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Abstract 
This study aims to 3D print titanium alloy constructs incorporating gradient of porosities, from the fully 
dense core to the porous outer surface. Gradient porous specimens were prepared using selective 
laser melting (SLM). Fully dense specimens fabricated by SLM were used as the control group. 
Characterization of samples was done using X-ray tomography, uniaxial compression testing, and 
optical and scanning electron microscopes. The biocompatibility of fabricated samples was 
investigated using human periodontal ligament stem cells via assessment of cell attachment, viability, 
and proliferation by direct and indirect assays. The data were analyzed using ANOVA and Tukey’s post 
hoc test. Characterization of constructs reveals interconnected gradient porosities and higher contact 
angle in porous samples. The introduction of porosity leads to a significant decrease in compression 
strength. However, Young’s modulus of the samples with gradient porosity was more similar to the 
natural bone modulus. The surface microstructure consists of loosely bonded spherical particles. 
Biocompatibility of the dense and porous samples is appropriate. Although the porosity size led to a 
reduced cell proliferation rate in the gradient sample, the extract of the gradient sample results in 
more cell proliferation than the dense sample’s extract. The study demonstrates that a biocompatible 
functionally graded porous titanium structure can be well fabricated by SLM, and this structure leads 
to a good match of Young’s modulus to that of the bone. 

Introduction 
This study aims to 3D print titanium alloy constructs incorporating gradient of porosities, from the fully 
dense core to the porous outer surface. Gradient porous specimens were prepared using selective 
laser melting (SLM). Fully dense specimens fabricated by SLM were used as the control group. 
Characterization of samples was done using X-ray tomography, uniaxial compression testing, and 
optical and scanning electron microscopes. The biocompatibility of fabricated samples was 
investigated using human periodontal ligament stem cells via assessment of cell attachment, viability, 
and proliferation by direct and indirect assays. The data were analyzed using ANOVA and Tukey's post 
hoc test. Characterization of constructs reveals interconnected gradient porosities and higher contact 
angle in porous samples. The introduction of porosity leads to a significant decrease in compression 
strength. However, Young's modulus of the samples with gradient porosity was more similar to the 
natural bone modulus. The surface microstructure consists of loosely bonded spherical particles. 
Biocompatibility of the dense and porous samples is appropriate. Although the porosity size led to a 
reduced cell proliferation rate in the gradient sample, the extract of the gradient sample results in 
more cell proliferation than the dense sample's extract. The study demonstrates that a biocompatible 
functionally graded porous titanium structure can be well fabricated by SLM, and this structure leads 
to a good match of Young's modulus to that of the bone. 



Increasing applications of implantable biomaterials in orthopedics and dentistry lead to the rapid 
development of new technologies in this field. The purpose of these new technologies is to enhance 
both physical and biological responses of bed tissue, promote osseointegration, reduce treatment 
time, and increase success rate and survival rate of implants. The strength, stiffness, and abrasion 
resistance are the most important properties in the orthopedic implant—as artificial bone. On the 
other hand, the small size of a dental implant—as artificial tooth root—and the special way of its 
placement in the jawbone, make stress relaxation more important for the part inside of the bone, and 
require sufficient strength for the part in contact with the oral cavity [[1]]. However, the primary 
objective of any implant system is to have a firm fixation to the bone, and this objective could be 
influenced by biomechanical and biomaterial selection [[2]]. Bone-implant modulus mismatch, as well 
as the inadequate initial fixation with the host bony tissue, are the two severe problems that 
researchers are currently dealing with [[4]]. Bone tissue surrounding the implant is subject to some 
mechanical stress. Insufficient loading following the mismatch of Young's module is termed stress 
shielding, which may detrimentally affect the bone and lead to resorption [[5]]. 

Although titanium and its alloys have considerable advantages—like excellent biocompatibility—there 
are also certain drawbacks, like its elastic modulus (110–120 GPa), which is far higher than that of 
cortical bone (10–30 GPa). The introduction of porosity into the structure of titanium and its alloys can 
reduce the elastic modulus of Ti so that it more closely matches the human bone. It brings also other 
benefits, like lowering the density of implants and improving tissue adhesion [[7]]. Trabecular Metal™ 
(Zimmer, Warsaw, IN, USA), a highly porous carbon matrix coated with tantalum (Ta), is one of the 
commercialized porous metal bone replacement structures [[9]]. Following a biomimetic approach, a 
gradient in porosity as seen in natural bone could also be applied in the manufacturing of orthopedic 
and dental implants. Replication of this functional gradient ensures the right distribution of 
compressive stiffness across various regions. However, the creation of functionally graded structures 
cannot be accomplished with a conventional machining technique, assuming the need for evolving 
technologies. Three-dimensional printing (3DP) or additive manufacturing (AM) can generate objects 
with defined structure and shape based on three-dimensional (3D) data. These technologies could 
manufacture implants with both porous and solid sections in one step and provide good control over 
the pore size, shape, and distribution [[10]]. One of the processing techniques for AM technologies is 
selective laser melting (SLM) [[12]]. In SLM, after designing the gradient structure, the scan of the 
powder with a laser beam would result in a porous structure. The porosity is under the control of laser 
spot diameter and particle size and morphology of powder [[14]]. 

Understanding the structure–property relationship of porous metals has a huge impact on the progress 
of orthopedic and dental implants. Although manufacturing of porous titanium alloy based on SLM 
process is the focus of several research groups, the great versatility of the process and different 
parameters used to create these materials leaves many potential designs unexplored [[15]]. 
Furthermore, the dental implant is replacing the tooth root, and the assessment of the interaction of 
the periodontal ligament stem cells (PDLSCs) is very important in relation to the surface of the 
designed implant. This article discusses the feasibility of fabrication of titanium specimens by SLM 
method and determines the effect of gradient porosities (with two different strut diameters) on the 
physical and biological properties in comparison with fully dense structures. 



Materials and methods 
3D printing of samples 
A spherical Ti–6Al–4V powder (EOS München, Germany, 5–50 μm) was selected as our starting 
material. Processing was carried out under the vacuum with an argon atmosphere using 400 W Yb-
fiber (1034 nm) laser system (EOS M 290 GmbH Munchen, Germany). Laser processing parameters 
were set up as indicated in Table 1. 

Table 1. Laser processing parameters 
Laser 400 W Yb-fiber (1034 nm) 
Scanning rate 7 m/s 
Laser spot diameter 82 μm 
Laser power 175 W 
Scan speed 2000 mm/s 
Beam compensation 0.139 mm 
Layer thickness 30 μm 

 

To study the influence of gradient porosity, a fully dense sample was printed as control group. Two 
gradient lattice structures with a dense core and a surrounding porous lattice structure were designed 
using 3-matic software (Materialize, Leuven, Belgium) and 3D printed. Gradient 1 (G1) was created 
with struts diameter varying from 340 µm to 250 µm, and Gradient 2 (G2) with struts diameter from 
380 µm to 200 µm. Strut diameter was reduced from the dense core toward the outer surface. Figure 1 
shows the cubic samples designed with dimensions of 8 × 8 × 8 mm and dodecahedron unit cell, with 
possible applications as dental or orthopedic implants. 

 
Figure 1 Different views of samples. a 3D CAD visual representation of unit-cell structure (top) of the 
gradient porous specimen and top and isometric view, b section view of software models, c 
macroscopic images showing the front view of manufactured specimens intended for characterization: 
fully dense, gradient-1, and gradient-2, d schematic illustration representing the possible applications 
of the designed construct as dental or orthopedic implants 
 

Finally, the prepared samples were subjected to heat treatment in an argon atmosphere at 600 °C for 3 
h. Samples were then cut off from the base plate. After finishing, the samples were sonicated for 10 
min in acetone at 25 °C to remove residual particles from the manufacturing process. 



Characterization 
The porosity of the 3D-printed porous samples was calculated by comparing the bulk density of 
samples that is the ratio of weight/volume with the theoretical density of Ti6Al4V, which is 4.45 g/cm3. 
Relative density was calculated as follow: 

Relativedensity = 1 − (Poresvolume/Totalvolume). 

Surface wettability of samples was assessed with contact angle measurements. The contact angle was 
measured by deposition of 5 μl drops of distilled water on three locations per sample and videos 
acquisition of these drops. 

To evaluate the graded lattice structure, X-ray tomography was performed using X-ray computer 
tomography (CT, YXLON International X-ray GmBH, Germany). A source voltage of 180 kV and a 
detector size of 1024 × 1024-pixel were selected as the scanning parameters. A total of 1620 
projections were recorded and reconstructed by employing the filtered back-projection procedure. 

Mechanical properties of SLM processed samples were determined using the compression test in the 
longitudinal and transverse directions. Five samples (n = 5) for each of the three different groups were 
tested using a universal testing machine (MTS System Corporation, Saint-Etienne, France) with a 250 
kN load cell. The machine was equipped with an MTS extensometer to measure strain. A commercial 
3D digital image correlation (DIC) system was also used to analyze the samples displacement during 
the compression test. The samples were prepared for DIC by applying a random black-on-white speckle 
pattern to the specimen surface using aerosol spray painting. The optical system was equipped with 
two high-resolution cameras (5 Million pixels) coupled with two lenses. The analysis based on the pairs 
of images recorded during the object deformation was performed using the photogrammetric software 
program (Aramis, GOM GmbH, Germany). Figure 3a shows the graphs of the longitudinal and 
transversal loading of samples and the method of photogrammetry. 

The scanning electron microscope (SEM; Seron Technology-AIS-2300C, Korea) operating at 20 kV was 
used to observe the surface morphology of the SLM-fabricated samples and the fracture surfaces after 
compression test. Samples surface morphologies were also observed by an optical microscope (Evos Fl, 
life technologies). 

Biocompatibility assessment 
Normal human third molars extracted from two healthy adults undergoing tooth extraction were used 
for isolation of periodontal ligament stem cells (PDLSCs) under approved guidelines set by the 
Institutional Review Board of Marquette University (Milwaukee, USA). PDL tissues were gently scraped 
from the middle third of the root surface by using a scalpel, then minced and digested in a solution of 3 
mg/mL collagenase type I (Sigma Chemical, St. Louis, MO, USA) and 4 mg/ml of dispase (Sigma-Aldrich, 
St. Louis, MO, USA) for 1.5 h in an incubator. Cells were transferred into a small flask and incubated in 
the Dulbecco's modified Eagle's medium (DMEM) (Corning, Mediatech Inc., USA) supplemented with 
10% v/v fetal bovine serum (FBS, Sigma, USA) for 7 days. The cultures were kept in an incubator at 37 
°C and 5% CO2 until the fourth passage was reached. For flow cytometric analysis, fresh cell 
suspensions (106 cells/ml) were washed in blocking buffer (containing 3% bovine serum albumin) and 
incubated for 45 min at 4 °C in the dark with an appropriate amount of the following antibodies: FITC 
conjugated anti-CD90 (0.5 mg/ml) or FITC Mouse IgG1 Control, FITC anti-human CD44 (200 μl/ml) or 



FITC-conjugated mouse IgG2b control, phycoerythrin (PE) anti-human CD34 (200 μl/ml), and PE anti-
human CD45 (200 μl/ml) or PE-conjugated mouse IgG1 control. Finally, the expression profiles were 
analyzed using the attune acoustic focusing cytometer (Applied Biosystems, USA). 

The multipotency of PDLSCs was investigated by testing the ability of isolated cells to undergo 
osteogenic and adipogenic differentiation. To detect osteogenic differentiation, Alizarin Red staining 
(EMD Millipore, USA) was used 21 days after seeding of cells (1 × 104 cells/well of 6-well plates) in 
osteogenic media (DMEM supplemented with 100 nM dexamethasone, 0.05 M ascorbate-2-
phosphate, 10 mM β-glycerophosphate, 1% antibiotic/antimycotic (Sigma, USA) and 10% FBS). 
Adipogenesis was assessed 21 days after seeding of cells (2 × 104 cells/well) in adipogenic media 
(DMEM supplemented with 10% FBS, 0.5 mM isobutyl-methyl-xanthine, 1 mM dexamethasone, 10 
μg/ml insulin, 100 M indomethacin and 1% antibiotic/antimycotic) with Oil red O (Sigma Chemical) 
staining. 

Specimens were sterilized by gamma radiation at 25–45 kGy doses and placed in the 24-well plate (SPL, 
Korea). Biocompatibility studies were performed by using direct and indirect assays. For direct contact 
assessment, the fourth passage hPDLSCs (1 × 105 cells/sample) were drop seeded directly on the 
constructs. The cells were allowed to attach to the samples for 2 h at 37 °C. The samples were then 
transferred to a new plate, immersed in a regular culture medium (DMEM supplemented with 10% FBS 
and 1% antibiotic–antimycotic) and incubated at 37 °C in 5% CO2. After 24- or 72-h incubation, cellular 
metabolic activity was assessed by exchanging the medium of each well with 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) (0/5 mg/mL; Sigma-Aldrich, Germany), following by 2 h 
incubation at 37 °C. The MTT medium was then replaced with dimethyl sulfoxide solvent, and 100 μl of 
the colored solution from each group was added to each well of a 96-well plate. The optical density 
(OD) was read at 570 nm (main) and 620 nm (reference) wavelengths by a microplate reader (Anthos 
2020, Austria). The percentage of cell viability was obtained as the ratio of the gradient samples' OD 
value to the mean of control groups' OD value. PrestoBlue® assay (Invitrogen) was also performed to 
measure cell proliferation at 2 and 7 days after cell seeding on gradient and dense samples. Briefly, a 
10% v/v solution of PrestoBlue in phenol red-free DMEM was added to the seeded samples at the 
appropriate time point and incubated at 37 °C in 5% CO2 for 1 h. The fluorescence was measured at 
excitation/emission wavelengths of 540/590 nm using a microplate reader (Biotek Instruments, Inc., 
Vermont, USA). 

For a qualitative evaluation of cells seeded on the samples, the LIVE/DEAD® viability assay was 
performed. The medium was removed 24 h after incubation of seeded samples, and the samples were 
rinsed and treated with 5 μM Calcein-AM, and 4 μM ethidium homodimer-1 (LIVE/DEAD, Life 
Technologies, California, USA) in 1 × Dulbecco's phosphate buffered saline (D-PBS, Life Technologies) 
for 10 min. Z-stacks images were obtained using an Olympus microscope (Evos Fluorescent, Life 
Technologies). 

Cell attachment on samples was assessed 24 h after seeding using SEM. The hPDLSCs-seeded 
constructs (1 × 105 cells/specimen) were rinsed with PBS and fixed in 2.5% glutaraldehyde (Merck, 
Darmstadt, Germany). The samples were dehydrated in graded concentrations of ethanol (from 30 to 
100% v/v in distilled water), then gold-coated and observed under a scanning electron microscope 
(AIS-2300C-SEM, Seron Technology, Korea). 



For the indirect assay, the extract media of samples was prepared by incubating sterilized gradient-2 
and dense samples in culture media (without FBS) at a concentration of 1.25 cm2/ml at 37 °C 
(according to ISO 10993). After 48 h, the extract media was filtered and supplemented with 10% FBS 
and 1% antibiotic–antimycotic. The extract media was used for the treatment of PDLSCs seeded in a 
96-well plate at a density of 3000 cells/well. After 7 days, cell viability was assessed using the CellTiter-
Glo (Promega, Madison, WI). Briefly, the media was removed, 50 µl of PBS was mixed with 50 µl ATP 
assay reagent and added to each well. The plate was incubated at room temperature for 10 min, and 
then, luminescence was recorded in a microplate reader (Biotek Instruments, Inc., Vermont, USA). 

Statistical analysis 
The data were analyzed by one-way ANOVA and post hoc Tukey's test using GraphPad Prism (V.6.07) 
(GraphPad Software, Inc, La Jolla, USA). A p value of less than 0.05 was considered significant. 

Results 
Characterization 
3D-printed gradient constructs have 49.195% (G1) and 48.720% (G2) theoretical porosity, respectively 
(Table 2). The contact angle of the control group (71.17 ± 4.82°) is significantly lower than the gradient 
samples (~ 100°), and there is no significant difference between G1 and G2 (Fig. 2c). 

Table 2. Theoretical calculations of the porosity in the specimens and their contact angle  
Bulk vol. 
(mm3) 

Pores vol. 
(mm3) 

Pores 
(%) 

Weight 
(g) 

Density 
(g/cm3) 

Relative 
density 

Contact angle 
(degree) 

D 512.00 00 0 2.28 4.4531 1 71.17 ± 4.82 
G1 260.124 251.876 49.195 1.27 ± 

0.012 
2.4804 0.508 102.63 ± 3.79 

G2 262.552 249.448 48.720 1.28 ± 
0.005 

2.5000 0.513 100.095 ± 9.1 

 

 
Figure 2 Digital micrograph of SLM specimen surface (top right corner) and x-ray tomography cross 
sections of laser sintered 3D samples showing the thickness of the strut diameter from the central part 
toward the ends in G1 (a) and G2 (b). The contact angle of dense and gradient samples (c) 
 

Using X-ray tomography to evaluate the graded lattice structure shows a different diameter in the 
thickness of the struts in comparison with the original designed structure. Theoretical strut diameter 



(from designed files) varied from 340 to 250 µm for G1, and from 370 to 200 µm for G2. Figure 2a, b 
shows different struts diameters measured from 621 to 459 µm (a) and 556 to 415 µm (b), which are 
bigger than expected because of the collapse of the lattices' down-skin. The open- and closed-pores 
can be identified in different section views of gradient samples. 

Static compression test was accompanied by DIC using the ARAMIS software, as virtual extensometer, 
to evaluate specimen deformation during test (Fig. 3a). Dense sample shows higher strength and 
stiffness than gradient samples. However, there are no significant differences between mechanical 
properties of gradient samples (p > 0.05) (Fig. 3b, c). Compressive strength and elastic modulus are 
higher in the longitudinal than in the transversal direction in both gradient samples (p < 0.05). Digital 
recording of compressive response by DIC shows the formation of crush bands during deformation, 
with an angle of about 45º in gradient samples. 

 
Figure 3 Representation of mechanical properties measurement in longitudinal and transversal 
direction and DIC pictures (a). Compressive strength (b) and Young's modulus of elasticity (c) of dense 
and porous specimens. Stars (*) on the columns (gradient samples) indicate statistically significant 
differences with the non-gradient control group (*p < 0.05). ns: non-significant 
 

Loosely bound unmelted spherical particles are evident on the surface of the control group and 
gradient samples under SEM. The size of these particles is in the range of 5–46 µm (Fig. 4a, b). Figure 
4c, d shows the fracture surfaces of the samples following the compression test. The full dense 
specimen (control group) expresses high strength against compression force. 

 
Figure 4 SEM images showing the surface morphology of SLM-fabricated samples before and after the 
fracture. A1 and A2 control group (dense sample) surface: High magnification image in A2 shows the 
size of loosely bound particles after production; B1 and B2 gradient sample; C1 and C2 fracture 



surfaces of the dense sample subjected to a static compression force; C3 the fracture surface of the 
gradient porous specimen 
 

Biocompatibility 
In this study, we used PDLSCs to assess the biocompatibility of our samples. Flow cytometry and 
multipotent capability of cells confirm their stemness property. The PDLSCs are positive for 
mesenchymal stem cells-related antigen CD90, CD44, and CD105, while being negative for the 
hematopoietic cell antigens CD34 and CD45. The expression level of surface markers is represented in 
Table 3. Differentiation into osteoblasts and adipocytes is also confirmed after 4 weeks of cell culturing 
in osteogenic and adipogenic media, by Alizarin red and Oil red O staining (Fig. 5). 

Table 3. The expression levels of surface markers by PDLSCs (%)  
CD90 CD44 CD105 CD34 CD45 

PDLSCs 99.98 97.78 96.08 0.92 0.64 
 

 
Figure 5 Flow cytometry data and images of multipotent differentiation of PDLSCs. a Expression of 
negative markers (CD34 and CD45) and positive markers (CD90, CD44, and CD105) in comparison with 
IgG controls (isotype control are marked with red solid histogram). b positive staining of mineralized 
nodules after 3 weeks of osteogenic induction confirmed by Alizarin Red staining. c positively stained 
lipid vacuoles after 3 weeks of adipogenic induction as confirmed by Oil Red O staining 
 

The proliferation of hPDLSCs seeded on the SLM titanium alloy constructs is evaluated using MTT assay 
at 24 and 72 h after exposure. As seen in Fig. 6a, the lower cell viability percentage after 24 h seeding 
on gradient groups (35.3 ± 6.1% and 29 ± 3.9% for the gradient-1 and gradient-2, respectively), 
compared to the dense group (control group, 100% viability) indicates lower initial cell attachment. 
According to the MTT results, a significant time-dependent increase in viability is seen in both gradient 
groups: 59.3 ± 10.5% for the gradient-1 and 50.6 ± 9.2% for gradient-2. No significant difference in cell 
viability is seen in the gradient-1 compared to gradient-2 at 24 and 72 h. The results of the PrestoBlue 
assay confirm the abovementioned results of MTT (Fig. 6b). There is significantly more cell proliferation 
on the dense sample in both time points (p < 0.05). However, cell treatment with the extract of 
samples shows an opposite effect. The cell cytotoxicity due to chemicals leached from the dense and 
gradient samples obtained from the indirect study (CellTiter-Glo assay) is shown in Fig. 6c. It can be 
observed that PDLSCs treated with the extract of the dense sample have significantly lower cell 
proliferation than those treated with the extract of the gradient sample (p < 0.05). 



 
Figure 6 Cell response to laser-sintered surfaces by direct and indirect studies. a Results of the MTT 
assay after 24 and 72 h culture of hPDLSCs on three different groups of SLM titanium alloy constructs: 
dense (control), gradient-1, and gradient-2. b Results of PrestoBlue assay after 2- and 7-days cultures 
of hPDLSCs on dense, and gradient-2 samples. c Results of the CellTiter-Glo luminescent cell viability 
assay after 7 days culture of hPDLSCs treated with the extract of dense and gradient-2 specimens. d 
The SEM micrographs showing cell attachment of hPDLSCs after 24 h culture on dense, gradient-1 and 
gradient-2 titanium specimens. e Cell viability (live = green, dead = red) after culturing PDLSCs until 
confluence on samples. * = p < 0.05, G1: Gradient 1, G2: Gradient 2, ns: non-significant 
 

The cell attachment and morphology are investigated by SEM (Fig. 6d). The SEM images show thin 
projections extending from the hPDLSCs (filopodia), which is a sign of good attachment to our SLM 
constructs. The cell-to-cell and cell-to-surface connections are clearly observable. Also, the result of 
live/dead staining shows a good attachment of cells on the constructs. As seen in Fig. 6e, the 
morphology of attached cells is normal with few apoptotic cells. 

Discussion 
Design 
In this study, we confirmed the feasibility of manufacturing functionally graded porous titanium 
implants by using SLM. The powder material, particle size, and processing parameters of printing are 
very important for the design of functionally graded materials. Despite the relatively high stiffness of 
titanium to that of the bone, it is still considered to be the material of choice in orthopedic and dental 
implant fabrication, due to its proper biocompatibility and mechanical properties [[17]]. In our study, 
we preferred using one of the titanium alloys since it is the alloy of choice for any sort of situation 
where a combination of high strength, lightweight, good corrosion resistance, and high toughness are 
required. The size of the metal powder used in 3D printing influences the apparent density, essential 
energy input for powder melting, powder leveling fluidity, reaction with oxygen, and surface accuracy 
of forming samples. Particle size smaller than 5 μm is not recommended because of the possible 
danger to experimental personnel and potential pollution. Usually, a mixture of different sizes of 
powder distributed in a certain range is used. In this study, a particle size of 5–50 µm was employed 
due to its suitability for SLM method [[19]]. In the design of our gradient samples, we used high stiff 
core for bearing the load, and porous exterior layers for reducing the overall stiffness of the implants. 
The approximation of the elastic modulus of the implant and bone would enhance the 
osseointegration [[20]]. We succeeded in the construction of the open interconnected gradient porous 



lattice with a dense core and a porosity of about 50%. Van Grunsven et al. [[22]] also designed and 
processed a Ti6Al4V sample of a regular diamond lattice incorporating graded porosity. However, their 
method of fabrication was electron beam melting (EBM). We used SLM, as this method can offer well 
defined and controlled geometry—like 3D open lattice structure [[23]]—and allow for the 
manufacturing of 3D porous titanium constructs of precise micro-architecture design [[24]]. 

In our study, the unit cell of gradient samples was dodecahedron, as used by Ahmadi and Fousová 
[[15], [25]]. The design of the unit cell and porous structure has a great impact on the functionality of 
constructs. Several designing ways of porous structures had introduced by Parthasarathy et al. [[26]] 
and Lin and Wirtz [[27]]. These porous structures produced by SLM were used as important reference 
in our experiment. 

Characterization 
Morphological analysis using X-ray computed tomography revealed the regular dodecahedral 
architecture of the porous structure with a highly repeatable overall porosity due to controlled 
fabrication. Kim et al. [[28]] in their study used X-ray microtomography (µCT) to validate structural 
properties of the SLM produced porous titanium samples with 60 and 75% porosity levels. Our data 
showed different struts diameters of printed samples in comparison with designed files. Kerckhofs et 
al. [[29]] and Van Bael et al. [[30]], who used µCT to evaluate the SLM-builted porous Ti constructs, also 
reported the possibility of difference between the original design and final products. One possible 
explanation of this difference is the beam compensation used to fuse lattice structure. The second 
explanation of differences is the collapse of the down-skin of the lattice. This type of defect is common 
in the laser beam melting technology. 

Our data demonstrate a good match of Young's modulus in the gradient samples to that of the bone. 
Yavari et al. [[24]] also fabricated porous structures of dodecahedron designed micro-architecture, 
using spherical pre-alloyed Ti6Al4V ELI powder and SLM method and reported mechanical properties in 
the range of the bone. In our samples, the measured values for Young's modulus range between 29.20 
± 6.27 and 26.96 ± 2.02 Gpa for porous samples, which is similar to the result of Fousová et al. [[15]] 
who produced three types of gradient porous specimens of Ti6Al4V (30.5 ± 2 GPa). Lin et al. [[31]] also 
demonstrated a Young's modulus of 35 GPa in the gradient titanium constructs with a laser-sintered 
porous core and a solid skin. However, in the study of Traini et al., who produced gradient porous 
titanium alloys using the particle size of 1–10 µm via direct laser metal sintering, Young's modulus of 
porous samples (77 ± 3.5 GPa) was slightly more than that of the bone (20 ± 7.0 GPa) [[32]]. Although 
the strength of our gradient samples (75–102 MPa) was less than the fully dense control group, this 
reduction is absolutely logic in the porous structures. Introduction of 50% porosity in the structure 
could reduce the strength by 57–60% [[15]]. Parthasarathy et al. [[26]] also proved that modification of 
the strut thickness of the 3D-printed samples could cause strength reduction. This could be optimized 
by changing the shape or topology of pores, or other geometric parameters in future studies [[33]]. DIC 
simulation did not show yielding at the interfaces between layers, which was in agreement with the 
study of Zhang et al. [[34]] on functionally graded porous Ti–6Al–4V. 

Bone affinity and stress relaxation are more important for the part of the dental implant inside the 
jawbone, while more strength is required for the part near the oral cavity. Taking these points into 
account, the best possible design for a standard dental implant with 4.2 mm diameter and 10.0 mm 



length is proposed in Fig. 1d. The size of the solid core in our samples was 3 mm, and the porous part 
had a thickness of 2.5 mm which should be reduced to 1.7 mm and 1.25 mm, respectively, for the 
proposed dental implant. Increasing the ratio of the solid core to the thickness of the gradient porous 
part from 1.2 to 1.36 mm for a reliable dental implant construct would probably improve the 
mechanical properties. Properties such as strength and stiffness are more important in orthopedic 
implants than dental implants; therefore, designing orthopedic implants requires more reduction in 
the thickness of the porous part. Possible applications in orthopedics are shown in Fig. 1d. 

Surface morphology and contact angle are important features in defining the interaction of cells with a 
surface [[35]]. The contact angle of our gradient samples was greater than the control group, which 
indicates they are not ideal for allowing the first attachment of cells. The surface of our samples also 
showed loosely bound or partially sintered particles, which is inevitable in SLM based on the report of 
Vaithilingam et al. [[16]], who fabricated TI6Al4V constructs by SLM and inspected the surface 
chemistry. However, it should be noted that the magnitude of this problem (the presence of partially 
melted particles on the surface) is dependent on both material and processing parameters [[36]]. In 
order to prevent the interference of these loosely bound Ti particles with bone formation, removing 
them with different techniques is essential [[31]]. In the SEM fractography, the coalescence of 
microvoids approved ductile fractures of all samples. This finding is clearly similar to those of Traini et 
al. [[31]], who examined the fractured surface. Ductility of SLM samples can be increased by applying 
heat treatments after laser melting fabrication [[38]]. 

Biocompatibility 
Since the periodontal ligament supports tooth root, and dental implants are supposed to substitute the 
root of missing teeth, we considered hPDLSCs for evaluating the interaction of cells in relation to the 
surface of the designed samples. PDLSCs can differentiate into different cell lines and show different 
performances depending on the surface where they are seeded [[39]]. Other studies used human 
osteoblasts or human dental pulp stem cells (DPSCs) for biocompatibility assessment of implants [[40]]. 
Cell attachment and cell proliferation are the most current in vitro assays used for inspecting the 
biological outcome of dental implants [[42]]. Based on our data, hPDLSCs were attached well, and SLM 
fabricated titanium constructs demonstrated no cytotoxic effect. Healthy cells morphology, which was 
confirmed by SEM, and the low number of red cells in the live/dead assay confirmed non-toxicity of 
our samples. In our study, assessment of cell proliferation on the samples was done by direct and 
indirect assays via MTT, PrestoBlue and CellTiter-Glu assay. In direct studies, gradient samples showed 
lower cell proliferation than the flat surface of the control group. The size of porosities in these 
samples could explain these results. A study by De Peppo et al. [[43]] shows that surface morphology 
of EBM-fabricated cpTi, and Ti6Al4V porous scaffolds could affect cell attachment and proliferation of 
embryonic stem cells. However, it could be possible to see a different behavior in vivo, as indicated by 
Karageorgiou and Kaplan [[44]]. They found that lower porosity is preferable in vitro, as there is no 
flow of culture media; however, in vivo, larger bone ingrowth is the result of higher porosity and pore 
size. Although dense sample can provide more initial cell attachment, easier cell infiltration provided 
by larger pores was shown to be more important and may also facilitate angiogenesis throughout 
gradient structure [[45]]. Improved cell distribution within the gradient scaffolds in comparison with 
the non-gradient samples was shown in the study of Sobral et al. [[46]]. Furthermore, gradient 
configurations in the porosity of the samples have many advantages over the non-gradient ones in 



terms of cell migration, nutrient delivery, and gas diffusion. Possible cell polarization and a gradient in 
oxygen tension in response to gradient configuration can explain gradient-dominated cell migration 
and differentiation [[47]]. 

Results of our indirect study, which assess the cytotoxicity as a result of chemical leaching, showed an 
opposite effect in comparison with the direct study. The CellTiter-Glu assay showed more cell 
proliferation under treatment with extract of the gradient sample than the control group. One possible 
explanation of this result could be a greater release of loosely bound particles from the surface of the 
control group. More work will be required to study the composition of the extract media of gradient 
and dense samples, differentiation potential of stem cells on the surface of SLM fabricated samples, 
and in vivo responses. 

Conclusion 
In this study, Ti–6Al–4V powder was used for fabrication of gradient porous structures via SLM process. 
Microstructure, mechanical properties, and biocompatibility of samples were characterized. The 
results revealed that SLM constructs have partially melted particles on the surface. Functionally graded 
samples with a dense core had a good match of Young's modulus to that of the bone. Large porosities 
and higher contact angle of gradient samples led to a lower initial cell attachment on their surface. 
However, the extract of gradient samples resulted in more cell proliferation than the dense sample's 
extract. There were no significant differences between the two designed lattice constructs. 
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