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Abstract 
In this study, we evaluated the changes in air pollutant concentrations around Milwaukee, WI, during 
and after lockdown due to the COVID-19 pandemic for a period of 126 days. Measurements of 
particulate matter (PM1, PM2.5, and PM10), NH3, H2S, and O3 + NO2, were made on a 74-km route of 
arterial and highway roads from April to August 2020 using a Sniffer 4D sensor mounted to a vehicle. 
Traffic volume during measurement periods were estimated from smartphone-based traffic data. From 
lockdown (March 24, 2020–June 11, 2020) to post-lockdown (June 12, 2020–August 26, 2020) median 
traffic volume increased roughly 30–84%, depending upon the road type. In addition, increases in 
mean concentrations of NH3 (277%), PM (220–307%), and O3 + NO2 (28%) were also observed. For both 
traffic and air pollutants, abrupt changes in the data were observed mid-June, shortly after lockdown 
measures were lifted in Milwaukee County. Indeed, traffic was able to explain up to 57% of PM, 47% of 
NH3, and 42% of O3 + NO2 variance in pollutant concentrations on arterial and highway road segments. 
Two arterial roads that did not have statistically significant changes in traffic patterns during the 
lockdown exhibited no statistically significant trends between traffic and air quality parameters. This 
study demonstrated that COVID-19 lockdowns in Milwaukee, WI, caused significant decreases in 
traffic, which in turn had a direct impact on air pollutants. It also highlights the need for traffic volume 
and air quality data at relevant spatial and temporal scales for accurately assessing source 
apportionment of combustion-based air pollutants, which cannot be captured with typical ground-
based sensor systems. 

Keywords 
COVID-19, Air pollutants, Traffic, Emissions 

Introduction 
Air pollution is a significant threat to human health and a rising cause of illness and mortality around 
the world (Manisalidis et al. 2020). In the USA, air pollution is responsible for between 5 and 10 
percent of all premature deaths (Joint and Organization 2006; Landrigan et al. 2018). Many of the air 
pollutants that negatively impact human health are driven by combustion emissions from various 
sources including traffic and power generation. These pollutants include particulate matter (PM) and 
ammonia (NH3), which can cause respiratory diseases, nervous system dysfunctions, and cancers 
(Brugha and Grigg 2014; Chen et al. 2016; Wu et al. 2018). Other combustion pollutants in high levels, 
such as nitrogen dioxide (NO2) and ozone (O3), can negatively affect respiratory and cardiovascular 
systems (Guo et al. 2021; Huangfu and Atkinson 2020; Valavanidis et al. 2013). 

Traffic is a significant portion of these combustion pollutants in many urban areas and has been shown 
to contribute up to 34% of particulate matter (Ouyang et al. 2015a, b; Thurston et al. 2011), 61% of 
NH3 (Durbin et al. 2002; Elser et al. 2018; Pan et al. 2020), 25% of O3 (Li et al. 2016; Pay et al. 2019; 
Valverde et al. 2016), and 50% of NO2 emissions (Environmental Protection Agency (EPA), 1999; 
Nguyen et al. 2018). However, despite evidence of the contribution of traffic combustion to air 
pollutants, it is unclear if and to what extent traffic management strategies could improve urban air 
quality due to a lack of post-evaluation of implemented strategies (York Bigazzi and Rouleau 2017). 
This unclarity in how traffic management strategies could improve air quality stems, in part, from a lack 
of spatial and temporal experimental data on the impacts of traffic reductions on air quality. 



The lockdowns during the COVID-19 pandemic presented an opportunity to help fill this gap through 
an unprecedented change in traffic patterns. Across the world, there were significant decreases in 
traffic due to the COVID-19 lockdowns. For example, in South Korea, traffic decreased 9.7% (Du et 
al. 2021), and in the USA, traffic was reduced to 40–65% (Hudda et al. 2020; Xiang et al. 2020). Air 
quality also changed during this period, with observed decreases in air pollutants in many cities and 
countries across the world (Adam et al. 2021; Chauhan and Singh 2020; Gkatzelis et al. 2021), such as 
an observed 25% reduction in PM2.5 in cities in northern China (Bao and Zhang 2020) and a 32% 
decrease in NO2 in England (Ropkins and Tate 2021). 

Not surprisingly, studies have emerged that evaluate the relationship between traffic volume and air 
pollution during the COVID-19 lockdowns. However, the connection between traffic reductions and air 
quality during COVID lockdowns was not always clear or uniform across the world. There was a 53–60% 
decrease in air pollutants from traffic sources (NO2, CO) during the lockdowns in Nanjing, China (Wang 
et al. 2020a, b), and in Somerville, MA, USA, there was a decrease in ultrafine particle number 
concentrations (45–69%) and black carbon (22–46%) that were attributed to traffic (Hudda et al. 2020). 
In addition, traffic reductions (48–60%) in six cities in Italy were observed alongside reductions in 
NO2 (25–59%) and PM (17–32%) (Gualtieri et al. 2020), and in California, traffic reductions (24–29%) 
were observed alongside decreases in NO (32–35%) and NO2 (15–29%) (Liu et al. 2020). Across 
northern China, air quality sensors in 366 urban centers were evaluated against traffic data, and it was 
found that traffic volume correlated between 11 and 44% to air pollutant concentrations (PM2.5, PM10, 
CO, SO2, NO2, and O3) (Wang et al. 2020a, b). Others found less significant decreases in air pollutants 
due to traffic. Traffic-related emissions caused a decrease in pollutants (PM, NO, NO2, and NOx) 
between 3 and 12% in Seattle, WA (Xiang et al. 2020), and there was no observable decrease in 
PM2.5 and NO2 in Memphis, TN, USA, even though traffic decreased 57% (Jia et al. 2020). The variations 
in findings could be due to differences in methods used to measure pollutants (e.g., remote sensing, 
fixed stations, or vehicle-mounted sensors), the specific pollutants measured, and unique 
meteorological or physiographic conditions of each city. In addition, these previous studies were either 
temporally constrained to traffic data at an average daily or hourly interval, spatially constrained to 
traffic and air pollutant data at single point sources, or both. This in turn limits the ability to derive 
relationships between traffic and air pollutants at the spatial scale of a single road segment, where 
traffic volumes and air pollutant concentrations can vary significantly. Therefore, additional studies 
that shed light on the changes in air quality due to the COVID-19 lockdown using data in high spatial 
and temporal resolutions are essential to improve our understanding of the impact of traffic on air 
pollution in urban environments. 

The goal of this research project was to fill this gap by monitoring air pollutants and traffic volume at 
high spatial resolutions to determine the impact of the COVID-19 lockdown on traffic and air pollution. 
To that end, we hypothesized that over the study period from lockdown to post lockdown, the lifting of 
stay-at-home orders would increase vehicle-related pollutants due to increases in traffic volume. The 
specific objectives to test this hypothesis were to (1) measure air quality pollutants on Milwaukee 
roads using a mobile-based sensor, (2) evaluate changes in traffic on Milwaukee roads using street-
level traffic counts derived from smartphone data, and (3) explore the relationship between air quality 
changes and traffic data. Specifically, this project used a Sniffer4D air quality sensor that collected PM1, 
PM2.5, PM10, NH3, and O3 + NO2. These air pollutants were chosen because they (1) are driven by 



combustion emissions, including traffic, (2) have a direct impact on public health, and (3) were 
available through the mobile sensor technology that was provided. Ultimately, this work contributes to 
our understanding of how COVID lockdowns and traffic changes influenced air quality and more 
broadly the relationship between human activities and air pollutants in urban areas. 

Methodology 
Study area 
A route for data collection within Milwaukee County was determined based upon criteria that included 
a spatial distribution across the city, a range in road types (highway and arterial), and the ability to 
complete the route within a 2-h drive. The final route chosen encompassed different areas of the city 
including downtown, several suburbs, and the lake shore, as well as a variety of road types (Fig. 1). In 
total, the route covered over 74 km and took between one and a half to 2 h to complete depending 
upon traffic (Fig. 1). 

Fig. 1.  

 
Map of the route driven and a picture of the Sniffer 4D sensor on the roof to the vehicle 
 
Air pollutant data collection 
Air quality was measured with a Sniffer 4D that was mounted to the roof of a vehicle (inset of Fig. 1). 
This sensor measured six air pollutants (PM1, PM2.5, PM10, NH3, H2S, and O3 + NO2, without any 
speciation between O3 and NO2), as well as temperature, pressure, and humidity, and all data was 
referenced using an internal GPS unit. According to the manufacturer, the speed ranges of a typical car 
on roads or highways do not affect the accuracy of the data (Soarability 2023). After each route was 
completed, data from the Sniffer 4D was downloaded from the sensor and processed using Sniffer 4D 
Mapper software. This software was used to visualize the magnitude and spatial distribution of the air 
quality data, as well as to format and export the data into text files. Next, these text files were 

https://link.springer.com/article/10.1007/s11869-023-01330-3/figures/1


imported into ESRI’s ArcMap and transformed into point shapefiles using the latitude and longitude 
associated with each data point. These data points contained the date, time, pollutants measured, and 
latitude and longitude and were then used in the data analysis as described in a later section. 

In total, we conducted 15 road surveys between April and August during which air pollutants were 
measured. Stay-at-home orders were issued on March 24 in the State of Wisconsin and were lifted in 
Milwaukee County on June 11. Therefore, the study does not capture conditions prior to the lockdown 
but does effectively cover a majority of the stay-at-home period and the months after the lifting of 
restrictions. Using the established route and Sniffer 4D sensor, we then selected days and times to 
collect data. Air pollution due to vehicles in metro areas occurs largely as a function of when 
commuters enter into and leave the city for work (Amin et al. 2017; Batterman et al. 2015); however, 
there may be different traffic patterns on the weekends depending upon subsistence, maintenance, 
and leisure (Agarwal 2004). Therefore, to capture both weekday and weekend trends, as well as peak 
traffic conditions, we collected data on Wednesdays and Saturdays between approximately 4 PM and 
6 PM. Choosing a fixed time during the day also allowed us to maintain consistency in the data 
collection throughout the study period. 

Traffic data collection 
To evaluate trends in traffic volume over the sampling period, we obtained traffic data for individual 
road segments using smartphone-based vehicle volume data (StreetLight 2021). Using this data source, 
we determined both the total number of trips per day on each road segment, as well as the average 
number of trips during the sampling time period (4–6 PM). The estimated trip counts included all 
sampled bi-directional traffic sources including vehicles, trucks, and motorcycles. Data was collected on 
Wednesdays and Sundays around 4–6 PM between February 1 and August 31, 2020. This data was 
then applied to evaluate the change in traffic over time, as well as the relationship between traffic and 
air quality as discussed in the following section. 

Data analysis 
To evaluate the air quality and traffic along the route in this study, eight different road segments were 
chosen to analyze. These road segments chosen covered 75% of the total route and included four 
signalized arterial roads, which are Capitol (3.9 km), Lincoln (7.6 km), Oklahoma (12.5 km), and State 
Highway 32 (6.5 km), and four highways: I-43 (5.9 km), I-94 (8.9 km), I-41 (4.4 km), and I-794 (5.2 km). 
The air pollution data collected on each day was summarized for each individual road (i.e., mean, 
median, standard deviation). Using these summary statistics, the data across all days were analyzed for 
temporal trends to identify the effect of the lockdown order and subsequent re-opening on air quality 
within Milwaukee. 

To do so, we performed two statistical analysis tests on the median air quality parameters for each 
road to determine if gradual or abrupt trends were present in the data. To evaluate if there were any 
gradual trends over time, we performed a Mann–Kendall test, which is a non-parametric test that tests 
for the occurrence of a monotonic trend in the data (Helsel et al. 2020). To determine if there were any 
abrupt changes, we used the Pettitt test (Pettitt 1979). The Pettit test is an adaptation of the rank-
based Mann–Whitney statistic that tests whether two samples come from the same population and is 
effective at detecting abrupt changes. For all tests, the significance level was set to 5%. By using both 



methods, we sought to detect whether the lifting of restrictions caused a gradual or abrupt increase in 
both air quality and traffic. In addition to tests of gradual and abrupt trends, we used the t-test to 
determine if the mean pollutant concentrations on each road were statistically different between 
samples during and after the lockdown. 

To further evaluate the influence that traffic had on air quality, we performed simple linear regression 
to predict the average concentration of pollutants on each road based upon the number of total trips 
on the road from the smartphone-based traffic data. This is shown in the following equation: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 

where 𝑦𝑦 is the independent variable (i.e., average air quality concentration on a segment of a 
road), 𝛽𝛽 represents the regression coefficients, and 𝑥𝑥 represents the dependent variables (i.e., the 
volume of traffic on a segment of a road). 

In addition, there were 3 days during the data collection period in which the previous 24 h had a 
rainfall depth that exceeded one inch (June 12, July 16, and August 11), which resulted in significant 
low outliers in the air pollutant data. This is most likely due to the effect that rainfall has on washing 
out pollutants (Luan et al. 2019; Ouyang et al. 2015a, b); therefore, to account for these meteorological 
effects on the data, these days were removed from the temporal analysis due to their influence and 
leverage on the dataset. 

Results and discussion 
Temporal trends in air quality 
Detection of gradual and abrupt changes 
Four of the measured pollutants (PM1, PM2.5, PM10, and NH3) displayed a statistically significant 
(p < 0.05) positive monotonic trend during the data collection period (April–August 2020) on all the 
roads as indicated by positive Kendall’s Tau values in Fig. 2. These positive Kendall’s Tau values 
indicated that over the course of the measurement period—from the beginning of the lockdown until 
the end of August—these pollutants were gradually increasing in concentration on the road segments 
(data shown in Fig. SI-1). While O3 + NO2 had positive Kendall’s Tau values on each road segment, 7 of 
the 8 road segments were not statistically significant. The exception to positive Kendall’s Tau values 
was in H2S, which while negative for six of the eight roads, none were statistically significant. These 
negative Kendall’s Tau values and lack of statistical significance may be due to the fact that H2S is not 
emitted in traffic or combustion emissions, and therefore less traffic and human activity may not result 
in changes in H2S concentrations. 

  



Fig. 2 

 
Kendall’s Tau and significance test for monotonic trends in air quality data. This figure illustrates Kendall’s Tau 
value for each test, which represents the strength of a trend (− 1 to 1) with those that are statistically significant 
(p < 0.05) shown in blue 
 

Using the Pettit test, a statistically significant (p < 0.05) abrupt change in pollution was detected for all 
roads for NH3, PM1, PM2.5, and PM10 on or around June 13, 2020 (Table 1). In addition, for O3 + NO2, six 
of the roads (Oklahoma, Lincoln, Capitol, 794, 94, and 32) exhibited an abrupt increase in pollution on 
June 13, 2020. This date corresponds to 2 days after the lifting of Milwaukee County lockdown 
measures on June 11, 2020. H2S did not have any statistically significant abrupt changes and therefore 
was omitted from Table 1. 

Table 1 Results of the Pettit test on time series of mean pollutant concentrations 
Road PM1.0 PM2.5 PM10 NH3 O3 + NO2 
Oklahoma 6/13 6/13 6/13 6/13 6/13 
Lincoln 6/13 6/13 6/13 6/13 6/13 
Capitol 6/13 6/13 6/13 6/17 6/13 
Rt-32 6/13 6/13 6/13 6/13 6/13 
I-794 6/13 6/13 6/13 5/16 6/13 
I-94 6/13 6/13 6/13 6/17 6/13* 
I-43 6/13 6/13 6/13 6/17 6/13* 
I-41 6/13 6/13 6/17 6/17 7/4* 

 

Differences during and after lockdown 
The median air pollutant concentrations of all vehicle-emitted pollutants (PM1, PM2.5, PM10, NH3, and 
O3 + NO2) significantly increased after the lockdown was lifted (p < 0.05) based upon t-test. This finding 
is represented by Fig. 3, which illustrates the distribution of the mean air pollutant concentrations 
before and after the lockdown (June 11, 2020) across all eight roads. The mean PM1, PM2.5, and 
PM10 increased 307%, 270%, and 220%, respectively; the mean NH3 and O3 + NO2 increased 277% and 
28%, respectively. Finally, H2S decreased 11%, but this was not statistically significant at the 0.05 level. 

  

https://link.springer.com/article/10.1007/s11869-023-01330-3/figures/2


Fig. 3 

 
Differences in the distribution of mean concentrations across all roads during and after the lockdown 
 

Trends in traffic 
Traffic volumes derived from the smartphone-based traffic data indicates a clear change in traffic over 
the course of the lockdown. Figure 4 illustrates the mean Wednesday daily traffic volume for the eight 
segments of road evaluated in this study from February to August 2020. As illustrated, traffic began to 
suddenly decrease in the beginning of March after stay-at-home orders were issued for Milwaukee. 
Then, beginning in late March and early April, daily traffic volumes begin to increase before plateauing 
during the summer. To further evaluate these trends, we summarized the distribution of traffic 
volumes on each Wednesday during the lockdown (March 18–June 10) and after the lockdown (June 
11–August 30) as illustrated in Fig. 5. All roads exhibited a statistically significant increase in traffic 
volume between 30 and 84%, with a median increase of 42% across all roads. 

  

https://link.springer.com/article/10.1007/s11869-023-01330-3/figures/3


Fig. 4 

 
Graph of the weekday 24-h traffic count from February through the end of August 2020 with a moving average 
trendline 
 
Fig. 5 

 
Distribution of weekday traffic on each road during (March 18–June 10) and after (June 17–August 26) for the 
24-h traffic volume (left) and 4–6 PM traffic volume (right) 
 

The Mann–Kendall and Pettit tests were used to detect if monotonic trends and abrupt shifts existed in 
the data from lockdown (March 18) until the end of August. As illustrated in Fig. 6, the traffic volume 
over the entire day showed statistically significant increasing monotonic trends, while the 4–6 pm 
traffic showed statistically significant increasing trends for 6 of 8 streets. The two roads that did not 

https://link.springer.com/article/10.1007/s11869-023-01330-3/figures/4
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have statistically significant trends were arterial roads in the south of the city. A statistically significant 
abrupt shift was detected in the data from the Pettit test for all eight roads, and for six of the eight, 
this shift occurred on June 10 (Table 2). This date corresponds with the lifting of the Milwaukee County 
stay-at-home order on June 11, 2020. This date also corresponds closely with the time of the abrupt 
shifts that occurred in the air pollutant data (June 13). Because of the similarities between air 
pollutants and traffic volume as it relates to the change in mean values, increasing monotonic trends, 
and the timing of abrupt changes, the relationship between air pollutant concentrations and traffic 
volume was evaluated as described in the following section. 

Fig. 6 

 
Mann–Kendall test of the traffic volume for 24 h and 4–6 PM on weekdays 
 
Table 2 Results of abrupt changes in traffic on weekdays from the Pettit test 

Road Date p Value 
Capitol 20-May-20 0.025 
Lincoln Ave 20-May-20 0.029 
Oklahoma 10-Jun-20 0.005 
Rt. 32 10-Jun-20 0.002 
I-41 10-Jun-20 0.001 
I-43 10-Jun-20  < 0.0001 
I-794 10-Jun-20 0.001 
I-94 10-Jun-20  < 0.0001 

 

Relationship between traffic and air pollutants 
Linear regression was applied to predict the mean pollutant concentration on each road segment 
based upon the traffic volume over the measurement period (4–6 pm), and results indicated that the 
relationship varied broadly depending upon the road segment and the pollutant (Fig. 7). In terms of 
pollutants, particulate matter showed the strongest correlation with traffic explaining up to 56% of the 
variance (I-43) as indicated by the R2 value, and a median of 33% across all particulate matter (PM1, 
PM2.5, and PM10). In general, all three particulate matter sensors had similar relationships with a 
stronger correlation for smaller particles with few exceptions. Traffic explained up to 43% of the 

https://link.springer.com/article/10.1007/s11869-023-01330-3/figures/6


variance in O3 + NO2 concentrations with a median of 29%. Finally, traffic explained up to 47% of the 
variance in NH3 concentrations with a median of 22%. 

Fig. 7 

 
Relationships between pollutants and traffic volume for each road segment 
 

Results from the linear regression suggest that the relationship between pollutants and traffic vary by 
road. Lincoln Avenue had the highest correlations with traffic explaining 43–52% of the variance in 
vehicle-based pollutants. This segment of road runs north and south along the shoreline of Lake 
Michigan and for several miles is buffeted by a cliff face. Therefore, this segment of the road may be 
less impacted by other anthropogenic sources of pollutants. In general, the goodness of fit is lowest for 
roads in the southwest portion of the study area (e.g., Fig. 8), with no statistically significant trends for 
Rt-32 and Oklahoma. These are signalized arterial roads that are subject to stopping, idling, and 
starting, which may impact emissions, unlike the uninterrupted flow on the interstate highways. 
Additionally, both Rt-32 and Oklahoma were found to have no statistically significant monotonic 
increasing trend in the 4–6 PM traffic volume over this time period. Therefore, given the lack of a trend 
in the traffic data, it is not surprising to see little correlation between traffic volume on these roads and 
changes in air pollutants. In addition, these roads are near land uses that are dominated by commercial 
and heavy industrial, which may explain the lack of correlation between the measured pollutants and 
traffic volume due to other surrounding anthropogenic sources of air pollutants. 

  

https://link.springer.com/article/10.1007/s11869-023-01330-3/figures/7


Fig. 8 

 
Spatial distribution of the goodness of fit (R2) for PM1.0 

Discussion 
This study captured the changes in air pollution and traffic volume in Milwaukee, WI, a city of 
approximately one million people, during the COVID-19 lockdown. Results demonstrated that air 
pollutants were found to increase from lockdown to post lockdown, including increases in mean 
concentrations of NH3 (277%), particulate matter (220–307%), and O3 + NO2 (28%). The increase in 
O3 + NO2 once the lockdown was lifted may be largely due to increased traffic emissions of NO2. Other 
studies found that during COVID-19 lockdowns, the NO2 levels decreased, while O3 levels either 
remained unchanged or increased (Gkatzelis et al. 2021; Gualtieri et al. 2020), with the increase in 
O3 attributed largely to the reduction of nitrogen oxide that leads to a lower O3 consumption or 
titration. This was followed by a subsequent increase in NO2 and decrease in O3 once the lockdown was 
lifted (Ropkins and Tate 2021). Tests for abrupt changes demonstrated that for all combustion 
pollutants, there was a change that occurred on June 13, 2020 on most roads. This corresponds to 
shortly after the lockdown was lifted, indicating that the lockdowns had a direct impact on air quality. 

In addition to changes in air pollution, traffic increased from lockdown to post-lockdown by 30–84%, 
depending upon the road. These findings correspond to other studies that found similar changes in 
traffic in other studies within the USA (Hudda et al. 2020; Jia et al. 2020; Xiang et al. 2020). Mann 
Kendall tests confirmed a monotonically increasing trend in traffic from the time the lockdown 
occurred until the end of the monitoring period, and a Pettit test for abrupt changes confirmed a 
change in traffic patterns near the lifting of the lockdowns on June 11, 2020. Therefore, due to the 
observed similarities in air pollutants and traffic volume, we sought to evaluate the influence that 
traffic has on explaining the variance in air pollutant concentrations. 

https://link.springer.com/article/10.1007/s11869-023-01330-3/figures/8


The results from the linear regression reveal that traffic was able to explain some of the variances in 
the pollutant concentrations, including up to 47% of NH3 (median 22%), 57% of particulate matter 
(median 33%), and 42% of O3 + NO2 (median 29%). These estimates are within the broad range of other 
studies that have estimated the impact that traffic had on the reduction in air pollutants during the 
lockdown (Hudda et al. 2020; Jia et al. 2020; Wang et al. 2020a, b; Wang et al. 2020a, b; Xiang et 
al. 2020). However, these previous studies were either temporally constrained to traffic data at an 
average daily or hourly interval, spatially constrained to traffic and air pollutant data at single point 
sources, or both. Those that do use mobile-based sensors (Hudda et al. 2020; Wang et al. 2020a, b) 
were able to evaluate changes in air quality and differences between road types; however, these 
studies were also constrained to traffic data at single points on a highway within the road network, 
requiring assumptions in traffic changes on roads for which traffic data was not available. 

An advantage of this study is the use of both mobile-based pollutant sensors and localized traffic 
volume data to evaluate changes at road-level spatial scales. Specifically, we were able to leverage this 
data to evaluate the differences in pollutant concentrations across road types and regions of the city, 
as well as compare changes in air pollutants to local traffic conditions at the source where data was 
collected. In doing so, we found that while both air pollutants and traffic increased on all roads over 
the study period and have abrupt changes at similar times, the correlation of traffic volume to air 
pollutant concentrations varied widely. This could be due to the unique conditions at the site-level that 
control air pollutant concentrations near the roads. For example, Lincoln Drive has the strongest 
relationship between pollutants and traffic, which could be due to the location between the lake and a 
cliff face making local air quality more dependent upon road traffic than other locations that are nearer 
to industrial and commercial centers of the region. 

Furthermore, arterial roads in the south of the city were found to have little to no relationship 
between traffic and combustion-related air pollutants. This may be because these roads exhibited no 
statistically significant changes in traffic during the 4–6 PM data collection period. If these street-
specific traffic volume data were not available for this study, a generalization of traffic changes across 
the city may have resulted in a type I error that incorrectly attributed changes in air pollutants to 
changes in local traffic. In addition, these locations are closer to industrial and commercial areas of the 
city where other sources of combustion pollutants may be present or dominate air pollutant 
concentrations. This aligns with other studies using mobile-based sensors that have similarly found 
streets near industrial and commercial areas where industrial emissions make up the most significant 
portion of pollutants (Wang et al. 2020a, b). Overall, these outcomes highlight the value of air quality 
data at relevant spatial and temporal scales for assessing the influence of traffic on air pollutants in 
urban areas. 

There are several limitations that influence the interpretation of this study. First, this study does not 
have data on air pollutants prior to the lockdown nor does it have data on air pollutants in previous 
years during the same seasons. Therefore, there is no way to account for seasonal effects or yearly 
trends that may be occurring within the air pollutant data itself. However, the strong changes, coupled 
with supporting literature, largely support the attributions of traffic to changes in air pollutants 
articulated in this study. Secondly, this study does not capture the variation in other sources of 
pollutants or background concentrations and is limited to evaluating changes in traffic only. There may 



be other sources, such as industrial activity, airports, or power plants, that may make up a significant 
portion of the source from local areas. A simple dispersion modeling (briefly discussed in the Appendix) 
using AERMOD (U.S. EPA 2022) performed on two of the road segments showed that the background 
concentration have non-negligible effect in the local variation of pollutants. Finally, as this data is 
limited to Milwaukee, WI, the findings from this study may not translate to other cities that have 
different meteorological and anthropogenic characteristics that influence air pollutants. 

What impact these changes at a local scale have on air pollutant concentrations more regionally is also 
unclear. A synthesis of PM2.5 and ozone concentrations during the lockdowns across the USA found a 
variation in changes in those pollutants, with some increasing and others decreasing (Bekbulat et 
al. 2020). This may be due to meteorological or regional influences on PM2.5 and ozone that contribute 
to regional concentrations. In fact, recently, it has been found that more than half of premature 
mortality from air pollution can come from out-of-state pollutant sources (Dedoussi et al. 2020). 
Therefore, it may be challenging to make regional inferences on pollutant concentrations from this 
localized data. 

Overall, these results have important implications for the management of air pollutants. The reduction 
in traffic due to the COVID-19 lockdowns provided an opportunity to evaluate and test the impact of 
traffic reductions on the environment, which in turn can help inform management decisions. For 
example, the World Health Organization recommends a 5 µg/m3 annual mean concentration for 
PM2.5 due to the adverse impact that it has on public health (World Health Organization 2021). In this 
study, PM2.5 had a median concentration of 3 µg/m3 across all roads during the lockdown, while the 
lifting of the lockdown increased median concentrations to 13 µg/m3—exceeding recommended 
concentrations. Therefore, this study shows that this type of intervention could be effective at 
reducing concentrations of PM2.5 to levels that are closer to WHO recommendations. To that end, long-
term solutions may be achieved by changes in both vehicle composition (e.g., transition from 
combustion engines to electric vehicles) or the mode of traffic (e.g., shift from passenger cars to public 
transportation). As such, these results, among other findings, can be utilized by decision-makers to 
inform management decisions related to traffic and air pollution. 

Conclusions 
This study presents an analysis of the air pollutant and traffic changes during the COVID lockdown in 
Milwaukee, WI. Results indicated that the lifting of the lockdown measures resulted in statistically 
significant monotonic increases in both traffic volume and air pollutant concentrations over the study 
period, and abrupt changes in traffic volume and air pollutant concentrations near the time Milwaukee 
County lockdown restrictions were lifted. Traffic volume was able to explain up to 42–57% of the 
variance in air pollutants on roads. These findings, therefore, have practical implications at the 
intersection of traffic management and air quality in urban areas. 

Data availability 
The datasets generated during and/or analyzed during the current study are not publicly available due 
to their large size but are available from the corresponding author on reasonable request. 
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