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selected.  A preliminary validation study using similar beam dimensions resulted in errors 

for Ef of between 3-13% for acrylic and bovine bone19,325,330.   

These results suggest that the relatively low s/d ratio of 6.2 may have introduced 

errors due to shear deformation in the specimens329.  It is possible to estimate the effect of 

this error using a branch of mechanics called Timoshenko beam theory331.  For three-

Figure V-5.  Shear and moment diagrams for three-point bending test.  The 
applied load (P) results in reaction forces (P/2) at both supports.  The neutral axis of 
the cross-section extends into the page along the dash-dotted line.  The neutral axis 
experiences no bending stresses (or strains) and serves as a transition between 
compression and tension within the beam.  The vertical shear force (V) can be plotted 
along the span length (s), where the point loads cause sudden changes in V.  Moving 
from left to right, the cumulative area under V can be used to determine the bending 
moment (M).  Thus, positive shear forces to the left of P cause the moment to 
increase, while negative shear forces to the right of P cause the moment to decrease. 
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point bending, the deformation measured at mid-span (Dtotal) can be broken down into the 

sum of deformations due to bending (Dbend) and shear (Dshear) as follows: 

D���#� � D'("� + D��(#� Equation V-10 

The Timoshenko elastic modulus (ET) can be determined for a beam with a rectangular 

cross-section using the following equations: 

!s � �z;4{|; C 1D���#� − D��(#� 
Equation V-11 

D��(#� � �z4{|�w 
Equation V-12 

where P is the applied load, s is the span length, w is the beam width, d is the beam depth, 

G is the shear modulus (i.e., the shear equivalent of elastic modulus), and T is the 

Timoshenko shear correction factor (T = 0.833 for a rectangular cross-section)332,333.  The 

value of G can be estimated as: 

� � !�2	1 + &'�"(� 
Equation V-13 

where !� is the mean elastic modulus for a given beam orientation in Table V-2, and νbone 

is again Poisson’s ratio (≈ 0.3).  Using these equations, ET was determined for a 

representative longitudinal and circumferential beam, and the results were compared to 

the respective uncorrected Ef values.  These calculations revealed that the uncorrected Ef 

values underestimated the true elastic modulus by 10% (or ≈ 0.5 GPa) in the longitudinal 

beam and 14% (or ≈ 0.3 GPa) in the circumferential one. 
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Moreover, one can also compare the maximum bending stress (σmax, which occurs 

on the outer surface at mid-span) to the maximum shear stress (τmax, which occurs at the 

neutral axis) using the following relationships from beam theory140,313: 

x2#3 � 6v2#3{|� � 3�z2{|� 
Equation V-14 

�2#3 � 3�2#32{| � 3�4{| 
Equation V-15 

where Mmax is the maximum bending moment and Vmax is the maximum vertical shear 

force on the cross-section (Figure V-5).  Applying these equations to the same example 

beams from above, the ratios of σmax to τmax were approximately 13 and 11 in the 

longitudinal and circumferential beam orientations, respectively.  Thus, despite a 

relatively small s/d ratio of 6.2, the shear stresses remain small with respect to the 

stresses due to bending.  Nevertheless, a corrected ultimate stress (σT) can be calculated 

from Timoshenko beam theory332 according to: 

xs � 3�z2|� − 0.266 2�|  
Equation V-16 

Using the same beams from before, σT was 2% (or ≈ 1 MPa) higher than σf,max for the 

longitudinal beam and 4% (or ≈ 1 MPa) lower than σf,max for the circumferential beam.  

Notice that the absolute differences between elastic moduli (i.e., ET – Ef) and ultimate 

strengths (i.e., σT – σf,max) when accounting for the effect of shear deformation are 

generally well-within the standard errors for each property (Table V-2). 
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 Using SRµCT, substantial and heterogeneous intracortical vascular porosity was 

observed in the OI bone beams (Ca.V/TV = 3-42%).  In most cases, the amount of 

vascular porosity was drastically higher than normal values reported for children and 

young adults (e.g., Ca.V/TV = 3-7%)222,269,291–293,295.  It is unlikely that this calculation 

was significantly affected by small microstructural flaws (e.g., microdamage).  As 

mentioned previously, porosity was measured in the beams at a minimum distance of 0.5 

mm away from the damage region surrounding the fracture plane.   

Moreover, microcracks in cortical bone typically account for less than 0.5% of the 

total bone volume and have an ellipsoidal 3D shape, with a length and width on the order 

of 100 µm and a thickness of approximately 1 µm153,334–336.  Animal models representing 

OI (i.e., Mov13, oim/+, and Brtl/+ mice) suggest that OI cortical bone may have an 

increased susceptibility to microdamage accumulation compared to healthy tissue177–179.  

Indeed, ESEM images during fracture toughness tests revealed microcracking in 

interstitial bone regions, which have a higher local degree of mineralization.  Similar to 

other recent studies, a minimum size threshold of approximately 2000 µm was used to 

eliminate microdamage and other artifacts when segmenting vascular porosity135–137,274. 

Low overall bone mass is a hallmark of OI and has been noted previously in both 

cortical and trabecular bone at a variety of skeletal sites including the hip, pelvis, and 

long bones21,127,183,298,310,337,338.  Diaphyseal long bone regions are well-suited for studying 

secondary remodeling and lamellar organization in OI cortical bone.  Indeed, a recent 

SEM study of femoral and tibial osteotomies observed a higher percentage of non-

ossified vascular/resorption area in OI bone compared to controls298.  The same study 
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also reported abnormal cortical remodeling characterized by wide, flattened resorption 

spaces formed by “drifting osteons”. 

Relationships were also examined among the flexural mechanical properties and 

microstructural parameters assessed via SRµCT such as Ca.V/TV, Vf, N.Lc/TV, and 

vTMD.  Similar to previous studies, significant linear and power law relationships were 

observed between the longitudinal material properties and bone porosity (i.e., Ca.V/TV 

and Vf)145,301,315–319.  These relationships are usually presented as “property = a × Vfb”, 

with b ranging between 2 and 3.  In the current study, longitudinal bone properties 

followed a similar power law with b exponents of 2.93, 2.76, and 2.83 for Ef, σy, and 

σf,max, respectively.  These relationships indicate that high intracortical porosity (i.e., low 

Vf) may be an important contributor to the increased bone fragility of young individuals 

with OI.  Indeed, large porous regions within the cortex likely act as local stress-risers 

that cause fracture to occur at lower levels of nominal stress148. 

Although the crack-initiation toughness (KJ,o) was similar for both specimen 

orientations, the crack-growth toughness (dKJ/d∆a) of longitudinal beams was nearly six 

times higher than in the circumferential orientation.  Local toughening via small crack 

deflections and interstitial microcracking was observed in longitudinal beams, but not in 

circumferential ones.  A recent murine study on severe OI reported similar fracture 

patterns for bone tested in the longitudinal orientation176.  Other studies on bone 

pathology and aging have reported reduced fracture toughness (both KJ,o and dKJ/d∆a) 

that has been attributed to changes in the osteonal pore network such as increased density 

and/or diameter of canals83,172.  Future SRµCT work is needed to examine whether other 
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toughening mechanisms are present in 3D for OI cortical bone.  For example, uncracked 

ligament bridging has been reported to be the dominant toughening mechanism in healthy 

bone153,160,162–168, whereby small load-bearing segments help to reduce the driving force 

for further cracking. 

The density of osteocyte lacunae (N.Lc/TV) was not significantly associated with 

bone mechanical properties in either beam orientation.  A wide range of values has been 

reported for N.Lc/TV owing to a number of experimental factors including donor age, 

local anatomical sampling site, image resolution, and segmentation strategy135–

138,275,303,304.  Inter-study comparison of N.Lc/TV calculations is therefore difficult; 

nevertheless our results are within the range previously observed in young adult bone 

(e.g., 23,000-90,000 lacunae/mm3)136–138.  One recent SRµCT study on the oim mouse 

model noted a significant increase in lacunar density compared to wild-type controls300.  

Cracks propagate freely through osteocyte lacunae153,154, so changes in the density or 

geometry of lacunae could contribute to bone fragility in OI.  Osteocyte lacunae are one 

of a number of structural features (e.g., osteocyte canaliculi, vasculature, muscle 

insertions, etc.) that can act as potential sites of localized stress concentration and 

microdamage accumulation148–154.  Thus the absence of a relationship between N.Lc/TV 

and the flexural properties in the current study suggests a deemphasized role of osteocyte 

lacunae in the mechanical properties of OI cortical bone. 

The 12 specimens included in this study were donated by a group of 9 children 

and adolescents who were diagnosed with phenotypes ranging from mild to severe OI.  

All bone samples were collected as a byproduct of corrective intramedullary rodding 
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procedures, however a third of these were also in the vicinity of a recent fracture.  

Namely, specimens 1 and 2 came from a combination rodding and fracture repair 

surgery.  Specimen 3 was near a site of fracture non-union, while specimen 5 was close to 

a healed fracture site.  It is therefore possible that residual microdamage accumulation 

near the fracture sites may have compromised the mechanical properties in these 4 

specimens.  Nevertheless, visual inspection confirmed that there was no apparent fracture 

callus within these specimens, and further manual examination of the high resolution 

SRµCT images did not reveal the presence of microcracks aside from those produced 

near the fracture plane of the three-point bending tests.  Indeed, longitudinal flexural 

properties from specimens 2 and 3 were among the highest of all beams tested. 

In the current study, all donors except two had previously been treated with 

bisphosphonates anti-resorptive therapy, and most received multiple rounds of treatment.  

Thus, it was not possible to assess the treatment effect of bisphosphonates on the flexural 

mechanical properties.  Moreover, it is unlikely that there was an association between the 

high vascular porosity in the current OI specimens and these drugs, as other researchers 

have noted reduced cortical porosity in postmenopausal and osteoporotic women339,340.  

Recent work has suggested that long-term bisphosphonates treatment may be associated 

with an increased risk of developing osteonecrosis in the jaw111,112, as well as atypical 

femoral fractures113,114.  Thus, it is possible that a prior history of treatment may have 

contributed to the reduced material properties observed in the current study.  Future work 

is warranted to investigate this potentially undesirable effect. 
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F. Conclusions 

This study examined the mechanical, microstructural, and compositional 

properties in cortical bone specimens from children and adolescents diagnosed with mild 

to severe OI.  Flexural bone mechanical properties including elastic modulus, yield 

strength, ultimate strength, and crack-growth toughness were found to be anisotropic and 

greater along the longitudinal diaphyseal axis than in the circumferential orientation.  

Similar to Chapter IV, high intracortical vascular porosity was noted in OI bone.  This 

porosity was strongly and negatively correlated with mechanical behavior in the 

longitudinal direction.  These observations indicate that the presence of elevated vascular 

porosity may be an important contributor to OI bone fragility. 
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VI. SUMMARY AND CONCLUSIONS 

A. Summary 

 Osteogenesis imperfecta (OI) is a complex, genetic disorder of bone fragility.  OI 

is often accompanied by varying degrees of long bone deformity that can require surgical 

intervention as a normal part of clinical care30.  Small tissue specimens retrieved from 

these corrective osteotomy procedures are an invaluable asset in evaluating the 

biomechanical properties of OI cortical bone.  A detailed understanding of these 

properties is vital in the development of potential treatment strategies, as well as in the 

assessment of fracture risk during various activities51,52.   However, to date there is very 

little data describing OI cortical bone mechanical properties20,54–56 and microstructure298 

in humans.  Histomorphometric and clinical bone density measurements are convenient 

for tracking basic OI properties over time21–23, but they offer limited information on the 

distribution and quality of bone material16,17.  Other lab-based techniques such as 

materials testing and 3D high resolution imaging are well-suited for evaluating OI 

properties at its many hierarchical levels. 

 The purpose of this dissertation was to investigate the mechanical properties, 

microstructure, and mineral characteristics of diaphyseal long bone in children and 

adolescents with OI.  The first part of the study (Chapter II) used nanoindentation to 

evaluate material-level differences in elastic modulus and hardness in the longitudinal 

direction (i.e., parallel to the primary long bone axis) for mild vs. severe OI.  The second 

part of the study (Chapter III) outlined the synchrotron radiation micro-computed 

tomography (SRµCT) program at the Advanced Light Source (ALS), suggesting a set of 
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setup and image processing parameters for bone microstructural analysis based on 

empirical observations.  The third part of the study (Chapter IV) analyzed the structure of 

vascular pores and bone cellular spaces in OI, as well as in healthy bone populations.  

Because elevated bone fragility is often attributed to changes in the total amount and 

local degree of mineralization96, the above SRµCT system was also used to examine 

volumetric bone mineral density and tissue mineral density.  Finally, the last part of the 

study (Chapter V) combined mechanical testing (i.e., three-point flexural testing and 

notched fracture toughness testing) and imaging (i.e., SRµCT and environmental 

scanning electron microscopy (ESEM)) to evaluate the anisotropy of OI cortical bone 

oriented parallel vs. perpendicular to the primary long bone axis. 

B. Key Findings 

On the basis of the mechanical testing and imaging results presented in this 

dissertation, there is significant evidence to support both hypotheses outlined in Chapter 

I.  Namely, nanoindentation (Chapter II) and three-point bending (Chapter V) studies 

showed that bone mechanical properties such as elastic modulus, flexural yield strength, 

ultimate strength, and crack-growth toughness vary with OI clinical severity and local 

microstructure (Hypothesis 1).  Moreover, SRµCT imaging methods developed 

specifically for bone (Chapter III) revealed that there are significant changes in bone 

density for OI vs. healthy tissue, with accompanying alterations in the degree and 

morphology of vascular pores and cellular spaces (Chapter IV; Hypothesis 2). 

Chapter II is the first study to compare nanoindentation properties in patients with 

mild OI type I and severe OI type III.  Previous indentation work has reported a lower 
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longitudinal elastic modulus and hardness for healthy vs. severe OI cortical bone20.  

Based on this finding, one might suspect the elastic modulus and hardness of mild OI 

type I bone to fall between that of healthy and severe OI cortical bone.  However, this 

was not the case in the current study, as both properties were 7-8% greater in mild vs. 

severe OI.   

It has been speculated that nanoindentation modulus and hardness are directly 

related to the degree of local mineralization205–208.  Previous quantitative backscattering 

imaging (qBSEM) work has noted hypermineralization in OI bone compared to controls, 

yet the highest levels were seen in the more severe phenotypes183,184.  Other 

characteristics of the mineral (e.g., crystal size, shape, packing density, etc.)4,6,38,80,209 and 

the collagen fibril (e.g., fibrillar diameter, orientation, cross-linking, etc.)76–79,81,82,176,210 

have also been shown to be affected in OI.  Indeed recent simulation studies on individual 

collagen molecules have suggested an inverse relationship between the elastic modulus 

and the severity of the mutation81,82.  There is likely some combination of effects 

occurring in OI such that the increased mineralization of the matrix causes increases in 

elastic modulus and hardness compared to controls, while differences in the collagen 

environment reduce these mechanical properties in OI type III vs. I.  Future work is 

warranted to determine what relationships, if any, exist between the small-scale 

fibrillar/mineral characteristics and the mechanical properties of the various OI types. 

Chapter II is also the first study to investigate the spatial distribution of 

indentation properties in OI cortical bone.  Previous work in healthy bone has reported 8-

25% higher elastic modulus and hardness values for interstitial vs. osteonal bone, where 
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the former has an older tissue age and thus a higher degree of mineralization185–

188,208,212,214,215.  The current study found an 11-13% increase in longitudinal elastic 

modulus and hardness for interstitial vs. osteonal regions within OI bone, suggesting that 

mineralization kinetics are affected similarly in both regions.  In this way, spatial 

differences in nanoindentation modulus and hardness are maintained despite a net 

increase in matrix mineralization.  Future combined nanoindentation and qBSEM work is 

needed to confirm this phenomenon around indents in regions of varying tissue age. 

Chapter III described the SRµCT beamline at the ALS, and introduced a robust 

Fourier Ring Correlation (FRC) method for quantifying 2D and 3D resolution in X-ray 

tomographic images.  Using a variety of common setup parameters, it was shown that 

increasing the number of projections and the camera exposure time can improve image 

resolution by three-fold and reduce noise by up to 30%.  These trends were consistent 

with results seen in cone-beam CT265–267.  One of the main advantages of SRµCT is that it 

can achieve significant improvements in spatial and compositional resolution compared 

to clinical and lab-based µCT.  However, due to constant upgrades in system 

components, it is imperative to continuously monitor resolution to ensure image quality 

and data reliability across multiple user shifts.  Strategies such as the FRC method should 

be integrated into the data processing and reconstruction process, so that users can 

receive real-time feedback on their experiments.  This idea could be increasingly 

important as the ALS shifts towards a more automated data collection, processing, and 

retrieval pipeline through supercomputing initiatives such as the National Energy 

Research Scientific Computing Center (NERSC).  
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Chapter IV is the first study to quantify and compare the characteristics of the 

vascular and lacunar pore spaces in OI, healthy pediatric, and healthy adult cortical bone.  

Using the SRµCT system described in Chapter III, it was shown that vascular pores 

account for over 25% of the total tissue volume in OI cortical bone.  This value was 

approximately six times higher than that of the healthy populations.  The mean diameter 

of the canals was also three to five times larger in OI bone compared to healthy pediatric 

and adult populations, respectively.  These findings likely speak to an imbalance or 

alteration in the normal bone remodeling process in children with OI.  Indeed, prior 

biochemical immunoassay studies have revealed elevated bone turnover markers in 

OI21,103–105. 

Further evidence of abnormal OI cortical bone metabolism was observed in 

Chapter IV via osteocyte lacunar results.  The current study showed a 60% increase in the 

density of osteocyte lacunae for a given tissue volume in OI cortical bone compared to 

healthy populations.  The difference was even starker when normalized for the effect of 

vascular porosity.  Incredibly, for the same volume of bone material, there were nearly 

twice as many osteocyte lacunae in OI vs. healthy bone.  Previous studies have suggested 

that osteocytes may impose an inhibitory signal on osteoblasts, which in turn reduces the 

rate of infilling during osteon formation and increases the diameter of Haversian 

canals341,342.  Indeed, prior OI work has shown a decreased mineral formation rate despite 

increased bone turnover103.  This behavior could explain, at least in part, the elevated 

vascular porosity and canal diameter seen in OI cortical bone. 
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The physiological purpose of high osteocyte density in OI cortical bone is a key 

area for future work, and could be related to the mechanosensory role of these cells343,344.  

It is possible that a high initial density of osteocytes, combined with additional 

recruitment of osteoblasts into the osteocyte lineage, could aid in detecting microdamage 

in the weakened OI bone material.  Finally, osteocyte morphology is thought to adapt 

according to mechanical loading136,274,300.  Thus the more spherically shaped OI lacunae 

found in the current study likely reflect altered stress/strain patterns within the tissue.   

Chapter V is the first study to investigate the flexural properties of human OI 

cortical bone.  On the basis of one nanoindentation study, it had been assumed that bone 

mechanical properties such as elastic modulus, yield strength, and ultimate strength are 

more isotropic in OI than in healthy bone54.  However, it is known that microstructural 

characteristics such as vascular porosity (which indentation experiments largely neglect) 

and mineral content have a strong effect on the above mechanical properties in normal 

bone145,301,315–319.  The current three-point bending study found that the elastic modulus, 

yield strength, and ultimate strength of young OI cortical bone are nearly three times 

higher in the longitudinal vs. circumferential orientation.  Additional toughness testing of 

notched samples revealed a six-fold increase in the crack-growth toughness for the 

longitudinal vs. circumferential orientation. 

Subsequent SRµCT imaging experiments in Chapter V showed that the above 

mechanical properties of OI bone are highly dependent on the amount and orientation of 

vascular porosity.  Indeed, significant correlations were reported between elastic 

modulus, yield strength, ultimate strength, and the vascular porosity in the longitudinal 
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direction.  Similarly, ESEM images collected during fracture toughness tests showed 

evidence of energy dissipating “toughening mechanisms” such as crack deflection and 

interstitial microcracking in the longitudinal direction.  Such behavior was not observed 

in the circumferential direction, where the main orientation of vascular pores is 

perpendicular to the line of action of the bending stress, thereby generating large stress 

concentrations that severely weaken the bone148.  Additional work is needed to determine 

how these stress concentrations, which should be more pronounced in OI cortical bone, 

affect the flexural properties compared to healthy bone. 

C. Future Directions 

There may be a clinical shift away from corrective osteotomy procedures in OI 

patients with limb deformity.  Furthermore, even with the improved resolution of 

peripheral clinical CT scanners (e.g., HR-pQCT), there are obvious radiation dosage 

concerns, making human studies on OI cortical bone biomechanics increasingly difficult.  

Thus, there is a need for better clinical diagnostic tools to evaluate OI cortical bone 

quality.  One simple but elegant approach has recently been introduced based on 

microindentation technology109,345–350.  The instrument monitors the progressive increase 

in penetration depth experienced by an indenter tip during cyclic testing.  The diameter of 

the tip is small enough (i.e., on the order of a normal hypodermic needle) to be applied 

through the skin after application of a local anesthetic.  However, the resulting 

indentations are also large enough to generate small cracks or microfractures that can be 

used to evaluate fracture resistance. 
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Previous nanoindentation techniques have already been used to evaluate fracture 

toughness in bone biopsies embedded in epoxy resin214,351,352.  However, the current 

microindentation device may be more clinically relevant because it can be safely 

administered in vivo without requiring a biopsy or causing pain (other than the minimal 

discomfort of local anesthesia) to the patient.  This device is already being used to 

identify differences in bone quality between healthy individuals and those suffering from 

hip fractures346, atypical femoral fractures109, and type II diabetes347.  Similar minimally 

invasive tools have great potential in OI, where they could be used for routine clinical 

assessment, surgical planning/evaluation, and fracture risk prediction. 

The cracks caused by the indentation device have been shown to display similar 

characteristics in 2D to those measured via traditional three-point bending experiments 

(e.g., Chapter V)346.  It is therefore possible that the 3D structure of such microfractures 

could shed additional light on microdamage accumulation in bone.  To this end, a recent 

pilot study using this technique was performed on the anterior mid-diaphyseal region of a 

cadaveric tibia, and the resulting indents were analyzed using SRµCT at the ALS.  

Interestingly, microdamage was clearly visible in 3D around the indentation wake (Figure 

VI-1), and the amount of microcracking was correlated with the mechanical properties353.  

Additional preclinical studies (e.g., in animal models) have the potential to uncover 

differences in damage accumulation in OI and evaluate new treatments for the disorder. 
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Figure VI-1.  SRµCT images of a new minimally invasive bone diagnostic tool.  Multiple views of a 
microindentation (blue) on the native bone surface of a human tibia show microdamage accumulation 
(green) within the indent wake.  Vascular canals (red) are also shown for reference. 
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