
contractors, and material suppliers. As a result, communication and coordination among construction 
project participants suffers. Third, existing efficiency measurement methods require a continuous 
human involvement to analyze the data. Such methods are prone to errors because of human biases 
and limitations, in addition to the time delay. To address these shortcomings, the WRITE and the 
human pose analyzing algorithms using ANN were developed to automatically determine the efficiency 
of work-face operations in the construction project site. 

The WRITE, with the human pose analyzing algorithms, was utilized in the following fashion. Images of 
construction workers were acquired using the WRITE at a construction site. The captured images were 
first processed to identify and extract the construction workers in the images and to filter out 
irrelevant objects. Second, a silhouette of each worker was created by clustering pixels with the region 
growing technique, in which similar pixels were grouped together to form a single region and were 
given a distinct color. Third, human poses associated with construction workers were extracted in 
every image by skeletonizing the corresponding silhouettes using the image silhouette thinning 
algorithm. A portion of the extracted poses were manually categorized on the basis of performance as 
effective work, contributory work, or ineffective work. Fourth, the classified human poses were utilized 
to train the neural networks. Finally, the trained neural networks were used to determine the 
efficiency of construction workers shown in the incoming images on the basis of the pattern match. 

The developed algorithms were tested for accuracy using straight-testing and cross-testing methods. 
Two construction workers (W1 and W2) performing the activity of tying rebar in a bridge construction 
project were selected for the experimental study. A total of 1,000 of each worker were taken to form 
the ground truth data. A total of 26 human poses in each performance category taken from W1 were 
utilized to train the neural networks. After the training, the neural networks were used to predict the 
efficiency for both W1 and W2, and results were compared to the outcomes of the manual method. By 
using the developed algorithms to predict the labor efficiency in the straight-testing, the result of the 
algorithm method was almost the same as the outcome of the manual method. When using the 
algorithm to predict labor efficiency in the cross testing method, the result of the algorithm method 
was 81% of the measurement of the manual method. Examining the individual performance category, 
the results indicated that the developed algorithm had the highest accuracy in predicting the effective 
work and the lowest in predicting contributory work. 

Real construction operations are very complicated as a result of the many factors involved. Several 
issues, such as the number of cameras needed to cover the entire construction site and obstructions in 
complex job sites, have not been addressed in this research project because of the resource limitation. 
All of these topics need to be investigated in the future. In addition, the developed algorithms can be 
extended in several ways. First, the developed human poses were two-dimensional (2D) images, and 
these images might not be able to clearly differentiate the distinctive features of different human 



beings. Therefore, there is a need to conduct further research to improve the human pose 
representations. Second, only human poses related to tying rebar were created in this research. 
Therefore, there is a need to develop human poses related to other construction operations. Third, 
further research is needed to improve the accuracy of predicting contributory work because the 
developed algorithms had the poorest performance in identifying this work category in the 
experimental study. Fourth, the training poses were manually categorized into three groups as 
effective, contributory, and ineffective, and the procedure was subjective. Improvement should be 
made in future research to minimize human biases in this procedure by using the motion of 
consecutive human poses. Finally, future research is needed to implement the developed WRITE and 
human pose algorithms in a real-time application and to determine whether the WRITE can detect 
labor efficiency problems and make suggestions for project managers to initiate improvements. 
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