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Traditional techniques for assessing bone strength and fracture 

resistance such as 3 or 4-point bending of whole bones or machined 

beams are well-developed but destructive. Recently, Reference-Point 

Indentation (RPI) has been introduced as a minimally destructive 

method of determining bone tissue properties at physiologically 

relevant length scales [1-2]. However, to date there is no data 

showing the 3D damage mechanisms associated with RPI. The purpose 

of this study was to use high-resolution imaging to visualize RPI tests 

of human and murine bone, as well as to compare indents from 

healthy and pathological tissue.  

 

Femora from healthy mice and a mouse model for severe 

osteogenesis imperfecta (oim; Ncontrol=Noim=3, Age=12wks) were 

extracted and tested with repeated RPI measurements (BioDent Hfc, 

Active Life Scientific, Inc.) along the long axis of the bone using a 

maximum force of 5 N at 2 Hz for 7 cycles. Each indent was imaged by 

synchrotron radiation on the X-ray microtomography (SRμCT) 

beamline at the Advanced Light Source (ALS, Berkeley, CA) with a 

nominal pixel size of 1.33 μm. Similar imaging was performed on 

indents from a healthy human tibia donated from an unrelated cadaver 

study.  

 

Oim femora showed inferior material behavior as assessed by 

RPI measures (Table 1). On average, first cycle indentation distance 

(ID), ID increase (IDI), total ID (TID), and creep ID (CID) were higher 

in oim bones compared to controls, while the slope of the unloading 

portion of the first cycle (US) was reduced. SRμCT images of 

representative damage regions revealed an increase in the degree of 

micro-cracking in oim bone compared to controls (Fig 1-2). Healthy 

human bone also appeared to display evidence of crack bridging, a 

common extrinsic toughening mechanism (Fig 3).  

 

The results of this preliminary study suggest that RPI is an 

effective method for evaluating differences in the material behavior of 

healthy versus oim mouse bone. Similar trends in RPI parameters 

have been reported in control versus diabetic rat bone, which is known 

to exhibit increased fragility [2]. For the first time, we also show how 

SRμCT can be used to complement RPI testing by providing valuable 

3D information on sub-surface fracture behavior. In oim bone, 
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increased micro-cracking is likely a toughening mechanism required to 

mitigate the reduced initiation toughness.  

[1] Diez-Perez et al, J Bone Miner Res, 2010.  

[2] Gallant et al, Bone, 2013.  

 

Table 1: Summary of murine BioDent data. 

 

 Control Oim  

Number of indents  32 14  

ID (µm) 28.7 ± 5.2 31.3 ± 9.6 

IDI (µm) 4.1 ± 1.3 6.6 ± 4.6 

TID (µm) 30.5 ± 5.2 34.9 ± 10.8 

CID (µm) 3.0 ± 1.0 3.9 ± 2.6 

US (N/µm) 0.74 ± 0.12 0.66 ± 0.10 
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