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Abstract 
Graphene and its derivatives have been well‐known as influential factors in differentiating 
stem/progenitor cells toward the osteoblastic lineage. However, there have been many controversies in 
the literature regarding the parameters effect on bone regeneration, including graphene concentration, 
size, type, dimension, hydrophilicity, functionalization, and composition. This study attempts to produce 
a comprehensive review regarding the given parameters and their effects on stimulating cell behaviors 
such as proliferation, viability, attachment and osteogenic differentiation. In this study, a systematic 
search of MEDLINE database was conducted for in vitro studies on the use of graphene and its 
derivatives for bone tissue engineering from January 2000 to February 2018, organized according to the 
PRISMA statement. According to reviewed articles, different graphene derivative, including graphene, 
graphene oxide (GO) and reduced graphene oxide (RGO) with mass ratio ≤1.5 wt % for all and 
concentration up to 50 μg/mL for graphene and GO, and 60 μg/mL for RGO, are considered to be safe 
for most cell types. However, these concentrations highly depend on the types of cells. It was discovered 
that graphene with lateral size less than 5 µm, along with GO and RGO with lateral dimension less than 1 
µm decrease cell viability. In addition, the three‐dimensional structure of graphene can promote cell‐cell 
interaction, migration and proliferation. When graphene and its derivatives are incorporated with 
metals, polymers, and minerals, they frequently show promoted mechanical properties and bioactivity. 
Last, graphene and its derivatives have been found to increase the surface roughness and porosity, 
which can highly enhance cell adhesion and differentiation. 

INTRODUCTION 
Bone tissue engineering (BTE) is a complex and dynamic Strategy that typically requires a bone scaffold 
for recruitment of stem/progenitor cells, followed by their proliferation, differentiation, matrix 
formation and remodeling of the bone.1 Moreover, bone scaffolds are generally made of biomaterials in 
order to provide proper mechanical support during the stimulation of new bone formation. The desired 
properties of scaffolds are osteoconductivity, biodegradability, high biocompatibility and mechanical 
properties and interconnected porosity which are the required properties for fabricating scaffold.2 For 
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decades, carbon‐based materials such, as carbon nanotubes (CNT), fullerenes and graphene have been 
introduced as remarkably promising materials, which have been shown to induce cell attachment, 
proliferation and differentiation, particularly toward the osteoblastic lineage.3 Graphene is a single 
atomic layered sheet of conjugated sp2‐carbon atoms, attracting attention among all carbon‐based 
materials due to their specific features. These advantageous features of graphene include large surface 
area, high mechanical strength, great elasticity modulus, unprecedented electricity properties4 and 
potential of providing an interaction site to adsorb various growth factors or other materials that can 
enhance differentiation.3, 5-7 

 
Graphene derivatives include graphene oxide (GO), reduced graphene oxide (RGO) amine‐functionalized 
graphene oxide (AGO), graphene foams (GFs), graphene nanosheets (GNSs) and graphene quantum dots 
(GQDs). Among all graphene derivatives, GO and RGO have been widely used in BTE.8 Although GO 
presents reduced electronic and mechanical properties compared to pristine graphene, it has various 
benefits from a synthetic chemistry aspect.9 GO is prepared by oxidation of graphite and has many 
hydrophilic functional groups, including hydroxyl, carboxyl and epoxy groups, which may cause 
increased biocompatibility of GO compared to pristine graphene,10, 11 however, the other parameters 
such as concentration, size and dimension should be considered as influential factors in evaluating the 
toxicity of GO.12–14 RGO, produced by removing the oxygen‐containing groups of GO, maintains some of 
the thermal and mechanical properties observed in pristine graphene.15 Moreover, RGO has a higher 
capability in electron transferring which may be effective in accelerating differentiation.16 The properties 
of graphene‐related materials and their great potential to be easily functionalized and combined with 
biomolecules and biomaterials present several opportunities to design different bio‐composites. Thus, in 
this article we further provide basic information regarding systematic review on the potential of 
graphene and its ability to produce polymer‐, minerals‐ and metal‐composites with modified mechanical 
properties and enhanced cell differentiation, mineral deposition and bioactivity. We comprehensively 
evaluated the effect of graphene and its derivatives on osteogenic differentiation of various 
stem/progenitor cells. Additionally, we further expand our assessment on compatibility of graphene and 
its derivatives’ effect on cell viability, proliferation and attachment. Indeed, this systematic review aims 
to clarify the limitations in available studies and contribute to designing future preclinical and clinical 
studies on the use of graphene family for bone regeneration.  

METHODS AND MATERIALS 
Eligibility criteria 
Types of studies 
All in vitro studies that used graphene and its derivatives for bone regeneration from January 2000 to 
February 2018 from MEDLINE were included in this review. Included studies were limited to English‐
language articles. We excluded the abstracts, reviews, letters and thesis. 
Types of participants 
Participants were any types of graphene, including GO, RGO, AGO, and GQDs prepared in any shape and 
composition. Additionally, any type of stem/progenitor cells was considered. 
Types of interventions 
Studies that conducted an osteogenic induction in presence of graphene and its derivatives were 
included. Studies that used only osteogenic induction as a part of a multilineage characterization test 
were excluded. 
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Types of outcome measures 
Cell viability and proliferation was reported in in vitro studies using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐
diphenyltetrazolium bromide (MTT), 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐
sulfophenyl)‐2H‐tetrazolium (MTS), deoxynucleic acid (DNA) counting, Cell Counting Kit‐8 (CCK‐8), 
mitochondrial activity, Alamar Blue, total protein apoptosis, reactive oxygen species (ROS), and 
quantitative lactate dehydrogenase (LDH) activity assays. Also, various methods of staining were 
reported, including 4′,6‐diamidino‐2‐phenylindole (DAPI), Calcein AM, F‐actin, and live and dead assay.  
Cellular attachment was reported in in vitro studies using fluorescence and microscopic images such as 
fluorescein isothiocyanate (FITC), DAPI, live and dead, fluorescein diacetate, and scanning electron 
microscope (SEM).  
 
In addition, differentiation toward the osteoblast lineage was reported in in vitro studies using alkaline 
phosphatase (ALP) activity, western blotting, Wnt pathway, flow cytometric analysis, phosphate assay, 
calcium (Ca) content and calcium phosphate (CaP) measurement, osteocalcin (OCN) content and gene 
expression analysis. Furthermore, various methods of staining were utilized, including immuno‐
cytochemical (ICC), immunofluorescent, Alizarin Red‐S (ARS), Sirius Red (SR) and Von Kossa.  
Information source 
Our scientific electronic database was MEDLINE (NCBI PubMed and PMC). Further hand search was 
performed in the following journals: Carbon, Biomedical Nanotechnology, Nature, Nanoscience and 
Nanotechnology, Nanoscale, ACS Nano and Nanomedicine. Our search was limited to English‐language 
studies dating from January 2000 to February 2018. 
 
An electronic search was performed to select articles relevant to effect of graphene on stem/progenitor 
cells using the following terms: graphene AND (BTE OR bone regeneration OR osteogenesis OR 
osteoblast lineage OR osteogenic lineage OR osteogenic differentiation). A search of the selected 
articles’ bibliographies was also performed manually. 
Data collection process 
Review and data extraction were performed according to the PRISMA flow diagram shown in Figure 1. 
Three independent reviewers performed the initial screening of the selected articles, followed by 
reviewing the full text of the articles and extraction of all data. Disagreements between the three 
reviewers were resolved by consensus. In case of no agreement, a fourth reviewer decided. Fourth and 
fifth authors contributed in the discussion section. 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-fig-0001


 

Figure 1  Flow chart of the search strategy. 

DATA items 
Results and data were extracted from the full text of the articles and tabulated as follows (Table 1): (1) 
Types of cells used for osteogenesis; (2) chemical composition of graphene and its derivatives used for 
cell differentiation; (3) types of graphene used in combination with other materials such as metals, 
metalloids, polymer; (4) size of graphene and its derivatives, including lateral dimension, diameter, and 
thickness; (5) cultural condition used for cell growth; (6) type of treatment group used for evaluating cell 
behavior; (7) type of characterization tests conducted for surface characterizing; (8) outcomes of in vitro 
studies, that is, the results of the cell viability, proliferation, attachment and differentiation. 
 
Table 1. Summary of the in Vitro Studies of Graphene‐Based Structures in Bone Tissue Engineering 

Auth
ors 

Cell 
Source 

Chemical 
Compositio
n and 
Functionali
zation 

Type 
of 
Grap
hene 

Size Cultural 
Condition 

Treatment 
Group 

Characterizat
ion 

Outcome 

Cicué
ndez 
et 
al.66 

MC3T3‐
E1 

GO‐PEG‐
FITC 

GO Thickn
ess ≈ 
10 nm 

α‐MEM ± 10% 
FBS ± 50 μg/mL 
glycerolphosphat
e ± 10 mM L‐
AA ± 1 mM l‐
glutamine\pen\st
rep  

‐GO‐PEG‐
FITC(40 
μg/mL) 

‐AFM 
‐XPS 
‐ZP 
‐DLS 

Proliferation/viability: 
‐PI exclusion and flow 
cytometry test: High 
viability was observed in 
the presence of GO‐PEG‐
FITC (3 days)  
‐Proliferation: Although 
cells grew and spread 
well, cell number 
dramatically decreased on 
GO‐PEG‐FITC (3 days)  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-tbl-0001
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Auth
ors 

Cell 
Source 

Chemical 
Compositio
n and 
Functionali
zation 

Type 
of 
Grap
hene 

Size Cultural 
Condition 

Treatment 
Group 

Characterizat
ion 

Outcome 

‐Cell apoptosis assay: 
Incorporation of GO‐PEG‐
FITC increase cell 
apoptosis (3 days)  
Osteogenic differentiation:  
‐ALP activity: After 3 days 
of treatment with GO‐
PEG‐FITC, ALP activity 
decreased  
‐ARS and ALP: GO‐PEG‐
FITC ≈ control (12 days of 
culture in fresh medium)  

Qiu 
et 
al.47 

mBMSCs GO 
deposited 
on Ti 

GO Thickn
ess: 
‐Single 
layer: 
1 nm 
‐GO‐
40: 25 
µm 
‐GO‐
80: 90 
µm 
‐GO‐
120: 
136 
µm 

α‐MEM ± 10% 
FBS ± 1% 
pen/strep 

‐Ti‐GO‐40 
(deposition 
voltage: 40V) 
‐Ti‐GO‐80 
‐Ti‐GO‐120 
‐Ti 

‐AFM 
‐SEM 
‐XRD 
‐XPS 
‐Raman 
spectra 
‐ICP‐AES 
‐ZP 

Proliferation/viability:  
‐Alamar Blue assay: 
Ti > Ti‐GO‐40 > Ti‐GO‐
80 > Ti‐GO‐120 (1, 4, 24 
days)  
Attachment:  
‐FITC staining: Ti > Ti‐GO 
groups (1, 4, 24 h). In 
addition, it showed: 24 
h > 1 h  
Osteogenic differentiation: 
‐ALP activity, ARS staining: 
Ti‐GO‐120 > Ti‐GO‐80 > Ti‐
GO‐40 > Ti (7, 14 days) 
Collagen secretion: Ti‐GO‐
120 > Ti‐GO‐80 > Ti‐GO‐40 
(7, 14 days)  

Ren 
et 
al.45 

mBMSCs GO‐DEX‐Ti 
RGO‐DEX‐Ti 

GO 
RGO 

Thickn
ess of 
GO 
sheets
: 0.83 
nm 

Cultured in 
medium 
containing 10% 
FBS 

‐Dex‐control 
‐GO‐DEX‐Ti 
‐RGO‐DEX‐Ti 
‐GO‐Ti 
‐RGO‐Ti 

‐AFM 
‐SEM 
‐FTIR 
‐XPS 
‐Raman 
spectra 

Proliferation/viability:  
‐CCK‐8 and F‐actin 
staining: GO‐DEX‐
Ti > RGO‐DEX‐Ti > DEX‐
Control (1, 3, 5 days)  
Osteogenic differentiation:  
‐ALP activity (7, 14 days), 
mineralization (21 days), 
OPN, OCN expression (7, 
14 days): GO‐DEX‐
Ti > RGO‐DEX‐Ti > DEX‐
Control  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0047
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Auth
ors 

Cell 
Source 

Chemical 
Compositio
n and 
Functionali
zation 

Type 
of 
Grap
hene 

Size Cultural 
Condition 

Treatment 
Group 

Characterizat
ion 

Outcome 

Ricci 
et 
al.85 

Human 
osteoblas
t cells 

GONRs GO — DMEM ± 10% 
FBS ± 100 IU/mL 
pen ± 100 μg/mL 
of strep 

‐GONRs (10, 
100, 200, 300 
μg/mL) 

‐SEM 
‐FTIR 
‐XRD 

Proliferation/viability:  
‐Cell counting: Alive cells 
on control (−) > 10 μg/mL 
GONRs > 100 μg/mL 
GONRs > 200 μg/mL 
GONRs > 300 μg/mL 
GONRs > Control (+)  
Osteogenic differentiation:  
‐qRT‐PCR (ALP, COL‐I, 
OCN, OPN,Runx‐2): 200 
μg/mL GONRs decrease 
the gene expression while 
100 μg/mL did not affect 
them significantly  

Sarav
anan 
et 
al.75 

‐Rat 
calvarial 
osteopro
genitors 

GO‐Ct‐Gn GO — DMEM ± 10%FBS ‐Ct‐Gn 
‐0.25% GO‐
Ct‐Gn 
‐OM 
‐GM 

‐SEM 
‐FTIR 
‐XRD 
‐Raman 
spectra 
‐Porosity 
measure
ment 
‐Swelling 
study 
‐Water 
absorpti
on 
‐
Degradat
ion rate 
measure
ment 

Proliferation/viability:  
‐MTT assay: O.D. value: 
0.25% GO‐Ct‐Gn > Ct‐Gn  
No significant cytotoxicity 
was observed up to 30 
mg/mL of scaffolds with 
rat cells 
Osteogenic differentiation:  
‐RT‐PCR: ALP, COL‐I, and 
OCN genes increased in 
mMSCs with 0.25% GO‐Ct‐
Gn in OM (7, 14 days). 
Runx2 was high only at 
day 7 with 0.25% 
GO/Ct/GN  
‐Western blotting: Runx2 
protein expression 
increased on 0.25% GO‐
Ct‐Gn in OM (7, 14 days)  

Xie et 
al.29 

BMSCs GO‐coated 
TCP 
GO‐coated 
HAP 

GO — — ‐HAP 
‐GO‐HAP 
‐BMP2‐GO‐
HAP 
‐NPs (BMP2‐
encapsulated 
BSA‐NPs)‐
GO‐HAP 
‐BGO‐HAP 
(mixed 

‐SEM 
‐ZP 

Proliferation/viability:  
‐Live and dead cell 
staining: Approximately 
no dead cells were 
observed on the pure TCP 
or HAP and GO groups (7 
days)  
‐CCK‐8 assay: Nos‐
GO > other groups and no 
difference between TCP or 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0085
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Auth
ors 

Cell 
Source 

Chemical 
Compositio
n and 
Functionali
zation 

Type 
of 
Grap
hene 

Size Cultural 
Condition 

Treatment 
Group 

Characterizat
ion 

Outcome 

BMP2/GO 
solution on 
the GO‐HAP) 
‐TCO 
‐GO‐TCP 
‐BMP2‐GO‐
TCP 
‐GO‐TCP 
‐NPs‐GO‐TCP 
‐BGO‐TCP 

HAP and GO groups (7 
days)  
Osteogenic differentiation:  
‐ALP activity: Nps‐GO‐
HAP > BGO‐HAP ≈ BMP2‐
GO‐HAP > GO‐HAP > HAP  
The same trend for TCP 
(14 days) 

Zhan
g et 
al.50 

Rabbit 
BMSCs 

Ag‐GO‐
coated β‐
TCP 
With 
different 
mass ratio 
of Ag‐GO: 
‐Ag1G1 
(Ag:GO = 1:
1) 
‐Ag0.5G1 
‐Ag2G1 

GO — DMEM ± 10%FBS 
± 1%pen/strep 

‐β‐TCP 
‐β‐TCP‐GO 
(β‐TCP 
modified in 
0.2 mg/mL 
GO solution) 
‐β‐TCP‐3‐
Ag1G1(β‐TCP 
modified in 3 
mL Ag1G1) 
‐β‐TCP‐4‐
Ag1G1 

‐SEM 
‐TEM 
‐EDX 

Proliferation/viability:  
OD: β‐TCP ≥ β‐TCP‐GO > 3‐
Ag1G1 > 4‐Ag1G1 (1, 3, 7 
days)  
Osteogenic differentiation:  
‐ALP activity: 3‐Ag1G1 > 4‐
Ag1G1 > β‐TCP‐GO > β‐TCP 
(14 days)  
4‐Ag1G1 > 3‐Ag1G1 > β‐
TCP‐GO > β‐TCP (14 days) 
‐qRT‐PCR: BSP, OCN and 
Runx2 expressions: 4‐
Ag1G1 > 3‐Ag1G1 > β‐TCP‐
GO > β‐TCP (14 days)  
OPN expression: 3‐
Ag1G1 > 4‐Ag1G1 > β‐TCP‐
GO > β‐TCP 

Chen 
et 
al.89 

hMG63 ZnO‐GO‐
COOH 

GO Thickn
ess ≈ 
0.84 
nm 

α‐MEM ± 10% 
FBS ±1% 
pen/strep 

‐ZnO‐GO‐
COOH 
‐GO‐COOH 
‐Gl (control 
group) 

‐AFM 
‐TEM 
‐XRD 
‐XPS 
‐ICP‐AES 
‐Raman 
spectra 
‐
Wettabili
ty 
evaluatio
n 

Proliferation/viability:  
‐CCK‐8 assay: No 
significant cytotoxicity for 
GO‐COOH below 50 
μg/mL  
Osteogenic differentiation:  
‐ALP activity: ZnO‐GO‐
COOH ≫ GO‐COOH and 
control group (7 days), 
GO‐COOH > control group 
(14 days)  
‐OCN expression: ZnO‐GO‐
COOH > GO‐COOH > Gl (14 
days)  
‐ARS staining: ECM 
mineralization on ZnO‐

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0050
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0089


Auth
ors 

Cell 
Source 

Chemical 
Compositio
n and 
Functionali
zation 

Type 
of 
Grap
hene 

Size Cultural 
Condition 

Treatment 
Group 

Characterizat
ion 

Outcome 

GO‐COOH ≫ other two 
groups (7 days)  
‐RT‐qPCR: ZnO‐GO‐COOH 
showed the most 
increased gene expression 
of ALP, OCN, and Runx2 
(14 das)  

Fan 
et 
al.67 

MC3T3‐
E1 

BGs‐GNS GO — DMEM ± 4.5 g/L 
d‐glucose ± 10% 
FBS ± 100 U/mL 
pen ± 100 U/mL 
strep  

‐GO 
‐BG 
‐BG1GO1 
(BG/GO 
[wt/wt] = 1:1
) 
‐BG5GO1 
‐BG10GO1 

‐SEM 
‐TEM 
‐FTIR 
spectra 
‐XRD 
‐EDX 
‐
Mechani
cal tests 
‐
Nanoind
entation 
measure
ments 

Proliferation/viability:  
‐MTT assay: 
BG10GO1 > BG5GO1 > BG
1GO1 > BG > GO (2, 4 
days)  
Osteogenic differentiation:  
‐ALP activity: 
BG10GO1 > BG5GO1 > BG
1GO1 ≈ BG > GO (5 days)  

Kuma
r et 
al.37 

BMSCs GO‐PEI GO The 
thickn
ess of 
GO 
sheets 
≈ 0.8 
nm 

OM:10 nM 
Dex ± 20 mM β‐
glycerophosphate 
 ± 50 μM AA  

‐GO 
‐GO‐PEI 
‐PCL 
‐PCL‐GO1 (10 
mg of GO/g 
of PCL, 0 mg 
of GO‐PEI/g 
of PCL) 
‐PCL‐GO3 
‐PCL‐GO5 
‐PCL‐GO‐PEI1 
(0 mg of 
GO/g of PCL, 
10 mg of GO‐
PEI/g of PCL) 
‐PCL‐GO‐PEI3 
‐PCL‐GO‐PEI5 
‐GM 
‐OM 

‐AFM 
‐FTIR 
‐XRD 
‐XPS 
‐TGA 
‐Raman 
spectra 
‐CA 
measure
ment 
‐
Mechani
cal test 

Proliferation/viability:  
‐DNA content: PCL‐GO5 
and all the PCL‐GO‐PEI 
composite ≫ neat PCL (7 
days)  
Attachment:  
‐Fluorescence 
micrographs: More cells 
were seen on PCL‐GO‐PEI 
composite films especially 
on PCL‐GO‐PEI5 (7 days)  
‐Live/dead assay: All cells 
were viable on all the 
substrates and the cell 
area decreased with 
increase in the content of 
GO and GO‐PEI.  
Osteogenic differentiation:  
‐ALP activity: OM > GM 
(14, 21 days)  
PCL‐GO‐PEI5 > PCL‐
GO5 > PCL (14, 21 days) 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0067
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0037
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‐ARS staining: GM < OM  
PCL‐GO‐PEI5 > PCL/GO‐
PEI3 > PCL‐GO5 (14 days). 
In addition, at day 21, 
mineral deposited was 
highest 
‐Adsorption of osteogentic 
factors: Adsorbtion of 
glycerol phosphate and 
AA: PCL‐GO‐PEI5 > PCL‐
GO5 > PCL  
‐Adsorbtion of Dex: 
PCL‐GO5 PCL‐GO‐
PEI5 > PCL  

Shao 
et 
al.61 

mMSC GO‐PLGA‐
tussah (O/C 
ratio of the 
GO:0.44) 

GO — DMEM ± 10% FBS ‐Cover slip 
‐PLGA 
‐PLGA‐tussah 
‐GO‐PLGA‐
tussah 

‐SEM 
‐TEM 
‐FTIR 
‐Raman 
spectra 
‐CA 
measure
ment 
‐Porosity 
measure
ment 
‐
Mechani
cal tests 

Proliferation/viability:  
‐MTT assay: Cell 
proliferation was slightly 
higher in the presence of 
GO (1, 4, 7 days). Also, the 
number of cells on GO‐
PLGA‐tussah > PLGA‐
tussah > PLGA nanofiber  
Attachment:  
‐DAPI staining: The 
highest cell density was 
observed on GO‐PLGA‐
tussah  
Osteogenic differentiation:  
‐RT‐PCR: The expression 
of CD29 and CD44 on GO‐
doped PLGA‐
tussah < PLGA‐
tussah < PLGA  
ALP and COL‐I on GO‐
doped PLGA‐
tussah > PLGA‐
tussah > PLGA > cover slip 
(10, 14 days) 
‐OCN expression:  
GO‐doped PLGA‐
tussah > PLGA‐
tussah > PLGA > Cover slip 
(10, 14 days) 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0061
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‐SEM: Cells on GO‐PLGA‐
tussah were more densely 
mineralized than those on 
scaffolds without GO (14 
days)  
‐EDC: Ca/P ratio: PLGA‐
tussah > GO‐doped PLGA‐
tussah > PLGA  

Silva 
et 
al.90 
2016  

MG‐63 PDLLA‐
MWNCTO‐
GO 

GO — DMEM ± 10% 
FBS ± 100mg/mL 
Strep ± 100 
mg/mL Pen 

‐PDLLA 
‐PDLLA‐
MWNCTO‐
GO 

‐FESEM 
‐TEM 
‐Porosity 
measure
ment 
‐
Mechani
cal tests 

Proliferation/viability:  
‐MTT assay: Scaffolds did 
not show any cytotoxicity 
effects (7 days)  
Osteogenic differentiation:  
‐ALP activity: PDLLA‐
MWNCTO‐
GO > PDLLA > control (3 
days)  
‐ARS staining: Scaffolds 
were able to induce 
mineralized realized (14 
days)  

Xie C 
et 
al.48 
2016  

mBMSCs GO‐Ct GO — α‐
MEM ± 10%FBS ± 
1%pen/strep 

‐GO‐Ct‐CBB‐
Ag‐OCP 
‐GO‐Ct‐CBB‐
OCP 
‐GO‐Ct‐BMP‐
Ag‐OCP 
‐GO‐Ct‐OCP 
‐GO‐Ct 

‐SEM 
‐FTIR 
‐XRD 
‐Raman 
spectra 
‐Porosity 
measure
ment 
‐
Degradat
ion assay 
‐
Adsorpti
on assay 

Proliferation/viability:  
The OCP mineralized 
scaffolds showed 
significantly higher 
proliferation than that on 
the GO/CS scaffolds 
Attachment:  
‐SEM: Cells spread very 
well on the all scaffolds  
Osteogenic differentiation:  
‐ALP activity: GO‐Ct‐CBB‐
OCP, GO‐Ct‐CBB‐Ag‐
OCP > GO‐Ct‐BMP‐Ag‐
OCP > GO‐Ct‐OCP,GO/Ct 
(14 days)  

Zanc
anela 
DC et 
al.13 
2016  

Osteobla
st 

GO GO — OM ‐GO (0, 25, 
50 µg/mL) 
‐Ti disk 
‐GO (0, 25, 
50 µg/mL) 

‐SEM 
‐EDS 
‐Raman 
spectra 

Proliferation/viability:  
‐MTT assay: GO‐
plastic > GO‐Ti (7, 14, 21 
days)  
‐7, 14 days: GO(0)‐
plastic > GO(25)‐

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0090
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0048
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0013
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‐Plastic 
surface 

plastic > GO(50)‐
plastic > GO(25)‐
Ti > GO(0)‐Ti 
‐21 days: GO(25)‐
plastic > GO(0)‐
plastic > GO(50)‐
plastic > O(25)‐Ti > GO(0)‐
Ti 
Osteogenic differentiation:  
‐ALP activiy: GO‐Ti disks ≈ 
GO‐plastic surface (7, 14, 
21 days). All groups 
exhibited higher ALP 
activity at day 14.  
‐ARS staining:  
GO‐plastic surface > GO‐Ti 
disk (21 days) 

Zhan
g W 
et 
al.49 
2016  

mBMSCs GO‐Cu‐Cpc GO Thickn
ess ≈ 
0.8 nm 

DMEM. ‐GO (10, 20, 
40, 160 
µg/mL) 
‐GO‐Cu (10, 
20, 40, 160 
µg/mL) 
‐control (10, 
20, 40, 160 
µg/mL) 
‐GO‐Cpc 
‐GO‐Cu‐Cpc 
‐Cpc 

‐AFM 
‐SEM 
‐XRD 
‐UV–Vis 
‐ICP‐OES 

Proliferation/viability:  
‐Live and dead assay: The 
cell viability gradually 
decreased by increasing 
GO‐Cu concentration from 
10 to160 µg/mL.  
‐Concentration of GO and 
GO‐Cu less than 40 µg/mL 
showed good 
biocompatibility. 
Attachment:  
‐IFS: The amount of the 
integrin β1:  
GO‐Cpc, GO‐Cu‐Cpc ≫ Cpc 
(12 h) 
Osteogenic differentiation:  
‐OCN: GO‐Cu‐Cpc > GO‐
Cpc > Cpc (7 days).  
‐ALP activity: GO and GO‐
Cu increased ALP 
expression in a 
concentration‐dependent 
manner: GO‐
Cu > GO > control (3 days)  
‐Western blot: The 
phosphorylation of 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0049
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Erk1/2, the activation of 
Hif‐1α, the inhibition of 
VHL facilitated by using 
GO and GO‐Cu. In 
addition, the expression of 
VEGF and BMP2 were 
significantly enhanced by 
utilizing 40 μg/mL GO or 
GO‐Cu (3 days)  

Zhou 
Q et 
al.26 
2016  

hPDLSCs GO‐coated 
Ti 

GO The 
height 
of GO 
sheets 
on the 
quartz 
substr
ate ≈ 1 
nm 

DMEM ± 10% 
FCS ± 2 mM L‐
glutamine ± 100 
mM L‐ascorbate‐
2‐phosphate ± 1 
mM sodium 
pyruvate ± 50 
U/mL pen G ± 50 
mg/mL strep (10–
14 days). 

‐Na‐Ti 
‐GO‐Ti 

‐AFM 
‐SEM 
‐Raman 
spectra 

Proliferation/viability:  
‐MTT assay: The 
proliferated rate of 
hPDLSCs on GO‐Ti was 
substantially higher than 
those on Na‐Ti (3, 5, 7, 10 
days).  
Attachment:  
‐CLSM: cells on GO‐Ti 
substrates were more 
dense than those on Na‐Ti 
substrates (3 days)  
Osteogenic differentiation:  
‐ALP Activity: GO‐Ti ≈ Na‐
Ti (3, 5 days)  
GO‐Ti > Na‐Ti (7, 10 days). 
‐qRT‐PCR: COL‐I, Runx2, 
BSP and ALP expression 
peaked at day 14 and:  
GO‐Ti > Na‐Ti (7, 14, 21 
days). 
BSP expression level was 
the lowest (21 days) 
among all genes. 
‐OCN: OCN expression 
level peaked at day 21 
and: GO‐Ti > Na‐Ti (14, 
21d).  
‐Western blot assay: BSP 
and Runx2 expression: 
GO‐Ti > Na‐Ti (7, 14 days), 
GO up‐regulated the OCN 
expression (14 days)  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0026
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Dong 
W et 
al.92 
2015  

hMG63 GO‐
Titanate 

GO — DMEM ± 10%FBS 
± antibiotics (100 
U/mL pen ± 100 
mg/mL strep) 

‐Neat 
titanate 
‐GO 
‐GO‐Titanate 
‐COOH 
grafted GO‐
titanate 
‐OH grafted 
GO‐titanate 
‐NH2 grafted 
GO‐titanate  

‐SEM 
‐TEM 
‐XRD. 
‐FTIR 
‐Porosity 
measure
ment 
‐
Mechani
cal tests 

Proliferation/viability:  
‐MTT assay: OH grafted 
GO‐titanate > NH2 grated 
GO‐titanate > GO‐
titanate> COOH grafted 
GO‐titanate> neat titanate 
(6 days)  
Attachment:  
‐Fluorescence microscopy: 
‐OH group terminals 
presents the highest 
density of attached cells 
(2, 4, 6 days)  
Osteogenic differentiation:  
‐ALP ctivity: OH grafted 
GO‐titanate> NH2 grated 
GO‐titanate > COOH 
grafted GO‐
titanate > GO > neat 
titanate (2, 4, 6, 10, 15 
days)  
‐ARS staining: COOH 
grafted GO‐titanate > NH2 
grated GO‐titanate > OH 
grafted GO‐
titanate > GO > neat 
titanate (2, 4 days)  
‐OH grafted GO‐
titanate > NH2 grated GO‐
titanate > COOH grafted 
GO‐titanate > GO > neat 
titanate (6, 10, 15 days)  
‐Ca content: COOH grafted 
GO‐titanate ≫ other 
scaffolds (2, 4 days).  
–OH functioned scaffold 
presents the best Ca 
deposition afterward 

Jung 
HS et 
al.69 
2015  

MC3T3‐
E1 

Dex‐RGO‐
MPCR‐TNZ 

GO Size: 
0.3–2 
μm 

OM: α‐MEM ± 10 
mM of glycerol 2‐
phosphate and 
0.2 mM of AA 

‐ST‐TNZ 
‐STA‐TNZ 
‐MPCR‐TNZ 
‐RGO‐MPCR‐
TNZ 

‐AFM 
‐XPS 
‐Raman 
spectra 

Proliferation/viability:  
‐MTT assay: Cell viability: 
ST‐TNZ < STA‐TNZ < MPCR‐
TNZ < RGO‐MPCR‐TNZ (3 
days)  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0092
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0069
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‐Dex‐RGO‐
MPCR‐TNZ 
‐TCPS 
‐OM 
‐GM 

‐
Mechani
cal test 
‐CA 
measure
ment 
‐Drug 
release 
test (UV‐
Vis 
spectrosc
opy) 

‐Cell growth on RGO‐
MPCRTNZ > MPCR‐TNZ (1, 
3, 7 days)  
Osteogenic differentiation:  
‐ARS staining: Dex‐RGO‐
MPCR‐TNZ ≫ RGO‐MPCR‐
TNZ > MPCR‐TNZ  
‐CSLM: Significant OCN 
expression was observed 
in Dex/RGO‐MPCR‐TNZ  
‐ALP activity: The cells on 
Dex‐RGO‐MPCR‐
TNZ > RGO‐MPCR‐
TNZ > MPCR‐TNZ 
(OM > GM)  
‐RT‐qPCR: Remarkably 
higher expression levels of 
Runx2, OPN, Col‐1, and 
OCN was shown on Dex‐
RGO‐MPCR‐TNZ than 
RGO‐MPCR‐TNZ, MPCR‐
TNZ and TCPS  

Kim 
TH et 
al.18 
2015  

hADSCs Different G 
patterns on 
Gl/Au, TCP, 
PDMS, and 
PLGA 

NGO Size ≈ 
50–
100 
nm 

GM: 0.5% FBS 
ASC medium 
OM: 100 nM 
Dex ± 50 μM 
AA ± 10 mM β‐
glycerolphosphat
e  

‐NGO 100 
(line pattern) 
‐NGO 100 
(No pattern) 
‐Bare Au 

‐AFM 
‐TEM 
‐DLS 
‐XPS 
‐ZP 
‐Raman 
spectra 

Attachment 
‐Cell spreading was the 
highest on NGO line 
patterns. 
Osteogenic differentiation:  
‐ALP activity: NGO 100 
(line pattern) > NGO 100 
(no pattern) > Bare Au (14 
days)  
‐Immunostaining: Cells on 
the NGO line pattern 
enhanced expression of 
OCN (21 days).  
‐ARS staining: OM GM  
In OM: NGO 100 (line 
pattern) > NGO 100 (no 
pattern) > bare Au (21 
days) 

kuma
r S et 

hMSCs PCL‐
GO/RGO/A
GO 

‐GO 
‐RGO 
‐AGO 

The 
thickn
ess of 

DMEM ± 15 vol % 
MSC‐qualified 

‐PCL 
‐PCL‐GO1 
(addition of 1 

‐AFM 
‐SEM 
‐DLS 

Proliferation/viability:  
‐DNA content (7 days): 
PCL‐AGO3 PCL‐AGO1 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0018
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al.36 
2015  

(C/O ratio: 
GO: 
C/O=2.2 
RGO: 
C/O=4.0 
AGO =2.3) 

GO 
sheets 
≈2 nm 
The 
thickn
ess of 
RGO 
sheets 
≈1 nm 
and 
Lateral 
size ≈ 
500 
nm 
The 
thickn
ess of 
AGO 
≈3 nm 
The 
averag
e size 
of 
disper
sed 
GO, 
RGO 
and 
AGO 
were 
823, 
529 
and 
886 
nm, 
respec
tively. 

FBS ± 1%gultama
x ± 1% pen–strep 

wt % of GO 
to PCL) 
‐PCL‐GO3 
‐PCL‐GO5 
‐PCL‐RGO1 
‐PCL‐RGO3 
‐PCL‐RGO5 
‐PCL‐AGO1 
‐PCL‐AGO3 
‐PCL‐AGO5 

‐FTIR 
‐XRD 
‐XPS 
‐Raman 
spectra 
‐CA 
measure
ment 
‐
Mechani
cal test 

PCL‐AGO5 > PCL‐
GO3 > PCL‐GO5 PCL‐
RGO5 > PCL‐GO1 > neat 
PCL  
Attachment:  
‐Fluorescence 
micrographs: Corporation 
graphene NPs into 
polymer minimizes 
toxicity  
Osteogenic differentiation:  
‐ARS staining: PCL‐
AGO > PCL‐GO > PCL‐
RGO > neat PCL, The 
mineral content increased 
with increase in content of 
GO and AGO  

kuma
r S et 
al.14 
2015  

MC3T3‐
E1 

GO‐PCL 
(2D, 3D) 
RGO‐PCL 
(2D,3D) 

GO,R
GO 

Lateral 
dimen
sion of 
RGO ≈ 
2.4 × 
1.5 μm 

DMEM ± 10% 
FBS ± 10 μg/mL 
Strep ± 10 U/mL 
Pen 

‐neat PCL 
(2D, 3D) 
‐PCL‐GO (2D, 
3D) 
‐PCL‐RGO 
(2D, 3D) 

‐AFM 
‐SEM 
‐FTIR 
‐XRD 
‐Physical 
tests 

Proliferation/viability:  
‐DNA content and cellular 
nuclei staining: 2D 
composite >3D composite 
(7, 14 days). In both 2D 
and 3D composites:  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0036
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0014
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Lateral 
dimen
sion of 
GO ≈ 
5.1 × 
3.8 μm 
Thickn
ess of 
GO 
films ≈ 
1–
3 nm 

‐Porosity 
measure
ment 
‐CA 
measure
ments 

GO‐PCL > neat PCL > RGO‐
PCL (7, 14 days) 
‐Proliferation rate: 3D 
scaffold: PCL > PCL‐
GO > PCL‐RGO  
2D composit: PCL‐
GO > PCL > PCL‐RGO 
Attachment:  
Initial cell attachment was 
nearly same for both 2D 
and 3D (3 days) 
Osteogenic differentiation:  
‐ALP activity and ARS 
staining: ALP expression 
and mineralized matrix on 
3D scaffolds were 
significantly higher than 
that of 2D substrates (14, 
21 days)  
Among 3D scaffolds: 
PCL > PCL‐GO > PCL‐RGO 
Among 2D substrate: PCL‐
GO > PCL > PCL‐RGO (14, 
21 days) 

Luo Y 
et 
al.63 
2015  

hMSCs GO‐PLGA GO — DMEM/F12 
(50/50) ± 10% 
FBS ± 100 U/mL 
Pen ± 100 μg/mL 
strep 

‐TCP 
‐15PLGA 
(PLGA 
concentratio
ns 15%) 
‐GO‐15PLGA 
‐18PLGA 
‐GO‐18PLGA 
‐GM (without 
Dexa) 
‐OM (with 
Dexa) 

‐SEM 
‐FTIR 
‐Raman 
spectra 
‐CA 
measure
ment 
‐
Mechani
cal test 
‐Protein 
absorpti
on 

Proliferation/viability:  
‐MTT assay: The rates of 
cell proliferation increased 
dramatically by doping GO 
(7 days)  
Attachment:  
‐Cells adhesion: GO‐
PLGA > PLGA > TCPC (8 h)  
Osteogenic differentiation:  
‐qRT‐PCR: With increasing 
time, the CD44 and CD105 
genes on the PLGA and 
GO‐PLGA decreased 
slightly (14, 28 days).  
COL I and ALP expression: 
GO‐PLGA > PLGA (14, 28 
days). 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0063
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‐ALP activity, OCN 
(normalized for the total 
DNA content):  
OM: GO‐18PLGA > GO‐
15PLGA > 18PLGA > 15 
PLGA. TCP (14, 28 days) 
GM: GO‐PLGA > PLGA (14, 
28 days) 
OM ≫ GM 

Nair 
M et 
al.21 
2015  

hADSCs GO‐Gn‐HAP GO The 
thickn
ess of 
GO 
flakes 
is less 
than 4 
nm 
The 
lateral 
dimen
sion ≈ 
1 μm 

GM: α‐
MEM ± 10% 
FBS ± 1% 
antibiotic‐
antimycotic 
solution 
OM:α‐
MEM ± 10% 
FBS ± antibiotics ±
 10 mM β‐
glycerophosphate
, 10−8M 
Dex ± 0.05 
mg/mL L‐AA  

‐Gn‐HAPNM 
‐GO‐Gn‐
HAP1 
‐GO‐Gn‐
HAP0.5 
‐Gn‐HANM 
(NM: normal 
medium) 
‐GO‐Gn‐
HAPNM 
‐Gn‐HAPOM 
(OM: 
osteogenic 
medium) 
‐GO‐Gn‐
HAPOM 

‐AFM 
‐SEM 
‐FTIR 
‐Raman 
spectra 
‐Porosity 
measure
ment 
‐
Mechani
cal tests 

Proliferation/viability:  
‐Proliferation: GO‐Gn‐
HAPOM > GO‐Gn‐
HAPNM > Gn‐
HAPOM > Gn‐HAPNM (14 
days). However, the cell 
proliferation was slightly 
reduced (21 days)  
‐Quantitative LDH activity: 
The percentage of viable 
cells from day 7 to 21 was 
equivalent (7, 14, 21d)  
Osteogenic differentiation:  
‐ALP activity: GO 
reinforced 
scaffolds > other groups 
(7, 14d). GO‐Gn‐HAPOM 
showed highest ALP 
activity among all groups 
(7d).  
‐Flow cytometric analysis: 
OPN expression: GO‐Gn‐
HAPOM>GnHAOM>GO‐
Gn‐HAPNM>Gn‐HAPNM 
(21d)  

Zhao 
C et 
al.79 
2015  

MC3T3‐
E1 

GO‐coated 
quartz 

GO The 
thickn
ess of 
GO 
sheets 
≈ 0.8–
1.2 nm 
Diame
ter ≈ 

α‐MEM ± 10% 
FBS ± 100 U/mL 
pen ± 100 mg/mL 
strep 

‐GO coated 
substrate 
‐GO 
noncoated 
substrate 
‐TCP 

‐AFM 
‐SEM 
‐FESEM 
‐XRD 
‐Raman 
spectra 

Proliferation/viability:  
‐CCK‐8 assay: There were 
no significant differences 
in cell proliferation of 
various groups (1, 2 days)  
‐Cell apoptosis assay: GO 
coatings did not induce 
any prominent apoptosis 
or necrosis  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0021
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0079
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1–5 
μm  

Osteogenic differentiation:  
‐ALP activity: GO coated 
substrate > GO noncoated 
substrate > TCP (14 days)  
‐OCN: The coated 
substrate significantly 
increased OCN production 
(14 days)  

Elkhe
nany 
H et 
al.53 
2014  

cBMSCs GO‐coated 
plates 

GO — DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐TCP 
‐GO 
(Different cell 
densities: 
‐1.0 × 103 
cells  
‐5.0 × 103 
‐10 × 103 
‐20 × 103)  
‐GO+OM 
‐GO+GM 

‐AFM 
‐SEM 
‐TEM 

Proliferation/viability:  
‐MTS assay: GO with 
different cell densities ≈ 
TCP (2, 7, 10 days)  
‐Calcein‐AM staining: Cells 
on GO were metabolically 
active, viable and well‐
distributed throughout 
the surface (2, 7, 10 days)  
Osteogenic differentiation:  
‐ARS staining: GO+GM ≫ 
GO+OM (21 days)  

Kana
yama 
L et 
al.70 
2014  

MC3T3‐
E1 

GO‐COL 
RGO‐COL 

GO 
RGO 

Thickn
ess of 
GO 
monol
ayer 
≈1nm 
Averag
e 
width 
≈ 20 
μm 

MEM ± 10% 
FBS ± 1% pen 

‐GO 
‐RGO 
‐RGO/AA (GO 
film reduced 
by AA) 
‐RGO/SH 
‐control 

‐AFM 
‐SEM 
‐XRD 
‐CA 
measure
ments 
‐Porosity 
measure
ment 
‐
Mechani
cal test 
‐
Electrical 
measure
ment 

Proliferation/viability:  
‐Early cell proliferation on 
GO and RGO ≪ control 
(24, 48 h) 
Attachment:  
‐Measurement of DNA 
content: GO RGO 
control (7, 14 days)  
Osteogenic differentiation:  
‐ALP activity: RGO ≫ GO 
control (7 day)  
RGO > control ≫ GO (14 
days) 
‐Ca adsorption: The RGO 
film dramatically adsorbed 
Ca rather than GO film  

La 
WG 
et 
al.39 
2014  

hBMSCs GO‐coated 
Ti 

GO — DMEM ± 10% 
FBS ± 1%pen/stre
p 

‐No BMP2 
‐Ti‐BMP2 
‐Ti‐GO‐
BMP2—Daily 
addition of 
BMP2 

‐AFM Osteogenic differentiation:  
‐ALP activity: Ti‐GO‐BMP2 
≈ positive control > Ti‐
BMP2 group (14 day)  
‐qRT‐PCR: mRNA 
expression of ALP and 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0053
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0070
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0039
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(positive 
control) 

Runx2 in positive 
control > Ti‐GO‐BMP2 > Ti‐
BMP2 > No BMP2  

liu H 
et 
al.74 
2014 
a  

MC3T3‐
E1 

GO–Gn GO — H‐DMEM ± 10% 
FBS ± 100 U/mL 
pen ± 100 U/mL 
strep sulfate 

‐GO 
‐GO–Gn 
‐Gl 

‐SEM 
‐XRD 
‐EDX 
‐FTIR 

Proliferation/viability:  
‐MTT assay: No significant 
differences observed 
among all scaffolds (1 day)  
GO > GO‐Gn > Gl (3 day) 
GO‐Gn > GO > Gl (7 day). 
‐LSCM: Cells are more 
spread on GO–Gn (3 days) 
and cells density: GO–Gn 
≫ GO, Gl (7 days)  
Osteogenic differentiation:  
‐ALP activity: GO, GO‐
Gn > Gl (3 days)  
GO‐Gn > GO > Gl (7 days) 
‐SEM: More complex 
fibrous organic bundles 
and embedded CaP on the 
surface of GO–Gn (14 
days)  
‐ARS staining: GO‐Gn 
promoted mineral nodular 
aggregations (14 days)  

liu H 
et 
al.73 
2014 
b  

MC3T3‐
E1 

GO‐Car GO — H‐DMEM ± 10% 
FBS ± 100 U/mL 
pen ± 100 U/mL 
strep sulfate 

‐Gl 
‐GO 
‐GO‐Car 

‐SEM 
‐FTIR 
‐XRD 
‐EDX 
‐CA 
measure
ment 

Proliferation/viability:  
‐MTT assay: The GO‐Car 
films exhibited greater cell 
growth than that of GO 
and Gl (1, 3, 7 days)  
‐LSCM: There was a higher 
density of cells on GO‐Car 
than other two (3, 7 days)  
‐FIN and FIC: GO‐Car ≫ 
GO, Gl (3, 7 days)  
Attachment:  
‐Area of cell analyze: GO‐
Car, GO > Gl (1 days)  
GO ≈ GO‐Car (3 days) 
GO‐Car > GO, Gl (7 days) 
Osteogenic differentiation:  
‐ALP activity: The ALP 
activity increases 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0074
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0073
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remarkably with culture 
time (7 days)  
GO‐Car > GO, Gl (3, 7 
days) 
‐ARS staining: The Ca 
deposition of the GO‐Car 
was higher than that of 
the pure GO and Gl  

Subbi
ah R 
et 
al.76 
2014  

Preosteo
blast 

GO‐Fn‐Ti GO The 
thickn
ess of 
the 
GO 
matrix 
on the 
Ti 
substr
ate ∼2 
μm.  

GM: α‐
MEM ± 10% 
FBS ± 1%pen/  
strep 
OM:GM ± 10 mM 
β 
glycerophosphate
 ± 0.1 μM 
Dex ± 50 μg/mL l‐
ascorbic‐2‐
phosphate ± 50 
ng/mL BMP2  

‐Ti 
‐GO‐Ti 
‐GO‐Ti‐Fn 

‐SEM 
‐XRD 
‐EDS 
‐Raman 
spectra 
‐
Nanoind
entation 
measure
ments 
‐CA 
measure
ment 

Proliferation/viability:  
‐Live and dead cell assay: 
There was no great cell 
viability difference 
between cells grown on 
GO‐Ti and GO‐Ti‐Fn (24 h)  
‐CCK‐8 assay: GO‐Ti‐
Fn > GO‐Ti > Ti (1, 3 days)  
Attachment:  
‐FA assay:  
FA quantification: GO‐Ti‐
Fn > GO‐Ti > Ti (24 h) 
Osteogenic differentiation:  
‐ARS and von kossa 
staining, ALP activity, Ca 
content: GO‐Ti‐Fn > GO‐
Ti > Ti (7, 14 days)  

Tatav
arty 
R et 
al.64 
2014  

hMSCs GO‐CaP GO The 
size of 
GO 
sheets 
≈ 0.5–
5 μm 

OM ‐GO 0.5 
(μg/mL) 
‐CaP 10 
‐GO–CaP 
10.5 

‐TEM 
‐ICP‐MS 
‐Raman 
Spectra 

Proliferation/viability:  
‐MTT assay: The greatest 
viability was 10, 0.5, and 
10.5 μg/mL of GO, CaP, 
and GO‐CaP, respectively 
(3 days)  
Osteogenic differentiation:  
‐ARS staining:  
GO–CaP showed superior 
osteoinductivity (2, 3 and 
4 weeks) 
GO microflakes increased 
calcification up to 50% 
more than the control (3, 
4 weeks) 
Calcification in OM > GM 
‐Phosphate assay:  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0076
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0064
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GO–CaP > CaP ≫ 
GO > control (2 and 3 
weeks) 
‐ALP activity and OCN 
expression: OCN GO–
CaP > CaP ≫ GO > control 
(2 weeks)  

kim J 
et 
al.17 
2013  

hADSCs GO‐Gl GO Lateral 
size ≈ 
1–5 
µm 
thickn
ess of 
the 
GO 
film ≈ 
33 nm 

DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐Uncoated 
GO substrate 
(Gl, TCPS) 
‐GO film 
(different 
concentratio
ns: 0, 0.01, 
0.1, 1 
mg/mL) 
‐with FBS 
‐without FBS 

‐AFM 
‐FESEM 
‐XRD 
‐XPS 
‐Raman 
spectra 

Proliferation/viability:  
‐MTT assay: 
Approximately similar cell 
viability was shown on GO 
film compared to the Gl 
and TCPS, even without 
FBS  
‐GO concentration of <0.1 
mg/mL showed good cells 
viability 
Attachment:  
‐Immunofluorescent 
images:  
‐Cells on the GO film 
indicated a larger number 
of FAs than on the Gl (14 
h) 
Osteogenic differentiation:  
‐ARS staining: Higher Ca 
deposits on the GO film 
were shown than on the 
control (3 weeks)  

La 
WG 
et 
al.38 
2013  

hBMSCs GO‐coated 
Ti 

GO — DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐Ti‐GO− (GO‐
COO−)  
‐Ti‐BMP2 
‐Ti‐GO‐‐BMP2  
‐Ti 

‐AFM 
‐SEM 
‐XPS 
‐EDX 
‐CA 
measure
ment 
‐ZP 
measure
ment 

Osteogenic differentiation:  
‐OCN expression: Ti‐GO‐
BMP2 > Ti‐BMP2 (2, 3 
weeks)  
‐qRT‐PCR: mRNA 
expressions  
ALP and OCN on Ti‐GO‐
BMP2 > bare 
Ti (2, 3 weeks) 

kaur 
T et 

MG‐63 GNP‐PLGA G — DMEM ± 10% 
FBS ± 100 U/mL 
Pen/Strep 

‐GNP‐PLGA 
‐CNT‐PLGA 
‐AC‐PLGA 

‐FESEM 
‐TEM 
‐FTIR 

Proliferation/viability:  
‐MTT assay: Cell viability:  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0017
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0038
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al.91 
2017  

‐PLGA ‐XRD 
‐SAED 
‐CA 
measure
ments 
‐
Degradat
ion assay 
‐
Mechani
cal tests 
‐Protein 
absorpti
on 

GNP‐PLGA > CNT‐
PLGA > AC‐
PLGA > PLGA > control (2 
days) 
Attachment:  
Protein adsorption: GNP‐
PLGA > CNT‐PLGA > AC‐
PLGA > PLGA  
Osteogenic differentiation:  
‐ALP activity and ARS 
staining: ALP expression 
and mineralized matrix:  
GNP‐PLGA > CNT‐
PLGA > AC‐
PLGA > PLGA > control (7 
days). 

Li K 
et 
al.28 
2017  

bone 
BMSCs 

G‐coated 
Ti6Al4V  

G — DMEM‐
F12 ± 10%FBS ± 1
00 U/mL 
Pen ± 100 mg/mL 
strep 

‐G‐Ti6Al4V  
‐Ti6Al4V  

‐Raman 
spectra 
‐CA 
measure
ment 

Proliferation/viability:  
‐CCK‐8 assay: OD:G‐
Ti6Al4V ≫ Ti6Al4V (1, 3, 5, 7 
days)  
Attachment:  
‐ICC: Cell areas on: G‐
Ti6Al4V > Ti6Al4V (1 day)  
Cell areas on: G‐Ti6Al4V ≈ 
Ti6Al4V (3, 5 days).  
Osteogenic differentiation:  
ARS staining (21 days), 
ALP activity (7, 14 days), 
qRT‐PCR (ALP, BMP2, COL‐
I‐α1, and Runx2) (7, 14 
days):  
G‐Ti6Al4V > Ti6Al4V  

Shie 
M et 
al.60 
2017  

hMSCs G‐CS G — DMEM ‐G0 (0% 
graphene 
content) 
‐G25 (0.25 
wt % G) 
‐G50 (0.5 
wt % G) 
‐G100 (1.0 
wt % G) 

‐SEM 
‐XRD 
‐XPS 
‐DTS 

Proliferation/viability:  
‐Proliferation of cells: 7 
days 3 days 1 day  
G100 G50 G25 G0 
control  
Attachment:  
‐Adsorption of COL‐I: COL‐I 
adsorption was 
dramatically greater on 
G50 and G100 than on the 
pure CS (G0)  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0091
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0028
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0060
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‐Fluorescent images: The 
cell density on G50 and 
G100 were significantly 
higher than on other two 
composites (3, 7 days)  
Osteogenic differentiation:  
‐Western blotting: ALP, 
OPN and OCN expression: 
G100 G50 G25 G0 
control (7 days)  
‐ALP activity: G100 G50 

G25 G0 control (3, 7 
days)  
‐OCN enzyme linked 
immunosorbent assay kit:  
‐OCN expression: G100 
G50 G25 G0 control 
(7, 14 days)  
‐ARS staining: G100 G50 

G25 G0 (7, 14 days)  

Zou Y 
et 
al.87 
2017  

iMADs, 
iMEFs, 
iCALs, 

GL 
(O/C 
compositio
n: 0.0864) 

G — DMEM 
± 10% (v/v) 
FBS ± 100 U/mL 
pen ± 100 μg/mL 
strep 

‐GL scaffold 
‐GL powder 
‐BMP9 
‐GFP 

‐SEM 
‐TEM 
‐XPS 
‐TGA 
‐Raman 
spectra 
‐Porosity 
measure
ment 

Proliferation/viability:  
‐The GL‐scaffolds can 
support long‐term 
proliferation of MSCs 
‐GLuc activity assay: The 
GLuc activity of cells 
increased at day 5 and 
slightly dropped at day 7.  
Osteogenic differentiation:  
‐SEM: Well‐mineralized 
nodules with many 
mineral particles were 
observed on the surface 
of scaffolds (15 days)  
‐ALP activity: Effect of GL 
powder on iMADs cells:  
BMP9 > BMP9+GL > GFP, 
GFP+GL {3, 5, 7 days) 
Effect of GL powder on 
iMEFs cells: 
BMP9+GL > BMP9 > GFP+
GL,GFP (3, 5, 7 days) 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0087
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‐ARS staining: When GL‐
powder used with Ad‐
BMP9 matrix 
mineralization in both 
iMADs and iMEFs was 
greatly promoted.  
‐qRT‐PCR: OPN, OCN, and 
Runx2 expression were 
remarkably enhanced by 
GL‐powder  

Balik
ov 
DA et 
al.32 
2016  

hMSCs G (as a cell 
culture) 

G — α‐
MEM ± nucleosid
es ± 16.7% heat‐
inactivated 
FBS ± 1% 
pen/strep ± 4 
μg/mL plasmocin 
prophylactic 
agent 

‐Different 
stimulation 
voltages: 0, 
0.1, 0.3 V 
‐Gl 
(unsimulated
) 
‐Gl 
(simulated) 
‐Flat 
G(unsimulate
d) 
‐Flat G 
(simulated) 
‐Grid G 
(unsimulated
) 
‐Grid G 
(simulated) 
‐Column G 
(unsimulated
) 
‐Column G 
(simulated) 
‐Voltage 

‐Raman 
spectra 

Proliferation/viability:  
‐Live/dead assay: The 
majority of cells were alive 
across all voltages on G 
and Gl (1 Hz, 24 h)  
Attachment:  
‐Live and dead assay: 
Attatchment on Gl > G  
Osteogenic differentiation:  
‐Immunostaining assay: 
The expression of the 
Runx2 was greatly 
enhanced by stimulation 
on all G substrates  
A noticeable 
enhancement of OPN was 
observed when 
stimulation was coupled 
with the presence of 
physical parameters (72 h) 

Jakus 
et 
al.35 
2016  

hBMSCS (3D)G‐HAP G 
 

DMEM ‐(3D)G 
‐HAP 
‐(3D)‐printed 
HAP‐(3D)G 
‐PLGA 

‐SEM 
‐Porosity 
measure
ment 
‐
Mechani
cal test 

Proliferation/viability:  
‐Cell number on HAP‐
(3D)G ≈ HAP ≫ (3D)G (day 
14)  
Osteogenic differentiation:  
‐RT‐qPCR: The OCN, OPN, 
and COL‐I expression were 
upregulated by day 14. 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0032
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0035
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‐
Electrical 
measure
ments 

This expression was 
Significantly less than that 
observed on (3D)G and 
HAP, respectively  

Liu Y 
et 
al.19 
2016  

hMSCs 
hADSCs 

G‐coated Gl 
G‐coated Ti 

G — GM: 
DMEM ± 10% 
(v/v) FBS ± 100 
U/mL pen G ± 100 
mg/mL strep 
OM: GM ± 10 nM 
Dex ± 10 mM‐
glycerophosphate 
and 50 µg/mL l‐
AA  

‐G group 
‐G‐absent 
group 

‐AFM 
‐Raman 
spectra 

Proliferation/viability:  
‐CCK‐8 assay: G group > G‐
absent group (2, 12, 24 h)  
‐Cell proliferation: no 
significant differences 
between two groups (2–8 
days)  
Attachment:  
‐FITC staining: 
morphology of the 
adhered cells in G group 
was extended lamellipodia 
in G absent group was 
short pseudopodium 
extension (12 h)  
Osteogenic differentiation:  
‐ALP activity (14 day), ARS 
staining (21 day), 
mineralization assay (21 
day): G group > G‐absent 
group  

Qiu J 
et 
al.94 
2016  

rMSCs GQDs GQD
s 

lateral 
size ≈ 
3.0 ± 0
.6 nm 

L‐DMEM ± 10% 
FBS ± 1% pen‐
strep 

‐GQDs (0–
100 μg/mL) 

‐TEM 
‐PL 
spectra 

Proliferation/viability:  
‐MTT assay: Up 10 μg/mL 
GQDs: reached 100% cell 
viability; 50 μg/mL GQD: 
viability decreases to 93% 
(1, 3 days).  
‐Proliferation: 14 days > 7 
days > 3 days > 1 day  
‐GQDs1 (1 μg/mL) and 10 
did not cause negative 
effect but GQDs50 
arrested the growth of 
MSCs down to 88% (14 
days) 
Attachment:  
‐Fluorescence images: The 
GQDs50 distributed 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0019
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0094
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homogenously thorough 
the cell body (1, 3 days)  
Osteogenic differentiation:  
‐ALP activity: 
GQDs50 > GQDs10 > GQDs
1 > control (10, 14 days)  
GQDs50 ≈ GQDs10 ≈ 
GQDs1 ≈ control (7 days) 
‐qRT‐PCR: Runx2 
expression:  
GQDs50 > GQDs10 > GQDs
1 > control (7, 10, 14 days) 
OPN expression also 
increased up to 10 days 
exposure, although it was 
down‐regulated at high 
GQDs doses (14 days) 
OCN expression: 
GQDs50 > GQDs10 > GQDs
1 > control (10, 14 days)  
‐IFS: The OPN and OCN 
staining strength increases 
together with increasing 
the concentration of 
GQDs (14 days)  
‐ARS staining: 
GQDs10 > GQDs50 > GQDs
1 > control (14 days)  
‐Microarray analysis of 
the global gene‐
expression: BMP6, TGF‐β2, 
and COLV‐α3 were 
upregulated by GQDs  
‐Molecule annotation 
system analysis: TGF‐β 
signaling, MAPK signaling, 
Wnt signaling, ECM‐
receptor interaction, 
Notch signaling, Ca 
signaling, and FAs were 
stimulated by GQDs  
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Xie H 
et. 
al24 
2016  

hDPSC G‐Gl G — DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐Gl (Source)‐
Gl (Destiny) 
‐Gl(S)‐G(D) 
‐G(S)‐Gl(D) 
‐G(S)‐G(D) 

‐AFM 
‐Raman 
Spectra 

Osteogenic differentiation:  
‐ARS staining: G induced 
higher levels of 
mineralization as 
compared to Gl (14, 28 
days).  
‐RT‐PCR: MSX‐1, PAX, and 
DMP genes were down‐
regulated, though Runx2, 
COL, and OCN genes were 
significantly upregulated 
on G comparing to Gl  
‐IFS and FACS: The cells on 
G showed significantly 
higher levels of both OPN 
and OCN as compared to 
Gl  

Yan X 
et 
al.93 
2016  

rMSCs G‐SWCNT G — DMEM/F12 ± 10% 
FBS ± 1% 
pen/strep 

‐G (0, 2.5, 5, 
10, 20 
µg/mL) 
‐SWCNT (0, 
2.5, 5, 10, 20 
µg/mL) 
‐G/SWCNT 
(0, 2.5, 5, 10, 
20 µg/mL) 

‐TEM 
‐Raman 
spectra 

Proliferation/viability:  
‐CCK‐8 assay: G‐
SWCNT > G > SWCNT  
In addition, up to 10 
μg/mL of G‐SWCNT did 
not inhibit proliferation (1, 
3, 7 days) 
Osteogenic differentiation:  
‐ALP activity: 14 days > 10 
days > 7 days and 5 µg/mL 
G‐SWCNT ≈ 10 µg/mL G‐
SWCNT ≥ NaF > 2.5 µg/mL 
G‐SWCNT ≈ control (14 
days)  
‐ARS staining: 14 days ≈ 
18 days ≈ 21 days and 10 
μg/mL of G‐SWCNT at day 
14 showed the best result  
‐Gene expression (OCN, 
OPN, and Runx‐2): G‐
SWCNT at a concentration 
of 10 μg/mL > other 
concentrations and NaF  
‐Western blotting: The 
genes related to the 
MAPK cellular signaling 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0093
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pathways were 
dramatically upregulated  

Zhan
g S et 
al.52 
2016  

mC3H10
T1/2 

G‐nHAP‐
PA66 

G The 
thickn
ess of 
G ≈ 1.0 
nm 

DMEM ± 1 g/L 
glucose, l‐
glutamine, ± sodi
um 
pyruvate ± 10% 
FBS ± 1% 
pen/strep  
OM:10 mM β‐
glycerophosphate
 ± 10−8M 
Dex ± 0.2 mM AA  

‐G‐nHAP‐
PA66 
‐nHAP‐PA66 

‐SEM 
‐XRD 
‐
Mechani
cal tests 

Proliferation/viability:  
‐CCK‐8 assay: G additives 
in nHAP‐PA66 exhibited 
higher optical density  
Attachment:  
‐IFS: Cells grown with G‐
nHAP‐PA66 illustrated a 
higher density and a 
significantly clearer 
cytoskeleton (4, 24, 72 h)  
Osteogenic differentiation:  
‐ARS assay: The G‐nHAP‐
PA66 caused cells to 
produce more Ca 
precipitation than the 
nHAP‐PA66 (7, 14 days)  
‐qRT‐PCR: The ALP and 
OCN expressions were 
significantly upregulated 
by using G‐nHAP‐PA66 (7, 
14 days)  

Zhou 
Z et 
al.41 
2016  

hBMSCs (3D)G‐VC G — α‐MEM ± 15% ES‐
FBS ± 100 μg/mL 
strep ± 2 mM l‐
glutamine ± 100 
U/mL pen  

‐H2O2 
‐VC+H2O2 
‐GF+H2O2 
‐GF+H2O2+VC  

‐XPS 
‐Raman 
spectra 
‐CA 
measure
ment 

Proliferation/viability:  
‐MTT assay: Cell viability 
was restored to normal 
level by using 25 μg/mL 
VC, G, and VC+G (5 days)  
‐ROS: The H2O2‐induced 
ROS increase was 
attenuated by 
cotreatment of VC+G (7 
days)  
‐GSH: It was dramatically 
rescued by VC+G (7 days)  
‐SOD: It was significantly 
rescued by VC, G, and 
VC+G (7 days)  
‐MDA: It was significantly 
inhibited by in the VC+G 
(7 days)  
Attachment:  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0052
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0041
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‐DAPI: cell attached and 
grew well on the GF 
surface  
Osteogenic differentiation:  
‐ALP activity: 0.2 mM H2O2 
decreased the ALP activity 
(8 days), rescued in the 
VC, G, and VC+G  
‐Ca contents: VC+G 
rescued the H2O2‐
suppressed differentiation 
more significantly  
‐Western blotting: 0.2 mM 
H2O2 inhibited the 
expression of β‐catenin 
and cyclin D1, restored by 
VC+G  

Li J et 
al.57 
2015  

MSCs G‐NiTi G — DMEM ± 10%FBS 
± 100 U/mL 
strep ± 100 U/mL 
pen ± 200 U/mL 
heparin 

‐NiTi 
‐G‐NiTi‐
1050°C 
‐G‐NiTi‐
1000°C 
‐G‐NiTi‐950°C 

‐SAED 
‐Raman 
spectra 

Attachment:  
G can better promote 
initial adhesion of cells 
Osteogenic differentiation:  
‐Gene expression: levels of 
OCN, OPN, BMP2, and 
Runx2 on Gr‐NiTi‐1050°C >  
G‐NiTi‐950°C > NiTi 
‐Immunofluorescence: 
More ALP‐positive areas 
were shown on G, 
especially on Gr‐NiTi‐
1050°C  
Compared to NiTi, the G 
can better promote the 
expression of integrin β1 

Lyu 
CQ et 
al.20 
2015  

hADSCs SGH G — DMEM ± 10% 
FBS ± 1% 
Pen/strep 

‐SGH 
‐G 
‐Carbon fiber 
‐Gl 
‐OM 

‐SEM 
‐CA 
measure
ment. 
‐
Mechani
cal tests 
‐Protein 
absorpti
on 

Proliferation/viability:  
‐Live/dead assay: ADSCs 
more strongly proliferate 
on SGH (1, 3 days)  
Attachment:  
‐SEM: Cells attached 
tightly to the SGH and 
spread out (3 days), and 
reached a high cell density 
(7 days)  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0057
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0020
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Osteogenic differentiation:  
‐Flow cytometry: High 
level expression of the 
CD29, CD44, and CD105, 
and rarely expression of 
both CD45 and CD34  
‐qRT‐PCR: mRNA 
expression:  
OM > SGH > G > carbon 
fiber > control (1, 7, 15 
days). Moreover, the 
expression of BMP2, 
Runx2, and OCN was 
significantly higher on the 
SGH (7, 15 days) 
‐IFS: BMP2 and Runx2: 
SGH > G (15, 21 days)  
‐ALP activity: 
OM > SGH > G > carbon 
fiber > control (1, 4, 7 
days)  
‐ARS staining: 
OM > SGH > G > carbon 
fiber > control (21 days). 
In addition, cells displayed 
an irregular polygonal 
morphology (21 days)  

Wang 
CH et 
al.78 
2015  

MC3T3‐
E1 

G‐coated 
PET‐ALs 

G The 
size of 
G‐PET‐
AL 
scaffol
d 
sheets 
are 35 
mm in 
diamet
er 

α‐MEM ± 10% 
FBS ± 100 U/mL 
pen ± 100 U/mL 
strep 

‐PET‐ALs 
‐G‐PET‐ALs 

‐SEM 
‐Raman 
spectra 
‐CA 
measurm
ents 
‐Porosity 
measurm
ents 
‐
Mechani
cal tests 

Proliferation/viability:  
‐MTT and live/dead assay: 
The OD value and number 
of live cells: G‐PET‐ALs ≫ 
PET‐ALs (1, 3, 5, 7 days)  
Osteogenic differentiation:  
‐ALP: G‐PET‐ALs ≫ PET‐
ALs (7, 14 days)  
‐ARS staining: G‐PET‐ALs 
≫ PET‐ALs (21, 28 days)  
‐RT‐PCR: Runx2, OCN, 
OPN, and COL‐IA1 
expression on G‐PET‐ALs 
were dramatically 
upregulated compared to 
PET‐ALs (7, 14, 21 days)  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0078
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Duan 
S et 
al.46 
2014  

mBMSCs PLLA‐
MWCNTs/G 

G — BMSC basal 
culture 
medium ± 10% 
FBS ± 100 IU/mL 
pen ± 100 mg/mL 
strep 

‐P0 (pure 
PLLA) 
‐P1C 
(containing 1 
wt % 
of MWCNTs) 
‐P3C 
(containing 3 
wt % of 
MWCNTs) 
‐P1G 
(containing 
1% wt of G) 
‐P3G 
(containing 3 
wt % of G) 
‐TCPS 
(control 
group) 

‐SEM 
‐CA 
measure
ment 

Proliferation/viability:  
‐Cells grown on 
G > MWCNTs 
‐The cell quantities on 
PLLA‐CNM ≫ pure PLLA 
Attachment:  
‐Incorporation of G 
resulted in the most cell 
adhesion rates 
Osteogenic differentiation:  
‐ALP activity:. 
P3G > P3C > P1G > P1C > P
0 > TCPS (7, 14 days)  
P3G ≈ P3C ≈ P1G ≈ P1C ≈ 
P0 ≫ TCPS (21 days) 
‐Ca contents: P3G P3C 
P1G P1C P0 TCPS (7, 
14, 21 days)  
‐COL‐I (ELISA method) and 
the Ca contents:  
P3G > P3C > P1G > P1C > P
0 > TCPS (7, 14, 21 days) 

Oyef
usi A 
et 
al.84 
2014  

hFOB 
1.19 

G‐HAP G — 1:1 mixture of 
DMEM and F‐12 
medium ±10% 
FBS ± 0.3 mg/mL 
geneticin ± 1% 
pen/strep 

‐
Temperature 
(34, 39°C) 
‐G‐HAP200 
(200 ng/mL) 
‐G‐HAP400 
(400 ng/mL) 

‐SEM 
‐FTIR 
‐XRD 
‐TGA 

Proliferation/viability:  
‐Total protein assay: Cells 
treated with G‐HAP (200, 
400 ng/mL) showed 
increase in total protein 
with time while peaked at 
day 9 (at 34°C)  
Osteogenic differentiation:  
‐Western blot assay: OCN 
expression  
G‐HAP400 (39°C ) > G‐
HAP400 (34°C ) (9, 12 
days) 
G‐HAP200 (34°C ) > G‐
HAP200 (39°C ) (9, 12 
days) 

Taluk
dar Y 
et 
al.10

hBMSCs 
hADSCs 

GONRs 
GNOs 
GONPs 

G&G
O 

— StemLife™ MSC 
medium 

‐DSPE‐PEG 
(control) 
‐GNOs (0, 5, 
10, 50, 100, 
300 μg/mL) 

‐TEM 
‐TGA 
‐ZP 
‐Raman 
spectra 

Proliferation/viability:  
‐Calcein AM staining:  
A decrease in viability of 
both stem cell types with 
an increasing 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0046
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0084
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0109
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9 
2014  

‐GONRs (0, 5, 
10, 50, 100, 
300 μg/mL) 
‐GONPs (0, 5, 
10, 50, 100, 
300 μg/mL) 

concentration of 
nanoparticles. CD50 value 
(for both cell lines): 
GNOs > GONRs > GONPs 
(1, 3 days) 
Osteogenic differentiation:  
‐ARS staining: More 
amounts of nanoparticles 
GONR treated cells. In 
addition, visible 
aggregates of varying sizes 
observed in GONPs 
treated groups (14 days)  
ALP activity and Ca 
content: No dramatic 
difference between 
groups (14 days)  

Xie Y 
et 
al.56 
2014  

hMSCs G‐CS G The 
size of 
G 
plates 
≈ 0.5–
20 μm 
And 
thickn
ess ≈ 
5–25 
nm 

GM:α‐
MEM ± 10% FBS 
and antibiotics 
OM:GM ± 50 μM 
l‐AA ± 10M 
glycerophosphate
 ± 100 nM Dex  

‐G‐CS 0.5 
(wt % G) 
‐G‐CS 1.5 
‐G‐CS 4 
‐Pure CS 
‐Ti 

‐SEM 
‐Porosity 
measure
ment 
‐
Mechani
cal tests 

Proliferation/viability:  
‐MTT assay: G‐CS 1.5 
showed a good 
cytocompatibility and 
higher proliferation rate 
(2, 4, 6 days). In addition, 
the cell number:  
G‐CS 1.5 ≫ CS > Ti (6 days) 
Osteogenic differentiation:  
‐RT‐PCR: ALP and OPN 
expression of the cells on 
the GC 1.5 reached at a 
peak value (14 days), but 
OCN expression continued 
to increase (21 days)  
GC 1.5 ≈ CS > Ti (4, 14, 21 
days) 

Crow
der 
SW 
et 
al.33 
2013  

hBMSC (3D)GF GF — DMEM ± 10% 
heat‐inactivated 
FBS ± 1% 
pen/strep 

‐GF 
‐TCPS 
(control) 

‐SEM 
‐EDX 
‐Raman 
spectra 
‐Porosity 
measure
ment 

Attachment:  
‐Cells attachment on GF 
TCPS  
Osteogenic differentiation:  
‐OCN and OPN secretion: 
GF > TCPS  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0109
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0056
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0033
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‐Protein 
adsorpti
on 

Lee 
WC 
et 
al.59 
2011  

MSCs G&GO 
sheets 

G & 
GO 

— DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐PDMS 
‐G 
‐GO 

‐AFM 
‐XPS 
‐Raman 
spectra 
‐CA 
measure
ment 
‐
Mechani
cal test 

Proliferation/viability:  
‐Fluorescent images: 
Density of cells on G, 
GO > PDMS (1, 4, 7, 10 
days)  
Attachment:  
‐Fluorescent images: 
Attachment of cells on 
PDMS < G and GO  
‐Loading capacity: G and 
GO adsorbed up to 8% 
and 25% of the serum 
proteins, respectively, 
compared to only <1% 
adsorption on PDMS (1 
day)  
Osteogenic differentiation:  
‐ARS staining: 
G > GO > PDMS (12 days)  
‐Ultraviolet 
spectrophotometry: G 
adsorbed the most 
amount of Dex and β‐
glycerolphosphate and the 
least amount of AA 
compared to GO and 
PDMS (1 day)  

Naya
k TR 
et 
al.62 
2011  

hMSCs G sheet G — GM: 
DMEM ± 10% 
FBS ± 1% 
pen/strep ± 1% 
nonessential 
amino acids ± 1% 
sodium pyruvate 
OM: DMEM basal 
medium ± Dex ± l‐
glutamine ± AA ± 
β‐
glycerophosphate  

‐Cover slip 
(control) 
‐Gl slide 
‐Si/SiO2 
‐PET 
‐PDMS 
‐G coated Gl 
slide 
‐G coated 
Si/SiO2 
‐G coated 
PET 

‐AFM 
‐Raman 
spectra 

Proliferation/viability:  
‐MTT assay, DAPI (blue), 
and Calcein AM staining: 
No significance difference 
between uncoated and G 
coated substrates  
Osteogenic differentiation:  
‐IFS staining of CD‐44 for 
hMSCs and OCN for 
osteoblasts and ARS 
staining:  
Without BMP2: GO 
coating dramatically 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0059
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0062
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‐G coated 
PDMS 
‐All the 
groups with 
BMP2 
‐All the 
groups 
without 
BMP2  

increase differentiation 
especially on stiffer 
surface, Gl slide and 
Si/SiO2 
With BMP2: G further 
improve the osteogenesis 
especially on softer 
surface, PET and PDMS 
(15 days) 

Nie 
W et 
al.4 
2017  

mBMSCs nHAP‐RGO RGO — DMEM/F12 ± 15% 
FBS ± 100 U/mL 
pen ± 100 mg/mL 
strep 

‐RGO 
‐20%, nHAP‐
RGO 
‐40% nHAP‐
RGO 
‐80% nHAP‐
RGO 

‐SEM 
‐TEM 
‐XRD 
‐EDS 
‐
Mechani
cal test 
‐Porosity 
measure
ment 

Proliferation/viability:  
‐Live cell staining and cell 
counting: 20%, nHAP‐
RGO > RGO > 40%, nHAP‐
RGO80%, nHAP‐RGO (4, 8 
days)  
Attachment:  
‐Fluorescence signals: Live 
cells on 20% nHAP‐
RGO > RGO ≫ 40% nHAP‐
RGO > 80% nHAP‐RGO (6, 
12 h).  
‐Live cell staining: Cells 
number on 20% nHAP‐
RGO > RGO ≫ 40% nHAP‐
RGO > 80% nHAP‐RGO (4, 
8 days).  
Osteogenic differentiation:  
‐ALP activity: 20% nHAP‐
RGO > RGO (3, 7, 14 days)  
‐mRNA expression: Runx2 
showed an upregulation 
on the 20% nHAP‐RGO 
scaffold. COL‐I A1, OCN, 
and OPN showed a 
delayed upregulation  
‐Von Kossa and ARS 
staining: Confirmed the 
ability of 20% nHAP‐RGO 
to induce the cell 
mineralization (21 days)  
‐SEM and EDS: 
mineralized nodule was 
observed as an oval solid 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0004
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sphere mostly containing 
of Ca, P, and O  

Tian 
Z et 
al.77 
2017  

MC3T3‐
E1 

(3D)RGO 
films 

RGO Diame
ter: 
0.5–3 
µm 
Thickn
ess: 
0.55–
1.2 nm 

GM: α‐
MEM ± 10% 
FBS ± 1% 
pen/strep 
OM:GM +10 mM 
β‐glycerol 
phosphate ± 0.2 
mM AA  

‐3D‐RGO 
films 
‐RGO 
‐Cover Gl 

‐AFM 
‐SEM 
‐TEM 
‐XRD 
‐XPS 
‐Raman 
spectra 
‐CA 
measure
ment 

Proliferation/viability:  
‐Percentage of live cells: 
Cover Gl > 3D‐RGO (1, 4 
days). Besides, both 
groups reached to 
approximate 99% cell 
viability (7 days)  
‐CCK‐8 assay: Cover 
Gl > 3D‐RGO (1, 4, 7 days)  
Attachment:  
‐Live‐dead assay: The 
number of live cells in 
both groups gradually 
increased (1, 7 days)  
‐DAPI staining: The 
number of attached cells 
on cover glass was greater 
than that on 3D‐RGO (24 
h)  
Osteogenic differentiation:  
‐ALP activity (7, 14 days): 
3D‐rGO film ≈ RGO ≫ 
cover Gl  
‐qRT‐PCR (ALP, Runx2, 
OCN, and OPN): 3D‐RGO 
film > RGO > cover Gl (14 
days)  

Feng 
P et 
al.34 
2016  

MG‐63 
hBMSCs 

2D 
GNSs/1D 
CNTs/HAP–
PEEK 

2D 
GNSs 

— GM:DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐S5 (PEEK–10 
wt % HAP–
0.2 wt % 
GNSs–0.8 
wt % CNTs) 
‐Control 

‐SEM 
‐XRD 
‐EDS 
‐Raman 
spectra 
‐Porosity 
measure
ment 
‐
Mechani
cal tests 

Proliferation/viability:  
‐MTT assay: Cell 
proliferation on S5 
scaffold > control (1, 3, 5, 
7 days)  
Attachment:  
‐Live/dead assay: Most of 
the cells were viable on S5 
scaffold (1 3, 5, 7 days)  
The attachment area on 
the scaffold surface 
increased with increasing 
the culture time 
Osteogenic differentiation:  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0077
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0034
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‐ALP activity: The ALP 
activity of cells on the S5 
on day 7 > day 3  

Jia Z 
et 
al.68 
2016  

MC3T3‐
E1 

RGO‐PDA RGO — α‐MEM ± 10% 
FBS ± 1% 
pen/strep 

‐Bulk GO 
‐RGO‐PDAx 
(for x = 1, 2, 
5, 10) 
‐TCPS 
(negative 
control) 
‐cpTi 

‐AFM 
‐FTIR 
‐XPS 
‐Raman 
spectra 
‐CA 
measure
ment 
‐Protein 
adsorpti
on 

Proliferation/viability:  
‐Mitochondrial activity: 
Cell viability (relative to 
TCPS) of cells on 
cpTi > RGO‐PDA > GO (2 
days). At day 6, all surface 
showed viability about 
100%.  
Attachment:  
‐The number of cells on 
RGO‐PDA bulk GO cpTi 
(4, 8 h)  
‐Live/dead assay: around 
100% confluence was 
reached for all groups  
Osteogenic differentiation:  
‐ALP activity: Bulk 
GO > RGO‐
PDA > TCPS > cpTi (7 days)  
‐SR staining (collagen 
content):  
Bulk GO > RGO‐PDA ≈ 
TCPS > cpTi (21 days) 
‐ARS staining (Ca content): 
Bulk GO ≈ TCPS > RGO‐
PDA > cpTi (28 days)  

Lim 
KT et 
al.25 
2016  

hABMSCs RGO‐PEMFs 
(O/C 
ratio:0.255) 

RGO Thickn
ess ≈ 
1–2 
nm 

α‐MEM ± 10% 
FBS ± 10 10−3 m 
l‐
AA ± antibiotics ± 
sodium 
bicarbonate  

‐Gl 
‐Gl+PEMFs, 
‐RGO 
‐
RGO+PEMFs, 
(the group 
cultured on 
RGO 
substrates 
and 
irradiated by 
PEMFs) 

‐AFM 
‐SEM 
‐XRD 
‐XPS 
‐Raman 
spectra 
‐
Elementa
l analysis 
experime
nt 
‐
Magneto
metry 

Proliferation/viability:  
‐WST‐1 assay and DNA 
content:  
Test.: RGO+PEMFs 
showed the highest cell 
viability and DNA 
concentration ratio  
‐ICC: Fn expression: RGO, 
RGO+PEMFs > Gl, 
Gl+PEMFs.  
CaM expression: 
Gl+PEMFs, 
RGO+PEMFs > Gl, RGO 
Attachment:  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0068
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0025
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‐
Electrical 
measure
ment 

‐Microscopy images: Cells 
on RGO+PEMFs were 
more numerous than on 
the other groups (7 days)  
Osteogenic differentiation:  
‐ALP activity: ALP was 
highly secreted on 
RGO+PEMFs (1 week)  
‐ICC: OPN (2 weeks) and 
NeuN (7 days) were 
expressed highest on 
RGO+PEMFs (2 weeks)  
‐RT‐PCR: RGO+PEMFs 
promoted the expression 
of Runx2, OPN, OCN, BSP, 
SMAD‐1, nestin and 
MAP2. Inversely, the gene 
expression of ALP 
decreased (2 weeks)  
‐ARS and VKS: 
RGO+PEMFs exhibited the 
highest mineralization (2 
weeks)  

Chen 
S et 
al.65 
2015  

MC3T3‐
E1 

RGO –
aminosilica 
hybrid 

RGO — α‐MEM ±  10% 
FBS  ± 100U/mL 
pen ±  100 μg/mL 
strep ±  GOAP0 
(APTES = 0, 
i.e.,GO) ± 
 GOAP058(APTES  
= 0.58 mL) at the 
concentration of 
0.00625–0.025 
mg/mL 

‐RGOAP0 
(APTES = 0) 
0.00625–
0.025 mg/mL 
‐
RGOAP058(A
PTES = 0.58 
mL) 
0.00625–
0.025 mg/mL 

‐SEM 
‐FTIR 
‐XPS 
‐ICP‐AES 
‐Raman 
spectra 

Proliferation/viability:  
‐WST assay: Viability of 
cells exposed to 
RGOAP058 ≪ RGOAP0 (1 
day)  
GOAP0 =GOAP058 (3 day) 
‐day 3 > day 1 
Attachment:  
‐Live/dead assay: The 
most viable cells exposed 
to both samples (3 day)  
Osteogenic differentiation:  
‐ALP activity: RGOAP058 
≫ RGOAP0 (14 days)  
‐OPN secretion: 
RGOAP058> RGOAP0(4 
weeks)  

Jin L 
et 

hMSCs RGO NPs RGO Lateral 
sizes ≈ 
100–

MSC basal 
medium ± 50 mL 
MSC growth 

‐RGO (at 
different 
concentratio

‐SEM Proliferation/viability:  
‐WST‐8 assay: The RGO 
NPs decreased the cell 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0065
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al.58 
2015  

1000 
nm. 
Averag
e 
particl
e size 
≈ 450 
nm. 

supplement ± 10 
mL 
l‐glutamine ± 0.5 
mL GA‐1000  

n: 0, 0.5 1, 2, 
4, 8, 16, 31, 
63, 125, 250, 
500 µg/mL) 
‐Control 

viability at about 60 
µg/mL. the cell viability 
increased with time for up 
to 14 days.  
‐The RGO NPs did not 
influence cell 
proliferation. 
Osteogenic differentiation:  
‐ALP activity: RGO NPs 
other groups (21 days)  
‐ARS staining: Staining 
was highest in the group 
with RGO NPs (21 days)  

Lee J 
et 
al.72 
2015  

MC3T3‐
E1 

RGO‐HAP RGO — α‐MEM ± 10% 
FBS ± 1% 
pen/strep/ampho
tericin B 

‐RGO 
‐HAP 
‐RGO‐HAP 

‐FESEM 
‐Raman 
spectra 
‐XRD 

Proliferation/viability:  
‐CCK‐8 assay: HAP, RGO, 
and RGO/HAP at lower 
concentrations than 10, 
and 31.3 μg/mL exhibited 
no significant cytotoxicity, 
respectively.  
‐Proliferation test: The 
proliferation patterns of 
cells did not affected by 
using HAP, RGO, and 
RGO/HAP (21 days)  
Osteogenic differentiation:  
‐ALP activity and ARS 
staining:  
RGO‐
HAP > RGO > HAP > contro
l (14, 21 days). 
‐Von Kossa staining: 
Corroborated the ability 
of RGO‐HAP to induce the 
cell mineralization (28 
days)  
‐Western blotting: OPN 
and OCN expression: RGO‐
HAP > RGO > HAP > contro
l (21 days)  

Lee J 
et 

hMSCs RGO‐HAP RGO Thickn
ess ≈ 
1.5 nm 

MSC basal 
medium ± 10% 
MSC growth ± 2% 

‐RGO 
‐HAP 
‐RGO‐HAP 

‐AFM 
‐FESEM 
‐XRD 

Proliferation/viability:  
‐CCK‐8 assay: HAP, RGO, 
and RGO/HAP at lower 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0058
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0072
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al.40 
2015  

Lateral 
size ≈ 
438 ± 
180 
nm 

l‐
glutamine ± 0.1% 
GA‐
1000 ± 1%antibio
tic antimycotic 
solution  

‐Raman 
spectra 
‐ZP 

concentrations than 10, 
and 62.5 μg/mL exhibited 
no significant cytotoxicity, 
respectively  
‐Proliferation test: The 
proliferation patterns of 
cells did not affected by 
using HAP, RGO, and 
RGO/HAP (21 days)  
Osteogenic differentiation:  
‐ALP activity and ARS 
staining:  
RGO‐
HAP > RGO > HAP > contro
l (14, 21 days) 
‐Von Kossa staining: 
corroborated the ability of 
RGO‐HAP to induce the 
cell mineralization (28 
days)  
‐Western blotting and ICC 
assay: OPN and OCN 
expression:  
RGO‐
HAP > RGO > HAP > contro
l (21 days) 

kuma
r S et 
al.71 
2014  

MC3T3‐
E1 

RGO‐Sr 
PCL‐RGO‐Sr 

RGO Lateral 
dimen
sion 
≈5 μm. 

α‐MEM ± 10% 
(v/v) FBS ± 1% 
(v/v) pen/strep 

‐Neat PCL 
‐PCL‐RGO1 
(10 mg of 
RGO per g of 
PCL and 0 mg 
of Sr per g of 
PCL) 
‐PCL‐RGO3 
‐PCL‐RGO5 
‐PCL‐RGO‐Sr1 
(10 mg of 
RGO‐Sr per g 
of PCL and 
2.2 mg of Sr 
per g of PCL) 
‐PCL‐RGO‐Sr3 
(30 mg of 

‐SEM 
‐TEM 
‐XRD 
‐TGA 
‐ICP‐OES 
‐Raman 
spectra 
‐CA 
measure
ment 
‐Porosity 
measure
ment 
‐
Degradat
ion rate 

Proliferation/viability:  
‐DNA content and cellular 
nuclei staining: All three 
PCL‐RGO‐Sr > neat PCL (3, 
7 days). DNA content 
increased with increase in 
the content of RGO‐Sr  
Osteogenic differentiation:  
‐ARS staining: PCL‐RGO‐
Sr5 showed the highest 
mineral deposition (nearly 
double the mineral 
content in neat PCL and 
PCL‐RGO5) (14, 21 days)  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0040
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0071
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RGO‐Sr per g 
of PCL and 
6.6 mg of Sr 
per g of PCL) 
‐PCL‐RGO‐Sr5 
(50 mg of 
RGO‐Sr per g 
of PCL and 11 
mg of Sr per 
g of PCL) 
‐OM 
‐GM 

measure
ment 

Mehr
ali M 
et 
al.86 
2014  

hFOB 
1.19 

RGO‐CS RGO lateral 
size: 
GO: 
3.88 ± 
0.99 
µm 
RGO: 
2.37 ± 
0.65 
µm 

DME/F‐12 ± 10% 
FBS ± 100 U/mL 
pen ± 100 μg/mL 
strep 

‐Xonotlite 
nanowires 
‐CS 
‐CS−0.25 
wt % RGO 
‐CS−0.5 wt % 
RGO 
‐CS−0.75 
wt % RGO 
‐CS−1.0 wt % 
RGO 
‐CS−1.5 wt % 
RGO 

‐FESEM 
‐TEM 
‐FTIR 
‐XRD 
‐Raman 
spectra 
‐Porosity 
measure
ment 
‐
Mechani
cal tests 

Proliferation/viability:  
‐CLSM: More cells are 
attached to the CS/RGO 
surface than the pure CS 
surface (3, 5 days)  
‐MTT assay: The number 
of cells increased 
significantly with 
increasing RGO 
concentration (1, 3, 5 
days)  
Attachment:  
CLSM: CS/RGO > CS (3, 5 
days)  
Osteogenic differentiation:  
‐ALP activity: ALP activity 
increased with increasing 
RGO content (7 days)  
‐EDX pattern: indicated 
the formation of a Ca 
phosphate based on the 
preponderance of Ca and 
P elements (3 days)  

Dube
y N 
et 
al.88 
2018 

hMG63 G coating 
on Ti 

G — DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐G coating on 
Ti via wet 
transfer 
technique 
(WGp) 
‐G coating on 
Ti via direct 
dry transfer 

‐AFM 
‐XPS 
‐Raman 
spectra 
‐CA 
measure
ment 

Proliferation/viability:  
‐MTS assay: Both WGp 
and DGp presented 
significantly higher 
proliferation compared to 
CpTi (120 h)  
‐LDH: G coating has no 
effect on cellular 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0086
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0088
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technique 
(DGp). 
‐Ti 

‐
Mechani
cal test 

membrane damage (3 
days)  
Osteogenic differentiation:  
‐qRT‐PCR (ALP, COL‐I, 
OCN, Runx‐2): Except for 
Runx2 at 24 h, both WGp 
and DGp increased the 
expression of all 
osteogenic‐related genes 
(24, 72, 167 h)  
‐Ca content: WGp and 
DGp ≫ Ti  

Fu C 
et 
al.81 
2017  

MC3T3‐
E1 

GO‐PLGA‐
HAP 

GO — DMEM ± 10% 
FBS ± 100 IU/mL 
pen ± 100 μg/mL 
of strep 

‐PLGA 
‐PLGA‐HAP 
‐GO‐PLGA 
‐GO‐PLGA‐
HAP 

‐SEM 
‐XRD 
‐CA 
measure
ment 
‐
Mechani
cal test 
‐Protein 
absorpti
on 

Proliferation/viability:  
‐MTT assay: GO‐PLGA‐
HAP > GO‐PLGA > PLGA‐
HAP > PLGA (1, 4, 7 days)  
Attachment:  
‐FITC & DAPI staining: GO‐
PLGA‐HAP showed the 
best cytoskeleton (4d).  
Osteogenic differentiation:  
‐ALP activity (7, 14 days), 
ARS staining (14, 21 days): 
GO‐PLGA‐HAP > GO‐
PLGA > PLGA‐HAP > PLGA  
‐qRT‐PCR (OPN, Runx‐2): 
GO‐PLGA‐HAP > GO‐
PLGA > PLGA‐HAP > PLGA 
(7 days)  

Han l 
et 
al.30 
2018  

BMSCs GO‐
Ti/BMP2/V
AN/GelMS 

GO — DMEM ± 10% FBS ‐Ti 
‐BMP2‐Ti 
‐GO‐Ti 
‐GO‐
Ti/GelMS 
‐GO‐
Ti/BMP2/VA
N/GelMS 

‐SEM 
‐DLS 
‐TEM 
‐FTIR 
‐XRD 

Proliferation/viability:  
‐MTT assay: GO‐
Ti/BMP2/VAN/GelMS ≈ 
GO‐Ti/GelMS > GO‐
TI > BMP2‐Ti > Ti (3, 7 
days)  
Osteogenic differentiation:  
‐ALP activity: GO‐
Ti/BMP2/VAN/GelMS 
showed the highest ALP 
activity (14 days)  

Sunn
y C et 

ADSCs GONP‐Ti 
GONR‐Ti 

GO GONP:
1–2 

ADSC basal 
media + heat‐

‐GONP‐Ti 
‐GONR‐Ti 

‐AFM 
‐SEM 

Proliferation/viability:  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0081
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0030
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al.22 
2018  

μm 
(grain 
size) 
GONR:
400–
700 n
m (in 
width) 

inactivated 
FBS + ADSC 
Growth media 

‐SWCNT‐Ti 
‐MWCNT‐L‐Ti 
‐MWCNT‐H‐
Ti 

‐Raman 
spectra 
‐Protein 
absorpti
on 

‐LDH: SWCNT‐Ti ≈ 
MWCNT‐H‐Ti > MWCNT‐L‐
Ti ≈ GONP‐Ti ≈ GONR‐Ti (5 
days)  
Osteogenic differentiation:  
‐ALP activity: 
PS > MWCNT‐
H > SWCNT > MWCNT‐
L > GONP > GONR > Ti (14 
days)  
GONR > GONP ≈ MWCNT‐
H ≈ MWCNT‐L > SWCNT ≈ 
PS > Ti (21 days) 
‐Ca content: There were 
no differences at day 14, 
but at day 21:MWCNT‐
H > GONP > GONR > Ti > M
WCNT‐L > SWCNT > PS  
‐OCN: MWCNT‐
H > Ti > SWCNT > MWCNT‐
L > GONR > GONP (21 
days)  

Xiong 
K et 
al.44 
2017  

mBMSCs RGO‐ZS‐CS RGO — DMEM ± 10% FBS ‐RGO‐ZS‐CS‐
ES (with 
electrical 
stimulation) 
‐RGO‐ZS‐CS‐
NES (without 
electrical 
stimulation) 

‐FESEM 
‐TEM 
‐XRD 
‐XPS 
‐EDS 

Osteogenic differentiation:  
‐ALP activity: RGO‐ZS‐CS‐
ES > RGO‐ZS‐CS‐NES (7 
days)  
‐qRT‐PCR (COL‐I, OCN, 
Runx‐2): RGO‐ZS‐CS‐
ES > RGO‐ZS‐CS‐NES (7 
days)  

Elkhe
nany 
H et 
al.23 
2017  

Goat 
ADSCs 

LOG G — — ‐LOG 
‐Polystyrene 
‐G 

‐SEM 
‐XPS 

Proliferation/viability:  
‐MTS assay and live/dead 
assay: Cells retained their 
proliferation and 
maintained their viability 
on LOG films (2, 10 days)  
Osteogenic differentiation:  
‐ARS staining: Cells 
underwent osteogenesis 
(7 days)  
‐Trilineage differentiation: 
Cells retained the 
expression of CD44  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0044
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0023
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Kim J 
et 
al.51 
2018  

C3H10T1
/2 

GO 
substrate 

GO — DMEM ± 10% 
FBS ± 1% 
pen/strep 
‐OM 
‐CM 
‐GM 

‐GO‐CM 
‐GO‐GM 
‐Gl‐GM 
‐Gl‐CM 

‐CA 
measure
ment 

Proliferation/viability:  
‐Live/dead assay: GO or 
CM had no significant 
cytotoxicity to cells (1 day)  
‐Alamar Blue assay: GO‐
CM > Gl  
Attachment:  
‐SEM: The attached cells 
and the surface area of a 
single cell were larger 
compared to that of a 
glass slide  
Osteogenic differentiation:  
‐RT‐PCR: OCN, BMPR1A, 
and RUNX2 secretion: GO‐
CM > GO‐GM ≈ GL‐
CM > GL‐GM (14 days)  
ALP secretion: GO‐
CM > GL‐CM > GO‐
GM > GL‐GM (14 days) 
BMP2 secretion: GO‐
GM > GL‐CM ≈ GO‐
CM > GLGM (14 days) 
‐ARS staining: GO‐CM 
showed the greatest 
calcium deposition rate 
among all groups (14 
days)  

Liu M 
et 
al.83 
2018  

osteoblas
t 

TP‐RGO‐Ti RGO — DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐TP‐RGO‐Ti 
‐Ti 

‐AFM 
‐SEM 
‐XRD 

Proliferation/viability:  
‐CCK‐8 assay: TP‐RGO‐
Ti > Ti (1, 3 days)  
Attachment:  
‐SEM: There were fewer 
cells on Ti surface 
compared to TP‐RGO‐Ti 
(1, 3 days)  
Osteogenic differentiation:  
‐RT‐PCR: BMP2, BMP4 and 
OPN secretion: TP‐RGO‐
Ti > Ti (3 days)  

Wang 
Q et 

mBMSCs GO‐Ct‐HAP‐
SF 

GO — DMEM ± 10% FBS ‐GO‐Ct‐HAP 
(1:4)‐SF 
(wt % 

‐SEM 
‐TEM 
‐FTIR 

Proliferation/viability:  
‐MTT assay: Cell density 
was higher on GO‐Ct‐HAP 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0051
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0083
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al.43 
2017  

GO:wt % 
HAP) 
‐GO‐Ct‐HAP 
(1:2)‐SF 
‐HAP‐SF 
‐GO‐Ct‐HAP 
‐SF 
‐Cover slip 

‐XRD 
‐XPS 
‐
Mechani
cal test 
‐Protein 
absorpti
on 

(1:4)‐SF than on SF and 
HAP‐SF (1, 4, 7 days)  
Attachment:  
‐SEM: The cells formed a 
dense and interconnected 
network  
Osteogenic differentiation:  
‐ALP activity: GO‐Ct‐HAP 
(1:4)‐SF > HAP‐
SF > SF > cover slip (7, 10, 
14 days)  
‐RT‐PCR: COL‐I, OCN, ALP 
genes: GO‐Ct‐HAP (1:4)‐
SF > HAP‐SF > SF > cover 
slip (7, 10, 14 days).  
CD44 and cD29 genes: 
GO‐Ct‐HAP (1:4)‐SF > HAP‐
SF > SF > cover slip (7, 10 
days), but at day 14 
expression of these genes 
on GO‐Ct‐HAP (1:4)‐SF 
was lower 

Wei 
C et 
al.31 
2017  

BMSCs GO GO — OM 
GM:DMEM ± 10% 
FBS ± 1% 
pen/strep 

‐GO/OM 
(0.01, 0.1, 1, 
10 μg/mL) 
‐GO/GM 
(0.01, 0.1, 1, 
10 μg/mL) 

‐TEM Proliferation/viability:  
‐CCK‐8 assay: GO/GM at 
10 μg/mL inhibited cell 
growth while GO/GM at 
0.1 μg/mL promoted cell 
proliferation (1, 3, 5, 7 
days)  
Attachment:  
‐CLSM: Adhesion density 
of cells was reduced after 
incubation with 1 and 10 
μg/mL of GO/GM (72 h)  
Osteogenic differentiation:  
‐ALP activity: GO/DMEM 
has no effect on ALP 
activity, while GO/OM (0.1 
μg/mL) significantly 
increased ALP (3, 7 days)  
‐ARS staining: GO/OM (0.1 
μg/mL) > GO/OM (0.01 
μg/mL) (21 days)  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0043
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0031
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‐RT‐PCR: RUNX2 and β‐
catenin expression: 
GO/OM (0.1 
μg/mL) > GO/OM (0.01 
μg/mL) (14 days)  

Yao 
Q et 
al.55 
2017  

hMSCs (3D)GF‐
PLGA‐Ct‐
BMP2 

G — α‐MEM ± 10% 
FBS ± 1% 
pen/strep 

‐GF 
‐GF‐PLGA 
‐GF‐PLGA‐Ct 
‐GF‐PLGA‐Ct‐
BMP2 

‐SEM 
‐Raman 
spectra 
‐
Mechani
cal test 

Proliferation/viability:  
‐MTS and live/dead 
staining: GF‐PLGA‐Ct‐
BMP2 > GF (1, 4 days)  
Osteogenic differentiation:  
‐ALP activity (7 days) and 
calcium content (21 days): 
GF‐PLGA‐Ct‐BMP2 > GF‐
PLGA‐Ct ≈ GF  
‐RT‐PCR: BSP, OCN, ALP, 
RUNX2 expression: GF‐
PLGA‐Ct‐BMP2 > GF (7 
days)  

Zhan
g L et 
al.82 
2018  

MC3T3‐
E1 

NT‐nGO‐
PEG‐
PEI/siRNA 
(NT‐
GPP/siRNA) 

GO Hydro‐
dynam
ic 
diamet
ers: 
561.8 
nm 

‐α‐MEM ± 10% 
FBS ± 100 U/mL 
pen/strep 

‐NT 
‐PT 
‐NT‐nGO‐
PEG‐PEI 
(GPP) 
‐NT‐nGO‐
PEG‐
PEI/siRNA 
‐NT‐nGO‐
PEG‐
PEI/siCkip‐1 
‐NT‐nGO‐
PEG‐PEI/siNC 

‐AFM 
‐SEM 
‐TEM 
‐DLS 
‐TGA 
‐CA 
measure
ment 

Proliferation/viability:  
‐CCK‐8 assay: The cell 
viability on NT was 
significantly higher than 
PT and there were no 
differences among NT, NT‐
GPP, NT‐GPP/siRNA (1, 3, 
7 days)  
Attachment:  
‐SEM: Cells adhered 
better on NT and NT‐
GPP/siRNA compared to 
PT (24 h)  
Osteogenic differentiation:  
‐ALP and ARS and collagen 
secretion: NT‐GPP/siCkip‐
1 > NT‐GPP/siNC = NT‐
GPP > NT > PT (7 days)  

Akha
van o 
et 
al.54 
2013  

hMSCs GONR 
RGONR 

GO 
RGO 

Thickn
ess 
∼1 nm 

‐DMEM ± 10% 
FBS ± 1% 
pen/strep ± 2 
mM l‐
glutamine ± 10 
ng/mL basic 

‐PDMS 
‐RGONR 
‐GONR 
‐GO 
‐RGO 
‐Coverslip 

‐AFM 
‐SEM 
‐XPS 
‐Raman 
spectra 

Proliferation/viability:  
‐Cell density: 
GONR > RGONR > GO > RG
O > PDMS (1, 3, 5, 7 days).  
Osteogenic differentiation:  

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0055
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0082
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0054
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fibroblast growth 
factor  
‐OM 

‐CA 
measure
ment 

‐ARS staining: With OM 
medium: 
RGONR > RGO > GONR > G
O > coverslip > PDMS (7 
days)  
Without OM medium: 
GONR > RGONR > GO > co
verslip > RGO ∼ PDMS (7 
days) 
‐RhP staining: With OM 
medium: 
GONR > RGONR > GO ∼ 
coverslip > RGO > PDMS (7 
days)  
Without OM medium: 
GONR > RGONR > GO > RG
O > coverslip > PDMS (7 
days) 

Xie H 
et 
al.27 
2015  

hPDLSCs 2DG 
3DG 

G — ‐
GM:DMEM ± 10% 
FBS ± 1% 
pen/strep 
‐OM 

‐Gl/OM 
‐Gl/GM 
‐2DG/OM 
‐3DG/OM 
‐2DG/GM 
‐3DG/GM 
‐PS/OM 
‐PS/GM 

‐Raman 
spectra 

Proliferation/viability:  
‐MTS assay: 
3DG > 2DG > Gl > PS (5 
days)  
Attachment:  
‐SEM: Cells efficiently 
adhered on all 
experimental substrates 
(1, 5 days)  
Osteogenic differentiation:  
‐ARS staining: 2DG and 
3DG under GM presented 
higher mineralization as 
compared to Gl and PS 
with OM  
‐RT‐PCR: RUNX2 
expression (2DG): 
2DG/OM > 2DG/GM > Gl/
OM (7, 14, 28 days)  
COL‐I and OCN expression: 
2DG/OM > GL/OM > 2DG/
GM (7, 14, 28 days) 
RUNX2, COL‐I and OCN 
expression (3DG): 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-bib-0027
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3DG/OM > 3DG/GM > PS/
OM (7, 14, 28 days) 
MYH10 and MYH10‐V2 
expression: 
2DG/OM was the highest 
compared to other (28 
days). 2DG/GM was 
higher than Gl/GM (7, 14, 
28 days). Gl/OM was 
similar to 2DG/GM after 7 
days but lower after 28 
days 
3DG presented higher 
expression regardless the 
use of OM 

Qiu J 
et 
al.42 
2017  

mBMSCs 3DRGO‐Ti RGO Thickn
ess 
∼1.13 
μm 

‐α‐MEM ± 10% 
FBS ± 100 U/mL 
pen/strep 

‐Ti 
‐APS‐Ti 
‐GO‐Ti 
‐RGO‐Ti 

‐AFM 
‐FESEM 
‐FTIR 
‐XPS 
‐ZP 
‐Raman 
spectra 
‐CA 
measure
ment 
‐
Mechani
cal test 
‐Protein 
absorpti
on 

Proliferation/viability:  
‐Live/dead assay: all the 
samples have a good 
compatibility without 
cytotoxicity (4 days)  
‐Alamar Blue assay: 
Ti > GO‐Ti > RGO‐Ti > APS‐
Ti (1, 4, 7 days)  
Attachment:  
‐SEM: Cells adhered well 
on all substrates (1, 4, 24 
h)  
Osteogenic differentiation:  
‐ALP and ARS and collagen 
secretion: RGO‐Ti > GO‐
Ti > APS‐Ti > Ti (7, 14 days)  
‐RT‐PCR: ALP, OPN, OCN 
and BMP‐2 expression: 
RGO‐Ti > GO‐Ti > APS‐
Ti > Ti (7 days)  

Jaide
v LR 
et 
al.80 
2017  

MC3T3‐
E1 

PCL/RGO 
Cu 

RGO — — ‐PCL/RGO 
‐PCL 
‐PCL/Cu 
‐
PCL/RGO_Cu
_5 (wt %) 

‐AFM 
‐SEM 
‐TEM 
‐XRD 
‐EDS 
‐XPS 

Proliferation/viability:  
DNA content (1, 3, 7, 14 
days):  
‐
PCL/RGO > PCL > PCL/Cu > 
PCL/RGO_Cu_5 (3, 7 days) 
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Auth
ors 

Cell 
Source 

Chemical 
Compositio
n and 
Functionali
zation 

Type 
of 
Grap
hene 

Size Cultural 
Condition 

Treatment 
Group 

Characterizat
ion 

Outcome 

‐
PCL/RGO = PCL > PCL/RGO
_Cu_5 > PCL/Cu (14 days) 
Osteogenic differentiation:  
‐ARS staining: 
PCL/RGO_Cu_5 > PCL/Cu >
 PCL/RGO > PCL (14 days)  

Abbreviations. 1D, one‐dimensional; Ad, adenovirus; APTES, 3‐aminopropyltriethoxysilane; ASC, adipose stormal 
cell; Au, gold; BSP, bone sialo‐protein; CaM, calmodulin; CBB, Ct‐BMP‐BSA; CD, circular dichroism; CLSM, confocal 
laser scanning microscope; DA, hydrochloride; DMEM, Dulbecco's modified eagle medium; FACS, fluorescence‐
activated cell sorting analysis; FBS, fetal bovine serum; FCS, fetal calf serum; FIC, fluorescent intensity of 
cytoplasm; FIN, fluorescent intensity of nuclear; GA, entamicin, amphotericin; GC, graphene/calcium silicate; GFP, 
green fluorescent protein; GLuc, gaussia luciferase; GM, growth medium; GSH, glutathione; hFOB 1.19, human 
fetal osteoblastic cell line; hMSCs, human mesenchymal stem cells; IFS, immuno‐fluorescence staining; MDA, 
malondialdehyde; mMSCs, mouse mesenchymal stem cells; Na, sodium; NaF, sodium fluoride; PA66, poly‐
amide66; PDLLA, poly (D, L‐lactic acid); PEMFs, pulsed electromagnetic fields; Pen, penicillin; PI, propidium iodide; 
rMSCs, rat mesenchymal stem cells; RT‐PCR, real time polymerase chain reaction; RT‐qPCR, real‐time quantitative 
reverse transcription polymerase chain reaction; RUNX2, Runt‐related transcription factor 2; SH, sodium 
hydrosulfite; SOD, superoxide dismutase; strep, Streptomycin; TCPS, tissue culture poly‐styrene; α‐MEM, alpha‐
minimum essential medium; VAN, vancomycin; GelMS, gelatin microspheres; MWCNT‐L, low diameter multiwalled 
carbon nanotubes; MWCNT‐H, high‐diameter multiwalled carbon nanotubes; TCPS, tissue culture polystyrene; ZS, 
zinc silicate; ES, electrical stimulation; LOG, low oxygen content graphene, CM, chondrocyte‐conditioned medium; 
NT, titania nanotubes; PS, polystyrene scaffold; APS, 3‐animopropyl‐trimethoxysilane; PT, Ti wet polished with SiC. 

RESULTS 
Study selection 
The process of article selection and data extraction is illustrated in Figure 1. In the primary search, 190 
articles were found from the NCBI PMC and PubMed databases, 3 results from other sources and five 
other articles also found by hand searching. A total of 120 articles were chosen after duplicates were 
removed. Then, records were screened and irrelevant studies, according to the titles and abstracts were 
removed with regards to eligibility criteria, and 104 studies remained. In the next step, the full texts of 
the 104 selected articles were reviewed and 22 more articles were excluded. Four of the studies were 
excluded as it described a myogenic, neural and chondrogenic differentiation rather than osteogenic 
differentiation. Five of the studies were excluded because osteogenesis was only a part of the 
multilineage differentiation characterization tests. Four studies were excluded because it evaluated 
osteogenesis only through in vivo experiments. Nine other studies were excluded due to only the 
mechanical strength and its influence on cell proliferation and attachment were investigated, and the 
osteoability of graphene and its derivatives were not evaluated. Ultimately, a total of 82 articles were 
included in this systematic review. 

https://onlinelibrary.wiley.com/doi/full/10.1002/jbm.a.36422#jbma36422-fig-0001


Cell sources 
The most dominant cell types used in the included articles were mesenchymal stem cells (MSCs), 
including human adipose‐derived stem cells (hADSCs),17-22 Goat ADSCs,23 human dental pulp stem cells 
(hDPSCs),24 human alveolar bone marrow stem cells (hABMSCs),25 human periodontal ligament stem 
cells (hPDLSCs),26, 27 and bone MSCs (BMSCs),28-31 such as human BMSCs19, 32-41 (hBMSCs), murine BMSCs 
(mBMSCs),4, 42-49 rabbit BMSCs (rBMSCs),50 murine MSCs cell line C3H10T1/251, 52 and Caprine BMSCs 
(cMBSCs).53 

The type of the MSCs in fifteen studies19, 32, 36, 40, 54-64 was not defined. Sixteen studies used preosteoblast 
cells,14, 65-79 including mouse osteoblastic cells14, 65-74, 77-82 (MC3T3‐E1) and rat calvarial 
osteoprogenitors,75 while the type of the preosteoblast cells in one study76 was not defined. Five 
articles13, 83-86 used osteoblasts. Immortalized mouse embryonic fibroblasts (iMEFs), immortalized mouse 
adipose‐derived cells (iMADs), immortalized mouse calvarial cells (iCALs)87 and human osteosarcoma 
cell line hMG6334, 88-92 were other types of the cells used.  

Graphene types 
Different types of graphene used in the included studies were pristine graphene,19, 20, 23, 24, 27, 28, 32, 35, 41, 46, 

52 55-57, 59, 60, 62, 78, 84, 87, 88, 91, 93 GO,13, 14, 17, 21, 22, 26, 29-31, 36-39, 43, 45 47-51, 53-55, 59, 61, 63, 64, 66-70, 73-76, 79, 82, 85, 89, 90, 92 RGO,4, 

14, 25, 36, 42, 44 45, 54, 58, 65, 70-72, 77, 80, 83, 86 AGO,36 GFs,33 GNSs,34 GQDs,94 and nanosized graphene18 (NGO). 

Chemical composition 
Different functional groups and materials were used in order to improve the bioactivity of graphene and 
its derivatives for fabrication of bone regenerative compositions. The materials were metals or 
metalloids, polymers and mineral substrates. The metal or metalloid category consists of silicon (Si),65 
zinc oxide (ZnO),89 titanate,92 strontium (Sr),71 copper (Cu),49, 80 silver (Ag),50 titanium (Ti),19, 22, 26, 30 38, 39, 42, 

45, 47, 69, 76, 83, 88 Ti alloy (Ti6Al4V)28 and nitinol (NiTi).57 Polymers include poly(L‐lactide) (PLLA),46 
poly(dopamine) (PDA),68 poly(ɛ‐caprolactone) (PCL),14, 36, 203 poly(ethylenimine) (PEI),37, 82 poly(lactic‐
coglycolic acid) (PLGA)‐tussah,61 silk fibroin (SF),43 polyethylene terephthalate‐based artificial ligament 
group (PET‐ALs),78 PLGA,55, 63, 81, 91 carrageenan (Car),73 collagen (COL),70 chitosan (Ct)/gelatin (Gn),21, 74, 75 

Ct,43, 48, 55 poly‐ether‐ether‐ketone (PEEK),34 tea polyphenol (TP),83 poly(ethylene glycolamine) 
(PEG)/FITC66 and PEG.82 The mineral substrates were hydroxyapatite (HAP),4, 21, 29, 35, 40, 43, 72, 81, 84 glass 
(Gl),17, 24, 67 calcium silicate (CS),56, 60, 86 CaP,64 quarts79 and vitamin C (VC).41 

Characterization 
Synthesized graphene, graphene derivatives and their compositions were chemically characterized using 
Fourier‐transform infrared (FTIR)14, 21, 30, 36, 37, 42, 43, 45, 48, 61, 63, 65, 66, 68, 73 74, 75, 84-86, 91, 92 and raman 
spectroscopy.13, 17-19, 21, 22, 24-28 32-34, 36, 37, 40-42, 45, 47, 48, 54, 55, 57, 59, 61-65, 68, 69, 71, 72, 75-78, 86-89, 93 Also, morphology 
and topography of the samples were characterized by SEM,4, 13, 20-23, 25, 26, 29, 33-36, 38, 43, 45-56, 58, 60, 61, 63, 65, 66, 70, 

71 73-85, 87, 91, 92 field emission scanning electron microscope (FESEM),17, 40, 42, 44, 72, 79, 86, 90, 91 transmission 
electron microscopy (TEM),4, 18, 30, 31, 43, 44, 50, 53, 61, 64, 66, 71, 77, 80, 82, 86, 87, 89-94 and atomic force microscope 
(AFM).14, 17-19, 21, 24-26, 36-40, 42, 45, 47, 49, 53, 54, 59, 62 69, 70, 77, 79, 80, 82, 89 Surface hydrophobicity of the composites 
and their chemical environments were evaluated by contact angle (CA) measurements14, 20, 28, 36-38, 41, 42, 46, 

51, 54, 59, 61, 63, 68-71, 73, 76, 77 78, 80-82, 88, 91 and X‐ray photoelectron spectroscopy (XPS).17, 18, 23 25, 36-38, 41-45, 54, 59, 60, 

65, 66, 68, 69, 80, 87-89 Moreover, mineral phase on compositions were investigated by X‐ray diffraction (XRD).4, 

14, 17, 25, 34, 36, 37, 40, 43, 44, 47-49, 52, 60, 67, 70-77, 79-86, 89, 91, 92 Mechanical tests4, 14, 20, 21, 34-37, 42, 43, 52, 55, 56, 59, 61, 63, 67, 69, 70, 
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78, 81, 86, 88, 91, 92 were employed in the various studies to evaluate mechanical strength. Inductively coupled 
plasma atomic emission spectrometry (ICP‐AES)47, 65, 89 and inductively coupled plasma‐optical emission 
spectroscopy (ICP‐OES)49, 71 were employed to measure the release rate of ions, and inductively coupled 
plasma‐mass spectroscopy (ICP‐MS)64 was utilized to assess the Ca/P ratio. Additional assays and 
measures used for sample characterization include thermal gravimetric analysis (TGA),37, 71, 82, 84, 87 
energy dispersive X‐ray spectroscopy (EDX),33, 38, 50, 67, 73, 74 energy dispersive spectrometer (EDS),4, 13, 34, 44, 

76, 80 porosity measurement,4, 35, 61, 75, 78 electrical tests,25, 35, 70 protein adsorption test,20, 22, 42, 43, 48, 63, 68, 75, 

81, 91 ultraviolet–visible (UV‐Vis) spectroscopy,49, 69 calcium absorption test,70 dynamic light scattering 
(DLS),18, 30, 36, 66, 82 zeta potential (ZP) measurement,18, 29, 38, 40, 42, 47, 66 degradation rate measurement,48, 71, 

75, 91 water absorption,75 swelling study,75 weight loss measurement,60 diametral tensile strength (DTS),60 
nanoindentation measurements,67, 76 photoluminescence (PL) spectra,94 elemental analysis 
experiment,25 magnetometry,25 selected‐area electron diffraction (SAED),57, 91 wettability evaluation,89 
roughness evaluation14, 28, 89 and PL spectrum.94 

DISCUSSION 
Various biomaterials, including ceramic phosphates and synthetic or natural polymers, have been widely 
used in BTE;2, 95, 96 however, the challenge of these materials matching chemical and material properties 
of natural bone still remains.97 Graphene and its derivatives have specific mechanical, physical, and 
chemical properties and were shown to facilitate attachment and growth of cells and enhance 
osteogenic differentiation.10 In the current review, we conducted the comprehensive review on 
potential of graphene and its derivatives in promoting cell activities. 

Factors affecting the cellular proliferation and viability 
Various factors influence the cellular interactions of graphene families, which include graphene 
concentration, size, type, dimension and composition or functional groups (Fig. 2), as discussed below.98 

 

Figure 2 Factors affecting the cellular proliferation and viability. 
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Concentration of graphene 
Despite all the studies regarding the dependence of the toxicity of graphene and its family on 
concentration, there are no general results about the safe concentration threshold. Many studies98-101 
concluded that concentrations <50 μg/mL of graphene nanoparticles (NPs) are relatively safe for most 
cell types, and levels higher than this concentration cause intracellular accumulation and high levels of 
oxidative stress, which is one of the mechanisms playing role in toxicity of carbon nanomaterials 
(CNMs).75 Schinwald et al.102 studied layered graphene platelets with 1–10 layers at concentrations ≥ 5 
μg/mL and found that it notably induced the release of LDH in immortalized human acute monocytic 
leukemia cells, THP‐1, which is representative of loss of membrane integrity. Pristine graphene also 
induces cytotoxicity in cells by ROS generation through a decrease in potential of mitochondrial 
membrane and activation of mitochondrial pathway, leading to apoptosis.103 

Zhang et al.104 investigated the toxicity of GQDs provided by single reduced graphene sheets (diameter: 
5–10 nm) on three progenitor cell types: neurosphere cells (NSCs), pancreatic progenitor cells (PPCs), 
and cardiac progenitor cells (CPCs). They showed that in the presence of GQDs at 100 µg/mL for 3 days, 
NSC and CPC cell viability was above 80%, however, the cell viability for PPC was about 65%. All the cell 
groups were alive after incubation with GQDs at 25 µg/mL, which indicates that GQDs can be used as a 
beneficial biological platform with low cytotoxicity. Similarly, in a study by Qiu et al.,94 a threshold for 
toxicity of GQDs to MSC cells was established at 50 μg/mL.  

GO causes apoptosis of mitochondrial respiration by generating ROS and has a dose‐dependent toxic 
effects on cells.105 It was shown that GO with concentration of ≤1 μg/mL in culture medium reached 60% 
of viability of hMSCs, while at concentrations above 10 μg/mL, viability decreased to <20%.64 
Concentration of 20 and 85 μg/mL were observed to reduce cell viability by 20 and 50%, respectively.106 
In a study by Zancanela et al.,13 it was established that after 5 days incubation, osteoblasts with various 
concentrations of GO (10 to 350 μg/mL), samples with 25 and 50 μg/mL GO yielded greatest cell 
viability. Mazaheri et al.107 revealed that 1.5 wt % GO in GO‐Ct composites showed a proliferation rate of 
hMSCs similar to that of pure Ct, while in 3 and 6 wt %, GO cytotoxicity significantly increased. Some 
studies achieved little toxicity, even at higher concentrations. Based on one study, GO concentration 
<0.1 mg/mL demonstrated no cytotoxicity to hADSCs.17 Also, in a study by Chang et al.,108 even high 
concentrations of 200 μg/mL GO exhibited about 67% viability of A549 cell after 24 h, and similar results 
could be achieved even after exposure for 48 and 72 h.  

The study done by Talukdar et al.109 investigating graphene NPs with three different morphologies 
illustrated that graphene nano‐onions (GNOs), graphene oxide nanoribbons (GONRs) and graphene 
oxide nanoplatelets (GONPs) showed a dose‐dependent toxicity. Viability of hBMSCs and hADSCs 
treated with GNOs, GONRs, and GONPs declined with increasing concentration in the range of 0–300 
μg/mL, and concentrations of ≤50 μg/mL were observed to be potentially appropriate. In the similar 
study, 100 μg/mL of the GONR were reported to present no cytotoxic effect on osteoblasts.85 RGO NPs 
also showed a dose‐dependent decrease in cell viability, as concentrations >60 μg/mL seemed to reduce 
viability.58, 110 In a study by Mehrali M et al.,86 1.5 wt % RGO‐containing composite displayed the most 
viable cells compared to CS with 1.0, 0.75, 0.5, 0.25, 0 wt % RGO.  

To sum up, different concentrations of graphene and its derivatives have shown different toxicity 
toward various cell lines, indicating the dependency of the toxic effect of graphene on the type of cells. 
However, based on the literatures, it can be concluded that, up to 50 μg/mL for Graphene and GO, 60 
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μg/mL for RGO, and 1.5 wt % for all56, 86, 107 seems to be safest to most of the cells lines. For future 
studies, we suggest a systematic research on evaluating the safe concentration threshold of graphene 
derivatives on different cell lines, individually.  

Types of graphene 
Type of graphene is another important parameter affecting cellular behavior. It was demonstrated that 
graphene has shown more toxicity compared to GO, as the aggregation of graphene sheet on the 
membrane of cells can inhibit nutrition transportation.100 GO is more hydrophilic and biocompatible 
because of the oxygen‐containing groups on its surface. However, some studies report that excess GO 
might lead to more ROS generation, causing death of cells.111 Besides, it was discovered that levels ROS 
generated by synthesized GO with lower oxygenated degree were much higher than those with more 
oxygenation.112 Several studies have shown that RGO is more compatible than GO, suggesting reduction 
may be a means to enhance the compatibility of GO‐based biomaterials.105, 113 Bengtson et al.12 revealed 
that ROS generated by GO was more than the RGO materials. Similarly, it was illustrated that human 
umbilical vein endothelial cells exposed to 10 μg/mL GO and RGO with similar lateral sizes showed more 
viability in the RGO‐containing group compared to GO group after 48 h, which revealed less toxicity of 
RGO than that of GO.  

In contrast, some studies revealed that RGO exhibited dramatically higher effect on cell viability due to 
its hydrophobic features. In all studies mentioned above, graphene derivatives used in aqueous solution 
while the application of graphene derivatives as a substrate can be considered as an efficient way to 
overcome the cytotoxicity effect of that.54, 114 Akhavan et al.38 reported that graphene (G) sheets grown 
by chemical vapor deposition showed not only excellent biocompatibility but also improve the cellular 
attachment of hMSCs. Indeed, the possibility of the aggregation of hydrophobic graphene derivatives on 
the cell membrane can be readily decreased by doping and coating them on the surface of materials 
such as Ti42 and polydimethylsiloxane (PDMS).54 Moreover, the initial attachment between cells and 
surfaces can be affected by surface chemistry and roughness via ionic forces (directly) and adsorption of 
proteins (indirectly).115 Therefore, using different graphene derivatives as a substrate can enhance the 
surface roughness resulting in higher cell proliferation.114 Compared different graphene derivatives, 
oxygen‐containing groups on GO45 cause high capacity of protein adsorption through large surface area, 
intermolecular interactions116 and surface defects that could serve as binding sites for proteins100 that 
contribute to cell attachment and viability.45 

It is important to note that conflicting results observed in comparing GO and RGO can be attributed to 
their different physical and chemical characteristics or different cell varieties. Conflicting results 
observed in comparing GO and RGO can be attributed to their different physical and chemical 
characteristics or different cell varieties. 

Size of graphene 
Smaller particles are more cytotoxic than larger particles, causing apoptosis through damaging the 
cellular membrane.117 Akhavan et al.101 treated umbilical cord‐derived MSCs with graphene 
nanoplatelets of four different sizes (11 ± 4 nm, 90 ± 37 nm, 418 ± 56 nm, and 3.8 ± 0.4 μm) each at 
concentrations in the range of 0.01 to 100 μg/mL. The results showed that after 24 h at treatment with 
the smallest size, 11 ± 4 nm, and concentration of 100 μg/mL, >50% of the cells declined. In another 
study, it was demonstrated that microsheets of graphene with lateral dimensions <5 μm can penetrate 
the plasma membrane of mammalian cells and damage the lipid bilayer.118 Also, a nanosheet of 
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graphene with lateral dimensions of 100 nm‐5 µm has been shown to be easily taken up and accumulate 
in cells.119 However, a higher uptake of a graphene NPs cannot be the major reason for the observed 
cytotoxicity.108 A study by Talukdar et al.109 demonstrated that in hADSCs treated with different 
graphene nanoparticles (GONRs, GNOs and GONPs), GONRs have more cytotoxicity than GONPs, while 
they did not indicate similar cellular uptake trend.  

Bengtson et al.12 discovered that ROS generated by few layered GO and RGO with lateral size above 1 
µm were not toxic in FE1 murine lung epithelial cells at concentrations of > 200 μg/mL.  

Reviewed studies indicated that graphene with lateral size of <5 µm and GO and RGO with lateral 
dimension <1 µm show decline in cell viability. In addition, higher uptake of a graphene is not the main 
reason for the observed cytotoxicity. More studies are underway to better comprehend the differences 
in cellular uptake of various size of graphene nanoparticles, including their uptake mechanism and the 
reasons for the observed variation in death of cells. 

Dimension 
Three‐dimensional (3D) structure is known as a promising structure that better mimics the 
microenvironment and important features of the native extracellular matrix for cells. Kumar et al.14 
investigated the effect incorporation of two‐dimensional (2D) and 3D structures has on GO and RGO in 
PCL. They found that cells in the 3D scaffold had more cell‐cell interaction due to their multicellular 
organization. The macroporous structure of the 3D foams ensured efficient nutrition substance 
transportation for cells’ metabolic demands, which might facilitate cell proliferation.14 Researchers have 
demonstrated that 3D structured graphene, compared to 2D, provides larger accessible specific surface 
areas, interconnected conductive structure and unique surface microstructure,120, 121 which might 
improve cell growth and differentiation.122, 123 To further compare the compatibility of 3D and 2D 
structured graphene, Jiang et al.124 synthesized 2D films and 3D foams of graphene and reported that 3D 
structured foams are more beneficial for migration of neural stem cells. Indeed, the 3D graphene foam 
could enhance cell migration through stromal‐cell derived factor‐1α/CXCR4 signaling pathway, which is 
essential for the cell migration.125, 126 In a study performed by Liu et al.,127 the incorporation of GO 
changes the 3D topography of scaffold by decreasing the fibrous diameter and porosity, which increases 
cell proliferation. So far, it is indicated that 3D structure of graphene can promote cell‐cell interaction, 
migration and proliferation, however, few studies focused on the influence 3D architecture has on the 
cell proliferation, which deserves more consideration. 

Modification of graphene and its derivatives 
Graphene can be functionalized and combined with other biomaterials, which has the potential to 
influence cell viability and proliferation.128 In this review, the effect combination of graphene with these 
kinds of materials (i.e., metals, polymers and minerals) on cellular behaviors is investigated. 

Graphene and metals 
Metals are widely utilized in several biomedical applications in pure or alloys forms due to their 
properties, including toughness, strength, and durability. Graphene has unique physiochemical features, 
especially its potential for osteogenic induction of stem cells, that make it a promising material for 
promoting surface modification and bioactive character of metal‐based composites.48 Several studies13, 

26, 28, 45, 47, 50, 65, 69, 71, 76, 86, 89, 92 raised a debate regarding the influential role of metals combined with 
graphene on cell proliferation and viability.  
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The chemical functionalization of graphene is an efficient way to enhance its dispersibility and viability 
to generate various functional groups such as amino, hydroxyl, and carboxyl groups on the basal plane 
and over the edges.129 These abundant groups could serve as nucleation sites for metals to anchor and 
grow through electrostatic and coordinate methods.130 Thus, many metals and graphene derivatives 
composites have been fabricated for biomedical applications, demonstrating synergistic effects over the 
two individual components.131, 132 For example, Kumar et al.71 prepared RGO decorated with Sr NPs 
(RGO/Sr), promoting proliferation owing to the release of Sr2+ and hydrophilic nature of hybrid 
nanoparticles. Additionally, it was proven that cell proliferation was improved by RGO coated multipass 
caliber‐rolled Ti alloy of Ti13Nb13Zr (MPCR‐TNZ)69 compared to MPCR‐TNZ and GO‐coated Ti compared to 
Ti‐Na26 and Ti.76 Graphene sheets can act as substrates for metallic particles and as the storage sites for 
dissolved metal ions; therefore, preventing the aggregation of metallic particles, decreasing the toxic 
effects of metallic particles and resulting in the sustained release of metal ions.133 For instance, In 
studies by Chen S et al.65 and Chen J et al.,89 the controlled release of ions, including Si (Iv) and Zn, from 
GO compositions stimulated cell proliferation. Release of >3 μg/mL Zn has been shown to be cytotoxic 
to cells.134 However, GO‐COOH, by providing ZnO NPs with anchor sites, prevents the rapid release of Zn 
and shows a sustained pattern of release without toxicity to the cells.89 Likewise, Cu has been shown to 
improve osteogenic potential, however, since additional Cu in a composite causes oxidative damage,135 
the amount of Cu used in biomaterials is limited. In a study by Zhang et al.,49 in order to release Cu ions 
moderately and to prevent the cytotoxicity and related adverse effects, GO‐Cu nanocomposite was 
fabricated and deposited on the surface of porous calcium phosphate cement (Cpc) scaffolds. The good 
initial attachment and growth of rBMSCs on CPC/GO‐Cu scaffolds show the successful results of 
nanocomposite of GO and Cu.  

Various nanocomposites of AgNPs anchored onto GO have been successfully prepared. AgNPs can 
promote the formation of the callus and the reconstruction of bone defects through enhancing 
osteogenesis of bone cells via induction/activation of TGF‐β/bone morphogenetic protein signaling.136 
However, they are shown the sustained release of a high dose of Ag ions during the degradation process 
of scaffolds, increasing cytotoxicity. In the study by Zhang et al.,50 GNSs with a large number of 
functional groups, such as –COO− and –OH, combined with AgNPs to form Ag‐GO nanocomposites. 
Release of Ag+ from the scaffolds was shown to be well controlled below the concentration range, and 
scaffolds modified by Ag‐GO nanocomposites maintained a high cell proliferation level.50 

Recently, a surface modification of Ti‐based materials and promotion of their biological activities has 
gained attention of researchers in the field of biomaterial engineering.28 A study performed by Dong et 
al.92 represented that by grafting GO on Ti by functional terminal groups, including ‐COOH, ‐NH2, and ‐
OH, the GO/Titanate OH‐grafted composite was found to significantly improve cell viability. This 
increase in viability is likely due to the fact that ‐OH groups play a crucial role in modifying the surface to 
allow attachment of growth factors, proteins, or other biological molecules.92 Also, cell proliferation and 
viability were dramatically greater with Ti‐GO than others. In a study by Subbiah et al.,76 Fibronectin 
(Fn)‐Ti‐GO (i.e., Fn bound onto GO) showed the highest proliferation rate. They observed that the 
extensive filopodia formation improved cell migration and cell–cell interactions around preosteoblasts 
on Ti‐GO and Fn‐Ti‐GO. These filopodia connections were dramatically found on the Fn‐Ti‐GO because 
of arginine‐glycine‐aspartic acid (RGD) binding moieties of Fn, which is in charge of cell attachment and 
proliferation. Similarly, graphene coating on the Ti alloy scaffolds also enhanced cell proliferation due to 
promoted adsorption of the growth factor of the seeding cells;28 however, in some studies different 
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observations were reported. In a study by Qiu et al.,47 increased layers of graphene coated on Ti showed 
less cell proliferation, and cells grown on Ti exhibited the greatest proliferation among all GO modified 
groups after 4 days. Indeed, increasing layer‐number of GO resulted in decreased cell proliferation. In 
addition, Zancanela et al.13 showed that presence of GO decreased the osteoblasts’ viability on Ti discs, 
while the viability of cells cultured on the plastic surface in the presence of 25 μg/mL GO increased up to 
170% after 21 days.  

Based on the most literatures a number of metallic particles and graphene derivatives composites have 
been prepared for biomedical applications, exhibiting synergistic effects over the two individual 
components. In addition, GO is one of the important derivatives of graphene used more than other 
derivatives with metals to result in positive effects on cell viability and proliferation. 

Graphene and polymers 
Polymer‐based materials are widely used for biomedical applications since they are easily shaped and 
have adjustable chemical properties.137-140 However, some of the polymeric materials used in tissue 
regeneration have to simulate inflammatory reactions, and their degradation might simulate an 
autocatalytic ester breakdown than can decrease the pH in the microenvironment, causing problems for 
cell viability and differentiation.141 In order to overcome these limitations, graphene and its derivatives 
can be incorporated into polymers through different methods to produce composites exhibiting 
synergistic effects over the two individual components with improved properties.34, 36, 37, 46, 52, 61, 63, 66, 68, 70, 

73, 75, 78, 91 Recently, graphene‐polymer composites have been used for orthopedic applications.142, 143 For 
example, GO in Ct matrix was shown to affect interactions between cells and scaffold leading to 
improved cell proliferation.142 Interestingly, a few studies represented that biomaterial surface with 
multifunctional chemical groups can cause remarkable hemocompatibility and cytocompatibilty144 and 
affect the physical, chemical and biological features because of the synergetic effect of different 
chemical functional groups. Thus, the aim of this part is to investigate the effect of functionalized 
graphene nanoparticles in polymer composites on cell proliferation and viability.  

Kumar et al.37, 71 investigated the influence of adding different graphene derivatives to polymer on cell 
behavior. They presented that addition of 3 and 5 wt % of GO, 5 wt % of RGO, and just 1 wt % of AGO in 
PCL led to a dramatic increase in proliferation compared to PCL only. AGO exhibited higher cell 
proliferation compared to GO and RGO, respectively, due to its higher chemical functionalization.36 
According to recent studies, among various graphene‐based substrates, those with greater chemical 
functional groups generally present enhanced safety profiles.145-147 It was also reported that adding PEI 
conjugated GO in PCL was more effective in proliferation than only addition of GO.37 The promoted 
proliferation on PCL‐GO‐PEI might be due to the hydrophilic and polycationic properties of PEI 
conjugated GO.148 

Additionally, in recent studies, incorporation of CNTs and GNSs to promote the mechanical properties of 
polymer has attracted attention of researchers.149-152 Feng et al.34 displayed the synergetic effect of CNTs 
and GNSs on enhancement of mechanical properties, as well as cellular behavior. They showed that a 
scaffold constructed by combination of HAP‐PEEK with GNSs at 0.2 wt % and CNTs at 0.8 wt % had 
positive influence on cell proliferation with significantly more optical density than other treatment 
groups. Kaur et al.71 also investigated the effect of reinforcing PLGA with CNT, graphene nanoplates (GN) 
and active carbon (AC). They found that cells treated with GN‐PLGA showed the highest viability due to 
its surface functional groups and high protein adsorption that enhanced the cell adhesion and growth.71 
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Furthermore, it was observed that GO incorporated in other polymers, including PLGA76 and PLGA‐
tussah silk61 and also functionalizing Car with GO73 increased the rate of cell proliferation and viability 
noticeably. This outcome can be attributed to the unique nanotopography of the graphene‐reinforced 
polymer composites with considerable hydrophilicity of surface, which caused expression of various 
integrins and connexins.143, 153 

For biomaterials that have physical interaction with cell membranes, toxicity will probably be generated 
initially due to the disruption of the membrane integrity, followed by the production of intracellular 
enzymes (e.g., LDH), and, ultimately, apoptosis or cell death.154 However, functionalizing RGO with PDA 
decrease this cytotoxicity, especially during the first days.68 While bulk GO stimulated the strongest 
leakage of LDH, indicative of serious membrane damage, rGO‐PDA only mildly affected the cell 
membrane. All These studies confirm the synergetic effects of graphene derivatives and polymers and 
enhanced cell proliferation on graphene‐polymer composites.  

Despite all the reviewed articles indicating positive effect of graphene on cell proliferation, in one study 
performed by Kanayama et al.,70 early cell proliferation was shown to be dramatically inhibited on GO 
and RGO films coated COL compared to control culture plate, which is attributed to oxidative stress155, 

156 that stimulates the inhibition of cell viability.  

Based on the most reviewed literatures, graphene and its derivatives can be incorporated into polymers 
to produce composites with multifunctional chemical groups that represent synergistic influences over 
the two individual components exhibiting improved mechanical properties as well as better cell 
proliferation and viability. Moreover, it is noteworthy to mention that among various graphene‐based 
substrates in graphene‐polymer composites, those with greater chemical functional groups generally 
demonstrate more safety profiles. There are several opportunities for further development and 
optimization of graphene‐modified polymer composites. 

Graphene and minerals 
Typically, minerals induce the differentiation of stem cells into osteoblastic lineage.157-159 However, they 
are innately brittle, hard to form and exhibit slow resorption rates.157, 160 Therefore, the development of 
strategies that can overcome some of these limitations is of interest for biomaterial studies. Notably, 
graphene and its derivatives can be incorporated into minerals, resulting in composites with both 
modified mechanical properties and modified osteogenic potential.  

Among various graphene derivatives, GO was utilized in several studies to enhance the mechanical 
properties of mineral‐graphene composites and behaviors of cells, including proliferation, viability and 
differentiation. For instance, GO–CaP nanocomposite with 0.5 μg/mL GO and 10 μg/mL CaP showed cell 
viability above 80%,64 due to the hydrophilic surface of GO.106 In a study by Xie et al.,29 cells proliferated 
higher in the adsorbed Bone Morphogenetic Protein‐2 (BMP2)‐encapsulated bovine serum albumin 
(BSA) on GO than in other groups, including GO‐tissue culture plates (TCP), BMP2‐GO‐TCP and pure TCP. 
Indeed GO modification increased the BMP2‐encapsulated BSA adsorption capacity of HAP and TCP 
scaffolds,29 which can be attributed to the carboxyl groups of GO interacted with the amino groups of 
the BMP2‐encapsulated BSA via electrostatic attraction.48 Bioactive glass nanoparticles (BGs) have a 
great potential to form a bioactive HAP layer and provide powerful surface bonding between bone 
tissue and implant.161, 162 Hence, Fan et al.67 produced a novel BGs/GNSs composite scaffold. These 
scaffolds showed enhanced physical properties of BGs and cell viability of GO by mixing these materials. 
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They reported that by setting the mass ratio of BGs to GO as 10, cell viability was significantly 
improved.67 Similarly, Xie et al.,56 studying graphene reinforced into CS coatings, concluded that 
compared to pure CS, CS with 1.5 wt % of graphene were more favorable to cell proliferation after 6 
days.56 Regarding the effect of GO on CS bioactivity, Xie et al.48 observed biomineralized octacalcuim 
phosphate (OCP), known as a beneficial agent for cell proliferation,163 on the surface of GO‐CS scaffold, 
significantly enhancing cell proliferation. Oyefusi et al.84 and Nair et al.[23] reported that the HAP 
grafting onto the graphene sheets and incorporating GO nanoflakes into a Gn– HAP matrix enhanced 
total protein adsorption, as well as cell viability, respectively.  

Besides GO, RGO have also been used in some studies to improve the cell viability and mechanical 
properties of minerals, but there is a controversy in the result of adding RGO on cell viability. CS is a 
novel biomaterial that causes effective osteoblast‐like cell adhesion and proliferation, along with 
enhancing apatite formation, leading it to become an interesting substrate for hard tissue repair; 
however, the insufficient strength and toughness of this material is its limitation, which was promoted 
by RGO. However, adding RGO to CS had no significance influence on cell proliferation,86 while in 
CS/graphene, it was shown that greater contents of graphene caused higher cell proliferation. Among 0, 
0.25, 0.5, and 1.0 wt % graphene‐containing composites, 1.0 wt % showed the highest cell viability.60 In 
addition to CS, HAP is widely used in BTE because of its similar chemical composition to natural 
bones.164, 165 Nie et al.,4 showed that nanohydroxyapatite (nHAP)‐incorporated in 3D RGO scaffold 
dramatically enhances cell behavior as well as mechanical strength, which suggests positive influence of 
RGO on HAP and vice versa. Among 0, 20, 40, and 80% nHAP‐incorporated RGO, 20% nHAP‐RGO showed 
the highest proliferation.4 This was confirmed, as Fan et al.166 illustrated that the growth inhibition and 
proliferation of cells would be stimulated by over‐dosed nHAP, due to its toxicity in terms of surface 
morphology, porosity, alkalinity feature and nutrient permeation. Finally, as it has been illustrated in 
most of the cases, the presence of sufficient oxygen functional groups on the surface of GO can make it 
more favorable to incorporate with different minerals so as to not only promote the mechanical 
strength but also modified proliferation and viability, which leads to effectively promoted 
differentiation.  

Factors affecting the cellular attachment 
Cell adhesion and spread within the scaffold are usually the first steps following seeding of cells onto the 
biomaterials, and therefore, have a significant effect on modulating the forthcoming cell responses, 
including cell proliferation and differentiation.47 In most reviewed studies, presence of graphene and its 
derivatives resulted in accelerated cell adhesion and spreading,19, 21, 52 yet, there are few studies showing 
no difference between cell density on GO‐coated substrates and noncoated substrate.62, 79 Besides, in a 
study by Kanayama et al.,70 GO and RGO films were found to show less DNA content compared to 
controls.  

Various factors seem to be effective in cell adhesion and subsequent cell proliferation and 
differentiation, such as CA, hydrophilicity, functionalization, morphology, size, porosity, layers and 
roughness (Fig. 3),98 as discussed below.  
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Figure 3 Factors affecting the cellular attachment. 

Hydrophilicity, functionalization and roughness 
A high CA value indicates the hydrophobicity of the scaffold surface, while a low CA describes the 
hydrophilicity.68 Hydrophilic substrate can provide a surface that allow cells to adhere, spread and grow 
better on them.69 Usually, hydrophilic surfaces lead to the attachment of adhesive proteins, such as Fn 
and vitronectin, which can facilitate cell adhesion and growth.167 It was illustrated that the structure of 
the adsorbed proteins on surfaces with amine and hydroxyl groups helps more integrin bind in 
osteoblasts, enhancing formation of focal adhesions (FAs) and eventually activating the osteogenic 
pathways.36 FAs, key factors for adjusting cells adhesion and migration, are a type of adhesive contact 
between cells and extra cellular matrix (ECM).168, 169 Cells cultivated on the GO film were found to have 
greater FAs compared to that on the uncoated GO materials.17 

Kumar et al.36, 37, 71 investigated the effect of graphene derivatives on cell adhesion in three different 
studies. They indicated that the incorporation of GO and AGO nanoparticles in PCL increased the 
hydrophilic features of the composite, which can be result of hydrophilic functional groups on GO and 
AGO surface.170 In contrast, adding RGO nanoparticles with no oxygen‐containing functional groups 
decreased the hydrophilicity of PCL and did not dramatically influence cell adhesion. However, they 
reported in another study71 that decorating RGO with Sr resulted in increased wettability. It was 
observed that the amine nanoparticles of AGO in PCL tend to better adsorbed cell‐adhesive proteins; 
therefore, AGO‐PCL exhibited higher cell attachment compared to GO‐PCL and RGO‐PCL.36 They also 
indicated that presence of GO‐PEI in the PCL composite improved surface wettability more than addition 
of GO, and GO functionalized with PEI suggested a synergetic effect of chemical, as well as 
topographical, improvement for reinforcing cell adhesion and proliferation, particularly on PCL‐GO‐PEI 
with the highest content of GO (50 mg).37 

In a study by Kaur et al.,91 the hydrophobicity nature of PLGA is reformed by reinforcing it with carbon 
materials such as CNT, GN, and AC. Indeed, the oxygen‐containing functional groups of these materials 
have hydrogen bond interactions with the water molecules, which causes the CA value of PLGA to 
decrease. Furthermore, GN‐PLGA and CNT‐PLGA were observed to have more hydrophilicity due to the 
existence of more carboxyl acid groups on their surface. Also, they found that surface roughness of 
carbon‐based materials, as well as van der Waals and electrostatic forces between surface hydrophilic 
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groups of them, particularly GN, resulted in high protein adsorption playing a remarkable role in 
improving cell attachment.91 

In a study by Lee et al.,59 high adsorption capacity of graphene (up to 8%) and GO (up to 25%) for serum 
proteins was observed, whereas PDMS‐adsorbed serum was just <1% after one day. Serum proteins are 
known to consist of several extracellular matrix globular proteins and glycoproteins, including albumin 
and fibronectin.171 Therefore, graphene and GO sheets showed better cell attachment compared to 
PDMS. For graphene, despite its hydrophobic feature, its π‐electron cloud is able to interact with the 
hydrophobic core of proteins. For hydrophilic GO, the polar groups on the surface can bind to serum 
proteins through electrostatic connection.59 It also has been reported in studies that G and GO have 
significant loading capacities for DNA and cytochrome C through intermolecular interactions.172 Li et al.28 
also discovered that GO coating promoted cell attachment and early extension of BMSCs on the Ti alloy 
scaffolds. The mean integrated optical density for vinculin is an important component for cell FAs,173 was 
notably greater for scaffolds coated with GO than groups without GO. This might be due to the higher 
surface wettability and roughness of the scaffold with graphene coating.  

In a recent study by Ren et al.,45 BSA was chosen for further investigating the interaction of protein 
adsorption and cell adhesion. GO‐Ti absorbed the highest amount of BSA compared to RGO‐Ti. In fact, 
hydrazine reduction caused elimination of many functional groups, which weakened the electrostatic 
interaction between BSA and RGO‐Ti. In a study by Jia et al.,68 the number of MC3T3‐E1 cells cultured on 
RGO‐PDA was observed to be more than that on bulk GO due to the presence of PDA on the RGO, 
leading to decreasing the hydrophobicity of RGO. RGO‐PDA showed high potential in adsorbing BSA that 
grafted to PDA through o‐benzoquinone − amine coupling;154 however, GO had a rougher surface and 
might have a greater capacity for holding protein. The better cell attachment on RGO‐PDA may be due 
to the special role of PDA in mediating biological activity anchorage and stretching during cell 
attachment, leading to forming a beneficial matrix for stable adherence.174-176 In an another study, 
utilizing RGO after incubation of synthesized RGO‐MPCR‐TNZ in serum protein for 2 hours, which had 
high CA value due to hydrophobic property of RGO, hydrophobic RGO surface became hydrophilic, and 
the CA value was dramatically decreased, inducing cell adhesion.69 

Although several studies have reported improved cell attachment and proliferation on hydrophilic 
scaffold surfaces, graphene with hydrophobic features can improve the cell adhesion. Similarly, in a 
study by Duan et al.,46 it was illustrated that incorporation of multiwalled carbon nanotubes multiwall 
carbon nanotube (MWCNT) and graphene in PLLA resulted in more mBMSCs adhesion, while 
hydrophobicity was increased compared to pure PLLA scaffolds. Increased hydrophobicity is due to the 
interaction between hydrophilic groups, including hydroxyl and carboxyl of CNMs, and the hydroxyl or 
carboxyl end‐groups of PLLA through hydrogen bonds, leading to reduction in hydrophilic groups 
existing on the surface of scaffolds.46 It was found that the effect of hydrophilicity of scaffold on cell 
behavior may depend on cell nature.2 

Coating the metal surfaces with carboxyl, hydroxyl and amine functional groups was reported to 
contribute in enhancement of cell adhesion and proliferation.177 For instance, coating Cu49 and Ti26 with 
GO could remarkably increase the amount of initial adherent cells. In addition, Subbiah et al.76 improved 
the efficiency of GO‐Ti by bonding Fn on GO and reported the expansive filopodia formation around 
preosteoblasts on the GO‐Ti‐Fn because of the cell binding moiety, RGD, of Fn that is accountable for 
cell attachment. Increased number of FA molecules, FA area per cell, and single FA diameter illustrated 
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that GO‐Ti‐Fn can be used as a suitable surface for cell adhesion and, consequently, FA formation. Also, 
Si‐O‐Si and Si‐OH bonds in RGO–aminosilica hybrid were observed by FTIR.65 These bonds were found to 
support the attachment and stimulate the proliferation of cells.178, 179 Si−O−Si bond was also found in 
CS/RGO86 and BGs‐GNSs composites.67 Surface roughness is another important factor playing a 
significant role in the biological activity of biomaterials. In general, higher roughness provides larger 
surface areas to interact with protein molecules and cells, which are beneficial for cell adhesion, thereby 
promoting the biological activity of the biomaterials.92, 180-182 

It was demonstrated that the rough topology of a cross‐linked GO film increases the tension of the cell 
scaffold and facilitates the growth of hMSCs.183 Kim et al.153 discovered that the specific 
nanomorphology of graphene (i.e., asymmetric nanostructures), as well as its rigidity and roughness, are 
vital factors for promoting the differentiation of hMSCs. From the studies above, it might be concluded 
that cell attachment on hydrophilic surfaces, such as GO and AGO, is improved since the hydrophilic 
surfaces cause much more adsorption of adhesive proteins and formation of FAs. However, moderate 
hydrophilicity was shown to be better for cell adhesion. Indeed, it was found that the effect of scaffold 
hydrophilicity on cell behavior is likely to depend on cell nature. Moreover, in most cases, graphene and 
its derivatives have been found to increase the surface roughness,28, 37, 59, 92 which can enhance cell 
adhesion with some limitations.  

Surface area (porosity/pore size) 
Porosity and pore size have enormous effects on cellular responses, including cell penetration within the 
scaffold and differentiation. Studies suggest that macroporosity (i.e., pores >50 µm) enhances 
osteogenesis through cell migration and blood vessel infiltration.184, 185 Microporosity (i.e., pores < 20 
µm) is considered to help bone growth into scaffolds by increasing the surface area for protein 
adsorption,186 improving ionic solubility in the microenvironment187, 188 and providing more adhesion 
sites for osteoblasts.184 3D GFs were seen to be highly porous with individual pore sizes ≥100 μm, 
providing appropriate surface area for cell attachment.33 
 
It was also reported that adding GO to the polymer matrix caused decrease in interconnected pore size 
and provided a massive porous structure.61, 189 The optimal pore size in scaffolds to mimic ECM 
employed in BTE is reported to be in the range of 150–300 μm.190 In a study by Saravanan et al.,75 
addition of GO decreased the pore size of scaffold from ≥ 220 to ≤ 180 μm. Therefore, the presence of 
interconnective pores in GO‐CS‐Gn scaffolds supported cell infiltration, nutrient transfer and metabolic 
waste elimination. Furthermore, in a study by Nie et al.,4 it was obvious that number of cells adhered to 
20% nHAP‐incorporated RGO was much more than that on 40% nHAP‐RGO and 80% nHAP‐RGO 
scaffolds. This can be attributed to porous structure of RGO scaffold, which can be changed by 
incorporating different contents of nHAP. However, in some studies, no significant influence of 
graphene on porosity was observed. Zhang et al.,50 showed that the Ag‐GO on β‐TCP surfaces had no 
significant influences on the porosity of the scaffolds. Finally, it can be reported that porous structure of 
graphene and its family provides appropriate surface area for cell attachment and spreading, and 
therefore enhances osteogenesis through cell migration and blood vessel infiltration.  
 

Factors affecting the cellular osteogenic differentiation 
Graphene has been found to not only influence cell attachment, migration, and proliferation, but also 
promote the differentiation of stem cells to different lineages (Fig. 4).114, 191, 192 
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Figure 4 Factors affecting the cellular osteogenic differentiation. 

Graphene and its derivatives’ properties affecting osteogenesis 
Several studies confirm the osteopromotive activity of graphene,24, 57, 59, 93 GO,33, 62, 79, 192 RGO58, 77 and 
GQDs.94 It was demonstrated that cells cultured on graphene exhibit higher levels of mineralization and 
significantly up‐regulated osteogenic genes and proteins, including Runt‐related transcription factor 2 
(Runx2), COL and OCN,24 even without the use of osteogenic medium (OM).33, 62 The mechanisms of how 
graphene affects stem cell behavior remains unknown. It seems cooperation of factors, such as 
nanoscale structure, high stiffness, roughness, oxygen‐contained functional groups, and absorption of 
biomolecules on graphene and its family, prepare suitable environments for cell behavior regulation 
such as attachment, proliferation, and differentiation.17 

In the presence of osteogenic inducers, it was revealed that the mineralization of MSCs cultured on 
graphene was more enhanced than on GO and the PDMS control. Graphene adsorbed the remarkably 
higher amount of dexamethasone (Dex) and β‐glycerolphosphate compared to GO and PDMS, which can 
be attributed to the π‐π bond between the aromatic structure of Dex and the graphene structure.59 Dex 
is a synthetic glucocorticoid changing the expression levels of many proteins and enzymes demanded 
during osteogenesis.193, 194 In fact, graphene increasing the local concentration of Dex on its surface 
increases mineralization and causes fast and influential cell differentiation. In addition, in the study by 
Ren et al.,45 GO‐Ti samples showed larger adsorption of Dex compared to RGO‐Ti samples. The ALP 
activity, mineralization and osteopontin (OPN) and OCN expression of Dex‐GO‐Ti was more than Dex‐
RGO‐Ti and Dex‐Control. However, GO‐Ti and RGO‐Ti in the absence of Dex were found to not influence 
ALP activity effectively.45 Dex is not the only chemical that is in charge of directing cells to osteogenic 
differentiation, but it has a synergistic effect with β‐glycerolphosphate, binding to graphene by H‐
bonding and intracellular ALP enzyme for mineralization.59 Besides, it has been proven that ascorbic acid 
(AA) influences mainly postdifferentiation,195 and GO, which has a high density of oxygen functionalities, 
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showed greater degree of H‐binding with AA compared to graphene. ALP, an early and quantitative 
osteoblastic differentiation marker, is a significant factor in formation of hard tissue. ALP helps in 
declining the concentration of extracellular pyrophosphate, which inhibits mineralization and increases 
the inorganic phosphate concentration to enhance mineral formation.59 

Another factor that may influence osteogenic differentiation is graphene morphology. Talukdar et al.109 
investigated the graphene NPs with three different morphologies: GNOs, GONRs, and GONPs. Greater 
ALP activity was observed after treatment of hBMSCs with 10 μg/mL GONR. In a similar study by Ricci et 
al.,85 up to 100 μg/mL of GONR seemed to not dramatically change gene expression of ALP, OCN, OPN 
and Runx2, whereas higher concentrations (200 μg/mL) showed reduction in expression of genes, 
playing a critical role in bone regeneration process.  

Several studies reported that RGO can induce osteogenic differentiation individually. For example, in a 
study by Jin et al.,58 the amount of ALP synthesized after 14 days and mineralized nodule after 21 days 
by the cells on RGO NPs was found to be significantly higher than those of the other groups without RGO 
NPs. Indeed, π‐electron cloud of graphene and its derivatives cause interactions with the inner 
hydrophobic core of proteins.59 Also, because of the H‐bonding and electrostatic interactions, graphene 
allows the noncovalent binding of proteins and osteogenic inducers on its surface.195 Interestingly, the 
3D‐rGO film was observed to offer a faster osteogenic differentiation of MC3T3‐E1 compared to RGO, 
indicating the 3D structure is beneficial for osteogenic differentiation.14, 77 

Although graphene can enhance osteogenesis, it can be chemically modified or combined with other 
materials to further induce its osteopromotive activity, such as other carbon‐based materials, hydrogels, 
metals, minerals or polymers. Recently, it has been shown that graphene combined with single‐walled 
carbon nanotube (SWCNT) exhibited better mineralization rather than administration of graphene and 
SWCNT alone. The G/SWCNT hybrids increased the level of expression genes of OCN, OPN, and Runx2 in 
a dose‐dependent manner. The G‐SWCNT hybrids at a concentration of 10 μg/mL after 14 days 
illustrated the greatest mineralization. It has been reported that graphene and SWCNTs exhibited high 
surface area in the G‐SWCNT hybrids, which led to greater adsorption of osteogenic inducers and 
proteins from the culture medium. Hydrogel was found to enhance the strength and flexibility of 
graphene film.93 Lyu et al.20 utilized the self‐supporting graphene hydrogel (SGH) film for cell seeding 
and reported the greater levels of the OCN, ALP, BMP2, and Runx2 genes expression, as well as higher 
ALP activity and mineralization on SGH compared to graphene and carbon films. These findings might 
attributed to two factors; first, the wrinkled and rippled nanostructure of SGH surface showed 
significantly higher protein absorption rate, such as BSA molecules compared to other carbonaceous 
films; second, the SGH film indicated higher hydrophilic surface, which is a vital factor for protein 
interactions with the surface.  

All the results above confirmed the capability of graphene and its different derivatives in improving 
osteogenesis of stem cells. 

Modification of graphene and its derivatives 
Incorporation of graphene and its families in the materials utilized for bone reconstructionmetals, 
polymers and minerals—promotes osteoconductivity via stimulating bio‐mineralization as well as 
cellular osteogenesis, as discussed below. 
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Graphene and metals 
Several studies have utilized metals with graphene.13, 26, 28, 38, 39, 45, 47-49, 65, 71, 76, 89, 92 GO is widely reported 
as an efficient adsorbent for metal NPs.196, 197 In studies by Chen S et al.65 and Chen J et al.,89 controlled 
release of Si (Iv)65 and Zn89 ions from GO composition were reported, which can be attributed to the 
negatively charged surface of GO contributing to the stability of the positively charged metallic ions.198 
Chen J et al.89 showed that synthesized carboxylated GO (GO‐COOH) offers anchor sites for ZnO NPs to 
prevent ZnO NPs from releasing rapidly. Thus, GO caused sustained release of Zn ions for a relatively 
long‐term, which was shown to enhance ALP activity and OCN secretion. It was reported that a proper 
dose of zinc ions could promote cell proliferation and differentiation,89 while a high concentration of Zn 
ions might cause cytotoxic reactions.199 This promotion could be due to the mitogen‐activated protein 
kinase (MAPK) pathway.89 Zn ions induce formation of osteoblastic COL, therefore increase the binding 
of osteoblasts to matrix integrins, which activate the MAPK pathway. This pathway transduces signals to 
phosphorylate to ALP and Runx2, which then bind to the promoter region of the OCN gene.  

Many studies26, 38, 39, 47, 76 used titanium incorporated with graphene for enhanced osteogenesis. It is 
proven that surface roughness and hydrophilicity of Ti can affect differential Wnt pathways and signaling 
molecules, leading to the osteogenic differentiation.200 Studies by Zhou et al.26 and Subbiah et al.76 
suggested that the level of gene expression of collagen type I (COL‐I) and OCN were more up‐regulated 
on GO‐Ti substrate than on Na‐Ti26 or Ti.76 In addition, binding Fn onto GO‐Ti composition led to the 
higher levels of osteogenesis than GO‐Ti substrate, which was confirmed by ALP activity and ARS 
staining.76 Likewise, in a recent study by Li et al.,28 GO coating on Ti alloy significantly promoted the 
osteogenesis, which might be attributed to the outstanding surface activity of graphene that increases 
the capacity of adsorption of the growth factors of the seeding cells to GO‐Ti alloy. Zancanela and 
collaborations13 reported that in a situation demanding Ti, such as in prostheses and implants, the use of 
GO might promote mineralized nodule formation, biomineralization, and accelerate bone formation.  

La et al.38, 39 evaluated the bioactivity of BMP2 released from Ti and Ti‐GO‐substrates. The notable 
higher level of expression of OCN and ALP was observed in the groups with GO, due to the better 
conformational stability, greater bioactivity, and increased local concentration of BMP2 on the Ti‐GO 
surface. This increase can be due to the interactions between π‐electron clouds in the GO and the inner 
hydrophobic cores of BMP2, and electrostatic interaction between negatively charged carboxylic groups 
of GO and the positively charged BMP2. In fact, GO caused sustained release of BMP2, which both play 
significant role in bone formation.  

In another recent study by Qiu et al.,47 the effect of varying numbers of layers of GO deposited on Ti on 
osteogenesis was investigated. With increasing the layer‐number of GO, wrinkling as well as roughness 
may promote the cell‐material interactions and improve the osteogenic differentiation, though, as 
stated earlier, increase in thickness or number of layers could reduce cell adhesion and proliferation.  

In a study by Dong et al.,92 the surface chemistry of GO was optimized by constructing ‐COOH, ‐OH and ‐
NH2 terminals through covalent bonding, then grafting these GO sheets on Titanate. This study showed 
that the scaffold terminated with ‐OH groups significantly enhanced differentiation compared to those 
with other terminated groups. The scaffold terminated with ‐COOH showed less effect on osteogenesis 
due to the fact that it induced ROS by contributing electrons to oxygen molecules as a result of its high 
ZP in cell culture medium.  
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Kumar et al.71 illustrated that the incorporation of RGO decorated with Sr in PCL was found to have 
enhanced mineral deposited compared to PCL‐RGO composites and neat PCL. These differences were 
more evident as the amount of the hybrid RGO‐Sr particles increased.71 The Sr ions were found to be 
beneficial for improving differentiation, even in the absence of osteogenic inducers,201 since these ions 
contribute to the activation of calcium sensing receptors and osteoblast markers.202, 203 

Zhang et al.49 illustrated that GO and GO‐Cu used to coat the Cpc enhanced ALP expression and OCN. 
GO‐Cu was found to be more influential than GO. Moreover, they reported that use of GO, and 
especially GO‐Cu, boosted the activation of Hif‐1α through the Erk1/2 signaling pathway causing higher 
expression of vascular endothelial growth factor (VEGF) and BMP2, two principal regulation factors of 
osteogenesis. In addition, Ag NPs have exhibited a special property to effectively enhance the 
osteogenesis of mBMSCs at concentrations of 5–10 μM.136, 204 Zhang et al.50 discovered the controlled 
release of Ag+ from the Ag‐GO‐β‐TCP, with concentration below the concentration range. GO has 
showed high adsorptive ability for AgNPs due to the hydrophilic features and high specific surface area 
of GO. This adsorption could enhance the osteoinductivity properties of biomimetic GO scaffolds.48 At 
short term, Ag was seen to inhibit proliferation of bone cells at the defect sites. However, at a long‐
term, scaffolds can promote BMSC differentiation toward the osteogenic lineage.  

Most of the studies included in this section have provided evidence that incorporation of metals and 
graphene promote the differentiation of stem cells. Also, graphene has been shown to help sustained 
release of metals. 

Graphene and polymers 
Several included papers14, 34, 36 37, 46, 52, 61-63, 66, 68-70, 73, 75, 78, 90, 91 investigated the different polymers 
improved by graphene and its derivatives or vice versa.  

Four included studies have reported a successful use of Gn as a modifying agent. Indeed, Gn improved 
the HAP nucleation through its negatively charged carboxylate groups existing on its surface.74 Liu et al.74 
used Gn functionalized GO to mimic charged proteins existing in ECM and observed a higher amount of 
ALP activity, as well as fibrous organic bundles for GO‐Gn compared to GO and Gl. In the study 
performed by Saravanan et al.,75 the addition of GO at the concentration of 0.25% in Ct‐Gn scaffolds 
improved apatite deposition, as confirmed by XRD. The –NH2 and C=O functional groups of Ct were 
reported to contribute to bio‐mineralization.48 

Zou et al.87 demonstrated that Gn‐derived graphene/laponite (GL) powder enhanced 
osteodifferentiation due to the physical stresses induced on cells, as a result of the surface topographic, 
stiffness and roughness of graphene sheet.87 Furthermore, the GL‐powder promoted matrix 
mineralization of the cells by increasing BMP9‐induced osteogenesis; BMP9 is one of the most potent to 
induce MSC osteogenic differentiation.  

Two polymers of PET‐based artificial ligaments with low known bioactivity78 and nHAP/PA6652 were 
promoted by graphene and showed more osteoability represented by notably up‐regulated expression 
of ALP and OCN compared to polymers alone. This can be attributed to graphene enhancing the 
adsorption of the growth factors and chemicals containing benzene rings, such as β‐glycerophosphate 
and Dex.52 Also, the electric characteristics of CNMs may be a significant factor in this improvement.205 
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Nayak et al.62 compared the effect of common growth factors (BMP2) and graphene on osteogenesis. 
Without BMP2, graphene coating dramatically increased differentiation of all substrates (glass slide, 
Si/SiO2, PET and PDMS), while this increase was more pronounced with the stiffer substrate (glass slide 
and Si/SiO2). On the other hand, in the presence of BMP2, it was observed that coating graphene on the 
stiffer substrates did not further improve the production of calcium deposits, but a clear dramatic 
increase was seen on the softer materials, PET and PDMS. This again represents that graphene itself has 
a significant role in the osteogenesis of hMSCs.  

A study done by Kumar et al.37 illustrated that the PCL‐GO‐PEI exhibited more mineralization and ALP 
activity compared to the PCL‐GO and neat PCL. The greatest graphene and GO‐PEI content (5 wt %) in 
the PCL‐GO5 and PCL‐GO‐PEI5 exhibited highest mineralized deposition. This increase for the PCL‐GO‐
PEI may be rooted in the fact that the GO‐PEI is rich in amine and oxygen‐containing functional groups, 
which have been proved to promote FAs206, 207 and adsorption of the osteogenic inducers (β‐glycerol 
phosphate, Dex and AA), followed by the PCL‐GO and, finally, neat PCL. They showed in another study36 
that composition of 5 wt % of AGO (PCL‐AGO5) and 5 wt % of GO (PCL‐GO5) with PCL exhibited 40 and 
25% higher mineralization than neat PCL, respectively. It was observed that mineral deposition 
increased with increase in content of GO and AGO in PCL. The more mineralized deposits, such as HAP, 
calcium and phosphorous, on the PCL‐AGO5 may be due to the fact that the combination of AGO and 
PCL proposed both amine and carboxyl functional groups, which led to better mineralization.  

In one study by Jia et al.,68 ALP expression, COL secretion and Ca2+ content on PDA‐functionalized RGO, 
and particularly on bulk GO, was improved compared to that on commercial pure titanium (cpTi). For 
RGO‐PDA, it can be stated that the amine groups of PDA cause great interaction with the graphene, as 
well as provide active sites for mineral ions, therefore improving apatite nucleation and growth.208 For 
bulk GO, beside polar groups in its structure, the special topographical ridges known as “graphene 
patterns” deserve consideration as they provide biophysical cues for greater improvement in 
osteogenesis. Furthermore, micropatterned geometries of graphene were illustrated to be influential in 
stem cell differentiation.18 Another article by Kanayama et al.,70 comparing GO and RGO films coated 
COL, displayed that cells adhered to RGO illustrated the highest ALP activity, due to high adsorption of 
Ca2+ on RGO rather than that on GO. This significantly high Ca2+ accumulation on RGO can be attributed 
to AA used as reducing agent that was adsorbed onto the GO surface and interacts well with Ca2+. On 
the other hand, Kumar et al.14 demonstrated that functionalized groups on the GO surface and its 
tendency toward adsorbing osteoinductive factors led to better mineralization compared to 
nonfunctionalized RGO. As there are distinct results from comparing osteoability of GO and RGO, 
generalization in this case is not acceptable.  

Using Car could enhance the bioactivity of GO, as it was shown that cells cultured on the GO‐Car 
exhibited greater levels of ALP activity, along with increased mineral deposits consisting of COL fibers 
and some matrix vesicles, loaded with CaP crystals, than those on the GO and glass. Also, the Ca and P 
contents and calcium deposition of GO‐Car film were significantly more than the GO film. This is because 
of the carrageenan's effect on cell proliferation and differentiation, and the improved nucleation of HAP 
due to sulfate groups on GO‐Car surface, which promote the calcium binding.73 

In some studies20, 36, 37, 64, 69, 71, 109 it was represented that cells cultured in osteogenic media, mostly 
supplemented with osteogenic factors such as Dex, ascorbate, and β‐glycerolphosphate,59 illustrated 
improved osteogenesis in comparison with cells cultured in nonosteogenic media. For example, cells 
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cultured on MPCR‐TNZ, RGO‐MPCR‐TNZ, and Dex‐RGO‐MPCR‐TNZ in nonosteogenic media suggested 
relatively inadequate osteogenic tendency compared to that in osteogenic media.69 On the other hand, 
seldom different results have been reported. For instance, in one study by Elkhenany et al.,53 cells 
cultivated on GO in growth medium showed notably greater alizarin red content compared to cells 
grown on GO in the presence of the differentiation medium.  

Reviewed studies suggest that graphene and its derivatives, due to their unique features and 
remarkable osteability, are good choices to not only overcome polymer limitation but also improve their 
osteoconductive effects. 

Graphene and minerals 
An alternative strategy for improving the osteogenic potential of stem cells is to utilize mineral materials 
with graphene family.4, 20, 21, 29, 40, 41, 48, 56, 60 64, 72, 74, 75, 86, 87 

In three other studies,56, 60, 86 CS was utilized as a mineral agent. Si is known as a principal component of 
the CS and has a mitogenic effect on human osteoblast cells,209 acting via the insulin‐like growth factor 
II.210 Si ions released from materials have been shown to stimulate differentiation, gene expression and 
proliferation, which can be considered as evaluation criteria for bioactivity.210, 211 Mehrali et al.86 
demonstrated that Si concentrations in simulated body fluid, level of ALP activity, and the amount of 
HAP formed on the surface of composites increase with increase in RGO content. In CS‐RGO composites, 
CS − 1 wt % RGO composite has the best performance among other groups: 0.25, 0.5, 0.75 and 1.5 wt % 
of RGO. Similarly, it was reported that the expression level of ALP, OCN, and OPN enhanced with 
increasing graphene content in graphene‐CS composites.56, 60 

In some studies, HAP is utilized with 3D‐graphene35 and RGO.4, 40, 72 The expression level of OCN, OPN, 
and COL‐I enhanced in both composites, while in the former this expression mainly remained less than 
that in HAP.35 It was found that HAP and RGO have an interactive effect on the early and late osteogenic 
differentiation markers. Therefore, cells exposed to RGO‐HAP exhibited higher osteogenesis.40, 72 For 
nHAP‐RGO, despite up‐regulated relative expression of Runx2 with using 20% nHAP‐RGO scaffold, its 
value initially enhanced to the maximum at day 7, after which it dropped down at day 14. This 
observation might be due to the role of the Runx2 as a key transcription factor to launch early 
osteogenesis.4 Oyefusi et al.84 also grafted HAP onto the surface of graphene sheets and treated cells 
with various concentrations (200 and 400 ng/mL) of them at different temperatures (34 and 39°C). 
Interestingly, they found that G‐HAP400 at 39°C showed higher OCN expression than G‐HAP400 at 34°C, 
and the opposite occurred for GO‐HAP200.  

Incorporation of GO in CaP exhibited great levels of ALP activities and OCN expression, as well as high 
calcification compared to GO and CaP individually, which suggests synergistic contribution of GO and 
CaP to promoted osteogenesis.64 This increase can be attributed to not only increased connection 
between the intracellular FA complexes of the cells and the CaP on GO–CaP composite,212 but also to 
higher stiffness of these composites than solely GO or CaP.213 It is reported that increased stiffness of 
materials leads to improve a mechano‐transduction influence for differentiation regulation.214 

Recently, Xie et al.29, 48 utilized GO nanolayer to provide anchor sites for the immobilization of BMP2‐
encapsulated BSA (Nps) on HAP and TCP. Nps‐GO‐HAP scaffold showed the highest ALP activity 
compared to BMP2‐GO‐TCP, GO‐TCP and pure TCP. This scaffold provided a nanostructure with charge‐
balanced surface, achieved by negative charged GO, positive charged Nps, and long‐term sustained 
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release of BMP2. All of these factors synergistically enhance the BMSCs proliferation and differentiation. 
Moreover, the results of ALP assay show that the immobilization of BMP2 on the surfaces of GO‐
modified CaP scaffolds improve their osteoinductivity.  

Although the utilization of graphene family and minerals can improve the osteogenic differentiation of 
stem cells individually, it seems that the combination of these materials may provide better features to 
induce and enhance cell differentiation. 

LIMITATIONS 
Several limitations were found in the included articles, which deserve to be considered:  

1. Some studies did not investigate cell attachment, even though it has an important role 
modulating the forthcoming cell responses, like cell differentiation.47 

2. Since the cytotoxicity of graphene and its derivatives impose serious limitation on biomedical 
application, evaluation of viability and proliferation of cells exposed to them is very important, 
however, some studies did not evaluate this kind of cell response. In addition, MTT assay 
performed in 21 included studies was discovered to be not successful in predicting the toxicity 
of graphene and its derivatives due to the spontaneous reduction of MTT by them, leading to a 
false positive signal.100 Therefore, to evaluate the toxicity of graphene, it is much better to use 
alternate assays, such as water‐soluble tetrazolium salt (WST‐8) assay,58 ROS assay,41 CCK‐8 
assay52, 76, 77, 79 and DNA counting25, 36, 37, 71 

3. In nine included studies the type of the MSCs, and in one study, type of the preosteoblast cells 
were not defined. 

4. Size (i.e., thickness and lateral dimension), topography of graphene surface (roughness) and 
hydrophilicity of graphene (CA) are the important factors affecting the graphene bioactivity, 
were not measured in some studies. 

5. In most of the included studies, C/O ratio of graphene, indicative of oxidation state, was not 
determined as a significant criteria, which made it impossible to make a reasonable comparison 
between studies. 

CONCLUSIONS 
The current review is systematic review regarding the effect of graphene and its derivatives on cell 
osteogenic differentiation. Despite the limitations in the included studies, which made the comparison 
difficult, some general conclusions can be drawn:  

1. Different concentration of graphene and its derivatives have shown different toxicity toward 
various cell lines, demonstrating the dependency of the toxic effect of graphene on the type of 
cells. However, based on the literatures, it can be concluded that, up to 50 μg/mL for Graphene 
and GO, 60 μg/mL for RGO, and 1.5 wt% for all seems to be safest to most of the cells lines. 

2. GO seems to be more biocompatible than graphene, while the conflicting results were observed 
in comparing GO with RGO. 

3. Graphene with lateral size less than 5µm and GO or RGO with lateral dimension less than 1 µm 
showed decline in cell viability. 

4. Graphene and its derivatives incorporated with metals, polymers, and minerals showed 
promoted mechanical properties and bioactivity, in most cases. 
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5. Graphene and its derivatives have been found to increase the surface roughness, which can 
highly enhance cell adhesion and differentiation. 

6. Graphene exhibits better osteogenic differentiation result compared to GO, but making 
comparison between osteogenic potential of GO and RGO is not feasible to precisely due to the 
contradictory reports. 
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	Abstract
	Graphene and its derivatives have been well‐known as influential factors in differentiating stem/progenitor cells toward the osteoblastic lineage. However, there have been many controversies in the literature regarding the parameters effect on bone regeneration, including graphene concentration, size, type, dimension, hydrophilicity, functionalization, and composition. This study attempts to produce a comprehensive review regarding the given parameters and their effects on stimulating cell behaviors such as proliferation, viability, attachment and osteogenic differentiation. In this study, a systematic search of MEDLINE database was conducted for in vitro studies on the use of graphene and its derivatives for bone tissue engineering from January 2000 to February 2018, organized according to the PRISMA statement. According to reviewed articles, different graphene derivative, including graphene, graphene oxide (GO) and reduced graphene oxide (RGO) with mass ratio ≤1.5 wt % for all and concentration up to 50 μg/mL for graphene and GO, and 60 μg/mL for RGO, are considered to be safe for most cell types. However, these concentrations highly depend on the types of cells. It was discovered that graphene with lateral size less than 5 µm, along with GO and RGO with lateral dimension less than 1 µm decrease cell viability. In addition, the three‐dimensional structure of graphene can promote cell‐cell interaction, migration and proliferation. When graphene and its derivatives are incorporated with metals, polymers, and minerals, they frequently show promoted mechanical properties and bioactivity. Last, graphene and its derivatives have been found to increase the surface roughness and porosity, which can highly enhance cell adhesion and differentiation.
	INTRODUCTION
	Bone tissue engineering (BTE) is a complex and dynamic Strategy that typically requires a bone scaffold for recruitment of stem/progenitor cells, followed by their proliferation, differentiation, matrix formation and remodeling of the bone.1 Moreover, bone scaffolds are generally made of biomaterials in order to provide proper mechanical support during the stimulation of new bone formation. The desired properties of scaffolds are osteoconductivity, biodegradability, high biocompatibility and mechanical properties and interconnected porosity which are the required properties for fabricating scaffold.2 For decades, carbon‐based materials such, as carbon nanotubes (CNT), fullerenes and graphene have been introduced as remarkably promising materials, which have been shown to induce cell attachment, proliferation and differentiation, particularly toward the osteoblastic lineage.3 Graphene is a single atomic layered sheet of conjugated sp2‐carbon atoms, attracting attention among all carbon‐based materials due to their specific features. These advantageous features of graphene include large surface area, high mechanical strength, great elasticity modulus, unprecedented electricity properties4 and potential of providing an interaction site to adsorb various growth factors or other materials that can enhance differentiation.3, 5-7
	Graphene derivatives include graphene oxide (GO), reduced graphene oxide (RGO) amine‐functionalized graphene oxide (AGO), graphene foams (GFs), graphene nanosheets (GNSs) and graphene quantum dots (GQDs). Among all graphene derivatives, GO and RGO have been widely used in BTE.8 Although GO presents reduced electronic and mechanical properties compared to pristine graphene, it has various benefits from a synthetic chemistry aspect.9 GO is prepared by oxidation of graphite and has many hydrophilic functional groups, including hydroxyl, carboxyl and epoxy groups, which may cause increased biocompatibility of GO compared to pristine graphene,10, 11 however, the other parameters such as concentration, size and dimension should be considered as influential factors in evaluating the toxicity of GO.12–14 RGO, produced by removing the oxygen‐containing groups of GO, maintains some of the thermal and mechanical properties observed in pristine graphene.15 Moreover, RGO has a higher capability in electron transferring which may be effective in accelerating differentiation.16 The properties of graphene‐related materials and their great potential to be easily functionalized and combined with biomolecules and biomaterials present several opportunities to design different bio‐composites. Thus, in this article we further provide basic information regarding systematic review on the potential of graphene and its ability to produce polymer‐, minerals‐ and metal‐composites with modified mechanical properties and enhanced cell differentiation, mineral deposition and bioactivity. We comprehensively evaluated the effect of graphene and its derivatives on osteogenic differentiation of various stem/progenitor cells. Additionally, we further expand our assessment on compatibility of graphene and its derivatives’ effect on cell viability, proliferation and attachment. Indeed, this systematic review aims to clarify the limitations in available studies and contribute to designing future preclinical and clinical studies on the use of graphene family for bone regeneration. 
	METHODS AND MATERIALS
	Eligibility criteria
	Types of studies
	Types of participants
	Types of interventions
	Types of outcome measures
	Information source
	Data collection process

	DATA items

	All in vitro studies that used graphene and its derivatives for bone regeneration from January 2000 to February 2018 from MEDLINE were included in this review. Included studies were limited to English‐language articles. We excluded the abstracts, reviews, letters and thesis.
	Participants were any types of graphene, including GO, RGO, AGO, and GQDs prepared in any shape and composition. Additionally, any type of stem/progenitor cells was considered.
	Studies that conducted an osteogenic induction in presence of graphene and its derivatives were included. Studies that used only osteogenic induction as a part of a multilineage characterization test were excluded.
	Cell viability and proliferation was reported in in vitro studies using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT), 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS), deoxynucleic acid (DNA) counting, Cell Counting Kit‐8 (CCK‐8), mitochondrial activity, Alamar Blue, total protein apoptosis, reactive oxygen species (ROS), and quantitative lactate dehydrogenase (LDH) activity assays. Also, various methods of staining were reported, including 4′,6‐diamidino‐2‐phenylindole (DAPI), Calcein AM, F‐actin, and live and dead assay. 
	Cellular attachment was reported in in vitro studies using fluorescence and microscopic images such as fluorescein isothiocyanate (FITC), DAPI, live and dead, fluorescein diacetate, and scanning electron microscope (SEM). 
	In addition, differentiation toward the osteoblast lineage was reported in in vitro studies using alkaline phosphatase (ALP) activity, western blotting, Wnt pathway, flow cytometric analysis, phosphate assay, calcium (Ca) content and calcium phosphate (CaP) measurement, osteocalcin (OCN) content and gene expression analysis. Furthermore, various methods of staining were utilized, including immuno‐cytochemical (ICC), immunofluorescent, Alizarin Red‐S (ARS), Sirius Red (SR) and Von Kossa. 
	Our scientific electronic database was MEDLINE (NCBI PubMed and PMC). Further hand search was performed in the following journals: Carbon, Biomedical Nanotechnology, Nature, Nanoscience and Nanotechnology, Nanoscale, ACS Nano and Nanomedicine. Our search was limited to English‐language studies dating from January 2000 to February 2018.
	An electronic search was performed to select articles relevant to effect of graphene on stem/progenitor cells using the following terms: graphene AND (BTE OR bone regeneration OR osteogenesis OR osteoblast lineage OR osteogenic lineage OR osteogenic differentiation). A search of the selected articles’ bibliographies was also performed manually.
	Review and data extraction were performed according to the PRISMA flow diagram shown in Figure 1. Three independent reviewers performed the initial screening of the selected articles, followed by reviewing the full text of the articles and extraction of all data. Disagreements between the three reviewers were resolved by consensus. In case of no agreement, a fourth reviewer decided. Fourth and fifth authors contributed in the discussion section.
	/
	Figure 1  Flow chart of the search strategy.
	Results and data were extracted from the full text of the articles and tabulated as follows (Table 1): (1) Types of cells used for osteogenesis; (2) chemical composition of graphene and its derivatives used for cell differentiation; (3) types of graphene used in combination with other materials such as metals, metalloids, polymer; (4) size of graphene and its derivatives, including lateral dimension, diameter, and thickness; (5) cultural condition used for cell growth; (6) type of treatment group used for evaluating cell behavior; (7) type of characterization tests conducted for surface characterizing; (8) outcomes of in vitro studies, that is, the results of the cell viability, proliferation, attachment and differentiation.
	Table 1. Summary of the in Vitro Studies of Graphene‐Based Structures in Bone Tissue Engineering
	Outcome
	Characterization
	Treatment Group
	Cultural Condition
	Size
	Type of Graphene
	Chemical Composition and Functionalization
	Cell Source
	Authors
	Proliferation/viability:
	‐AFM
	‐GO‐PEG‐FITC(40 μg/mL)
	α‐MEM ± 10% FBS ± 50 μg/mL glycerolphosphate ± 10 mM L‐AA ± 1 mM l‐glutamine\pen\strep 
	Thickness ≈ 10 nm
	GO
	GO‐PEG‐FITC
	MC3T3‐E1
	Cicuéndez et al.66
	‐PI exclusion and flow cytometry test: High viability was observed in the presence of GO‐PEG‐FITC (3 days) 
	‐XPS
	‐ZP
	‐DLS
	‐Proliferation: Although cells grew and spread well, cell number dramatically decreased on GO‐PEG‐FITC (3 days) 
	‐Cell apoptosis assay: Incorporation of GO‐PEG‐FITC increase cell apoptosis (3 days) 
	Osteogenic differentiation: 
	‐ALP activity: After 3 days of treatment with GO‐PEG‐FITC, ALP activity decreased 
	‐ARS and ALP: GO‐PEG‐FITC ≈ control (12 days of culture in fresh medium) 
	Proliferation/viability: 
	‐AFM
	‐Ti‐GO‐40 (deposition voltage: 40V)
	α‐MEM ± 10% FBS ± 1% pen/strep
	Thickness:
	GO
	GO deposited on Ti
	mBMSCs
	Qiu et al.47
	‐Alamar Blue assay: Ti > Ti‐GO‐40 > Ti‐GO‐80 > Ti‐GO‐120 (1, 4, 24 days) 
	‐SEM
	‐XRD
	‐Single layer: 1 nm
	‐XPS
	‐Ti‐GO‐80
	‐Raman spectra
	‐Ti‐GO‐120
	Attachment: 
	‐Ti
	‐GO‐40: 25 µm
	‐FITC staining: Ti > Ti‐GO groups (1, 4, 24 h). In addition, it showed: 24 h > 1 h 
	‐ICP‐AES
	‐ZP
	‐GO‐80: 90 µm
	Osteogenic differentiation:
	‐ALP activity, ARS staining: Ti‐GO‐120 > Ti‐GO‐80 > Ti‐GO‐40 > Ti (7, 14 days)
	‐GO‐120: 136 µm
	Collagen secretion: Ti‐GO‐120 > Ti‐GO‐80 > Ti‐GO‐40 (7, 14 days) 
	Proliferation/viability: 
	‐AFM
	‐Dex‐control
	Cultured in medium containing 10% FBS
	Thickness of GO sheets: 0.83 nm
	GO
	GO‐DEX‐Ti
	mBMSCs
	Ren et al.45
	‐CCK‐8 and F‐actin staining: GO‐DEX‐Ti > RGO‐DEX‐Ti > DEX‐Control (1, 3, 5 days) 
	‐SEM
	‐GO‐DEX‐Ti
	RGO
	RGO‐DEX‐Ti
	‐FTIR
	‐RGO‐DEX‐Ti
	‐XPS
	‐GO‐Ti
	‐Raman spectra
	‐RGO‐Ti
	Osteogenic differentiation: 
	‐ALP activity (7, 14 days), mineralization (21 days), OPN, OCN expression (7, 14 days): GO‐DEX‐Ti > RGO‐DEX‐Ti > DEX‐Control 
	Proliferation/viability: 
	‐SEM
	‐GONRs (10, 100, 200, 300 μg/mL)
	DMEM ± 10% FBS ± 100 IU/mL pen ± 100 μg/mL of strep
	—
	GO
	GONRs
	Human osteoblast cells
	Ricci et al.85
	‐Cell counting: Alive cells on control (−) > 10 μg/mL GONRs > 100 μg/mL GONRs > 200 μg/mL GONRs > 300 μg/mL GONRs > Control (+) 
	‐FTIR
	‐XRD
	Osteogenic differentiation: 
	‐qRT‐PCR (ALP, COL‐I, OCN, OPN,Runx‐2): 200 μg/mL GONRs decrease the gene expression while 100 μg/mL did not affect them significantly 
	Proliferation/viability: 
	‐SEM
	‐Ct‐Gn
	DMEM ± 10%FBS
	—
	GO
	GO‐Ct‐Gn
	‐Rat calvarial osteoprogenitors
	Saravanan et al.75
	‐MTT assay: O.D. value: 0.25% GO‐Ct‐Gn > Ct‐Gn 
	‐FTIR
	‐0.25% GO‐Ct‐Gn
	‐XRD
	No significant cytotoxicity was observed up to 30 mg/mL of scaffolds with rat cells
	‐Raman spectra
	‐OM
	‐GM
	‐Porosity measurement
	Osteogenic differentiation: 
	‐RT‐PCR: ALP, COL‐I, and OCN genes increased in mMSCs with 0.25% GO‐Ct‐Gn in OM (7, 14 days). Runx2 was high only at day 7 with 0.25% GO/Ct/GN 
	‐Swelling study
	‐Water absorption
	‐Degradation rate measurement
	‐Western blotting: Runx2 protein expression increased on 0.25% GO‐Ct‐Gn in OM (7, 14 days) 
	Proliferation/viability: 
	‐SEM
	‐HAP
	—
	—
	GO
	GO‐coated TCP
	BMSCs
	Xie et al.29
	‐Live and dead cell staining: Approximately no dead cells were observed on the pure TCP or HAP and GO groups (7 days) 
	‐ZP
	‐GO‐HAP
	‐BMP2‐GO‐HAP
	GO‐coated HAP
	‐NPs (BMP2‐encapsulated BSA‐NPs)‐GO‐HAP
	‐CCK‐8 assay: Nos‐GO > other groups and no difference between TCP or HAP and GO groups (7 days) 
	‐BGO‐HAP (mixed BMP2/GO solution on the GO‐HAP)
	Osteogenic differentiation: 
	‐ALP activity: Nps‐GO‐HAP > BGO‐HAP ≈ BMP2‐GO‐HAP > GO‐HAP > HAP 
	‐TCO
	‐GO‐TCP
	‐BMP2‐GO‐TCP
	The same trend for TCP (14 days)
	‐GO‐TCP
	‐NPs‐GO‐TCP
	‐BGO‐TCP
	Proliferation/viability: 
	‐SEM
	‐β‐TCP
	DMEM ± 10%FBS ± 1%pen/strep
	—
	GO
	Ag‐GO‐coated β‐TCP
	Rabbit BMSCs
	Zhang et al.50
	OD: β‐TCP ≥ β‐TCP‐GO > 3‐Ag1G1 > 4‐Ag1G1 (1, 3, 7 days) 
	‐TEM
	‐β‐TCP‐GO (β‐TCP modified in 0.2 mg/mL GO solution)
	‐EDX
	With different mass ratio of Ag‐GO:
	Osteogenic differentiation: 
	‐ALP activity: 3‐Ag1G1 > 4‐Ag1G1 > β‐TCP‐GO > β‐TCP (14 days) 
	‐β‐TCP‐3‐Ag1G1(β‐TCP modified in 3 mL Ag1G1)
	‐Ag1G1 (Ag:GO = 1:1)
	4‐Ag1G1 > 3‐Ag1G1 > β‐TCP‐GO > β‐TCP (14 days)
	‐qRT‐PCR: BSP, OCN and Runx2 expressions: 4‐Ag1G1 > 3‐Ag1G1 > β‐TCP‐GO > β‐TCP (14 days) 
	‐β‐TCP‐4‐Ag1G1
	‐Ag0.5G1
	‐Ag2G1
	OPN expression: 3‐Ag1G1 > 4‐Ag1G1 > β‐TCP‐GO > β‐TCP
	Proliferation/viability: 
	‐AFM
	‐ZnO‐GO‐COOH
	α‐MEM ± 10% FBS ±1% pen/strep
	Thickness ≈ 0.84 nm
	GO
	ZnO‐GO‐COOH
	hMG63
	Chen et al.89
	‐CCK‐8 assay: No significant cytotoxicity for GO‐COOH below 50 μg/mL 
	‐TEM
	‐XRD
	‐GO‐COOH
	‐XPS
	‐Gl (control group)
	‐ICP‐AES
	Osteogenic differentiation: 
	‐Raman spectra
	‐ALP activity: ZnO‐GO‐COOH ≫ GO‐COOH and control group (7 days), GO‐COOH > control group (14 days) 
	‐Wettability evaluation
	‐OCN expression: ZnO‐GO‐COOH > GO‐COOH > Gl (14 days) 
	‐ARS staining: ECM mineralization on ZnO‐GO‐COOH ≫ other two groups (7 days) 
	‐RT‐qPCR: ZnO‐GO‐COOH showed the most increased gene expression of ALP, OCN, and Runx2 (14 das) 
	Proliferation/viability: 
	‐SEM
	‐GO
	DMEM ± 4.5 g/L d‐glucose ± 10% FBS ± 100 U/mL pen ± 100 U/mL strep 
	—
	GO
	BGs‐GNS
	MC3T3‐E1
	Fan et al.67
	‐MTT assay: BG10GO1 > BG5GO1 > BG1GO1 > BG > GO (2, 4 days) 
	‐TEM
	‐BG
	‐FTIR spectra
	‐BG1GO1 (BG/GO [wt/wt] = 1:1)
	‐XRD
	Osteogenic differentiation: 
	‐EDX
	‐ALP activity: BG10GO1 > BG5GO1 > BG1GO1 ≈ BG > GO (5 days) 
	‐Mechanical tests
	‐BG5GO1
	‐BG10GO1
	‐Nanoindentation measurements
	Proliferation/viability: 
	‐AFM
	‐GO
	OM:10 nM Dex ± 20 mM β‐glycerophosphate  ± 50 μM AA 
	The thickness of GO sheets ≈ 0.8 nm
	GO
	GO‐PEI
	BMSCs
	Kumar et al.37
	‐DNA content: PCL‐GO5 and all the PCL‐GO‐PEI composite ≫ neat PCL (7 days) 
	‐FTIR
	‐GO‐PEI
	‐XRD
	‐PCL
	‐XPS
	‐PCL‐GO1 (10 mg of GO/g of PCL, 0 mg of GO‐PEI/g of PCL)
	‐TGA
	Attachment: 
	‐Raman spectra
	‐Fluorescence micrographs: More cells were seen on PCL‐GO‐PEI composite films especially on PCL‐GO‐PEI5 (7 days) 
	‐CA measurement
	‐PCL‐GO3
	‐PCL‐GO5
	‐Mechanical test
	‐PCL‐GO‐PEI1 (0 mg of GO/g of PCL, 10 mg of GO‐PEI/g of PCL)
	‐Live/dead assay: All cells were viable on all the substrates and the cell area decreased with increase in the content of GO and GO‐PEI. 
	‐PCL‐GO‐PEI3
	‐PCL‐GO‐PEI5
	Osteogenic differentiation: 
	‐GM
	‐ALP activity: OM > GM (14, 21 days) 
	‐OM
	PCL‐GO‐PEI5 > PCL‐GO5 > PCL (14, 21 days)
	‐ARS staining: GM < OM 
	PCL‐GO‐PEI5 > PCL/GO‐PEI3 > PCL‐GO5 (14 days). In addition, at day 21, mineral deposited was highest
	‐Adsorption of osteogentic factors: Adsorbtion of glycerol phosphate and AA: PCL‐GO‐PEI5 > PCL‐GO5 > PCL 
	‐Adsorbtion of Dex:
	PCL‐GO5 /PCL‐GO‐PEI5 > PCL 
	Proliferation/viability: 
	‐SEM
	‐Cover slip
	DMEM ± 10% FBS
	—
	GO
	GO‐PLGA‐tussah (O/C ratio of the GO:0.44)
	mMSC
	Shao et al.61
	‐MTT assay: Cell proliferation was slightly higher in the presence of GO (1, 4, 7 days). Also, the number of cells on GO‐PLGA‐tussah > PLGA‐tussah > PLGA nanofiber 
	‐TEM
	‐PLGA
	‐FTIR
	‐PLGA‐tussah
	‐Raman spectra
	‐GO‐PLGA‐tussah
	‐CA measurement
	Attachment: 
	‐Porosity measurement
	‐DAPI staining: The highest cell density was observed on GO‐PLGA‐tussah 
	‐Mechanical tests
	Osteogenic differentiation: 
	‐RT‐PCR: The expression of CD29 and CD44 on GO‐doped PLGA‐tussah < PLGA‐tussah < PLGA 
	ALP and COL‐I on GO‐doped PLGA‐tussah > PLGA‐tussah > PLGA > cover slip (10, 14 days)
	‐OCN expression: 
	GO‐doped PLGA‐tussah > PLGA‐tussah > PLGA > Cover slip (10, 14 days)
	‐SEM: Cells on GO‐PLGA‐tussah were more densely mineralized than those on scaffolds without GO (14 days) 
	‐EDC: Ca/P ratio: PLGA‐tussah > GO‐doped PLGA‐tussah > PLGA 
	Proliferation/viability: 
	‐FESEM
	‐PDLLA
	DMEM ± 10% FBS ± 100mg/mL Strep ± 100 mg/mL Pen
	—
	GO
	PDLLA‐MWNCTO‐GO
	MG‐63
	Silva et al.90 2016 
	‐MTT assay: Scaffolds did not show any cytotoxicity effects (7 days) 
	‐TEM
	‐PDLLA‐MWNCTO‐GO
	‐Porosity measurement
	Osteogenic differentiation: 
	‐ALP activity: PDLLA‐MWNCTO‐GO > PDLLA > control (3 days) 
	‐Mechanical tests
	‐ARS staining: Scaffolds were able to induce mineralized realized (14 days) 
	Proliferation/viability: 
	‐SEM
	‐GO‐Ct‐CBB‐Ag‐OCP
	α‐MEM ± 10%FBS ± 1%pen/strep
	—
	GO
	GO‐Ct
	mBMSCs
	Xie C et al.48 2016 
	The OCP mineralized scaffolds showed significantly higher proliferation than that on the GO/CS scaffolds
	‐FTIR
	‐XRD
	‐GO‐Ct‐CBB‐OCP
	‐Raman spectra
	‐GO‐Ct‐BMP‐Ag‐OCP
	‐Porosity measurement
	Attachment: 
	‐GO‐Ct‐OCP
	‐SEM: Cells spread very well on the all scaffolds 
	‐GO‐Ct
	‐Degradation assay
	Osteogenic differentiation: 
	‐ALP activity: GO‐Ct‐CBB‐OCP, GO‐Ct‐CBB‐Ag‐OCP > GO‐Ct‐BMP‐Ag‐OCP > GO‐Ct‐OCP,GO/Ct (14 days) 
	‐Adsorption assay
	Proliferation/viability: 
	‐SEM
	‐GO (0, 25, 50 µg/mL)
	OM
	—
	GO
	GO
	Osteoblast
	Zancanela DC et al.13 2016 
	‐MTT assay: GO‐plastic > GO‐Ti (7, 14, 21 days) 
	‐EDS
	‐Raman spectra
	‐Ti disk
	‐GO (0, 25, 50 µg/mL)
	‐7, 14 days: GO(0)‐plastic > GO(25)‐plastic > GO(50)‐plastic > GO(25)‐Ti > GO(0)‐Ti
	‐Plastic surface
	‐21 days: GO(25)‐plastic > GO(0)‐plastic > GO(50)‐plastic > O(25)‐Ti > GO(0)‐Ti
	Osteogenic differentiation: 
	‐ALP activiy: GO‐Ti disks ≈ GO‐plastic surface (7, 14, 21 days). All groups exhibited higher ALP activity at day 14. 
	‐ARS staining: 
	GO‐plastic surface > GO‐Ti disk (21 days)
	Proliferation/viability: 
	‐AFM
	‐GO (10, 20, 40, 160 µg/mL)
	DMEM.
	Thickness ≈ 0.8 nm
	GO
	GO‐Cu‐Cpc
	mBMSCs
	Zhang W et al.49 2016 
	‐Live and dead assay: The cell viability gradually decreased by increasing GO‐Cu concentration from 10 to160 µg/mL. 
	‐SEM
	‐XRD
	‐UV–Vis
	‐GO‐Cu (10, 20, 40, 160 µg/mL)
	‐ICP‐OES
	‐Concentration of GO and GO‐Cu less than 40 µg/mL showed good biocompatibility.
	‐control (10, 20, 40, 160 µg/mL)
	‐GO‐Cpc
	Attachment: 
	‐GO‐Cu‐Cpc
	‐IFS: The amount of the integrin β1: 
	‐Cpc
	GO‐Cpc, GO‐Cu‐Cpc ≫ Cpc (12 h)
	Osteogenic differentiation: 
	‐OCN: GO‐Cu‐Cpc > GO‐Cpc > Cpc (7 days). 
	‐ALP activity: GO and GO‐Cu increased ALP expression in a concentration‐dependent manner: GO‐Cu > GO > control (3 days) 
	‐Western blot: The phosphorylation of Erk1/2, the activation of Hif‐1α, the inhibition of VHL facilitated by using GO and GO‐Cu. In addition, the expression of VEGF and BMP2 were significantly enhanced by utilizing 40 μg/mL GO or GO‐Cu (3 days) 
	Proliferation/viability: 
	‐AFM
	‐Na‐Ti
	DMEM ± 10% FCS ± 2 mM L‐glutamine ± 100 mM L‐ascorbate‐2‐phosphate ± 1 mM sodium pyruvate ± 50 U/mL pen G ± 50 mg/mL strep (10–14 days).
	The height of GO sheets on the quartz substrate ≈ 1 nm
	GO
	GO‐coated Ti
	hPDLSCs
	Zhou Q et al.26 2016 
	‐MTT assay: The proliferated rate of hPDLSCs on GO‐Ti was substantially higher than those on Na‐Ti (3, 5, 7, 10 days). 
	‐SEM
	‐GO‐Ti
	‐Raman spectra
	Attachment: 
	‐CLSM: cells on GO‐Ti substrates were more dense than those on Na‐Ti substrates (3 days) 
	Osteogenic differentiation: 
	‐ALP Activity: GO‐Ti ≈ Na‐Ti (3, 5 days) 
	GO‐Ti > Na‐Ti (7, 10 days).
	‐qRT‐PCR: COL‐I, Runx2, BSP and ALP expression peaked at day 14 and: 
	GO‐Ti > Na‐Ti (7, 14, 21 days).
	BSP expression level was the lowest (21 days) among all genes.
	‐OCN: OCN expression level peaked at day 21 and: GO‐Ti > Na‐Ti (14, 21d). 
	‐Western blot assay: BSP and Runx2 expression: GO‐Ti > Na‐Ti (7, 14 days), GO up‐regulated the OCN expression (14 days) 
	Proliferation/viability: 
	‐SEM
	‐Neat titanate
	DMEM ± 10%FBS ± antibiotics (100 U/mL pen ± 100 mg/mL strep)
	—
	GO
	GO‐Titanate
	hMG63
	Dong W et al.92 2015 
	‐MTT assay: OH grafted GO‐titanate > NH2 grated GO‐titanate > GO‐titanate> COOH grafted GO‐titanate> neat titanate (6 days) 
	‐TEM
	‐XRD.
	‐GO
	‐FTIR
	‐GO‐Titanate
	‐Porosity measurement
	‐COOH grafted GO‐titanate
	Attachment: 
	‐Mechanical tests
	‐OH grafted GO‐titanate
	‐Fluorescence microscopy: ‐OH group terminals presents the highest density of attached cells (2, 4, 6 days) 
	‐NH2 grafted GO‐titanate 
	Osteogenic differentiation: 
	‐ALP ctivity: OH grafted GO‐titanate> NH2 grated GO‐titanate > COOH grafted GO‐titanate > GO > neat titanate (2, 4, 6, 10, 15 days) 
	‐ARS staining: COOH grafted GO‐titanate > NH2 grated GO‐titanate > OH grafted GO‐titanate > GO > neat titanate (2, 4 days) 
	‐OH grafted GO‐titanate > NH2 grated GO‐titanate > COOH grafted GO‐titanate > GO > neat titanate (6, 10, 15 days) 
	‐Ca content: COOH grafted GO‐titanate ≫ other scaffolds (2, 4 days). 
	–OH functioned scaffold presents the best Ca deposition afterward
	Proliferation/viability: 
	‐AFM
	‐ST‐TNZ
	OM: α‐MEM ± 10 mM of glycerol 2‐phosphate and 0.2 mM of AA
	Size: 0.3–2 μm
	GO
	Dex‐RGO‐MPCR‐TNZ
	MC3T3‐E1
	Jung HS et al.69 2015 
	‐MTT assay: Cell viability: ST‐TNZ < STA‐TNZ < MPCR‐TNZ < RGO‐MPCR‐TNZ (3 days) 
	‐XPS
	‐STA‐TNZ
	‐Raman spectra
	‐MPCR‐TNZ
	‐RGO‐MPCR‐TNZ
	‐Cell growth on RGO‐MPCRTNZ > MPCR‐TNZ (1, 3, 7 days) 
	‐Mechanical test
	‐Dex‐RGO‐MPCR‐TNZ
	‐TCPS
	Osteogenic differentiation: 
	‐CA measurement
	‐OM
	‐ARS staining: Dex‐RGO‐MPCR‐TNZ ≫ RGO‐MPCR‐TNZ > MPCR‐TNZ 
	‐GM
	‐Drug release test (UV‐Vis spectroscopy)
	‐CSLM: Significant OCN expression was observed in Dex/RGO‐MPCR‐TNZ 
	‐ALP activity: The cells on Dex‐RGO‐MPCR‐TNZ > RGO‐MPCR‐TNZ > MPCR‐TNZ (OM > GM) 
	‐RT‐qPCR: Remarkably higher expression levels of Runx2, OPN, Col‐1, and OCN was shown on Dex‐RGO‐MPCR‐TNZ than RGO‐MPCR‐TNZ, MPCR‐TNZ and TCPS 
	Attachment
	‐AFM
	‐NGO 100 (line pattern)
	GM: 0.5% FBS ASC medium
	Size ≈ 50–100 nm
	NGO
	Different G patterns on Gl/Au, TCP, PDMS, and PLGA
	hADSCs
	Kim TH et al.18 2015 
	‐Cell spreading was the highest on NGO line patterns.
	‐TEM
	‐DLS
	‐NGO 100 (No pattern)
	OM: 100 nM Dex ± 50 μM AA ± 10 mM β‐glycerolphosphate 
	‐XPS
	Osteogenic differentiation: 
	‐ZP
	‐Bare Au
	‐ALP activity: NGO 100 (line pattern) > NGO 100 (no pattern) > Bare Au (14 days) 
	‐Raman spectra
	‐Immunostaining: Cells on the NGO line pattern enhanced expression of OCN (21 days). 
	‐ARS staining: OM /GM 
	In OM: NGO 100 (line pattern) > NGO 100 (no pattern) > bare Au (21 days)
	Proliferation/viability: 
	‐AFM
	‐PCL
	DMEM ± 15 vol % MSC‐qualified FBS ± 1%gultamax ± 1% pen–strep
	The thickness of GO sheets ≈2 nm
	‐GO
	PCL‐GO/RGO/AGO
	hMSCs
	kumar S et al.36 2015 
	‐DNA content (7 days): PCL‐AGO3 /PCL‐AGO1 /PCL‐AGO5 > PCL‐GO3 > PCL‐GO5 /PCL‐RGO5 > PCL‐GO1 > neat PCL 
	‐SEM
	‐PCL‐GO1 (addition of 1 wt % of GO to PCL)
	‐RGO
	‐DLS
	‐AGO
	‐FTIR
	(C/O ratio:
	‐XRD
	GO: C/O=2.2
	‐XPS
	‐PCL‐GO3
	‐Raman spectra
	‐PCL‐GO5
	The thickness of RGO sheets ≈1 nm and Lateral size ≈ 500 nm
	RGO: C/O=4.0
	Attachment: 
	‐PCL‐RGO1
	‐Fluorescence micrographs: Corporation graphene NPs into polymer minimizes toxicity 
	‐CA measurement
	‐PCL‐RGO3
	AGO =2.3)
	‐PCL‐RGO5
	‐PCL‐AGO1
	‐Mechanical test
	‐PCL‐AGO3
	‐PCL‐AGO5
	Osteogenic differentiation: 
	‐ARS staining: PCL‐AGO > PCL‐GO > PCL‐RGO > neat PCL, The mineral content increased with increase in content of GO and AGO 
	The thickness of AGO ≈3 nm
	The average size of dispersed GO,
	RGO and AGO were 823, 529 and 886 nm, respectively.
	Proliferation/viability: 
	‐AFM
	‐neat PCL (2D, 3D)
	DMEM ± 10% FBS ± 10 μg/mL Strep ± 10 U/mL Pen
	Lateral dimension of RGO ≈ 2.4 × 1.5 μm
	GO,RGO
	GO‐PCL (2D, 3D)
	MC3T3‐E1
	kumar S et al.14 2015 
	‐DNA content and cellular nuclei staining: 2D composite >3D composite (7, 14 days). In both 2D and 3D composites: 
	‐SEM
	‐FTIR
	‐PCL‐GO (2D, 3D)
	RGO‐PCL (2D,3D)
	‐XRD
	‐Physical tests
	‐PCL‐RGO (2D, 3D)
	GO‐PCL > neat PCL > RGO‐PCL (7, 14 days)
	‐Porosity measurement
	Lateral dimension of GO ≈ 5.1 × 3.8 μm
	‐Proliferation rate: 3D scaffold: PCL > PCL‐GO > PCL‐RGO 
	‐CA measurements
	2D composit: PCL‐GO > PCL > PCL‐RGO
	Thickness of GO films ≈ 1–3 nm
	Attachment: 
	Initial cell attachment was nearly same for both 2D and 3D (3 days)
	Osteogenic differentiation: 
	‐ALP activity and ARS staining: ALP expression and mineralized matrix on 3D scaffolds were significantly higher than that of 2D substrates (14, 21 days) 
	Among 3D scaffolds: PCL > PCL‐GO > PCL‐RGO
	Among 2D substrate: PCL‐GO > PCL > PCL‐RGO (14, 21 days)
	Proliferation/viability: 
	‐SEM
	‐TCP
	DMEM/F12 (50/50) ± 10% FBS ± 100 U/mL Pen ± 100 μg/mL strep
	—
	GO
	GO‐PLGA
	hMSCs
	Luo Y et al.63 2015 
	‐MTT assay: The rates of cell proliferation increased dramatically by doping GO (7 days) 
	‐FTIR
	‐15PLGA (PLGA concentrations 15%)
	‐Raman spectra
	‐CA measurement
	Attachment: 
	‐GO‐15PLGA
	‐Cells adhesion: GO‐PLGA > PLGA > TCPC (8 h) 
	‐18PLGA
	‐Mechanical test
	‐GO‐18PLGA
	Osteogenic differentiation: 
	‐GM (without Dexa)
	‐qRT‐PCR: With increasing time, the CD44 and CD105 genes on the PLGA and GO‐PLGA decreased slightly (14, 28 days). 
	‐Protein absorption
	‐OM (with Dexa)
	COL I and ALP expression: GO‐PLGA > PLGA (14, 28 days).
	‐ALP activity, OCN (normalized for the total DNA content): 
	OM: GO‐18PLGA > GO‐15PLGA > 18PLGA > 15 PLGA. TCP (14, 28 days)
	GM: GO‐PLGA > PLGA (14, 28 days)
	OM ≫ GM
	Proliferation/viability: 
	‐AFM
	‐Gn‐HAPNM
	GM: α‐MEM ± 10% FBS ± 1% antibiotic‐antimycotic solution
	The thickness of GO flakes is less than 4 nm
	GO
	GO‐Gn‐HAP
	hADSCs
	Nair M et al.21 2015 
	‐Proliferation: GO‐Gn‐HAPOM > GO‐Gn‐HAPNM > Gn‐HAPOM > Gn‐HAPNM (14 days). However, the cell proliferation was slightly reduced (21 days) 
	‐SEM
	‐GO‐Gn‐HAP1
	‐FTIR
	‐Raman spectra
	‐GO‐Gn‐HAP0.5
	‐Porosity measurement
	‐Gn‐HANM (NM: normal medium)
	OM:α‐MEM ± 10% FBS ± antibiotics ± 10 mM β‐glycerophosphate, 10−8M Dex ± 0.05 mg/mL L‐AA 
	‐Quantitative LDH activity: The percentage of viable cells from day 7 to 21 was equivalent (7, 14, 21d) 
	‐Mechanical tests
	‐GO‐Gn‐HAPNM
	The lateral dimension ≈ 1 μm
	‐Gn‐HAPOM (OM: osteogenic
	Osteogenic differentiation: 
	‐ALP activity: GO reinforced scaffolds > other groups (7, 14d). GO‐Gn‐HAPOM showed highest ALP activity among all groups (7d). 
	medium)
	‐GO‐Gn‐HAPOM
	‐Flow cytometric analysis: OPN expression: GO‐Gn‐HAPOM>GnHAOM>GO‐Gn‐HAPNM>Gn‐HAPNM (21d) 
	Proliferation/viability: 
	‐AFM
	‐GO coated substrate
	α‐MEM ± 10% FBS ± 100 U/mL pen ± 100 mg/mL strep
	The thickness of GO sheets ≈ 0.8–1.2 nm
	GO
	GO‐coated quartz
	MC3T3‐E1
	Zhao C et al.79 2015 
	‐CCK‐8 assay: There were no significant differences in cell proliferation of various groups (1, 2 days) 
	‐SEM
	‐FESEM
	‐GO noncoated substrate
	‐XRD
	‐Raman spectra
	‐Cell apoptosis assay: GO coatings did not induce any prominent apoptosis or necrosis 
	‐TCP
	Diameter ≈ 1–5 μm 
	Osteogenic differentiation: 
	‐ALP activity: GO coated substrate > GO noncoated substrate > TCP (14 days) 
	‐OCN: The coated substrate significantly increased OCN production (14 days) 
	Proliferation/viability: 
	‐AFM
	‐TCP
	DMEM ± 10% FBS ± 1% pen/strep
	—
	GO
	GO‐coated plates
	cBMSCs
	Elkhenany H et al.53 2014 
	‐MTS assay: GO with different cell densities ≈ TCP (2, 7, 10 days) 
	‐SEM
	‐GO
	‐TEM
	(Different cell densities:
	‐Calcein‐AM staining: Cells on GO were metabolically active, viable and well‐distributed throughout the surface (2, 7, 10 days) 
	‐1.0 × 103 cells 
	‐5.0 × 103
	‐10 × 103
	‐20 × 103) 
	Osteogenic differentiation: 
	‐GO+OM
	‐ARS staining: GO+GM ≫ GO+OM (21 days) 
	‐GO+GM
	Proliferation/viability: 
	‐AFM
	‐GO
	MEM ± 10% FBS ± 1% pen
	Thickness of GO monolayer ≈1nm
	GO
	GO‐COL
	MC3T3‐E1
	Kanayama L et al.70 2014 
	‐Early cell proliferation on GO and RGO ≪ control (24, 48 h)
	‐SEM
	‐RGO
	RGO
	RGO‐COL
	‐XRD
	‐RGO/AA (GO film reduced by AA)
	‐CA measurements
	Attachment: 
	‐Measurement of DNA content: GO /RGO /control (7, 14 days) 
	‐RGO/SH
	‐Porosity measurement
	‐control
	Average width ≈ 20 μm
	Osteogenic differentiation: 
	‐ALP activity: RGO ≫ GO /control (7 day) 
	‐Mechanical test
	RGO > control ≫ GO (14 days)
	‐Electrical measurement
	‐Ca adsorption: The RGO film dramatically adsorbed Ca rather than GO film 
	Osteogenic differentiation: 
	‐AFM
	‐No BMP2
	DMEM ± 10% FBS ± 1%pen/strep
	—
	GO
	GO‐coated Ti
	hBMSCs
	La WG et al.39 2014 
	‐ALP activity: Ti‐GO‐BMP2 ≈ positive control > Ti‐BMP2 group (14 day) 
	‐Ti‐BMP2
	‐Ti‐GO‐BMP2—Daily addition of BMP2 (positive control)
	‐qRT‐PCR: mRNA expression of ALP and Runx2 in positive control > Ti‐GO‐BMP2 > Ti‐BMP2 > No BMP2 
	Proliferation/viability: 
	‐SEM
	‐GO
	H‐DMEM ± 10% FBS ± 100 U/mL pen ± 100 U/mL strep sulfate
	—
	GO
	GO–Gn
	MC3T3‐E1
	liu H et al.74 2014 a 
	‐MTT assay: No significant differences observed among all scaffolds (1 day) 
	‐XRD
	‐GO–Gn
	‐EDX
	‐Gl
	‐FTIR
	GO > GO‐Gn > Gl (3 day)
	GO‐Gn > GO > Gl (7 day).
	‐LSCM: Cells are more spread on GO–Gn (3 days) and cells density: GO–Gn ≫ GO, Gl (7 days) 
	Osteogenic differentiation: 
	‐ALP activity: GO, GO‐Gn > Gl (3 days) 
	GO‐Gn > GO > Gl (7 days)
	‐SEM: More complex fibrous organic bundles and embedded CaP on the surface of GO–Gn (14 days) 
	‐ARS staining: GO‐Gn promoted mineral nodular aggregations (14 days) 
	Proliferation/viability: 
	‐SEM
	‐Gl
	H‐DMEM ± 10% FBS ± 100 U/mL pen ± 100 U/mL strep sulfate
	—
	GO
	GO‐Car
	MC3T3‐E1
	liu H et al.73 2014 b 
	‐MTT assay: The GO‐Car films exhibited greater cell growth than that of GO and Gl (1, 3, 7 days) 
	‐FTIR
	‐GO
	‐XRD
	‐GO‐Car
	‐EDX
	‐CA measurement
	‐LSCM: There was a higher density of cells on GO‐Car than other two (3, 7 days) 
	‐FIN and FIC: GO‐Car ≫ GO, Gl (3, 7 days) 
	Attachment: 
	‐Area of cell analyze: GO‐Car, GO > Gl (1 days) 
	GO ≈ GO‐Car (3 days)
	GO‐Car > GO, Gl (7 days)
	Osteogenic differentiation: 
	‐ALP activity: The ALP activity increases remarkably with culture time (7 days) 
	GO‐Car > GO, Gl (3, 7 days)
	‐ARS staining: The Ca deposition of the GO‐Car was higher than that of the pure GO and Gl 
	Proliferation/viability: 
	‐SEM
	‐Ti
	GM: α‐MEM ± 10% FBS ± 1%pen/ 
	The thickness of the GO matrix on the Ti substrate ∼2 μm. 
	GO
	GO‐Fn‐Ti
	Preosteoblast
	Subbiah R et al.76 2014 
	‐Live and dead cell assay: There was no great cell viability difference between cells grown on GO‐Ti and GO‐Ti‐Fn (24 h) 
	‐XRD
	‐GO‐Ti
	‐EDS
	‐GO‐Ti‐Fn
	‐Raman spectra
	strep
	OM:GM ± 10 mM β glycerophosphate ± 0.1 μM Dex ± 50 μg/mL l‐ascorbic‐2‐phosphate ± 50 ng/mL BMP2 
	‐Nanoindentation measurements
	‐CCK‐8 assay: GO‐Ti‐Fn > GO‐Ti > Ti (1, 3 days) 
	Attachment: 
	‐FA assay: 
	FA quantification: GO‐Ti‐Fn > GO‐Ti > Ti (24 h)
	‐CA measurement
	Osteogenic differentiation: 
	‐ARS and von kossa staining, ALP activity, Ca content: GO‐Ti‐Fn > GO‐Ti > Ti (7, 14 days) 
	Proliferation/viability: 
	‐TEM
	‐GO 0.5 (μg/mL)
	OM
	The size of GO sheets ≈ 0.5–5 μm
	GO
	GO‐CaP
	hMSCs
	Tatavarty R et al.64 2014 
	‐MTT assay: The greatest viability was 10, 0.5, and 10.5 μg/mL of GO, CaP, and GO‐CaP, respectively (3 days) 
	‐ICP‐MS
	‐Raman Spectra
	‐CaP 10
	‐GO–CaP 10.5
	Osteogenic differentiation: 
	‐ARS staining: 
	GO–CaP showed superior osteoinductivity (2, 3 and 4 weeks)
	GO microflakes increased calcification up to 50% more than the control (3, 4 weeks)
	Calcification in OM > GM
	‐Phosphate assay: 
	GO–CaP > CaP ≫ GO > control (2 and 3 weeks)
	‐ALP activity and OCN expression: OCN GO–CaP > CaP ≫ GO > control (2 weeks) 
	Proliferation/viability: 
	‐AFM
	‐Uncoated GO substrate (Gl, TCPS)
	DMEM ± 10% FBS ± 1% pen/strep
	Lateral size ≈ 1–5 µm
	GO
	GO‐Gl
	hADSCs
	kim J et al.17 2013 
	‐MTT assay: Approximately similar cell viability was shown on GO film compared to the Gl and TCPS, even without FBS 
	‐FESEM
	‐XRD
	‐XPS
	‐GO film (different concentrations: 0, 0.01, 0.1, 1 mg/mL)
	‐Raman spectra
	thickness of the GO film ≈ 33 nm
	‐GO concentration of <0.1 mg/mL showed good cells viability
	‐with FBS
	Attachment: 
	‐without FBS
	‐Immunofluorescent images: 
	‐Cells on the GO film indicated a larger number of FAs than on the Gl (14 h)
	Osteogenic differentiation: 
	‐ARS staining: Higher Ca deposits on the GO film were shown than on the control (3 weeks) 
	Osteogenic differentiation: 
	‐AFM
	‐Ti‐GO− (GO‐COO−) 
	DMEM ± 10% FBS ± 1% pen/strep
	—
	GO
	GO‐coated Ti
	hBMSCs
	La WG et al.38 2013 
	‐OCN expression: Ti‐GO‐BMP2 > Ti‐BMP2 (2, 3 weeks) 
	‐SEM
	‐XPS
	‐Ti‐BMP2
	‐EDX
	‐Ti‐GO‐‐BMP2 
	‐qRT‐PCR: mRNA expressions 
	‐CA measurement
	‐Ti
	ALP and OCN on Ti‐GO‐BMP2 > bare
	‐ZP measurement
	Ti (2, 3 weeks)
	Proliferation/viability: 
	‐FESEM
	‐GNP‐PLGA
	DMEM ± 10% FBS ± 100 U/mL Pen/Strep
	—
	G
	GNP‐PLGA
	MG‐63
	kaur T et al.91 2017 
	‐MTT assay: Cell viability: 
	‐TEM
	‐CNT‐PLGA
	‐FTIR
	‐AC‐PLGA
	GNP‐PLGA > CNT‐PLGA > AC‐PLGA > PLGA > control (2 days)
	‐XRD
	‐PLGA
	‐SAED
	‐CA measurements
	Attachment: 
	Protein adsorption: GNP‐PLGA > CNT‐PLGA > AC‐PLGA > PLGA 
	‐Degradation assay
	Osteogenic differentiation: 
	‐Mechanical tests
	‐ALP activity and ARS staining: ALP expression and mineralized matrix: 
	‐Protein absorption
	GNP‐PLGA > CNT‐PLGA > AC‐PLGA > PLGA > control (7 days).
	Proliferation/viability: 
	‐Raman spectra
	‐G‐Ti6Al4V 
	DMEM‐F12 ± 10%FBS ± 100 U/mL Pen ± 100 mg/mL strep
	—
	G
	G‐coated Ti6Al4V 
	bone BMSCs
	Li K et al.28 2017 
	‐CCK‐8 assay: OD:G‐Ti6Al4V ≫ Ti6Al4V (1, 3, 5, 7 days) 
	‐Ti6Al4V 
	‐CA measurement
	Attachment: 
	‐ICC: Cell areas on: G‐Ti6Al4V > Ti6Al4V (1 day) 
	Cell areas on: G‐Ti6Al4V ≈ Ti6Al4V (3, 5 days). 
	Osteogenic differentiation: 
	ARS staining (21 days), ALP activity (7, 14 days), qRT‐PCR (ALP, BMP2, COL‐I‐α1, and Runx2) (7, 14 days): 
	G‐Ti6Al4V > Ti6Al4V 
	Proliferation/viability: 
	‐SEM
	‐G0 (0% graphene content)
	DMEM
	—
	G
	G‐CS
	hMSCs
	Shie M et al.60 2017 
	‐Proliferation of cells: 7 days /3 days /1 day 
	‐XRD
	‐XPS
	G100 /G50 /G25 /G0 /control 
	‐DTS
	‐G25 (0.25 wt % G)
	Attachment: 
	‐G50 (0.5 wt % G)
	‐Adsorption of COL‐I: COL‐I adsorption was dramatically greater on G50 and G100 than on the pure CS (G0) 
	‐G100 (1.0 wt % G)
	‐Fluorescent images: The cell density on G50 and G100 were significantly higher than on other two composites (3, 7 days) 
	Osteogenic differentiation: 
	‐Western blotting: ALP, OPN and OCN expression: G100 /G50 /G25 /G0 /control (7 days) 
	‐ALP activity: G100 /G50 /G25 /G0 /control (3, 7 days) 
	‐OCN enzyme linked
	immunosorbent assay kit: 
	‐OCN expression: G100 /G50 /G25 /G0 /control (7, 14 days) 
	‐ARS staining: G100 /G50 /G25 /G0 (7, 14 days) 
	Proliferation/viability: 
	‐SEM
	‐GL scaffold
	DMEM
	—
	G
	GL
	iMADs,
	Zou Y et al.87 2017 
	‐The GL‐scaffolds can support long‐term proliferation of MSCs
	‐TEM
	‐GL powder
	± 10% (v/v) FBS ± 100 U/mL pen ± 100 μg/mL strep
	(O/C composition: 0.0864)
	iMEFs, iCALs,
	‐XPS
	‐BMP9
	‐TGA
	‐GFP
	‐GLuc activity assay: The GLuc activity of cells increased at day 5 and slightly dropped at day 7. 
	‐Raman spectra
	‐Porosity measurement
	Osteogenic differentiation: 
	‐SEM: Well‐mineralized nodules with many mineral particles were observed on the surface of scaffolds (15 days) 
	‐ALP activity: Effect of GL powder on iMADs cells: 
	BMP9 > BMP9+GL > GFP, GFP+GL {3, 5, 7 days)
	Effect of GL powder on iMEFs cells:
	BMP9+GL > BMP9 > GFP+GL,GFP (3, 5, 7 days)
	‐ARS staining: When GL‐powder used with Ad‐BMP9 matrix mineralization in both iMADs and iMEFs was greatly promoted. 
	‐qRT‐PCR: OPN, OCN, and Runx2 expression were remarkably enhanced by GL‐powder 
	Proliferation/viability: 
	‐Raman spectra
	‐Different stimulation voltages: 0, 0.1, 0.3 V
	α‐MEM ± nucleosides ± 16.7% heat‐inactivated FBS ± 1% pen/strep ± 4 μg/mL plasmocin prophylactic agent
	—
	G
	G (as a cell culture)
	hMSCs
	Balikov DA et al.32 2016 
	‐Live/dead assay: The majority of cells were alive across all voltages on G and Gl (1 Hz, 24 h) 
	‐Gl (unsimulated)
	Attachment: 
	‐Live and dead assay: Attatchment on Gl > G 
	‐Gl
	Osteogenic differentiation: 
	(simulated)
	‐Immunostaining assay: The expression of the Runx2 was greatly enhanced by stimulation on all G substrates 
	‐Flat G(unsimulated)
	‐Flat G (simulated)
	A noticeable enhancement of OPN was observed when stimulation was coupled with the presence of physical parameters (72 h)
	‐Grid G (unsimulated)
	‐Grid G (simulated)
	‐Column G (unsimulated)
	‐Column G (simulated)
	‐Voltage
	Proliferation/viability: 
	‐SEM
	‐(3D)G
	DMEM
	G
	(3D)G‐HAP
	hBMSCS
	Jakus et al.35 2016 
	‐Cell number on HAP‐(3D)G ≈ HAP ≫ (3D)G (day 14) 
	‐Porosity measurement
	‐HAP
	‐(3D)‐printed HAP‐(3D)G
	Osteogenic differentiation: 
	‐Mechanical test
	‐PLGA
	‐RT‐qPCR: The OCN, OPN, and COL‐I expression were upregulated by day 14. This expression was Significantly less than that observed on (3D)G and HAP, respectively 
	‐Electrical measurements
	Proliferation/viability: 
	‐AFM
	‐G group
	GM: DMEM ± 10% (v/v) FBS ± 100 U/mL pen G ± 100 mg/mL strep
	—
	G
	G‐coated Gl
	hMSCs
	Liu Y et al.19 2016 
	‐CCK‐8 assay: G group > G‐absent group (2, 12, 24 h) 
	‐Raman spectra
	‐G‐absent group
	G‐coated Ti
	hADSCs
	‐Cell proliferation: no significant differences between two groups (2–8 days) 
	OM: GM ± 10 nM Dex ± 10 mM‐glycerophosphate and 50 µg/mL l‐AA 
	Attachment: 
	‐FITC staining: morphology of the adhered cells in G group was extended lamellipodia in G absent group was short pseudopodium extension (12 h) 
	Osteogenic differentiation: 
	‐ALP activity (14 day), ARS staining (21 day), mineralization assay (21 day): G group > G‐absent group 
	Proliferation/viability: 
	‐TEM
	‐GQDs (0–100 μg/mL)
	L‐DMEM ± 10% FBS ± 1% pen‐strep
	lateral size ≈ 3.0 ± 0.6 nm
	GQDs
	GQDs
	rMSCs
	Qiu J et al.94 2016 
	‐MTT assay: Up 10 μg/mL GQDs: reached 100% cell viability; 50 μg/mL GQD: viability decreases to 93% (1, 3 days). 
	‐PL spectra
	‐Proliferation: 14 days > 7 days > 3 days > 1 day 
	‐GQDs1 (1 μg/mL) and 10 did not cause negative effect but GQDs50 arrested the growth of MSCs down to 88% (14 days)
	Attachment: 
	‐Fluorescence images: The GQDs50 distributed homogenously thorough the cell body (1, 3 days) 
	Osteogenic differentiation: 
	‐ALP activity: GQDs50 > GQDs10 > GQDs1 > control (10, 14 days) 
	GQDs50 ≈ GQDs10 ≈ GQDs1 ≈ control (7 days)
	‐qRT‐PCR: Runx2 expression: 
	GQDs50 > GQDs10 > GQDs1 > control (7, 10, 14 days)
	OPN expression also increased up to 10 days exposure, although it was down‐regulated at high GQDs doses (14 days)
	OCN expression: GQDs50 > GQDs10 > GQDs1 > control (10, 14 days) 
	‐IFS: The OPN and OCN staining strength increases together with increasing the concentration of GQDs (14 days) 
	‐ARS staining: GQDs10 > GQDs50 > GQDs1 > control (14 days) 
	‐Microarray analysis of the global gene‐expression: BMP6, TGF‐β2, and COLV‐α3 were upregulated by GQDs 
	‐Molecule annotation system analysis: TGF‐β signaling, MAPK signaling, Wnt signaling, ECM‐receptor interaction, Notch signaling, Ca signaling, and FAs were stimulated by GQDs 
	Osteogenic differentiation: 
	‐AFM
	‐Gl (Source)‐Gl (Destiny)
	DMEM ± 10% FBS ± 1% pen/strep
	—
	G
	G‐Gl
	hDPSC
	Xie H et. al24 2016 
	‐ARS staining: G induced higher levels of mineralization as compared to Gl (14, 28 days). 
	‐Raman Spectra
	‐Gl(S)‐G(D)
	‐G(S)‐Gl(D)
	‐G(S)‐G(D)
	‐RT‐PCR: MSX‐1, PAX, and DMP genes were down‐regulated, though Runx2, COL, and OCN genes were significantly upregulated on G comparing to Gl 
	‐IFS and FACS: The cells on G showed significantly higher levels of both OPN and OCN as compared to Gl 
	Proliferation/viability: 
	‐TEM
	‐G (0, 2.5, 5, 10, 20 µg/mL)
	DMEM/F12 ± 10% FBS ± 1% pen/strep
	—
	G
	G‐SWCNT
	rMSCs
	Yan X et al.93 2016 
	‐CCK‐8 assay: G‐SWCNT > G > SWCNT 
	‐Raman spectra
	In addition, up to 10 μg/mL of G‐SWCNT did not inhibit proliferation (1, 3, 7 days)
	‐SWCNT (0, 2.5, 5, 10, 20 µg/mL)
	‐G/SWCNT (0, 2.5, 5, 10, 20 µg/mL)
	Osteogenic differentiation: 
	‐ALP activity: 14 days > 10 days > 7 days and 5 µg/mL G‐SWCNT ≈ 10 µg/mL G‐SWCNT ≥ NaF > 2.5 µg/mL G‐SWCNT ≈ control (14 days) 
	‐ARS staining: 14 days ≈ 18 days ≈ 21 days and 10 μg/mL of G‐SWCNT at day 14 showed the best result 
	‐Gene expression (OCN, OPN, and Runx‐2): G‐SWCNT at a concentration of 10 μg/mL > other concentrations and NaF 
	‐Western blotting: The genes related to the MAPK cellular signaling pathways were dramatically upregulated 
	Proliferation/viability: 
	‐SEM
	‐G‐nHAP‐PA66
	DMEM ± 1 g/L glucose, l‐glutamine, ± sodium pyruvate ± 10% FBS ± 1% pen/strep 
	The thickness of G ≈ 1.0 nm
	G
	G‐nHAP‐PA66
	mC3H10T1/2
	Zhang S et al.52 2016 
	‐CCK‐8 assay: G additives in nHAP‐PA66 exhibited higher optical density 
	‐XRD
	‐Mechanical tests
	‐nHAP‐PA66
	Attachment: 
	‐IFS: Cells grown with G‐nHAP‐PA66 illustrated a higher density and a significantly clearer cytoskeleton (4, 24, 72 h) 
	OM:10 mM β‐glycerophosphate ± 10−8M Dex ± 0.2 mM AA 
	Osteogenic differentiation: 
	‐ARS assay: The G‐nHAP‐PA66 caused cells to produce more Ca precipitation than the nHAP‐PA66 (7, 14 days) 
	‐qRT‐PCR: The ALP and OCN expressions were significantly upregulated by using G‐nHAP‐PA66 (7, 14 days) 
	Proliferation/viability: 
	‐XPS
	‐H2O2
	α‐MEM ± 15% ES‐FBS ± 100 μg/mL strep ± 2 mM l‐glutamine ± 100 U/mL pen 
	—
	G
	(3D)G‐VC
	hBMSCs
	Zhou Z et al.41 2016 
	‐MTT assay: Cell viability was restored to normal level by using 25 μg/mL VC, G, and VC+G (5 days) 
	‐Raman spectra
	‐VC+H2O2
	‐GF+H2O2
	‐CA measurement
	‐GF+H2O2+VC 
	‐ROS: The H2O2‐induced ROS increase was attenuated by cotreatment of VC+G (7 days) 
	‐GSH: It was dramatically rescued by VC+G (7 days) 
	‐SOD: It was significantly rescued by VC, G, and VC+G (7 days) 
	‐MDA: It was significantly inhibited by in the VC+G (7 days) 
	Attachment: 
	‐DAPI: cell attached and grew well on the GF surface 
	Osteogenic differentiation: 
	‐ALP activity: 0.2 mM H2O2 decreased the ALP activity (8 days), rescued in the VC, G, and VC+G 
	‐Ca contents: VC+G rescued the H2O2‐suppressed differentiation more significantly 
	‐Western blotting: 0.2 mM H2O2 inhibited the expression of β‐catenin and cyclin D1, restored by VC+G 
	Attachment: 
	‐SAED
	‐NiTi
	DMEM ± 10%FBS ± 100 U/mL strep ± 100 U/mL pen ± 200 U/mL heparin
	—
	G
	G‐NiTi
	MSCs
	Li J et al.57 2015 
	G can better promote initial adhesion of cells
	‐Raman spectra
	‐G‐NiTi‐1050°C
	Osteogenic differentiation: 
	‐G‐NiTi‐1000°C
	‐Gene expression: levels of OCN, OPN, BMP2, and Runx2 on Gr‐NiTi‐1050°C > 
	‐G‐NiTi‐950°C
	G‐NiTi‐950°C > NiTi
	‐Immunofluorescence: More ALP‐positive areas were shown on G, especially on Gr‐NiTi‐1050°C 
	Compared to NiTi, the G can better promote the expression of integrin β1
	Proliferation/viability: 
	‐SEM
	‐SGH
	DMEM ± 10% FBS ± 1% Pen/strep
	—
	G
	SGH
	hADSCs
	Lyu CQ et al.20 2015 
	‐Live/dead assay: ADSCs more strongly proliferate on SGH (1, 3 days) 
	‐CA measurement.
	‐G
	‐Carbon fiber
	‐Gl
	Attachment: 
	‐Mechanical tests
	‐OM
	‐SEM: Cells attached tightly to the SGH and spread out (3 days), and reached a high cell density (7 days) 
	‐Protein absorption
	Osteogenic differentiation: 
	‐Flow cytometry: High level expression of the CD29, CD44, and CD105, and rarely expression of both CD45 and CD34 
	‐qRT‐PCR: mRNA expression: 
	OM > SGH > G > carbon fiber > control (1, 7, 15 days). Moreover, the expression of BMP2, Runx2, and OCN was significantly higher on the SGH (7, 15 days)
	‐IFS: BMP2 and Runx2: SGH > G (15, 21 days) 
	‐ALP activity: OM > SGH > G > carbon fiber > control (1, 4, 7 days) 
	‐ARS staining: OM > SGH > G > carbon fiber > control (21 days). In addition, cells displayed an irregular polygonal morphology (21 days) 
	Proliferation/viability: 
	‐SEM
	‐PET‐ALs
	α‐MEM ± 10% FBS ± 100 U/mL pen ± 100 U/mL strep
	The size of G‐PET‐AL scaffold sheets are 35 mm in diameter
	G
	G‐coated PET‐ALs
	MC3T3‐E1
	Wang CH et al.78 2015 
	‐MTT and live/dead assay: The OD value and number of live cells: G‐PET‐ALs ≫ PET‐ALs (1, 3, 5, 7 days) 
	‐Raman spectra
	‐G‐PET‐ALs
	‐CA measurments
	Osteogenic differentiation: 
	‐ALP: G‐PET‐ALs ≫ PET‐ALs (7, 14 days) 
	‐Porosity measurments
	‐ARS staining: G‐PET‐ALs ≫ PET‐ALs (21, 28 days) 
	‐Mechanical tests
	‐RT‐PCR: Runx2, OCN, OPN, and COL‐IA1 expression on G‐PET‐ALs were dramatically upregulated compared to PET‐ALs (7, 14, 21 days) 
	Proliferation/viability: 
	‐SEM
	‐P0 (pure PLLA)
	BMSC basal culture
	—
	G
	PLLA‐MWCNTs/G
	mBMSCs
	Duan S et al.46 2014 
	‐Cells grown on G > MWCNTs
	‐CA measurement
	‐P1C (containing 1 wt %
	medium ± 10% FBS ± 100 IU/mL pen ± 100 mg/mL strep
	‐The cell quantities on PLLA‐CNM ≫ pure PLLA
	Attachment: 
	of MWCNTs)
	‐Incorporation of G resulted in the most cell adhesion rates
	‐P3C (containing 3 wt % of MWCNTs)
	Osteogenic differentiation: 
	‐ALP activity:. P3G > P3C > P1G > P1C > P0 > TCPS (7, 14 days) 
	‐P1G (containing 1% wt of G)
	P3G ≈ P3C ≈ P1G ≈ P1C ≈ P0 ≫ TCPS (21 days)
	‐P3G (containing 3 wt % of G)
	‐Ca contents: P3G /P3C /P1G /P1C /P0 /TCPS (7, 14, 21 days) 
	‐TCPS (control group)
	‐COL‐I (ELISA method) and the Ca contents: 
	P3G > P3C > P1G > P1C > P0 > TCPS (7, 14, 21 days)
	Proliferation/viability: 
	‐SEM
	‐Temperature (34, 39°C)
	1:1 mixture of
	—
	G
	G‐HAP
	hFOB 1.19
	Oyefusi A et al.84 2014 
	‐Total protein assay: Cells treated with G‐HAP (200, 400 ng/mL) showed increase in total protein with time while peaked at day 9 (at 34°C) 
	‐FTIR
	DMEM and F‐12 medium ±10% FBS ± 0.3 mg/mL geneticin ± 1% pen/strep
	‐XRD
	‐TGA
	‐G‐HAP200 (200 ng/mL)
	‐G‐HAP400 (400 ng/mL)
	Osteogenic differentiation: 
	‐Western blot assay: OCN expression 
	G‐HAP400 (39°C ) > G‐HAP400 (34°C ) (9, 12 days)
	G‐HAP200 (34°C ) > G‐HAP200 (39°C ) (9, 12 days)
	Proliferation/viability: 
	‐TEM
	‐DSPE‐PEG (control)
	StemLife™ MSC medium
	—
	G&GO
	GONRs
	hBMSCs
	Talukdar Y et al.109 2014 
	‐Calcein AM staining: 
	‐TGA
	GNOs
	hADSCs
	A decrease in viability of both stem cell types with an increasing concentration of nanoparticles. CD50 value (for both cell lines): GNOs > GONRs > GONPs (1, 3 days)
	‐ZP
	‐GNOs (0, 5, 10, 50, 100, 300 μg/mL)
	GONPs
	‐Raman spectra
	‐GONRs (0, 5, 10, 50, 100, 300 μg/mL)
	‐GONPs (0, 5, 10, 50, 100, 300 μg/mL)
	Osteogenic differentiation: 
	‐ARS staining: More amounts of nanoparticles GONR treated cells. In addition, visible aggregates of varying sizes observed in GONPs treated groups (14 days) 
	ALP activity and Ca content: No dramatic difference between groups (14 days) 
	Proliferation/viability: 
	‐SEM
	‐G‐CS 0.5 (wt % G)
	GM:α‐MEM ± 10% FBS and antibiotics
	The size of G plates ≈ 0.5–20 μm
	G
	G‐CS
	hMSCs
	Xie Y et al.56 2014 
	‐MTT assay: G‐CS 1.5 showed a good cytocompatibility and higher proliferation rate (2, 4, 6 days). In addition, the cell number: 
	‐Porosity measurement
	‐G‐CS 1.5
	‐G‐CS 4
	OM:GM ± 50 μM l‐AA ± 10M glycerophosphate ± 100 nM Dex 
	‐Mechanical tests
	‐Pure CS
	‐Ti
	And thickness ≈ 5–25 nm
	G‐CS 1.5 ≫ CS > Ti (6 days)
	Osteogenic differentiation: 
	‐RT‐PCR: ALP and OPN expression of the cells on the GC 1.5 reached at a peak value (14 days), but OCN expression continued to increase (21 days) 
	GC 1.5 ≈ CS > Ti (4, 14, 21 days)
	Attachment: 
	‐SEM
	‐GF
	DMEM ± 10% heat‐inactivated FBS ± 1% pen/strep
	—
	GF
	(3D)GF
	hBMSC
	Crowder SW et al.33 2013 
	‐Cells attachment on GF /TCPS 
	‐EDX
	‐TCPS (control)
	‐Raman spectra
	Osteogenic differentiation: 
	‐OCN and OPN secretion: GF > TCPS 
	‐Porosity measurement
	‐Protein adsorption
	Proliferation/viability: 
	‐AFM
	‐PDMS
	DMEM ± 10% FBS ± 1% pen/strep
	—
	G & GO
	G&GO sheets
	MSCs
	Lee WC et al.59 2011 
	‐Fluorescent images: Density of cells on G, GO > PDMS (1, 4, 7, 10 days) 
	‐XPS
	‐G
	‐Raman spectra
	‐GO
	‐CA measurement
	Attachment: 
	‐Fluorescent images: Attachment of cells on PDMS < G and GO 
	‐Mechanical test
	‐Loading capacity: G and GO adsorbed up to 8% and 25% of the serum proteins, respectively, compared to only <1% adsorption on PDMS (1 day) 
	Osteogenic differentiation: 
	‐ARS staining: G > GO > PDMS (12 days) 
	‐Ultraviolet spectrophotometry: G adsorbed the most amount of Dex and β‐glycerolphosphate and the least amount of AA compared to GO and PDMS (1 day) 
	Proliferation/viability: 
	‐AFM
	‐Cover slip (control)
	GM: DMEM ± 10% FBS ± 1% pen/strep ± 1% nonessential amino acids ± 1% sodium pyruvate
	—
	G
	G sheet
	hMSCs
	Nayak TR et al.62 2011 
	‐MTT assay, DAPI (blue), and Calcein AM staining: No significance difference between uncoated and G coated substrates 
	‐Raman spectra
	‐Gl slide
	‐Si/SiO2
	‐PET
	‐PDMS
	Osteogenic differentiation: 
	‐G coated Gl slide
	‐IFS staining of CD‐44 for hMSCs and OCN for osteoblasts and ARS staining: 
	OM: DMEM basal medium ± Dex ± l‐glutamine ± AA ± β‐glycerophosphate 
	‐G coated Si/SiO2
	‐G coated PET
	Without BMP2: GO coating dramatically increase differentiation especially on stiffer surface, Gl slide and Si/SiO2
	‐G coated PDMS
	‐All the groups with BMP2
	With BMP2: G further improve the osteogenesis especially on softer surface, PET and PDMS (15 days)
	‐All the groups without BMP2 
	Proliferation/viability: 
	‐SEM
	‐RGO
	DMEM/F12 ± 15% FBS ± 100 U/mL pen ± 100 mg/mL strep
	—
	RGO
	nHAP‐RGO
	mBMSCs
	Nie W et al.4 2017 
	‐Live cell staining and cell counting: 20%, nHAP‐RGO > RGO > 40%, nHAP‐RGO80%, nHAP‐RGO (4, 8 days) 
	‐TEM
	‐20%, nHAP‐RGO
	‐XRD
	‐EDS
	‐40% nHAP‐RGO
	‐Mechanical test
	‐80% nHAP‐RGO
	Attachment: 
	‐Fluorescence signals: Live cells on 20% nHAP‐RGO > RGO ≫ 40% nHAP‐RGO > 80% nHAP‐RGO (6, 12 h). 
	‐Porosity measurement
	‐Live cell staining: Cells number on 20% nHAP‐RGO > RGO ≫ 40% nHAP‐RGO > 80% nHAP‐RGO (4, 8 days). 
	Osteogenic differentiation: 
	‐ALP activity: 20% nHAP‐RGO > RGO (3, 7, 14 days) 
	‐mRNA expression: Runx2 showed an upregulation on the 20% nHAP‐RGO scaffold. COL‐I A1, OCN, and OPN showed a delayed upregulation 
	‐Von Kossa and ARS staining: Confirmed the ability of 20% nHAP‐RGO to induce the cell mineralization (21 days) 
	‐SEM and EDS: mineralized nodule was observed as an oval solid sphere mostly containing of Ca, P, and O 
	Proliferation/viability: 
	‐AFM
	‐3D‐RGO films
	GM: α‐MEM ± 10% FBS ± 1% pen/strep
	Diameter: 0.5–3 µm
	RGO
	(3D)RGO films
	MC3T3‐E1
	Tian Z et al.77 2017 
	‐Percentage of live cells: Cover Gl > 3D‐RGO (1, 4 days). Besides, both groups reached to approximate 99% cell viability (7 days) 
	‐SEM
	‐TEM
	‐RGO
	‐XRD
	‐Cover Gl
	‐XPS
	OM:GM +10 mM β‐glycerol phosphate ± 0.2 mM AA 
	Thickness: 0.55–1.2 nm
	‐Raman spectra
	‐CCK‐8 assay: Cover Gl > 3D‐RGO (1, 4, 7 days) 
	‐CA measurement
	Attachment: 
	‐Live‐dead assay: The number of live cells in both groups gradually increased (1, 7 days) 
	‐DAPI staining: The number of attached cells on cover glass was greater than that on 3D‐RGO (24 h) 
	Osteogenic differentiation: 
	‐ALP activity (7, 14 days): 3D‐rGO film ≈ RGO ≫ cover Gl 
	‐qRT‐PCR (ALP, Runx2, OCN, and OPN): 3D‐RGO film > RGO > cover Gl (14 days) 
	Proliferation/viability: 
	‐SEM
	‐S5 (PEEK–10 wt % HAP–0.2 wt % GNSs–0.8 wt % CNTs)
	GM:DMEM ± 10% FBS ± 1% pen/strep
	—
	2D GNSs
	2D GNSs/1D CNTs/HAP–PEEK
	MG‐63
	Feng P et al.34 2016 
	‐MTT assay: Cell proliferation on S5 scaffold > control (1, 3, 5, 7 days) 
	‐XRD
	hBMSCs
	‐EDS
	‐Raman spectra
	Attachment: 
	‐Porosity measurement
	‐Control
	‐Live/dead assay: Most of the cells were viable on S5 scaffold (1 3, 5, 7 days) 
	‐Mechanical tests
	The attachment area on the scaffold surface increased with increasing the culture time
	Osteogenic differentiation: 
	‐ALP activity: The ALP activity of cells on the S5 on day 7 > day 3 
	Proliferation/viability: 
	‐AFM
	‐Bulk GO
	α‐MEM ± 10% FBS ± 1% pen/strep
	—
	RGO
	RGO‐PDA
	MC3T3‐E1
	Jia Z et al.68 2016 
	‐Mitochondrial activity: Cell viability (relative to TCPS) of cells on cpTi > RGO‐PDA > GO (2 days). At day 6, all surface showed viability about 100%. 
	‐FTIR
	‐RGO‐PDAx (for x = 1, 2, 5, 10)
	‐XPS
	‐Raman spectra
	‐TCPS (negative control)
	‐CA measurement
	‐cpTi
	Attachment: 
	‐Protein adsorption
	‐The number of cells on RGO‐PDA /bulk GO /cpTi (4, 8 h) 
	‐Live/dead assay: around 100% confluence was reached for all groups 
	Osteogenic differentiation: 
	‐ALP activity: Bulk GO > RGO‐PDA > TCPS > cpTi (7 days) 
	‐SR staining (collagen content): 
	Bulk GO > RGO‐PDA ≈ TCPS > cpTi (21 days)
	‐ARS staining (Ca content): Bulk GO ≈ TCPS > RGO‐PDA > cpTi (28 days) 
	Proliferation/viability: 
	‐AFM
	‐Gl
	α‐MEM ± 10% FBS ± 10 /10−3 m l‐AA ± antibiotics ± sodium bicarbonate 
	Thickness ≈ 1–2 nm
	RGO
	RGO‐PEMFs
	hABMSCs
	Lim KT et al.25 2016 
	‐WST‐1 assay and DNA content: 
	‐SEM
	‐Gl+PEMFs,
	(O/C ratio:0.255)
	‐XRD
	‐RGO
	Test.: RGO+PEMFs showed the highest cell viability and DNA concentration ratio 
	‐XPS
	‐RGO+PEMFs, (the group cultured on RGO substrates and irradiated by PEMFs)
	‐Raman spectra
	‐Elemental analysis experiment
	‐ICC: Fn expression: RGO, RGO+PEMFs > Gl, Gl+PEMFs. 
	CaM expression:
	Gl+PEMFs, RGO+PEMFs > Gl, RGO
	‐Magnetometry
	Attachment: 
	‐Microscopy images: Cells on RGO+PEMFs were more numerous than on the other groups (7 days) 
	‐Electrical measurement
	Osteogenic differentiation: 
	‐ALP activity: ALP was highly secreted on RGO+PEMFs (1 week) 
	‐ICC: OPN (2 weeks) and NeuN (7 days) were expressed highest on RGO+PEMFs (2 weeks) 
	‐RT‐PCR: RGO+PEMFs promoted the expression of Runx2, OPN, OCN, BSP, SMAD‐1, nestin and MAP2. Inversely, the gene expression of ALP decreased (2 weeks) 
	‐ARS and VKS: RGO+PEMFs exhibited the highest mineralization (2 weeks) 
	Proliferation/viability: 
	‐SEM
	‐RGOAP0 (APTES = 0)
	α‐MEM ±  10% FBS  ± 100U/mL pen ±  100 μg/mL strep ±  GOAP0 (APTES = 0, i.e.,GO) ±  GOAP058(APTES  = 0.58 mL) at the concentration of 0.00625–0.025 mg/mL
	—
	RGO
	RGO –aminosilica hybrid
	MC3T3‐E1
	Chen S et al.65 2015 
	‐WST assay: Viability of cells exposed to RGOAP058 ≪ RGOAP0 (1 day) 
	‐FTIR
	‐XPS
	0.00625–0.025 mg/mL
	‐ICP‐AES
	‐Raman spectra
	‐RGOAP058(APTES = 0.58 mL)
	GOAP0 =GOAP058 (3 day)
	‐day 3 > day 1
	Attachment: 
	‐Live/dead assay: The most viable cells exposed to both samples (3 day) 
	0.00625–0.025 mg/mL
	Osteogenic differentiation: 
	‐ALP activity: RGOAP058 ≫ RGOAP0 (14 days) 
	‐OPN secretion: RGOAP058> RGOAP0(4 weeks) 
	Proliferation/viability: 
	‐SEM
	‐RGO (at different concentration: 0, 0.5 1, 2, 4, 8, 16, 31, 63, 125, 250, 500 µg/mL)
	MSC basal medium ± 50 mL MSC growth supplement ± 10 mL
	Lateral sizes ≈ 100–1000 nm.
	RGO
	RGO NPs
	hMSCs
	Jin L et al.58 2015 
	‐WST‐8 assay: The RGO NPs decreased the cell viability at about 60 µg/mL. the cell viability increased with time for up to 14 days. 
	l‐glutamine ± 0.5 mL GA‐1000 
	Average particle size ≈ 450 nm.
	‐The RGO NPs did not influence cell proliferation.
	‐Control
	Osteogenic differentiation: 
	‐ALP activity: RGO NPs /other groups (21 days) 
	‐ARS staining: Staining was highest in the group with RGO NPs (21 days) 
	Proliferation/viability: 
	‐FESEM
	‐RGO
	α‐MEM ± 10% FBS ± 1% pen/strep/amphotericin B
	—
	RGO
	RGO‐HAP
	MC3T3‐E1
	Lee J et al.72 2015 
	‐CCK‐8 assay: HAP, RGO, and RGO/HAP at lower concentrations than 10, and 31.3 μg/mL exhibited no significant cytotoxicity, respectively. 
	‐Raman spectra
	‐HAP
	‐RGO‐HAP
	‐XRD
	‐Proliferation test: The proliferation patterns of cells did not affected by using HAP, RGO, and RGO/HAP (21 days) 
	Osteogenic differentiation: 
	‐ALP activity and ARS staining: 
	RGO‐HAP > RGO > HAP > control (14, 21 days).
	‐Von Kossa staining: Corroborated the ability of RGO‐HAP to induce the cell mineralization (28 days) 
	‐Western blotting: OPN and OCN expression: RGO‐HAP > RGO > HAP > control (21 days) 
	Proliferation/viability: 
	‐AFM
	‐RGO
	MSC basal medium ± 10% MSC growth ± 2% l‐glutamine ± 0.1% GA‐1000 ± 1%antibiotic antimycotic solution 
	Thickness ≈ 1.5 nm
	RGO
	RGO‐HAP
	hMSCs
	Lee J et al.40 2015 
	‐CCK‐8 assay: HAP, RGO, and RGO/HAP at lower concentrations than 10, and 62.5 μg/mL exhibited no significant cytotoxicity, respectively 
	‐FESEM
	‐HAP
	‐XRD
	‐RGO‐HAP
	‐Raman spectra
	Lateral size ≈ 438 ± 180 nm
	‐ZP
	‐Proliferation test: The proliferation patterns of cells did not affected by using HAP, RGO, and RGO/HAP (21 days) 
	Osteogenic differentiation: 
	‐ALP activity and ARS staining: 
	RGO‐HAP > RGO > HAP > control (14, 21 days)
	‐Von Kossa staining: corroborated the ability of RGO‐HAP to induce the cell mineralization (28 days) 
	‐Western blotting and ICC assay: OPN and OCN expression: 
	RGO‐HAP > RGO > HAP > control (21 days)
	Proliferation/viability: 
	‐SEM
	‐Neat PCL
	α‐MEM ± 10% (v/v) FBS ± 1% (v/v) pen/strep
	Lateral dimension
	RGO
	RGO‐Sr
	MC3T3‐E1
	kumar S et al.71 2014 
	‐DNA content and cellular nuclei staining: All three PCL‐RGO‐Sr > neat PCL (3, 7 days). DNA content increased with increase in the content of RGO‐Sr 
	‐TEM
	‐PCL‐RGO1 (10 mg of RGO per g of PCL and 0 mg of Sr per g of PCL)
	PCL‐RGO‐Sr
	‐XRD
	‐TGA
	≈5 μm.
	‐ICP‐OES
	‐Raman spectra
	Osteogenic differentiation: 
	‐CA measurement
	‐PCL‐RGO3
	‐ARS staining: PCL‐RGO‐Sr5 showed the highest mineral deposition (nearly double the mineral content in neat PCL and PCL‐RGO5) (14, 21 days) 
	‐PCL‐RGO5
	‐PCL‐RGO‐Sr1 (10 mg of RGO‐Sr per g of PCL and 2.2 mg of Sr per g of PCL)
	‐Porosity measurement
	‐Degradation rate measurement
	‐PCL‐RGO‐Sr3 (30 mg of RGO‐Sr per g of PCL and 6.6 mg of Sr per g of PCL)
	‐PCL‐RGO‐Sr5 (50 mg of RGO‐Sr per g of PCL and 11 mg of Sr per g of PCL)
	‐OM
	‐GM
	Proliferation/viability: 
	‐FESEM
	‐Xonotlite nanowires
	DME/F‐12 ± 10% FBS ± 100 U/mL pen ± 100 μg/mL strep
	lateral size:
	RGO
	RGO‐CS
	hFOB 1.19
	Mehrali M et al.86 2014 
	‐CLSM: More cells are attached to the CS/RGO surface than the pure CS surface (3, 5 days) 
	‐TEM
	‐FTIR
	‐CS
	GO: 3.88 ± 0.99 µm
	‐XRD
	‐CS−0.25 wt % RGO
	‐Raman spectra
	‐MTT assay: The number of cells increased significantly with increasing RGO concentration (1, 3, 5 days) 
	‐CS−0.5 wt % RGO
	‐Porosity measurement
	RGO: 2.37 ± 0.65 µm
	‐CS−0.75 wt % RGO
	‐Mechanical tests
	‐CS−1.0 wt % RGO
	Attachment: 
	‐CS−1.5 wt % RGO
	CLSM: CS/RGO > CS (3, 5 days) 
	Osteogenic differentiation: 
	‐ALP activity: ALP activity increased with increasing RGO content (7 days) 
	‐EDX pattern: indicated the formation of a Ca phosphate based on the preponderance of Ca and P elements (3 days) 
	Proliferation/viability: 
	‐AFM
	‐G coating on Ti via wet transfer technique (WGp)
	DMEM ± 10% FBS ± 1% pen/strep
	—
	G
	G coating on Ti
	hMG63
	Dubey N et al.88
	‐MTS assay: Both WGp and DGp presented significantly higher proliferation compared to CpTi (120 h) 
	‐XPS
	‐Raman spectra
	‐CA measurement
	2018
	‐G coating on Ti via direct dry transfer technique (DGp).
	‐LDH: G coating has no effect on cellular membrane damage (3 days) 
	‐Mechanical test
	Osteogenic differentiation: 
	‐Ti
	‐qRT‐PCR (ALP, COL‐I, OCN, Runx‐2): Except for Runx2 at 24 h, both WGp and DGp increased the expression of all osteogenic‐related genes (24, 72, 167 h) 
	‐Ca content: WGp and DGp ≫ Ti 
	Proliferation/viability: 
	‐SEM
	‐PLGA
	DMEM ± 10% FBS ± 100 IU/mL pen ± 100 μg/mL of strep
	—
	GO
	GO‐PLGA‐HAP
	MC3T3‐E1
	Fu C et al.81 2017 
	‐MTT assay: GO‐PLGA‐HAP > GO‐PLGA > PLGA‐HAP > PLGA (1, 4, 7 days) 
	‐XRD
	‐PLGA‐HAP
	‐CA measurement
	‐GO‐PLGA
	‐GO‐PLGA‐HAP
	Attachment: 
	‐FITC & DAPI staining: GO‐PLGA‐HAP showed the best cytoskeleton (4d). 
	‐Mechanical test
	Osteogenic differentiation: 
	‐Protein absorption
	‐ALP activity (7, 14 days), ARS staining (14, 21 days): GO‐PLGA‐HAP > GO‐PLGA > PLGA‐HAP > PLGA 
	‐qRT‐PCR (OPN, Runx‐2): GO‐PLGA‐HAP > GO‐PLGA > PLGA‐HAP > PLGA (7 days) 
	Proliferation/viability: 
	‐SEM
	‐Ti
	DMEM ± 10% FBS
	—
	GO
	GO‐Ti/BMP2/VAN/GelMS
	BMSCs
	Han l et al.30 2018 
	‐MTT assay: GO‐Ti/BMP2/VAN/GelMS ≈ GO‐Ti/GelMS > GO‐TI > BMP2‐Ti > Ti (3, 7 days) 
	‐DLS
	‐BMP2‐Ti
	‐TEM
	‐GO‐Ti
	‐FTIR
	‐GO‐Ti/GelMS
	‐XRD
	‐GO‐Ti/BMP2/VAN/GelMS
	Osteogenic differentiation: 
	‐ALP activity: GO‐Ti/BMP2/VAN/GelMS showed the highest ALP activity (14 days) 
	Proliferation/viability: 
	‐AFM
	‐GONP‐Ti
	ADSC basal media + heat‐inactivated FBS + ADSC
	GONP:1–2 μm (grain size)
	GO
	GONP‐Ti
	ADSCs
	Sunny C et al.22 2018 
	‐SEM
	‐GONR‐Ti
	GONR‐Ti
	‐LDH: SWCNT‐Ti ≈ MWCNT‐H‐Ti > MWCNT‐L‐Ti ≈ GONP‐Ti ≈ GONR‐Ti (5 days) 
	‐Raman spectra
	‐SWCNT‐Ti
	‐MWCNT‐L‐Ti
	‐Protein absorption
	‐MWCNT‐H‐Ti
	Growth media
	GONR:400–700 nm (in width)
	Osteogenic differentiation: 
	‐ALP activity: PS > MWCNT‐H > SWCNT > MWCNT‐L > GONP > GONR > Ti (14 days) 
	GONR > GONP ≈ MWCNT‐H ≈ MWCNT‐L > SWCNT ≈ PS > Ti (21 days)
	‐Ca content: There were no differences at day 14, but at day 21:MWCNT‐H > GONP > GONR > Ti > MWCNT‐L > SWCNT > PS 
	‐OCN: MWCNT‐H > Ti > SWCNT > MWCNT‐L > GONR > GONP (21 days) 
	Osteogenic differentiation: 
	‐FESEM
	‐RGO‐ZS‐CS‐ES (with electrical stimulation)
	DMEM ± 10% FBS
	—
	RGO
	RGO‐ZS‐CS
	mBMSCs
	Xiong K et al.44 2017 
	‐ALP activity: RGO‐ZS‐CS‐ES > RGO‐ZS‐CS‐NES (7 days) 
	‐TEM
	‐XRD
	‐XPS
	‐qRT‐PCR (COL‐I, OCN, Runx‐2): RGO‐ZS‐CS‐ES > RGO‐ZS‐CS‐NES (7 days) 
	‐EDS
	‐RGO‐ZS‐CS‐NES (without electrical stimulation)
	Proliferation/viability: 
	‐SEM
	‐LOG
	—
	—
	G
	LOG
	Goat ADSCs
	Elkhenany H et al.23 2017 
	‐MTS assay and live/dead assay: Cells retained their proliferation and maintained their viability on LOG films (2, 10 days) 
	‐XPS
	‐Polystyrene
	‐G
	Osteogenic differentiation: 
	‐ARS staining: Cells underwent osteogenesis (7 days) 
	‐Trilineage differentiation: Cells retained the expression of CD44 
	Proliferation/viability: 
	‐CA measurement
	‐GO‐CM
	DMEM ± 10% FBS ± 1% pen/strep
	—
	GO
	GO substrate
	C3H10T1/2
	Kim J et al.51 2018 
	‐Live/dead assay: GO or CM had no significant cytotoxicity to cells (1 day) 
	‐GO‐GM
	‐Gl‐GM
	‐Gl‐CM
	‐OM
	‐Alamar Blue assay: GO‐CM > Gl 
	‐CM
	‐GM
	Attachment: 
	‐SEM: The attached cells and the surface area of a single cell were larger compared to that of a glass slide 
	Osteogenic differentiation: 
	‐RT‐PCR: OCN, BMPR1A, and RUNX2 secretion: GO‐CM > GO‐GM ≈ GL‐CM > GL‐GM (14 days) 
	ALP secretion: GO‐CM > GL‐CM > GO‐GM > GL‐GM (14 days)
	BMP2 secretion: GO‐GM > GL‐CM ≈ GO‐CM > GLGM (14 days)
	‐ARS staining: GO‐CM showed the greatest calcium deposition rate among all groups (14 days) 
	Proliferation/viability: 
	‐AFM
	‐TP‐RGO‐Ti
	DMEM ± 10% FBS ± 1% pen/strep
	—
	RGO
	TP‐RGO‐Ti
	osteoblast
	Liu M et al.83 2018 
	‐CCK‐8 assay: TP‐RGO‐Ti > Ti (1, 3 days) 
	‐SEM
	‐Ti
	‐XRD
	Attachment: 
	‐SEM: There were fewer cells on Ti surface compared to TP‐RGO‐Ti (1, 3 days) 
	Osteogenic differentiation: 
	‐RT‐PCR: BMP2, BMP4 and OPN secretion: TP‐RGO‐Ti > Ti (3 days) 
	Proliferation/viability: 
	‐SEM
	‐GO‐Ct‐HAP (1:4)‐SF (wt % GO:wt % HAP)
	DMEM ± 10% FBS
	—
	GO
	GO‐Ct‐HAP‐SF
	mBMSCs
	Wang Q et al.43 2017 
	‐MTT assay: Cell density was higher on GO‐Ct‐HAP (1:4)‐SF than on SF and HAP‐SF (1, 4, 7 days) 
	‐TEM
	‐FTIR
	‐XRD
	‐XPS
	Attachment: 
	‐Mechanical test
	‐GO‐Ct‐HAP (1:2)‐SF
	‐SEM: The cells formed a dense and interconnected network 
	‐HAP‐SF
	‐Protein absorption
	‐GO‐Ct‐HAP
	Osteogenic differentiation: 
	‐SF
	‐ALP activity: GO‐Ct‐HAP (1:4)‐SF > HAP‐SF > SF > cover slip (7, 10, 14 days) 
	‐Cover slip
	‐RT‐PCR: COL‐I, OCN, ALP genes: GO‐Ct‐HAP (1:4)‐SF > HAP‐SF > SF > cover slip (7, 10, 14 days). 
	CD44 and cD29 genes: GO‐Ct‐HAP (1:4)‐SF > HAP‐SF > SF > cover slip (7, 10 days), but at day 14 expression of these genes on GO‐Ct‐HAP (1:4)‐SF was lower
	Proliferation/viability: 
	‐TEM
	‐GO/OM (0.01, 0.1, 1, 10 μg/mL)
	OM
	—
	GO
	GO
	BMSCs
	Wei C et al.31 2017 
	‐CCK‐8 assay: GO/GM at 10 μg/mL inhibited cell growth while GO/GM at 0.1 μg/mL promoted cell proliferation (1, 3, 5, 7 days) 
	GM:DMEM ± 10% FBS ± 1% pen/strep
	‐GO/GM (0.01, 0.1, 1, 10 μg/mL)
	Attachment: 
	‐CLSM: Adhesion density of cells was reduced after incubation with 1 and 10 μg/mL of GO/GM (72 h) 
	Osteogenic differentiation: 
	‐ALP activity: GO/DMEM has no effect on ALP activity, while GO/OM (0.1 μg/mL) significantly increased ALP (3, 7 days) 
	‐ARS staining: GO/OM (0.1 μg/mL) > GO/OM (0.01 μg/mL) (21 days) 
	‐RT‐PCR: RUNX2 and β‐catenin expression: GO/OM (0.1 μg/mL) > GO/OM (0.01 μg/mL) (14 days) 
	Proliferation/viability: 
	‐SEM
	‐GF
	α‐MEM ± 10% FBS ± 1% pen/strep
	—
	G
	(3D)GF‐PLGA‐Ct‐BMP2
	hMSCs
	Yao Q et al.55 2017 
	‐MTS and live/dead staining: GF‐PLGA‐Ct‐BMP2 > GF (1, 4 days) 
	‐Raman spectra
	‐GF‐PLGA
	‐GF‐PLGA‐Ct
	‐Mechanical test
	‐GF‐PLGA‐Ct‐BMP2
	Osteogenic differentiation: 
	‐ALP activity (7 days) and calcium content (21 days): GF‐PLGA‐Ct‐BMP2 > GF‐PLGA‐Ct ≈ GF 
	‐RT‐PCR: BSP, OCN, ALP, RUNX2 expression: GF‐PLGA‐Ct‐BMP2 > GF (7 days) 
	Proliferation/viability: 
	‐AFM
	‐NT
	‐α‐MEM ± 10% FBS ± 100 U/mL pen/strep
	Hydro‐dynamic diameters: 561.8 nm
	GO
	NT‐nGO‐PEG‐PEI/siRNA (NT‐GPP/siRNA)
	MC3T3‐E1
	Zhang L et al.82 2018 
	‐CCK‐8 assay: The cell viability on NT was significantly higher than PT and there were no differences among NT, NT‐GPP, NT‐GPP/siRNA (1, 3, 7 days) 
	‐SEM
	‐PT
	‐TEM
	‐NT‐nGO‐PEG‐PEI (GPP)
	‐DLS
	‐TGA
	‐CA measurement
	‐NT‐nGO‐PEG‐PEI/siRNA
	Attachment: 
	‐NT‐nGO‐PEG‐PEI/siCkip‐1
	‐SEM: Cells adhered better on NT and NT‐GPP/siRNA compared to PT (24 h) 
	‐NT‐nGO‐PEG‐PEI/siNC
	Osteogenic differentiation: 
	‐ALP and ARS and collagen secretion: NT‐GPP/siCkip‐1 > NT‐GPP/siNC = NT‐GPP > NT > PT (7 days) 
	Proliferation/viability: 
	‐AFM
	‐PDMS
	‐DMEM ± 10% FBS ± 1% pen/strep ± 2 mM l‐glutamine ± 10 ng/mL basic fibroblast growth factor 
	Thickness ∼1 nm
	GO
	GONR
	hMSCs
	Akhavan o et al.54 2013 
	‐Cell density: GONR > RGONR > GO > RGO > PDMS (1, 3, 5, 7 days). 
	‐SEM
	‐RGONR
	RGO
	RGONR
	‐XPS
	‐GONR
	‐Raman spectra
	‐GO
	Osteogenic differentiation: 
	‐RGO
	‐Coverslip
	‐ARS staining: With OM medium: RGONR > RGO > GONR > GO > coverslip > PDMS (7 days) 
	‐CA measurement
	‐OM
	Without OM medium: GONR > RGONR > GO > coverslip > RGO ∼ PDMS (7 days)
	‐RhP staining: With OM medium: GONR > RGONR > GO ∼ coverslip > RGO > PDMS (7 days) 
	Without OM medium: GONR > RGONR > GO > RGO > coverslip > PDMS (7 days)
	Proliferation/viability: 
	‐Raman spectra
	‐Gl/OM
	‐GM:DMEM ± 10% FBS ± 1% pen/strep
	—
	G
	2DG
	hPDLSCs
	Xie H et al.27 2015 
	‐MTS assay: 3DG > 2DG > Gl > PS (5 days) 
	‐Gl/GM
	3DG
	‐2DG/OM
	‐3DG/OM
	Attachment: 
	‐2DG/GM
	‐OM
	‐SEM: Cells efficiently adhered on all experimental substrates (1, 5 days) 
	‐3DG/GM
	‐PS/OM
	‐PS/GM
	Osteogenic differentiation: 
	‐ARS staining: 2DG and 3DG under GM presented higher mineralization as compared to Gl and PS with OM 
	‐RT‐PCR: RUNX2 expression (2DG): 2DG/OM > 2DG/GM > Gl/OM (7, 14, 28 days) 
	COL‐I and OCN expression:
	2DG/OM > GL/OM > 2DG/GM (7, 14, 28 days)
	RUNX2, COL‐I and OCN expression (3DG):
	3DG/OM > 3DG/GM > PS/OM (7, 14, 28 days)
	MYH10 and MYH10‐V2 expression:
	2DG/OM was the highest compared to other (28 days). 2DG/GM was higher than Gl/GM (7, 14, 28 days). Gl/OM was similar to 2DG/GM after 7 days but lower after 28 days
	3DG presented higher expression regardless the use of OM
	Proliferation/viability: 
	‐AFM
	‐Ti
	‐α‐MEM ± 10% FBS ± 100 U/mL pen/strep
	Thickness ∼1.13 μm
	RGO
	3DRGO‐Ti
	mBMSCs
	Qiu J et al.42 2017 
	‐Live/dead assay: all the samples have a good compatibility without cytotoxicity (4 days) 
	‐FESEM
	‐APS‐Ti
	‐FTIR
	‐GO‐Ti
	‐XPS
	‐RGO‐Ti
	‐ZP
	‐Alamar Blue assay: Ti > GO‐Ti > RGO‐Ti > APS‐Ti (1, 4, 7 days) 
	‐Raman spectra
	‐CA measurement
	Attachment: 
	‐SEM: Cells adhered well on all substrates (1, 4, 24 h) 
	‐Mechanical test
	Osteogenic differentiation: 
	‐ALP and ARS and collagen secretion: RGO‐Ti > GO‐Ti > APS‐Ti > Ti (7, 14 days) 
	‐Protein absorption
	‐RT‐PCR: ALP, OPN, OCN and BMP‐2 expression: RGO‐Ti > GO‐Ti > APS‐Ti > Ti (7 days) 
	Proliferation/viability: 
	‐AFM
	‐PCL/RGO
	—
	—
	RGO
	PCL/RGO Cu
	MC3T3‐E1
	Jaidev LR et al.80 2017 
	DNA content (1, 3, 7, 14 days): 
	‐SEM
	‐PCL
	‐TEM
	‐PCL/Cu
	‐PCL/RGO > PCL > PCL/Cu > PCL/RGO_Cu_5 (3, 7 days)
	‐XRD
	‐PCL/RGO_Cu_5 (wt %)
	‐EDS
	‐XPS
	‐PCL/RGO = PCL > PCL/RGO_Cu_5 > PCL/Cu (14 days)
	Osteogenic differentiation: 
	‐ARS staining: PCL/RGO_Cu_5 > PCL/Cu > PCL/RGO > PCL (14 days) 
	Abbreviations. 1D, one‐dimensional; Ad, adenovirus; APTES, 3‐aminopropyltriethoxysilane; ASC, adipose stormal cell; Au, gold; BSP, bone sialo‐protein; CaM, calmodulin; CBB, Ct‐BMP‐BSA; CD, circular dichroism; CLSM, confocal laser scanning microscope; DA, hydrochloride; DMEM, Dulbecco's modified eagle medium; FACS, fluorescence‐activated cell sorting analysis; FBS, fetal bovine serum; FCS, fetal calf serum; FIC, fluorescent intensity of cytoplasm; FIN, fluorescent intensity of nuclear; GA, entamicin, amphotericin; GC, graphene/calcium silicate; GFP, green fluorescent protein; GLuc, gaussia luciferase; GM, growth medium; GSH, glutathione; hFOB 1.19, human fetal osteoblastic cell line; hMSCs, human mesenchymal stem cells; IFS, immuno‐fluorescence staining; MDA, malondialdehyde; mMSCs, mouse mesenchymal stem cells; Na, sodium; NaF, sodium fluoride; PA66, poly‐amide66; PDLLA, poly (D, L‐lactic acid); PEMFs, pulsed electromagnetic fields; Pen, penicillin; PI, propidium iodide; rMSCs, rat mesenchymal stem cells; RT‐PCR, real time polymerase chain reaction; RT‐qPCR, real‐time quantitative reverse transcription polymerase chain reaction; RUNX2, Runt‐related transcription factor 2; SH, sodium hydrosulfite; SOD, superoxide dismutase; strep, Streptomycin; TCPS, tissue culture poly‐styrene; α‐MEM, alpha‐minimum essential medium; VAN, vancomycin; GelMS, gelatin microspheres; MWCNT‐L, low diameter multiwalled carbon nanotubes; MWCNT‐H, high‐diameter multiwalled carbon nanotubes; TCPS, tissue culture polystyrene; ZS, zinc silicate; ES, electrical stimulation; LOG, low oxygen content graphene, CM, chondrocyte‐conditioned medium; NT, titania nanotubes; PS, polystyrene scaffold; APS, 3‐animopropyl‐trimethoxysilane; PT, Ti wet polished with SiC.
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	The process of article selection and data extraction is illustrated in Figure 1. In the primary search, 190 articles were found from the NCBI PMC and PubMed databases, 3 results from other sources and five other articles also found by hand searching. A total of 120 articles were chosen after duplicates were removed. Then, records were screened and irrelevant studies, according to the titles and abstracts were removed with regards to eligibility criteria, and 104 studies remained. In the next step, the full texts of the 104 selected articles were reviewed and 22 more articles were excluded. Four of the studies were excluded as it described a myogenic, neural and chondrogenic differentiation rather than osteogenic differentiation. Five of the studies were excluded because osteogenesis was only a part of the multilineage differentiation characterization tests. Four studies were excluded because it evaluated osteogenesis only through in vivo experiments. Nine other studies were excluded due to only the mechanical strength and its influence on cell proliferation and attachment were investigated, and the osteoability of graphene and its derivatives were not evaluated. Ultimately, a total of 82 articles were included in this systematic review.
	The most dominant cell types used in the included articles were mesenchymal stem cells (MSCs), including human adipose‐derived stem cells (hADSCs),17-22 Goat ADSCs,23 human dental pulp stem cells (hDPSCs),24 human alveolar bone marrow stem cells (hABMSCs),25 human periodontal ligament stem cells (hPDLSCs),26, 27 and bone MSCs (BMSCs),28-31 such as human BMSCs19, 32-41 (hBMSCs), murine BMSCs (mBMSCs),4, 42-49 rabbit BMSCs (rBMSCs),50 murine MSCs cell line C3H10T1/251, 52 and Caprine BMSCs (cMBSCs).53
	The type of the MSCs in fifteen studies19, 32, 36, 40, 54-64 was not defined. Sixteen studies used preosteoblast cells,14, 65-79 including mouse osteoblastic cells14, 65-74, 77-82 (MC3T3‐E1) and rat calvarial osteoprogenitors,75 while the type of the preosteoblast cells in one study76 was not defined. Five articles13, 83-86 used osteoblasts. Immortalized mouse embryonic fibroblasts (iMEFs), immortalized mouse adipose‐derived cells (iMADs), immortalized mouse calvarial cells (iCALs)87 and human osteosarcoma cell line hMG6334, 88-92 were other types of the cells used. 
	Different types of graphene used in the included studies were pristine graphene,19, 20, 23, 24, 27, 28, 32, 35, 41, 46, 52 55-57, 59, 60, 62, 78, 84, 87, 88, 91, 93 GO,13, 14, 17, 21, 22, 26, 29-31, 36-39, 43, 45 47-51, 53-55, 59, 61, 63, 64, 66-70, 73-76, 79, 82, 85, 89, 90, 92 RGO,4, 14, 25, 36, 42, 44 45, 54, 58, 65, 70-72, 77, 80, 83, 86 AGO,36 GFs,33 GNSs,34 GQDs,94 and nanosized graphene18 (NGO).
	Different functional groups and materials were used in order to improve the bioactivity of graphene and its derivatives for fabrication of bone regenerative compositions. The materials were metals or metalloids, polymers and mineral substrates. The metal or metalloid category consists of silicon (Si),65 zinc oxide (ZnO),89 titanate,92 strontium (Sr),71 copper (Cu),49, 80 silver (Ag),50 titanium (Ti),19, 22, 26, 30 38, 39, 42, 45, 47, 69, 76, 83, 88 Ti alloy (Ti6Al4V)28 and nitinol (NiTi).57 Polymers include poly(L‐lactide) (PLLA),46 poly(dopamine) (PDA),68 poly(ɛ‐caprolactone) (PCL),14, 36, 203 poly(ethylenimine) (PEI),37, 82 poly(lactic‐coglycolic acid) (PLGA)‐tussah,61 silk fibroin (SF),43 polyethylene terephthalate‐based artificial ligament group (PET‐ALs),78 PLGA,55, 63, 81, 91 carrageenan (Car),73 collagen (COL),70 chitosan (Ct)/gelatin (Gn),21, 74, 75 Ct,43, 48, 55 poly‐ether‐ether‐ketone (PEEK),34 tea polyphenol (TP),83 poly(ethylene glycolamine) (PEG)/FITC66 and PEG.82 The mineral substrates were hydroxyapatite (HAP),4, 21, 29, 35, 40, 43, 72, 81, 84 glass (Gl),17, 24, 67 calcium silicate (CS),56, 60, 86 CaP,64 quarts79 and vitamin C (VC).41
	Synthesized graphene, graphene derivatives and their compositions were chemically characterized using Fourier‐transform infrared (FTIR)14, 21, 30, 36, 37, 42, 43, 45, 48, 61, 63, 65, 66, 68, 73 74, 75, 84-86, 91, 92 and raman spectroscopy.13, 17-19, 21, 22, 24-28 32-34, 36, 37, 40-42, 45, 47, 48, 54, 55, 57, 59, 61-65, 68, 69, 71, 72, 75-78, 86-89, 93 Also, morphology and topography of the samples were characterized by SEM,4, 13, 20-23, 25, 26, 29, 33-36, 38, 43, 45-56, 58, 60, 61, 63, 65, 66, 70, 71 73-85, 87, 91, 92 field emission scanning electron microscope (FESEM),17, 40, 42, 44, 72, 79, 86, 90, 91 transmission electron microscopy (TEM),4, 18, 30, 31, 43, 44, 50, 53, 61, 64, 66, 71, 77, 80, 82, 86, 87, 89-94 and atomic force microscope (AFM).14, 17-19, 21, 24-26, 36-40, 42, 45, 47, 49, 53, 54, 59, 62 69, 70, 77, 79, 80, 82, 89 Surface hydrophobicity of the composites and their chemical environments were evaluated by contact angle (CA) measurements14, 20, 28, 36-38, 41, 42, 46, 51, 54, 59, 61, 63, 68-71, 73, 76, 77 78, 80-82, 88, 91 and X‐ray photoelectron spectroscopy (XPS).17, 18, 23 25, 36-38, 41-45, 54, 59, 60, 65, 66, 68, 69, 80, 87-89 Moreover, mineral phase on compositions were investigated by X‐ray diffraction (XRD).4, 14, 17, 25, 34, 36, 37, 40, 43, 44, 47-49, 52, 60, 67, 70-77, 79-86, 89, 91, 92 Mechanical tests4, 14, 20, 21, 34-37, 42, 43, 52, 55, 56, 59, 61, 63, 67, 69, 70, 78, 81, 86, 88, 91, 92 were employed in the various studies to evaluate mechanical strength. Inductively coupled plasma atomic emission spectrometry (ICP‐AES)47, 65, 89 and inductively coupled plasma‐optical emission spectroscopy (ICP‐OES)49, 71 were employed to measure the release rate of ions, and inductively coupled plasma‐mass spectroscopy (ICP‐MS)64 was utilized to assess the Ca/P ratio. Additional assays and measures used for sample characterization include thermal gravimetric analysis (TGA),37, 71, 82, 84, 87 energy dispersive X‐ray spectroscopy (EDX),33, 38, 50, 67, 73, 74 energy dispersive spectrometer (EDS),4, 13, 34, 44, 76, 80 porosity measurement,4, 35, 61, 75, 78 electrical tests,25, 35, 70 protein adsorption test,20, 22, 42, 43, 48, 63, 68, 75, 81, 91 ultraviolet–visible (UV‐Vis) spectroscopy,49, 69 calcium absorption test,70 dynamic light scattering (DLS),18, 30, 36, 66, 82 zeta potential (ZP) measurement,18, 29, 38, 40, 42, 47, 66 degradation rate measurement,48, 71, 75, 91 water absorption,75 swelling study,75 weight loss measurement,60 diametral tensile strength (DTS),60 nanoindentation measurements,67, 76 photoluminescence (PL) spectra,94 elemental analysis experiment,25 magnetometry,25 selected‐area electron diffraction (SAED),57, 91 wettability evaluation,89 roughness evaluation14, 28, 89 and PL spectrum.94
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	Various biomaterials, including ceramic phosphates and synthetic or natural polymers, have been widely used in BTE;2, 95, 96 however, the challenge of these materials matching chemical and material properties of natural bone still remains.97 Graphene and its derivatives have specific mechanical, physical, and chemical properties and were shown to facilitate attachment and growth of cells and enhance osteogenic differentiation.10 In the current review, we conducted the comprehensive review on potential of graphene and its derivatives in promoting cell activities.
	Various factors influence the cellular interactions of graphene families, which include graphene concentration, size, type, dimension and composition or functional groups (Fig. 2), as discussed below.98
	/
	Figure 2 Factors affecting the cellular proliferation and viability.
	Despite all the studies regarding the dependence of the toxicity of graphene and its family on concentration, there are no general results about the safe concentration threshold. Many studies98-101 concluded that concentrations <50 μg/mL of graphene nanoparticles (NPs) are relatively safe for most cell types, and levels higher than this concentration cause intracellular accumulation and high levels of oxidative stress, which is one of the mechanisms playing role in toxicity of carbon nanomaterials (CNMs).75 Schinwald et al.102 studied layered graphene platelets with 1–10 layers at concentrations ≥ 5 μg/mL and found that it notably induced the release of LDH in immortalized human acute monocytic leukemia cells, THP‐1, which is representative of loss of membrane integrity. Pristine graphene also induces cytotoxicity in cells by ROS generation through a decrease in potential of mitochondrial membrane and activation of mitochondrial pathway, leading to apoptosis.103
	Zhang et al.104 investigated the toxicity of GQDs provided by single reduced graphene sheets (diameter: 5–10 nm) on three progenitor cell types: neurosphere cells (NSCs), pancreatic progenitor cells (PPCs), and cardiac progenitor cells (CPCs). They showed that in the presence of GQDs at 100 µg/mL for 3 days, NSC and CPC cell viability was above 80%, however, the cell viability for PPC was about 65%. All the cell groups were alive after incubation with GQDs at 25 µg/mL, which indicates that GQDs can be used as a beneficial biological platform with low cytotoxicity. Similarly, in a study by Qiu et al.,94 a threshold for toxicity of GQDs to MSC cells was established at 50 μg/mL. 
	GO causes apoptosis of mitochondrial respiration by generating ROS and has a dose‐dependent toxic effects on cells.105 It was shown that GO with concentration of ≤1 μg/mL in culture medium reached 60% of viability of hMSCs, while at concentrations above 10 μg/mL, viability decreased to <20%.64 Concentration of 20 and 85 μg/mL were observed to reduce cell viability by 20 and 50%, respectively.106 In a study by Zancanela et al.,13 it was established that after 5 days incubation, osteoblasts with various concentrations of GO (10 to 350 μg/mL), samples with 25 and 50 μg/mL GO yielded greatest cell viability. Mazaheri et al.107 revealed that 1.5 wt % GO in GO‐Ct composites showed a proliferation rate of hMSCs similar to that of pure Ct, while in 3 and 6 wt %, GO cytotoxicity significantly increased. Some studies achieved little toxicity, even at higher concentrations. Based on one study, GO concentration <0.1 mg/mL demonstrated no cytotoxicity to hADSCs.17 Also, in a study by Chang et al.,108 even high concentrations of 200 μg/mL GO exhibited about 67% viability of A549 cell after 24 h, and similar results could be achieved even after exposure for 48 and 72 h. 
	The study done by Talukdar et al.109 investigating graphene NPs with three different morphologies illustrated that graphene nano‐onions (GNOs), graphene oxide nanoribbons (GONRs) and graphene oxide nanoplatelets (GONPs) showed a dose‐dependent toxicity. Viability of hBMSCs and hADSCs treated with GNOs, GONRs, and GONPs declined with increasing concentration in the range of 0–300 μg/mL, and concentrations of ≤50 μg/mL were observed to be potentially appropriate. In the similar study, 100 μg/mL of the GONR were reported to present no cytotoxic effect on osteoblasts.85 RGO NPs also showed a dose‐dependent decrease in cell viability, as concentrations >60 μg/mL seemed to reduce viability.58, 110 In a study by Mehrali M et al.,86 1.5 wt % RGO‐containing composite displayed the most viable cells compared to CS with 1.0, 0.75, 0.5, 0.25, 0 wt % RGO. 
	To sum up, different concentrations of graphene and its derivatives have shown different toxicity toward various cell lines, indicating the dependency of the toxic effect of graphene on the type of cells. However, based on the literatures, it can be concluded that, up to 50 μg/mL for Graphene and GO, 60 μg/mL for RGO, and 1.5 wt % for all56, 86, 107 seems to be safest to most of the cells lines. For future studies, we suggest a systematic research on evaluating the safe concentration threshold of graphene derivatives on different cell lines, individually. 
	Type of graphene is another important parameter affecting cellular behavior. It was demonstrated that graphene has shown more toxicity compared to GO, as the aggregation of graphene sheet on the membrane of cells can inhibit nutrition transportation.100 GO is more hydrophilic and biocompatible because of the oxygen‐containing groups on its surface. However, some studies report that excess GO might lead to more ROS generation, causing death of cells.111 Besides, it was discovered that levels ROS generated by synthesized GO with lower oxygenated degree were much higher than those with more oxygenation.112 Several studies have shown that RGO is more compatible than GO, suggesting reduction may be a means to enhance the compatibility of GO‐based biomaterials.105, 113 Bengtson et al.12 revealed that ROS generated by GO was more than the RGO materials. Similarly, it was illustrated that human umbilical vein endothelial cells exposed to 10 μg/mL GO and RGO with similar lateral sizes showed more viability in the RGO‐containing group compared to GO group after 48 h, which revealed less toxicity of RGO than that of GO. 
	In contrast, some studies revealed that RGO exhibited dramatically higher effect on cell viability due to its hydrophobic features. In all studies mentioned above, graphene derivatives used in aqueous solution while the application of graphene derivatives as a substrate can be considered as an efficient way to overcome the cytotoxicity effect of that.54, 114 Akhavan et al.38 reported that graphene (G) sheets grown by chemical vapor deposition showed not only excellent biocompatibility but also improve the cellular attachment of hMSCs. Indeed, the possibility of the aggregation of hydrophobic graphene derivatives on the cell membrane can be readily decreased by doping and coating them on the surface of materials such as Ti42 and polydimethylsiloxane (PDMS).54 Moreover, the initial attachment between cells and surfaces can be affected by surface chemistry and roughness via ionic forces (directly) and adsorption of proteins (indirectly).115 Therefore, using different graphene derivatives as a substrate can enhance the surface roughness resulting in higher cell proliferation.114 Compared different graphene derivatives, oxygen‐containing groups on GO45 cause high capacity of protein adsorption through large surface area, intermolecular interactions116 and surface defects that could serve as binding sites for proteins100 that contribute to cell attachment and viability.45
	It is important to note that conflicting results observed in comparing GO and RGO can be attributed to their different physical and chemical characteristics or different cell varieties. Conflicting results observed in comparing GO and RGO can be attributed to their different physical and chemical characteristics or different cell varieties.
	Smaller particles are more cytotoxic than larger particles, causing apoptosis through damaging the cellular membrane.117 Akhavan et al.101 treated umbilical cord‐derived MSCs with graphene nanoplatelets of four different sizes (11 ± 4 nm, 90 ± 37 nm, 418 ± 56 nm, and 3.8 ± 0.4 μm) each at concentrations in the range of 0.01 to 100 μg/mL. The results showed that after 24 h at treatment with the smallest size, 11 ± 4 nm, and concentration of 100 μg/mL, >50% of the cells declined. In another study, it was demonstrated that microsheets of graphene with lateral dimensions <5 μm can penetrate the plasma membrane of mammalian cells and damage the lipid bilayer.118 Also, a nanosheet of graphene with lateral dimensions of 100 nm‐5 µm has been shown to be easily taken up and accumulate in cells.119 However, a higher uptake of a graphene NPs cannot be the major reason for the observed cytotoxicity.108 A study by Talukdar et al.109 demonstrated that in hADSCs treated with different graphene nanoparticles (GONRs, GNOs and GONPs), GONRs have more cytotoxicity than GONPs, while they did not indicate similar cellular uptake trend. 
	Bengtson et al.12 discovered that ROS generated by few layered GO and RGO with lateral size above 1 µm were not toxic in FE1 murine lung epithelial cells at concentrations of > 200 μg/mL. 
	Reviewed studies indicated that graphene with lateral size of <5 µm and GO and RGO with lateral dimension <1 µm show decline in cell viability. In addition, higher uptake of a graphene is not the main reason for the observed cytotoxicity. More studies are underway to better comprehend the differences in cellular uptake of various size of graphene nanoparticles, including their uptake mechanism and the reasons for the observed variation in death of cells.
	Three‐dimensional (3D) structure is known as a promising structure that better mimics the microenvironment and important features of the native extracellular matrix for cells. Kumar et al.14 investigated the effect incorporation of two‐dimensional (2D) and 3D structures has on GO and RGO in PCL. They found that cells in the 3D scaffold had more cell‐cell interaction due to their multicellular organization. The macroporous structure of the 3D foams ensured efficient nutrition substance transportation for cells’ metabolic demands, which might facilitate cell proliferation.14 Researchers have demonstrated that 3D structured graphene, compared to 2D, provides larger accessible specific surface areas, interconnected conductive structure and unique surface microstructure,120, 121 which might improve cell growth and differentiation.122, 123 To further compare the compatibility of 3D and 2D structured graphene, Jiang et al.124 synthesized 2D films and 3D foams of graphene and reported that 3D structured foams are more beneficial for migration of neural stem cells. Indeed, the 3D graphene foam could enhance cell migration through stromal‐cell derived factor‐1α/CXCR4 signaling pathway, which is essential for the cell migration.125, 126 In a study performed by Liu et al.,127 the incorporation of GO changes the 3D topography of scaffold by decreasing the fibrous diameter and porosity, which increases cell proliferation. So far, it is indicated that 3D structure of graphene can promote cell‐cell interaction, migration and proliferation, however, few studies focused on the influence 3D architecture has on the cell proliferation, which deserves more consideration.
	Graphene can be functionalized and combined with other biomaterials, which has the potential to influence cell viability and proliferation.128 In this review, the effect combination of graphene with these kinds of materials (i.e., metals, polymers and minerals) on cellular behaviors is investigated.
	Metals are widely utilized in several biomedical applications in pure or alloys forms due to their properties, including toughness, strength, and durability. Graphene has unique physiochemical features, especially its potential for osteogenic induction of stem cells, that make it a promising material for promoting surface modification and bioactive character of metal‐based composites.48 Several studies13, 26, 28, 45, 47, 50, 65, 69, 71, 76, 86, 89, 92 raised a debate regarding the influential role of metals combined with graphene on cell proliferation and viability. 
	The chemical functionalization of graphene is an efficient way to enhance its dispersibility and viability to generate various functional groups such as amino, hydroxyl, and carboxyl groups on the basal plane and over the edges.129 These abundant groups could serve as nucleation sites for metals to anchor and grow through electrostatic and coordinate methods.130 Thus, many metals and graphene derivatives composites have been fabricated for biomedical applications, demonstrating synergistic effects over the two individual components.131, 132 For example, Kumar et al.71 prepared RGO decorated with Sr NPs (RGO/Sr), promoting proliferation owing to the release of Sr2+ and hydrophilic nature of hybrid nanoparticles. Additionally, it was proven that cell proliferation was improved by RGO coated multipass caliber‐rolled Ti alloy of Ti13Nb13Zr (MPCR‐TNZ)69 compared to MPCR‐TNZ and GO‐coated Ti compared to Ti‐Na26 and Ti.76 Graphene sheets can act as substrates for metallic particles and as the storage sites for dissolved metal ions; therefore, preventing the aggregation of metallic particles, decreasing the toxic effects of metallic particles and resulting in the sustained release of metal ions.133 For instance, In studies by Chen S et al.65 and Chen J et al.,89 the controlled release of ions, including Si (Iv) and Zn, from GO compositions stimulated cell proliferation. Release of >3 μg/mL Zn has been shown to be cytotoxic to cells.134 However, GO‐COOH, by providing ZnO NPs with anchor sites, prevents the rapid release of Zn and shows a sustained pattern of release without toxicity to the cells.89 Likewise, Cu has been shown to improve osteogenic potential, however, since additional Cu in a composite causes oxidative damage,135 the amount of Cu used in biomaterials is limited. In a study by Zhang et al.,49 in order to release Cu ions moderately and to prevent the cytotoxicity and related adverse effects, GO‐Cu nanocomposite was fabricated and deposited on the surface of porous calcium phosphate cement (Cpc) scaffolds. The good initial attachment and growth of rBMSCs on CPC/GO‐Cu scaffolds show the successful results of nanocomposite of GO and Cu. 
	Various nanocomposites of AgNPs anchored onto GO have been successfully prepared. AgNPs can promote the formation of the callus and the reconstruction of bone defects through enhancing osteogenesis of bone cells via induction/activation of TGF‐β/bone morphogenetic protein signaling.136 However, they are shown the sustained release of a high dose of Ag ions during the degradation process of scaffolds, increasing cytotoxicity. In the study by Zhang et al.,50 GNSs with a large number of functional groups, such as –COO− and –OH, combined with AgNPs to form Ag‐GO nanocomposites. Release of Ag+ from the scaffolds was shown to be well controlled below the concentration range, and scaffolds modified by Ag‐GO nanocomposites maintained a high cell proliferation level.50
	Recently, a surface modification of Ti‐based materials and promotion of their biological activities has gained attention of researchers in the field of biomaterial engineering.28 A study performed by Dong et al.92 represented that by grafting GO on Ti by functional terminal groups, including ‐COOH, ‐NH2, and ‐OH, the GO/Titanate OH‐grafted composite was found to significantly improve cell viability. This increase in viability is likely due to the fact that ‐OH groups play a crucial role in modifying the surface to allow attachment of growth factors, proteins, or other biological molecules.92 Also, cell proliferation and viability were dramatically greater with Ti‐GO than others. In a study by Subbiah et al.,76 Fibronectin (Fn)‐Ti‐GO (i.e., Fn bound onto GO) showed the highest proliferation rate. They observed that the extensive filopodia formation improved cell migration and cell–cell interactions around preosteoblasts on Ti‐GO and Fn‐Ti‐GO. These filopodia connections were dramatically found on the Fn‐Ti‐GO because of arginine‐glycine‐aspartic acid (RGD) binding moieties of Fn, which is in charge of cell attachment and proliferation. Similarly, graphene coating on the Ti alloy scaffolds also enhanced cell proliferation due to promoted adsorption of the growth factor of the seeding cells;28 however, in some studies different observations were reported. In a study by Qiu et al.,47 increased layers of graphene coated on Ti showed less cell proliferation, and cells grown on Ti exhibited the greatest proliferation among all GO modified groups after 4 days. Indeed, increasing layer‐number of GO resulted in decreased cell proliferation. In addition, Zancanela et al.13 showed that presence of GO decreased the osteoblasts’ viability on Ti discs, while the viability of cells cultured on the plastic surface in the presence of 25 μg/mL GO increased up to 170% after 21 days. 
	Based on the most literatures a number of metallic particles and graphene derivatives composites have been prepared for biomedical applications, exhibiting synergistic effects over the two individual components. In addition, GO is one of the important derivatives of graphene used more than other derivatives with metals to result in positive effects on cell viability and proliferation.
	Polymer‐based materials are widely used for biomedical applications since they are easily shaped and have adjustable chemical properties.137-140 However, some of the polymeric materials used in tissue regeneration have to simulate inflammatory reactions, and their degradation might simulate an autocatalytic ester breakdown than can decrease the pH in the microenvironment, causing problems for cell viability and differentiation.141 In order to overcome these limitations, graphene and its derivatives can be incorporated into polymers through different methods to produce composites exhibiting synergistic effects over the two individual components with improved properties.34, 36, 37, 46, 52, 61, 63, 66, 68, 70, 73, 75, 78, 91 Recently, graphene‐polymer composites have been used for orthopedic applications.142, 143 For example, GO in Ct matrix was shown to affect interactions between cells and scaffold leading to improved cell proliferation.142 Interestingly, a few studies represented that biomaterial surface with multifunctional chemical groups can cause remarkable hemocompatibility and cytocompatibilty144 and affect the physical, chemical and biological features because of the synergetic effect of different chemical functional groups. Thus, the aim of this part is to investigate the effect of functionalized graphene nanoparticles in polymer composites on cell proliferation and viability. 
	Kumar et al.37, 71 investigated the influence of adding different graphene derivatives to polymer on cell behavior. They presented that addition of 3 and 5 wt % of GO, 5 wt % of RGO, and just 1 wt % of AGO in PCL led to a dramatic increase in proliferation compared to PCL only. AGO exhibited higher cell proliferation compared to GO and RGO, respectively, due to its higher chemical functionalization.36 According to recent studies, among various graphene‐based substrates, those with greater chemical functional groups generally present enhanced safety profiles.145-147 It was also reported that adding PEI conjugated GO in PCL was more effective in proliferation than only addition of GO.37 The promoted proliferation on PCL‐GO‐PEI might be due to the hydrophilic and polycationic properties of PEI conjugated GO.148
	Additionally, in recent studies, incorporation of CNTs and GNSs to promote the mechanical properties of polymer has attracted attention of researchers.149-152 Feng et al.34 displayed the synergetic effect of CNTs and GNSs on enhancement of mechanical properties, as well as cellular behavior. They showed that a scaffold constructed by combination of HAP‐PEEK with GNSs at 0.2 wt % and CNTs at 0.8 wt % had positive influence on cell proliferation with significantly more optical density than other treatment groups. Kaur et al.71 also investigated the effect of reinforcing PLGA with CNT, graphene nanoplates (GN) and active carbon (AC). They found that cells treated with GN‐PLGA showed the highest viability due to its surface functional groups and high protein adsorption that enhanced the cell adhesion and growth.71
	Furthermore, it was observed that GO incorporated in other polymers, including PLGA76 and PLGA‐tussah silk61 and also functionalizing Car with GO73 increased the rate of cell proliferation and viability noticeably. This outcome can be attributed to the unique nanotopography of the graphene‐reinforced polymer composites with considerable hydrophilicity of surface, which caused expression of various integrins and connexins.143, 153
	For biomaterials that have physical interaction with cell membranes, toxicity will probably be generated initially due to the disruption of the membrane integrity, followed by the production of intracellular enzymes (e.g., LDH), and, ultimately, apoptosis or cell death.154 However, functionalizing RGO with PDA decrease this cytotoxicity, especially during the first days.68 While bulk GO stimulated the strongest leakage of LDH, indicative of serious membrane damage, rGO‐PDA only mildly affected the cell membrane. All These studies confirm the synergetic effects of graphene derivatives and polymers and enhanced cell proliferation on graphene‐polymer composites. 
	Despite all the reviewed articles indicating positive effect of graphene on cell proliferation, in one study performed by Kanayama et al.,70 early cell proliferation was shown to be dramatically inhibited on GO and RGO films coated COL compared to control culture plate, which is attributed to oxidative stress155, 156 that stimulates the inhibition of cell viability. 
	Based on the most reviewed literatures, graphene and its derivatives can be incorporated into polymers to produce composites with multifunctional chemical groups that represent synergistic influences over the two individual components exhibiting improved mechanical properties as well as better cell proliferation and viability. Moreover, it is noteworthy to mention that among various graphene‐based substrates in graphene‐polymer composites, those with greater chemical functional groups generally demonstrate more safety profiles. There are several opportunities for further development and optimization of graphene‐modified polymer composites.
	Typically, minerals induce the differentiation of stem cells into osteoblastic lineage.157-159 However, they are innately brittle, hard to form and exhibit slow resorption rates.157, 160 Therefore, the development of strategies that can overcome some of these limitations is of interest for biomaterial studies. Notably, graphene and its derivatives can be incorporated into minerals, resulting in composites with both modified mechanical properties and modified osteogenic potential. 
	Among various graphene derivatives, GO was utilized in several studies to enhance the mechanical properties of mineral‐graphene composites and behaviors of cells, including proliferation, viability and differentiation. For instance, GO–CaP nanocomposite with 0.5 μg/mL GO and 10 μg/mL CaP showed cell viability above 80%,64 due to the hydrophilic surface of GO.106 In a study by Xie et al.,29 cells proliferated higher in the adsorbed Bone Morphogenetic Protein‐2 (BMP2)‐encapsulated bovine serum albumin (BSA) on GO than in other groups, including GO‐tissue culture plates (TCP), BMP2‐GO‐TCP and pure TCP. Indeed GO modification increased the BMP2‐encapsulated BSA adsorption capacity of HAP and TCP scaffolds,29 which can be attributed to the carboxyl groups of GO interacted with the amino groups of the BMP2‐encapsulated BSA via electrostatic attraction.48 Bioactive glass nanoparticles (BGs) have a great potential to form a bioactive HAP layer and provide powerful surface bonding between bone tissue and implant.161, 162 Hence, Fan et al.67 produced a novel BGs/GNSs composite scaffold. These scaffolds showed enhanced physical properties of BGs and cell viability of GO by mixing these materials. They reported that by setting the mass ratio of BGs to GO as 10, cell viability was significantly improved.67 Similarly, Xie et al.,56 studying graphene reinforced into CS coatings, concluded that compared to pure CS, CS with 1.5 wt % of graphene were more favorable to cell proliferation after 6 days.56 Regarding the effect of GO on CS bioactivity, Xie et al.48 observed biomineralized octacalcuim phosphate (OCP), known as a beneficial agent for cell proliferation,163 on the surface of GO‐CS scaffold, significantly enhancing cell proliferation. Oyefusi et al.84 and Nair et al.[23] reported that the HAP grafting onto the graphene sheets and incorporating GO nanoflakes into a Gn– HAP matrix enhanced total protein adsorption, as well as cell viability, respectively. 
	Besides GO, RGO have also been used in some studies to improve the cell viability and mechanical properties of minerals, but there is a controversy in the result of adding RGO on cell viability. CS is a novel biomaterial that causes effective osteoblast‐like cell adhesion and proliferation, along with enhancing apatite formation, leading it to become an interesting substrate for hard tissue repair; however, the insufficient strength and toughness of this material is its limitation, which was promoted by RGO. However, adding RGO to CS had no significance influence on cell proliferation,86 while in CS/graphene, it was shown that greater contents of graphene caused higher cell proliferation. Among 0, 0.25, 0.5, and 1.0 wt % graphene‐containing composites, 1.0 wt % showed the highest cell viability.60 In addition to CS, HAP is widely used in BTE because of its similar chemical composition to natural bones.164, 165 Nie et al.,4 showed that nanohydroxyapatite (nHAP)‐incorporated in 3D RGO scaffold dramatically enhances cell behavior as well as mechanical strength, which suggests positive influence of RGO on HAP and vice versa. Among 0, 20, 40, and 80% nHAP‐incorporated RGO, 20% nHAP‐RGO showed the highest proliferation.4 This was confirmed, as Fan et al.166 illustrated that the growth inhibition and proliferation of cells would be stimulated by over‐dosed nHAP, due to its toxicity in terms of surface morphology, porosity, alkalinity feature and nutrient permeation. Finally, as it has been illustrated in most of the cases, the presence of sufficient oxygen functional groups on the surface of GO can make it more favorable to incorporate with different minerals so as to not only promote the mechanical strength but also modified proliferation and viability, which leads to effectively promoted differentiation. 
	Cell adhesion and spread within the scaffold are usually the first steps following seeding of cells onto the biomaterials, and therefore, have a significant effect on modulating the forthcoming cell responses, including cell proliferation and differentiation.47 In most reviewed studies, presence of graphene and its derivatives resulted in accelerated cell adhesion and spreading,19, 21, 52 yet, there are few studies showing no difference between cell density on GO‐coated substrates and noncoated substrate.62, 79 Besides, in a study by Kanayama et al.,70 GO and RGO films were found to show less DNA content compared to controls. 
	Various factors seem to be effective in cell adhesion and subsequent cell proliferation and differentiation, such as CA, hydrophilicity, functionalization, morphology, size, porosity, layers and roughness (Fig. 3),98 as discussed below. 
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	Figure 3 Factors affecting the cellular attachment.
	A high CA value indicates the hydrophobicity of the scaffold surface, while a low CA describes the hydrophilicity.68 Hydrophilic substrate can provide a surface that allow cells to adhere, spread and grow better on them.69 Usually, hydrophilic surfaces lead to the attachment of adhesive proteins, such as Fn and vitronectin, which can facilitate cell adhesion and growth.167 It was illustrated that the structure of the adsorbed proteins on surfaces with amine and hydroxyl groups helps more integrin bind in osteoblasts, enhancing formation of focal adhesions (FAs) and eventually activating the osteogenic pathways.36 FAs, key factors for adjusting cells adhesion and migration, are a type of adhesive contact between cells and extra cellular matrix (ECM).168, 169 Cells cultivated on the GO film were found to have greater FAs compared to that on the uncoated GO materials.17
	Kumar et al.36, 37, 71 investigated the effect of graphene derivatives on cell adhesion in three different studies. They indicated that the incorporation of GO and AGO nanoparticles in PCL increased the hydrophilic features of the composite, which can be result of hydrophilic functional groups on GO and AGO surface.170 In contrast, adding RGO nanoparticles with no oxygen‐containing functional groups decreased the hydrophilicity of PCL and did not dramatically influence cell adhesion. However, they reported in another study71 that decorating RGO with Sr resulted in increased wettability. It was observed that the amine nanoparticles of AGO in PCL tend to better adsorbed cell‐adhesive proteins; therefore, AGO‐PCL exhibited higher cell attachment compared to GO‐PCL and RGO‐PCL.36 They also indicated that presence of GO‐PEI in the PCL composite improved surface wettability more than addition of GO, and GO functionalized with PEI suggested a synergetic effect of chemical, as well as topographical, improvement for reinforcing cell adhesion and proliferation, particularly on PCL‐GO‐PEI with the highest content of GO (50 mg).37
	In a study by Kaur et al.,91 the hydrophobicity nature of PLGA is reformed by reinforcing it with carbon materials such as CNT, GN, and AC. Indeed, the oxygen‐containing functional groups of these materials have hydrogen bond interactions with the water molecules, which causes the CA value of PLGA to decrease. Furthermore, GN‐PLGA and CNT‐PLGA were observed to have more hydrophilicity due to the existence of more carboxyl acid groups on their surface. Also, they found that surface roughness of carbon‐based materials, as well as van der Waals and electrostatic forces between surface hydrophilic groups of them, particularly GN, resulted in high protein adsorption playing a remarkable role in improving cell attachment.91
	In a study by Lee et al.,59 high adsorption capacity of graphene (up to 8%) and GO (up to 25%) for serum proteins was observed, whereas PDMS‐adsorbed serum was just <1% after one day. Serum proteins are known to consist of several extracellular matrix globular proteins and glycoproteins, including albumin and fibronectin.171 Therefore, graphene and GO sheets showed better cell attachment compared to PDMS. For graphene, despite its hydrophobic feature, its π‐electron cloud is able to interact with the hydrophobic core of proteins. For hydrophilic GO, the polar groups on the surface can bind to serum proteins through electrostatic connection.59 It also has been reported in studies that G and GO have significant loading capacities for DNA and cytochrome C through intermolecular interactions.172 Li et al.28 also discovered that GO coating promoted cell attachment and early extension of BMSCs on the Ti alloy scaffolds. The mean integrated optical density for vinculin is an important component for cell FAs,173 was notably greater for scaffolds coated with GO than groups without GO. This might be due to the higher surface wettability and roughness of the scaffold with graphene coating. 
	In a recent study by Ren et al.,45 BSA was chosen for further investigating the interaction of protein adsorption and cell adhesion. GO‐Ti absorbed the highest amount of BSA compared to RGO‐Ti. In fact, hydrazine reduction caused elimination of many functional groups, which weakened the electrostatic interaction between BSA and RGO‐Ti. In a study by Jia et al.,68 the number of MC3T3‐E1 cells cultured on RGO‐PDA was observed to be more than that on bulk GO due to the presence of PDA on the RGO, leading to decreasing the hydrophobicity of RGO. RGO‐PDA showed high potential in adsorbing BSA that grafted to PDA through o‐benzoquinone − amine coupling;154 however, GO had a rougher surface and might have a greater capacity for holding protein. The better cell attachment on RGO‐PDA may be due to the special role of PDA in mediating biological activity anchorage and stretching during cell attachment, leading to forming a beneficial matrix for stable adherence.174-176 In an another study, utilizing RGO after incubation of synthesized RGO‐MPCR‐TNZ in serum protein for 2 hours, which had high CA value due to hydrophobic property of RGO, hydrophobic RGO surface became hydrophilic, and the CA value was dramatically decreased, inducing cell adhesion.69
	Although several studies have reported improved cell attachment and proliferation on hydrophilic scaffold surfaces, graphene with hydrophobic features can improve the cell adhesion. Similarly, in a study by Duan et al.,46 it was illustrated that incorporation of multiwalled carbon nanotubes multiwall carbon nanotube (MWCNT) and graphene in PLLA resulted in more mBMSCs adhesion, while hydrophobicity was increased compared to pure PLLA scaffolds. Increased hydrophobicity is due to the interaction between hydrophilic groups, including hydroxyl and carboxyl of CNMs, and the hydroxyl or carboxyl end‐groups of PLLA through hydrogen bonds, leading to reduction in hydrophilic groups existing on the surface of scaffolds.46 It was found that the effect of hydrophilicity of scaffold on cell behavior may depend on cell nature.2
	Coating the metal surfaces with carboxyl, hydroxyl and amine functional groups was reported to contribute in enhancement of cell adhesion and proliferation.177 For instance, coating Cu49 and Ti26 with GO could remarkably increase the amount of initial adherent cells. In addition, Subbiah et al.76 improved the efficiency of GO‐Ti by bonding Fn on GO and reported the expansive filopodia formation around preosteoblasts on the GO‐Ti‐Fn because of the cell binding moiety, RGD, of Fn that is accountable for cell attachment. Increased number of FA molecules, FA area per cell, and single FA diameter illustrated that GO‐Ti‐Fn can be used as a suitable surface for cell adhesion and, consequently, FA formation. Also, Si‐O‐Si and Si‐OH bonds in RGO–aminosilica hybrid were observed by FTIR.65 These bonds were found to support the attachment and stimulate the proliferation of cells.178, 179 Si−O−Si bond was also found in CS/RGO86 and BGs‐GNSs composites.67 Surface roughness is another important factor playing a significant role in the biological activity of biomaterials. In general, higher roughness provides larger surface areas to interact with protein molecules and cells, which are beneficial for cell adhesion, thereby promoting the biological activity of the biomaterials.92, 180-182
	It was demonstrated that the rough topology of a cross‐linked GO film increases the tension of the cell scaffold and facilitates the growth of hMSCs.183 Kim et al.153 discovered that the specific nanomorphology of graphene (i.e., asymmetric nanostructures), as well as its rigidity and roughness, are vital factors for promoting the differentiation of hMSCs. From the studies above, it might be concluded that cell attachment on hydrophilic surfaces, such as GO and AGO, is improved since the hydrophilic surfaces cause much more adsorption of adhesive proteins and formation of FAs. However, moderate hydrophilicity was shown to be better for cell adhesion. Indeed, it was found that the effect of scaffold hydrophilicity on cell behavior is likely to depend on cell nature. Moreover, in most cases, graphene and its derivatives have been found to increase the surface roughness,28, 37, 59, 92 which can enhance cell adhesion with some limitations. 
	Porosity and pore size have enormous effects on cellular responses, including cell penetration within the scaffold and differentiation. Studies suggest that macroporosity (i.e., pores >50 µm) enhances osteogenesis through cell migration and blood vessel infiltration.184, 185 Microporosity (i.e., pores < 20 µm) is considered to help bone growth into scaffolds by increasing the surface area for protein adsorption,186 improving ionic solubility in the microenvironment187, 188 and providing more adhesion sites for osteoblasts.184 3D GFs were seen to be highly porous with individual pore sizes ≥100 μm, providing appropriate surface area for cell attachment.33
	It was also reported that adding GO to the polymer matrix caused decrease in interconnected pore size and provided a massive porous structure.61, 189 The optimal pore size in scaffolds to mimic ECM employed in BTE is reported to be in the range of 150–300 μm.190 In a study by Saravanan et al.,75 addition of GO decreased the pore size of scaffold from ≥ 220 to ≤ 180 μm. Therefore, the presence of interconnective pores in GO‐CS‐Gn scaffolds supported cell infiltration, nutrient transfer and metabolic waste elimination. Furthermore, in a study by Nie et al.,4 it was obvious that number of cells adhered to 20% nHAP‐incorporated RGO was much more than that on 40% nHAP‐RGO and 80% nHAP‐RGO scaffolds. This can be attributed to porous structure of RGO scaffold, which can be changed by incorporating different contents of nHAP. However, in some studies, no significant influence of graphene on porosity was observed. Zhang et al.,50 showed that the Ag‐GO on β‐TCP surfaces had no significant influences on the porosity of the scaffolds. Finally, it can be reported that porous structure of graphene and its family provides appropriate surface area for cell attachment and spreading, and therefore enhances osteogenesis through cell migration and blood vessel infiltration. 
	Graphene has been found to not only influence cell attachment, migration, and proliferation, but also promote the differentiation of stem cells to different lineages (Fig. 4).114, 191, 192
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	Figure 4 Factors affecting the cellular osteogenic differentiation.
	Several studies confirm the osteopromotive activity of graphene,24, 57, 59, 93 GO,33, 62, 79, 192 RGO58, 77 and GQDs.94 It was demonstrated that cells cultured on graphene exhibit higher levels of mineralization and significantly up‐regulated osteogenic genes and proteins, including Runt‐related transcription factor 2 (Runx2), COL and OCN,24 even without the use of osteogenic medium (OM).33, 62 The mechanisms of how graphene affects stem cell behavior remains unknown. It seems cooperation of factors, such as nanoscale structure, high stiffness, roughness, oxygen‐contained functional groups, and absorption of biomolecules on graphene and its family, prepare suitable environments for cell behavior regulation such as attachment, proliferation, and differentiation.17
	In the presence of osteogenic inducers, it was revealed that the mineralization of MSCs cultured on graphene was more enhanced than on GO and the PDMS control. Graphene adsorbed the remarkably higher amount of dexamethasone (Dex) and β‐glycerolphosphate compared to GO and PDMS, which can be attributed to the π‐π bond between the aromatic structure of Dex and the graphene structure.59 Dex is a synthetic glucocorticoid changing the expression levels of many proteins and enzymes demanded during osteogenesis.193, 194 In fact, graphene increasing the local concentration of Dex on its surface increases mineralization and causes fast and influential cell differentiation. In addition, in the study by Ren et al.,45 GO‐Ti samples showed larger adsorption of Dex compared to RGO‐Ti samples. The ALP activity, mineralization and osteopontin (OPN) and OCN expression of Dex‐GO‐Ti was more than Dex‐RGO‐Ti and Dex‐Control. However, GO‐Ti and RGO‐Ti in the absence of Dex were found to not influence ALP activity effectively.45 Dex is not the only chemical that is in charge of directing cells to osteogenic differentiation, but it has a synergistic effect with β‐glycerolphosphate, binding to graphene by H‐bonding and intracellular ALP enzyme for mineralization.59 Besides, it has been proven that ascorbic acid (AA) influences mainly postdifferentiation,195 and GO, which has a high density of oxygen functionalities, showed greater degree of H‐binding with AA compared to graphene. ALP, an early and quantitative osteoblastic differentiation marker, is a significant factor in formation of hard tissue. ALP helps in declining the concentration of extracellular pyrophosphate, which inhibits mineralization and increases the inorganic phosphate concentration to enhance mineral formation.59
	Another factor that may influence osteogenic differentiation is graphene morphology. Talukdar et al.109 investigated the graphene NPs with three different morphologies: GNOs, GONRs, and GONPs. Greater ALP activity was observed after treatment of hBMSCs with 10 μg/mL GONR. In a similar study by Ricci et al.,85 up to 100 μg/mL of GONR seemed to not dramatically change gene expression of ALP, OCN, OPN and Runx2, whereas higher concentrations (200 μg/mL) showed reduction in expression of genes, playing a critical role in bone regeneration process. 
	Several studies reported that RGO can induce osteogenic differentiation individually. For example, in a study by Jin et al.,58 the amount of ALP synthesized after 14 days and mineralized nodule after 21 days by the cells on RGO NPs was found to be significantly higher than those of the other groups without RGO NPs. Indeed, π‐electron cloud of graphene and its derivatives cause interactions with the inner hydrophobic core of proteins.59 Also, because of the H‐bonding and electrostatic interactions, graphene allows the noncovalent binding of proteins and osteogenic inducers on its surface.195 Interestingly, the 3D‐rGO film was observed to offer a faster osteogenic differentiation of MC3T3‐E1 compared to RGO, indicating the 3D structure is beneficial for osteogenic differentiation.14, 77
	Although graphene can enhance osteogenesis, it can be chemically modified or combined with other materials to further induce its osteopromotive activity, such as other carbon‐based materials, hydrogels, metals, minerals or polymers. Recently, it has been shown that graphene combined with single‐walled carbon nanotube (SWCNT) exhibited better mineralization rather than administration of graphene and SWCNT alone. The G/SWCNT hybrids increased the level of expression genes of OCN, OPN, and Runx2 in a dose‐dependent manner. The G‐SWCNT hybrids at a concentration of 10 μg/mL after 14 days illustrated the greatest mineralization. It has been reported that graphene and SWCNTs exhibited high surface area in the G‐SWCNT hybrids, which led to greater adsorption of osteogenic inducers and proteins from the culture medium. Hydrogel was found to enhance the strength and flexibility of graphene film.93 Lyu et al.20 utilized the self‐supporting graphene hydrogel (SGH) film for cell seeding and reported the greater levels of the OCN, ALP, BMP2, and Runx2 genes expression, as well as higher ALP activity and mineralization on SGH compared to graphene and carbon films. These findings might attributed to two factors; first, the wrinkled and rippled nanostructure of SGH surface showed significantly higher protein absorption rate, such as BSA molecules compared to other carbonaceous films; second, the SGH film indicated higher hydrophilic surface, which is a vital factor for protein interactions with the surface. 
	All the results above confirmed the capability of graphene and its different derivatives in improving osteogenesis of stem cells.
	Incorporation of graphene and its families in the materials utilized for bone reconstructionmetals, polymers and minerals—promotes osteoconductivity via stimulating bio‐mineralization as well as cellular osteogenesis, as discussed below.
	Several studies have utilized metals with graphene.13, 26, 28, 38, 39, 45, 47-49, 65, 71, 76, 89, 92 GO is widely reported as an efficient adsorbent for metal NPs.196, 197 In studies by Chen S et al.65 and Chen J et al.,89 controlled release of Si (Iv)65 and Zn89 ions from GO composition were reported, which can be attributed to the negatively charged surface of GO contributing to the stability of the positively charged metallic ions.198 Chen J et al.89 showed that synthesized carboxylated GO (GO‐COOH) offers anchor sites for ZnO NPs to prevent ZnO NPs from releasing rapidly. Thus, GO caused sustained release of Zn ions for a relatively long‐term, which was shown to enhance ALP activity and OCN secretion. It was reported that a proper dose of zinc ions could promote cell proliferation and differentiation,89 while a high concentration of Zn ions might cause cytotoxic reactions.199 This promotion could be due to the mitogen‐activated protein kinase (MAPK) pathway.89 Zn ions induce formation of osteoblastic COL, therefore increase the binding of osteoblasts to matrix integrins, which activate the MAPK pathway. This pathway transduces signals to phosphorylate to ALP and Runx2, which then bind to the promoter region of the OCN gene. 
	Many studies26, 38, 39, 47, 76 used titanium incorporated with graphene for enhanced osteogenesis. It is proven that surface roughness and hydrophilicity of Ti can affect differential Wnt pathways and signaling molecules, leading to the osteogenic differentiation.200 Studies by Zhou et al.26 and Subbiah et al.76 suggested that the level of gene expression of collagen type I (COL‐I) and OCN were more up‐regulated on GO‐Ti substrate than on Na‐Ti26 or Ti.76 In addition, binding Fn onto GO‐Ti composition led to the higher levels of osteogenesis than GO‐Ti substrate, which was confirmed by ALP activity and ARS staining.76 Likewise, in a recent study by Li et al.,28 GO coating on Ti alloy significantly promoted the osteogenesis, which might be attributed to the outstanding surface activity of graphene that increases the capacity of adsorption of the growth factors of the seeding cells to GO‐Ti alloy. Zancanela and collaborations13 reported that in a situation demanding Ti, such as in prostheses and implants, the use of GO might promote mineralized nodule formation, biomineralization, and accelerate bone formation. 
	La et al.38, 39 evaluated the bioactivity of BMP2 released from Ti and Ti‐GO‐substrates. The notable higher level of expression of OCN and ALP was observed in the groups with GO, due to the better conformational stability, greater bioactivity, and increased local concentration of BMP2 on the Ti‐GO surface. This increase can be due to the interactions between π‐electron clouds in the GO and the inner hydrophobic cores of BMP2, and electrostatic interaction between negatively charged carboxylic groups of GO and the positively charged BMP2. In fact, GO caused sustained release of BMP2, which both play significant role in bone formation. 
	In another recent study by Qiu et al.,47 the effect of varying numbers of layers of GO deposited on Ti on osteogenesis was investigated. With increasing the layer‐number of GO, wrinkling as well as roughness may promote the cell‐material interactions and improve the osteogenic differentiation, though, as stated earlier, increase in thickness or number of layers could reduce cell adhesion and proliferation. 
	In a study by Dong et al.,92 the surface chemistry of GO was optimized by constructing ‐COOH, ‐OH and ‐NH2 terminals through covalent bonding, then grafting these GO sheets on Titanate. This study showed that the scaffold terminated with ‐OH groups significantly enhanced differentiation compared to those with other terminated groups. The scaffold terminated with ‐COOH showed less effect on osteogenesis due to the fact that it induced ROS by contributing electrons to oxygen molecules as a result of its high ZP in cell culture medium. 
	Kumar et al.71 illustrated that the incorporation of RGO decorated with Sr in PCL was found to have enhanced mineral deposited compared to PCL‐RGO composites and neat PCL. These differences were more evident as the amount of the hybrid RGO‐Sr particles increased.71 The Sr ions were found to be beneficial for improving differentiation, even in the absence of osteogenic inducers,201 since these ions contribute to the activation of calcium sensing receptors and osteoblast markers.202, 203
	Zhang et al.49 illustrated that GO and GO‐Cu used to coat the Cpc enhanced ALP expression and OCN. GO‐Cu was found to be more influential than GO. Moreover, they reported that use of GO, and especially GO‐Cu, boosted the activation of Hif‐1α through the Erk1/2 signaling pathway causing higher expression of vascular endothelial growth factor (VEGF) and BMP2, two principal regulation factors of osteogenesis. In addition, Ag NPs have exhibited a special property to effectively enhance the osteogenesis of mBMSCs at concentrations of 5–10 μM.136, 204 Zhang et al.50 discovered the controlled release of Ag+ from the Ag‐GO‐β‐TCP, with concentration below the concentration range. GO has showed high adsorptive ability for AgNPs due to the hydrophilic features and high specific surface area of GO. This adsorption could enhance the osteoinductivity properties of biomimetic GO scaffolds.48 At short term, Ag was seen to inhibit proliferation of bone cells at the defect sites. However, at a long‐term, scaffolds can promote BMSC differentiation toward the osteogenic lineage. 
	Most of the studies included in this section have provided evidence that incorporation of metals and graphene promote the differentiation of stem cells. Also, graphene has been shown to help sustained release of metals.
	Several included papers14, 34, 36 37, 46, 52, 61-63, 66, 68-70, 73, 75, 78, 90, 91 investigated the different polymers improved by graphene and its derivatives or vice versa. 
	Four included studies have reported a successful use of Gn as a modifying agent. Indeed, Gn improved the HAP nucleation through its negatively charged carboxylate groups existing on its surface.74 Liu et al.74 used Gn functionalized GO to mimic charged proteins existing in ECM and observed a higher amount of ALP activity, as well as fibrous organic bundles for GO‐Gn compared to GO and Gl. In the study performed by Saravanan et al.,75 the addition of GO at the concentration of 0.25% in Ct‐Gn scaffolds improved apatite deposition, as confirmed by XRD. The –NH2 and C=O functional groups of Ct were reported to contribute to bio‐mineralization.48
	Zou et al.87 demonstrated that Gn‐derived graphene/laponite (GL) powder enhanced osteodifferentiation due to the physical stresses induced on cells, as a result of the surface topographic, stiffness and roughness of graphene sheet.87 Furthermore, the GL‐powder promoted matrix mineralization of the cells by increasing BMP9‐induced osteogenesis; BMP9 is one of the most potent to induce MSC osteogenic differentiation. 
	Two polymers of PET‐based artificial ligaments with low known bioactivity78 and nHAP/PA6652 were promoted by graphene and showed more osteoability represented by notably up‐regulated expression of ALP and OCN compared to polymers alone. This can be attributed to graphene enhancing the adsorption of the growth factors and chemicals containing benzene rings, such as β‐glycerophosphate and Dex.52 Also, the electric characteristics of CNMs may be a significant factor in this improvement.205
	Nayak et al.62 compared the effect of common growth factors (BMP2) and graphene on osteogenesis. Without BMP2, graphene coating dramatically increased differentiation of all substrates (glass slide, Si/SiO2, PET and PDMS), while this increase was more pronounced with the stiffer substrate (glass slide and Si/SiO2). On the other hand, in the presence of BMP2, it was observed that coating graphene on the stiffer substrates did not further improve the production of calcium deposits, but a clear dramatic increase was seen on the softer materials, PET and PDMS. This again represents that graphene itself has a significant role in the osteogenesis of hMSCs. 
	A study done by Kumar et al.37 illustrated that the PCL‐GO‐PEI exhibited more mineralization and ALP activity compared to the PCL‐GO and neat PCL. The greatest graphene and GO‐PEI content (5 wt %) in the PCL‐GO5 and PCL‐GO‐PEI5 exhibited highest mineralized deposition. This increase for the PCL‐GO‐PEI may be rooted in the fact that the GO‐PEI is rich in amine and oxygen‐containing functional groups, which have been proved to promote FAs206, 207 and adsorption of the osteogenic inducers (β‐glycerol phosphate, Dex and AA), followed by the PCL‐GO and, finally, neat PCL. They showed in another study36 that composition of 5 wt % of AGO (PCL‐AGO5) and 5 wt % of GO (PCL‐GO5) with PCL exhibited 40 and 25% higher mineralization than neat PCL, respectively. It was observed that mineral deposition increased with increase in content of GO and AGO in PCL. The more mineralized deposits, such as HAP, calcium and phosphorous, on the PCL‐AGO5 may be due to the fact that the combination of AGO and PCL proposed both amine and carboxyl functional groups, which led to better mineralization. 
	In one study by Jia et al.,68 ALP expression, COL secretion and Ca2+ content on PDA‐functionalized RGO, and particularly on bulk GO, was improved compared to that on commercial pure titanium (cpTi). For RGO‐PDA, it can be stated that the amine groups of PDA cause great interaction with the graphene, as well as provide active sites for mineral ions, therefore improving apatite nucleation and growth.208 For bulk GO, beside polar groups in its structure, the special topographical ridges known as “graphene patterns” deserve consideration as they provide biophysical cues for greater improvement in osteogenesis. Furthermore, micropatterned geometries of graphene were illustrated to be influential in stem cell differentiation.18 Another article by Kanayama et al.,70 comparing GO and RGO films coated COL, displayed that cells adhered to RGO illustrated the highest ALP activity, due to high adsorption of Ca2+ on RGO rather than that on GO. This significantly high Ca2+ accumulation on RGO can be attributed to AA used as reducing agent that was adsorbed onto the GO surface and interacts well with Ca2+. On the other hand, Kumar et al.14 demonstrated that functionalized groups on the GO surface and its tendency toward adsorbing osteoinductive factors led to better mineralization compared to nonfunctionalized RGO. As there are distinct results from comparing osteoability of GO and RGO, generalization in this case is not acceptable. 
	Using Car could enhance the bioactivity of GO, as it was shown that cells cultured on the GO‐Car exhibited greater levels of ALP activity, along with increased mineral deposits consisting of COL fibers and some matrix vesicles, loaded with CaP crystals, than those on the GO and glass. Also, the Ca and P contents and calcium deposition of GO‐Car film were significantly more than the GO film. This is because of the carrageenan's effect on cell proliferation and differentiation, and the improved nucleation of HAP due to sulfate groups on GO‐Car surface, which promote the calcium binding.73
	In some studies20, 36, 37, 64, 69, 71, 109 it was represented that cells cultured in osteogenic media, mostly supplemented with osteogenic factors such as Dex, ascorbate, and β‐glycerolphosphate,59 illustrated improved osteogenesis in comparison with cells cultured in nonosteogenic media. For example, cells cultured on MPCR‐TNZ, RGO‐MPCR‐TNZ, and Dex‐RGO‐MPCR‐TNZ in nonosteogenic media suggested relatively inadequate osteogenic tendency compared to that in osteogenic media.69 On the other hand, seldom different results have been reported. For instance, in one study by Elkhenany et al.,53 cells cultivated on GO in growth medium showed notably greater alizarin red content compared to cells grown on GO in the presence of the differentiation medium. 
	Reviewed studies suggest that graphene and its derivatives, due to their unique features and remarkable osteability, are good choices to not only overcome polymer limitation but also improve their osteoconductive effects.
	An alternative strategy for improving the osteogenic potential of stem cells is to utilize mineral materials with graphene family.4, 20, 21, 29, 40, 41, 48, 56, 60 64, 72, 74, 75, 86, 87
	In three other studies,56, 60, 86 CS was utilized as a mineral agent. Si is known as a principal component of the CS and has a mitogenic effect on human osteoblast cells,209 acting via the insulin‐like growth factor II.210 Si ions released from materials have been shown to stimulate differentiation, gene expression and proliferation, which can be considered as evaluation criteria for bioactivity.210, 211 Mehrali et al.86 demonstrated that Si concentrations in simulated body fluid, level of ALP activity, and the amount of HAP formed on the surface of composites increase with increase in RGO content. In CS‐RGO composites, CS − 1 wt % RGO composite has the best performance among other groups: 0.25, 0.5, 0.75 and 1.5 wt % of RGO. Similarly, it was reported that the expression level of ALP, OCN, and OPN enhanced with increasing graphene content in graphene‐CS composites.56, 60
	In some studies, HAP is utilized with 3D‐graphene35 and RGO.4, 40, 72 The expression level of OCN, OPN, and COL‐I enhanced in both composites, while in the former this expression mainly remained less than that in HAP.35 It was found that HAP and RGO have an interactive effect on the early and late osteogenic differentiation markers. Therefore, cells exposed to RGO‐HAP exhibited higher osteogenesis.40, 72 For nHAP‐RGO, despite up‐regulated relative expression of Runx2 with using 20% nHAP‐RGO scaffold, its value initially enhanced to the maximum at day 7, after which it dropped down at day 14. This observation might be due to the role of the Runx2 as a key transcription factor to launch early osteogenesis.4 Oyefusi et al.84 also grafted HAP onto the surface of graphene sheets and treated cells with various concentrations (200 and 400 ng/mL) of them at different temperatures (34 and 39°C). Interestingly, they found that G‐HAP400 at 39°C showed higher OCN expression than G‐HAP400 at 34°C, and the opposite occurred for GO‐HAP200. 
	Incorporation of GO in CaP exhibited great levels of ALP activities and OCN expression, as well as high calcification compared to GO and CaP individually, which suggests synergistic contribution of GO and CaP to promoted osteogenesis.64 This increase can be attributed to not only increased connection between the intracellular FA complexes of the cells and the CaP on GO–CaP composite,212 but also to higher stiffness of these composites than solely GO or CaP.213 It is reported that increased stiffness of materials leads to improve a mechano‐transduction influence for differentiation regulation.214
	Recently, Xie et al.29, 48 utilized GO nanolayer to provide anchor sites for the immobilization of BMP2‐encapsulated BSA (Nps) on HAP and TCP. Nps‐GO‐HAP scaffold showed the highest ALP activity compared to BMP2‐GO‐TCP, GO‐TCP and pure TCP. This scaffold provided a nanostructure with charge‐balanced surface, achieved by negative charged GO, positive charged Nps, and long‐term sustained release of BMP2. All of these factors synergistically enhance the BMSCs proliferation and differentiation. Moreover, the results of ALP assay show that the immobilization of BMP2 on the surfaces of GO‐modified CaP scaffolds improve their osteoinductivity. 
	Although the utilization of graphene family and minerals can improve the osteogenic differentiation of stem cells individually, it seems that the combination of these materials may provide better features to induce and enhance cell differentiation.
	LIMITATIONS
	Several limitations were found in the included articles, which deserve to be considered: 
	1. Some studies did not investigate cell attachment, even though it has an important role modulating the forthcoming cell responses, like cell differentiation.47
	2. Since the cytotoxicity of graphene and its derivatives impose serious limitation on biomedical application, evaluation of viability and proliferation of cells exposed to them is very important, however, some studies did not evaluate this kind of cell response. In addition, MTT assay performed in 21 included studies was discovered to be not successful in predicting the toxicity of graphene and its derivatives due to the spontaneous reduction of MTT by them, leading to a false positive signal.100 Therefore, to evaluate the toxicity of graphene, it is much better to use alternate assays, such as water‐soluble tetrazolium salt (WST‐8) assay,58 ROS assay,41 CCK‐8 assay52, 76, 77, 79 and DNA counting25, 36, 37, 71
	3. In nine included studies the type of the MSCs, and in one study, type of the preosteoblast cells were not defined.
	4. Size (i.e., thickness and lateral dimension), topography of graphene surface (roughness) and hydrophilicity of graphene (CA) are the important factors affecting the graphene bioactivity, were not measured in some studies.
	5. In most of the included studies, C/O ratio of graphene, indicative of oxidation state, was not determined as a significant criteria, which made it impossible to make a reasonable comparison between studies.
	CONCLUSIONS
	The current review is systematic review regarding the effect of graphene and its derivatives on cell osteogenic differentiation. Despite the limitations in the included studies, which made the comparison difficult, some general conclusions can be drawn: 
	1. Different concentration of graphene and its derivatives have shown different toxicity toward various cell lines, demonstrating the dependency of the toxic effect of graphene on the type of cells. However, based on the literatures, it can be concluded that, up to 50 μg/mL for Graphene and GO, 60 μg/mL for RGO, and 1.5 wt% for all seems to be safest to most of the cells lines.
	2. GO seems to be more biocompatible than graphene, while the conflicting results were observed in comparing GO with RGO.
	3. Graphene with lateral size less than 5µm and GO or RGO with lateral dimension less than 1 µm showed decline in cell viability.
	4. Graphene and its derivatives incorporated with metals, polymers, and minerals showed promoted mechanical properties and bioactivity, in most cases.
	5. Graphene and its derivatives have been found to increase the surface roughness, which can highly enhance cell adhesion and differentiation.
	6. Graphene exhibits better osteogenic differentiation result compared to GO, but making comparison between osteogenic potential of GO and RGO is not feasible to precisely due to the contradictory reports.
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