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Abstract 
The main objective of this study is to hydrophobize nitinol (Ni-Ti alloy) for cardiovascular applications. 
For this purpose, medical nitinol samples were subjected to sodium hydroxide hydrothermal 
treatments at various temperatures, followed by hexadecyltrimethoxysilane (HDTMS) 
functionalization. Then, the structure, wettability, corrosion, cytocompatibility and cell adhesion of the 
prepared samples were evaluated. According to the results, porous blade-shaped layers of sodium 
titanate were formed on the substrate surface as a result of the alkaline treatment. These nano-rough 
features offered considerable hydrophobicity after HDTMS processing, where a maximum water 
contact angle of about 140° was obtained for the sample treated at 120 °C, followed by the HDTMS 
coating. In contrast to the individual application of the alkaline treatments, the subsequent HDTMS 
processing improved corrosion resistance in the simulated body fluid. Although all the samples 
presented appropriate cytocompatibility with respect to human umbilical vein endothelial cells, the 
cells did not show an adhesion tendency to the hydrophobic surfaces. It is concluded that alkaline 
hydrothermal and HDTMS processed nitinol can be considered for cardiovascular applications 
demanding hydrophobic surfaces. 
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1. Introduction 
Nitinol (NiTi) has a variety of applications in different fields, due to its shape-memory effect, 
superelasticity, relatively low elastic modulus, proper compressive strength, high fatigue strength, 
considerable corrosion resistance and good biocompatibility. Orthodontic wires [1], bone fracture 
fixation plates [2], stents [3], [4], blood filters [5], [6], artificial cardiac muscles [7], spacers between 
spinal vertebrae [8], micro-electro-mechanical biosystems valves [9] and Simon filters [10], [11] are 
some examples for the medical applications of this alloy. However, the release of ions from this 
biomaterial can lead to allergic and toxic reactions in the body, as a result of electrochemical corrosion 
in the environment. Typically, cells are deformed and chromosomes are damaged, due to the exposure 
of Ni2+. Also, divalent ions like Ca2+, Mg2+ and Zn2+ are displaced by Ni2+ in enzymes and proteins, 
disadvantageously causing to change their molecular structure [12]. Another challenge for the 
cardiovascular applications of this alloy is the accumulation of protein and thereby blood coagulation. 
Thus, anticoagulant drugs like heparin are frequently prescribed along with the use of nitinol 
implants [13], [14], [15]. Both of these drawbacks can be controlled by hydrophobization of the alloy 
surface, where the treated surfaces repel fluids and proteins and benefit from higher corrosion 
resistance and hemocompatibility [16], [17]. 

Superhydrophobic surfaces are demanded in daily life and industrial applications. The typical 
applications of these surfaces are self-cleaning [18], water-resistant surfaces [19], anti-fogging 
surfaces [20], anti-icing surfaces [21], anti-corrosion surfaces [22], preventing the loss of fluid [23], and 



so on. It has been proved that superhydrophobic surfaces can be achieved by depositing low surface 
energy substances along with increasing the surface roughness [24]. By studying natural creatures, 
including lotus leaves and butterfly wings, it has been confirmed that special hierarchical structures— 
due to the inherent roughness of micro-scale and nano-scale— play a major role in water 
repellency [25], [26]. Due to this phenomenon, dual synthetic roughness is widely used in the 
development of superhydrophobic surfaces. 

This work aims to hydrophobize nitinol while keeping or improving biocompatibility for cardiovascular 
applications. To do so, nitinol surfaces were roughened by alkaline hydrothermal treatment and 
reduced in surface free energy by depositing an alkoxysilane material, namely 
hexadecyltrimethoxysilane (HDTMS), for the first time. In comparison to other routes used particularly 
to construct TiO2 nanostructures with high biocompatibility, controllable wettability and 
adhesion [27], [28], [29], the alkaline treatment is a more simple, flexible and inexpensive method 
which forms a layer of alkali compounds on the surface. HDTMS is a substance with low surface energy 
due to its long hydrocarbon chains [30]. In contrast to fluorine-containing silane compounds, HDTMS is 
environmentally friendly and has been used to hydrophobize various materials, including metals and 
alloys, fabrics, membranes, etc. [31], [32], [33]. It has been reported that the alkaline treatment of 
titanium-based alloys results in the reduction of cells cytocompatibility and proliferation due to the 
local increase of pH and Ni2+ release [29], [34], [35]. On the contrary, this surface processing enhances 
apatite-formation ability [35], [36], [37] and cell adhesion due to the alteration of roughness, 
wettability and bioactivity [35], [38]. In this regard, reverse influences have been reported as a result of 
surface hydrophobization, where the adhesion of vitronectin and fibronectin proteins is roughness and 
wettability dependent [39], [40], [41]. 

2. Experimental procedures 
2.1. Pretreatment 
Medical-grade nitinol (NiTi, Kellogg's Research Labs, US) disks of 8 mm in diameter were first polished 
by sandpapers to 600 grits. They were then washed in acetone, ethanol and distilled water under 
ultrasonication. The samples obtained from this processing were assigned as the pretreated samples. 

2.2. Alkaline hydrothermal treatment 
The pretreated samples were exposed to a 10 M NaOH (Merck, Germany, 99.0%) aqueous solution at 
60, 120 and 180 °C for 48 h. Afterwards, the alkaline-treated samples were washed in distilled water 
and subsequently dried at 80 °C for 2 h. 

2.3. HDTMS functionalization 
A mixture of 90 ml of ethanol and 10 ml of distilled water was first loaded with 3 wt% HDTMS 
(H3C(CH2)15Si(OCH3)3, Sigma-Aldrich). While magnetic stirring, acetic acid was dropwise added to adjust 
the pH to about 5. The pretreated and alkaline-treated samples were soaked in this HDTMS solution 
for 2 h. Then, the samples were rinsed with ethanol and distilled water and dried at 120° C for 1 h. The 
codes assigned to the samples treated with the different processing approaches are listed in Table 1. 

  



Table 1. Sample coding, as a function of the alkaline treatment temperature and HDTMS coating. 
Specification Sample Code         

1 2 3 4 5 6 7 8 
Alkaline Treatment Temperature (°C) – 60 120 180 – 60 120 180 
HDTMS Coating – – – – ✔ ✔ ✔ ✔ 

 

2.4. Structural characterization 
The processed surfaces were characterized by field emission scanning electron microscopy (FESEM, 
Mira3 Tescan-XMU) equipped with energy-dispersive X-ray spectroscopy (EDS) at an acceleration 
voltage of 10 kV and atomic force microscopy (AFM, Park Scientific Instruments-Cp Auto Probe) in 
terms of morphology, composition and roughness. X-ray diffraction (XRD, PHILIPS-PW1730) was also 
used for the phase analysis of the samples with a step size of 0.05° and a step time of 2 sec. 

2.5. Wettability studies 
Five microliters of distilled water were dropped on three different points of the surfaces and 
photographed by a professional digital camera from side views. The sessile water contact angles were 
measured by tangent lines to the interfaces at the three-phase points and averages were assigned to 
each sample. 

2.6. Corrosion tests 
The samples were first immersed in the Ringer's simulated body fluid for 1 h to obtain steady-state 
conditions. Electrochemical tests were performed by a Vertex potentiostat/galvanostat device, using a 
platinum counter electrode and Ag/AgCl reference electrode. Electrochemical impedance spectroscopy 
(EIS) experiments were run in a frequency range of 10 kHz to 10 mHz with the potential amplitude of 
10 mV at the open circuit potential (OCP). Then, polarization tests were conducted at a scan rate of 
0.1 mV/s at a potential range of −1 V to +1 V. 

2.7. Biocompatibility 
The prepared samples were first sterilized in ethanol and then rinsed with the phosphate-buffered 
saline. Approximately 1.0 × 104 human umbilical vein endothelial cells (HUVECs) were cultured on the 
samples in the Dulbecco's modified Eagle medium containing 20% fetal bovine serum and 1% 
antibiotics penicillin and streptomycin for 1, 3 and 7 days in a 48-well plate. Cell counting kit-8 (CCK-8) 
was used to measure living cells with three repetitions, according to Ref. [42]. To do so, 18 µl of the 
CCK-8 solution were added to each well and the contents of each well were transferred to a 96-well 
plate pit after 4 h. Produced colors were analyzed by a plate reader at a wavelength of 450 nm. For 
statistical analyses, the one-way variance analysis was conducted with P value less than 0.05 as the 
significant level. In addition, the cells cultured on the samples for 1 day were observed by a scanning 
electron microscope (SEM) after fixing with glutaraldehyde 2.5% (v/v) followed by dehydrating with 
ethanol solutions (30, 40, 50, 60, 70, 80, 90 and 100%) and coating with gold. 



3. Results and discussion 
3.1. Structural analyses 
In this work, the main aim of using the alkaline treatment process was to control the surface 
morphology and roughness of nitinol for cardiovascular applications. According to the 
literature [43], [44], [45], the effect of the alkaline treatment temperature on the surface morphology 
is more than other process variables. Thus, with the criterion of the changed morphology, the optimal 
concentration and duration of 10 M and 48 h, respectively, were kept fixed and the effect of the 
treatment temperature (60, 120 and 180 °C) was assessed. The structural analyses were only 
conducted on the pretreated and alkaline-treated samples since the molecular-thickness coating of 
HDTMS does not affect the surface morphology and roughness [31], [46]. 

Fig. 1 shows the FESEM micrographs and EDS profiles of these samples. As seen, in comparison to the 
pretreated sample, the alkaline treatment entirely changes the surface morphology with a meaningful 
dependency on the alkaline treatment temperature. Typically, as a result of the alkaline treatment at 
60 °C, some uniform blades of about 100 nm in length and of almost 15 nm in thickness appear on the 
surface. By increasing the temperature to 120 °C, the number, length and thickness of blades increase, 
while the blades are still unconnected. Nonetheless, the alkaline treatment at 180 °C declines the 
spacing of blades and develops a compact arrangement of blades on the surface. The quantitative 
results of the EDS analyses are also listed in Table 2. The enhancement in the EDS concentration of Na 
and O by increasing the alkaline treatment temperature is indicative of the morphological growth of 
the surface layers. Also, the slower decrease of the concentration of Ti in comparison to Ni is an 
evidence for the presence of titanium in the surface scales. It should be noted that the alkaline 
treatment temperature, by controlling the nucleation and growth kinetics of the formed surface layers, 
determines the surface morphology [43], [47]. 



 
Fig. 1. FESEM micrographs (in two magnifications) and EDS profiles of Samples 1 (a, b and c), 2 (d, e and f), 3 (g, h 
and i) and 4 (j, k and l), respectively. 
 

Table 2. EDS analysis results on the pretreated and alkali-treated surfaces. 
Sample Code Element (wt.%)     

Ti Ni Na O 
1 47.3 47.8 0.0 4.9 
2 41.7 37.6 1.2 19.5 
3 37.4 28.4 3.3 30.9 
4 30.5 18.4 5.2 45.9 

 

The AFM two-dimensional, three-dimensional and height histogram profiles of the samples are 
presented in Fig. 2. The pretreated surface merely exhibits parallel grooves of polishing. In contrast, 
regular and uniform projections are observed on the surface of the alkaline-treated samples, with a 
dependency of the size and density of projections on the alkaline treatment temperature. Roughness 



parameters extracted from the AFM analysis are listed in Table 3. According to this table, all the 
roughness parameters are enhanced from Sample 1 to Sample 2 and then to Sample 3, but they all 
decrease for Sample 4. Typically, the alkaline treatment increases the level of roughness with respect 
to the pretreated sample, due to the development of surface scales. The increase of roughness by 
increasing the alkaline treatment temperature from 60 °C to 120 °C is also attributed to the growth of 
surface blades; however, its decrease at 180 °C is due to the compression of surface scales, which is in 
good agreement with the FESEM micrographs (Fig. 1). 

 
Fig. 2. AFM 3D, 2D, height histogram images of Samples 1 (a, b and c), 2 (d, e and f), 3 (g, h and i) and 4 (j, k and 
l), respectively. 
 

Table 3. AFM roughness parameters of the pretreated and alkali-treated surfaces (all data is in 
nanometers). 

Sample 
Code 

Average 
Roughness 

Root Mean Square 
Roughness 

Height Difference of Ups 
and Downs 

Mean 
Height 

1 8.40 11.09 108.1 56.05 
2 10.87 15.33 150.9 72.83 
3 14.69 19.69 223.8 122.00 
4 12.27 15.29 113.5 60.03 

 



Fig. 3 depicts the XRD pattern of the pretreated and alkaline-treated samples. In compatible with the 
EDS analyses, diffraction peaks of NiTi (B2 and B19′, the different crystalline phases of nitinol) and 
NaTiO2 phases are detected in the XRD data. The most typical peak for the four samples belongs to the 
substrate phase, i.e. NiTi (B2). The three alkaline-treated surfaces are also associated with sodium 
titanate (NaTiO2), which is in agreement with the literature [48], [49], [50], [51]. The formation 
mechanism of this phase is also well-established in the literature [48], [49]. 

 
Fig. 3. XRD pattern of Samples 1 (a), 2 (b), 3 (c) and 4 (d). 
 

3.2. Wettability studies 
Fig. 4 indicates the side-view macrograph of the water drops on the samples and the quantitative 
results of the contact angle measurements. It can be seen that Samples 1, 2, 3 and 4 are hydrophilic, 
while Samples 5, 6, 7 and 8 are hydrophobic. Concerning the hydrophilic surfaces, it is realized that the 
alkaline treatment decreases the water contact angle, which means the improvement of wettability. 
This is owing to both the enhancement of roughness and the formation of sodium titanate layers. The 
latter is accompanied by the formation of a gel layer and hydroxyl groups when exposed to 
water [34], [52], increasing the surface free energy [53]. For the three alkaline-treated samples, a 
meaningful enhancement of hydrophilicity is also observed by increasing roughness characterized 
in Fig. 1, Fig. 2. This is compatible with the Venzel's model [54] in terms of the direct relation of 
roughness and hydrophilicity. Typically, Sample 3— which is alkaline-treated at 120 °C— presents the 
highest roughness and wettability with a water contact angle of about 40°. 



 
Fig. 4. Macrographs of water drops on Samples 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g) and 8 (h). 
 

Essentially, wettability is controlled by both surface free energy and roughness. Thus, the 
hydrophobicity of the HDTMS-coated samples is attributed to the reduction of the surface energy since 
the molecular-thickness HDTMS coating does not change the roughness of the pretreated and alkaline-
treated substrates. Considering the fact that the roughness of Samples 5, 6, 7 and 8 is proportional to 
that of Samples 1, 2, 3 and 4, respectively, it is seen that the water contact angle is enhanced by 
increasing the surface roughness, in good agreement with the Venzel's model [54]. In fact, the water 
droplet cannot easily penetrate into the cavities of the HDTMS-coated samples and some air remains 
inside them, because the surface energy is low and thereby the surface repels the water 
drop [55], [56], [57]. Typically, the alkaline treatment at 120 °C not only yields the highest 
hydrophilicity, but also offers the highest hydrophobicity after the HDTMS coating. Another noticeable 
point is that the alkaline treatment provides a suitable platform for HDTMS to ensure its efficiency 
towards hydrophilicity, since the direct coating of HDTMS on metallic surfaces does not give rise to 
substantial hydrophilicity [31], [58]. 



3.3. Corrosion characterization 
The OCP vs. time curve of the samples is demonstrated in Fig. 5. As can be observed, the OCP of 
Samples 1 and 2 is reduced with time, which is attributed to the lack of a surface protective layer and 
thereby dissolution. It should be noted that Sample 1 is covered by a passive film after a short period 
of time, providing a constant OCP. On the contrary, the other six samples exhibit relatively constant 
potentials, due to the balance between the surfaces and electrolyte, where Samples 3 and 4 are 
protected by full-fledged sodium titanate films (Fig. 1) and the hydrophobic surfaces (Samples 5, 6, 7 
and 8) repel the electrolyte. Minor complexities observed in the OCP-time curves is also attributed to 
the surface roughness [59]. It is noticeable that after the period shown in Fig. 5, OCP reaches almost 
constant values. 

 
Fig. 5. Electrochemical OCP-time curves of Samples 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g) and 8 (h). 
 

The potentiodynamic polarization profiles of the samples, in terms of potential (E) vs. current density 
(i), are shown in Fig. 6. The qualitative analysis of the diagrams infers that those of the hydrophobic 
HDTMS-coated samples are shifted to the left, i.e. smaller current densities, with respect to the 
hydrophilic samples. This means the improvement of the corrosion resistance in the simulated body 
fluid, as a result of the liquid repulsion and the reduced actual contact area of the liquid and 
surface. Table 4 tabulates the electrochemical data extracted from the potentiodynamic polarization 
diagrams. Typically, Sample 1 represents a lower corrosion current density and rate in comparison to 
Samples 2, 3 and 4, because the passive layer formed on the surface of the pretreated sample has a 
higher corrosion resistance than the gel layers existing on the alkaline-treated samples when exposed 
to the electrolyte [53]. Regarding the HDTMS-coated samples, it is observed that the alkaline 
treatments at the different temperatures prior to the HDTMS coating yield higher corrosion resistances 
than the sample which has been only polished prior to coating, as a result of the higher hydrophobicity 
(Fig. 4). The highest corrosion resistance is also associated with Sample 8 taking advantage of both a 
high level of hydrophobicity (Fig. 4) and the highest compression level of the sodium titanate alkaline-
treated layer (Fig. 1, Fig. 2), via hindering the access of the electrolyte to the metallic nitinol substrate. 



 
Fig. 6. Potentiodynamic polarization curves of Samples 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g) and 8 (h). 
 

Table 4. Corrosion potential (Ecor.), corrosion current density (icor.), anodic curve slope (βa), cathodic 
curve slope (βc) and polarization resistance (Rp) of the samples. 

Sample Code Ecor. (V) icor. (A/cm2) βa (V/dec) βc (V/dec) Rp (Ohm.cm2) 
1 −0.4838 8.232E-5 0.975 0.659 2.074E3 
2 −0.8033 2.229E-4 3.328 0.219 3.899E2 
3 −0.6298 1.263E-4 1.296 0.508 1.254E3 
4 −0.4801 1.509E-4 1.190 0.529 1.054E3 
5 −0.3784 5.871E-5 0.995 0.567 2.669E3 
6 −0.4553 8.983E-8 1.295 0.401 1.480E5 
7 −1.0197 5.900E-7 1.926 0.099 2.617E5 
8 −0.3738 3.106E-8 0.991 0.602 5.238E5 

 

Fig. 7 illustrates the EIS results of the samples in the simulated body fluid. As observed in Fig. 7a, the 
Nyquist plots of the samples can be divided into two groups: Samples 1, 2, 5 and 6 with only a 
semicircular arc and Samples 3, 4, 7 and 8 with two semicircles. Considering the fact that the higher 
radius of Nyquist semicircular arcs is essentially equivalent to higher corrosion resistance [60], the 
following corrosion resistance conclusions can be qualitatively drawn from the Nyquist analysis. For the 
first category of the samples, the alkaline treatment at 60 °C offers a lower corrosion resistance than 
the pretreated sample, because of the protection difference of the gel and passive films, respectively. 
Comparing the semicircular arc radius of Samples 1 and 2 with Sample 5 and 6, it can be also found 
that hydrophobization improves the corrosion resistance due to the electrolyte repulsion, which 
additionally explains the higher corrosion resistance of Sample 6 than Sample 5. For the second 
category of the samples, the same upward trend with hydrophobization continues, where Sample 8 
with an infinite radius of the second arc presents the highest corrosion resistance in agreement with 
the polarization results. The Bode impedance plots of the samples (Fig. 7b) also confirms the above-
described corrosion resistance ranking since impedance values at low frequencies are a measure of 
corrosion resistance. The number of the Nyquist semicircular arcs in the two categories of the samples 
is equal to the number of time constants detected in the Bode phase angle curves (Fig. 7c), where each 
time constant is indicative of an individual capacitive behavior [61], [62]. 



 
Fig. 7. EIS Nyquist (a), Bode impedance value (b), Bode phase angle (c) and modeling equivalent circuits (d and e) 
plots of the samples. 
 

In accordance to the qualitative analysis of the Nyquist and Bode plots above, equivalent circuits of Fig. 
7d and 7e were used to model the first and second categories of the sample, respectively. In these 
circuits, constant phase element (CPE) were used instead of capacitors, because the maximum of the 
Bode phase angle curves deviates from the ideal value of 90°. The impedance of CPEs is calculated 
by [63]:(1)ZCPE=1Y∞(jω)nwhere Y0 and n are constants, ω is angular frequency and j is -1. In these 
circuits, Rs is the electrolyte resistance outside the pores, Rct the charge transfer resistances, Rc is the 
electrolyte resistance inside the pores and CPEdl and CPEc are the related elements of double layer and 
surface scales, respectively. The equivalent capacitance amounts of the CPEs were also calculated by 
the following equation [39]:(2)C=(Y0·R1-n)1n 

The fitting parameters of the EIS results with the proposed circuits are listed in Table 4. Considering the 
fact that the resistivity (Rct and Rc) and capacitance (Cdl and Cc) are in direct and inverse proportion to 
the corrosion resistance, respectively, it is found that the corrosion resistance ranking of the samples 
realized from the EIS analysis is compatible with the polarization assessments. That is, the alkaline 
treatment reduces the corrosion resistance of nitinol; nevertheless, the hydrophobization process 
enhances it (Table 5). 



Table 5. Fitting parameters of the impedance data with the proposed equivalent circuits. 
Sample Code Rs (Ωcm2) Rc (KΩcm2) Y0(c) (µΩ−1cm−2) nc Cc (µF cm−2) Rct (MΩcm2) Y0(dl) (µΩ−1cm−2) ndl Cdl (µF cm−2) 
1 12.66 370.68 1.01 0.89 4.93 – – – – 
2 12.70 359.23 1.12 0.88 6.50 – – – – 
3 12.82 290.51 1.31 0.86 10.61 2.51 2.76 0.77 304.93 
4 12.90 301.21 1.23 0.87 8.36 2.68 2.64 0.79 174.75 
5 12.89 410.59 0.88 0.90 3.65 – – – – 
6 12.81 427.39 0.81 0.91 2.86 – – – – 
7 13.01 451.44 0.69 0.93 1.79 3.07 2.09 0.82 65.23 
8 12.88 469.76 0.66 0.93 1.71 3.18 2.03 0.84 40.24 



3.4. Biocompatibility assessments 
Fig. 8 displays the results of viable cells counting on the prepared and control (C) samples after 1, 3 and 
7 days of cell culture, in terms of optical density and cell viability with respect to the control. As can be 
seen, the optical density values for all the samples are comparable with the control; therefore, the 
HUVEC viability percentages on the samples are significant and above 85%, which suggests their non-
toxicity. The increase in the optical densities with the culture time is also indicative of cell proliferation. 
Considering the significant level of 0.05 in the variance analysis, the alkaline treatment (Samples 2, 3 
and 5) is found to reduce the cell viability in comparison to the pretreated sample (Sample 1). This is 
attributed, on the one hand, to the reduction in the corrosion resistance (Fig. 6, Fig. 7), which is 
accompanied by the more release of toxic ions like nickel with a destructive effect on the survival and 
proliferation of cells [34]. On the other hand, the release of Na+ incorporated in the alkaline-treated 
surfaces causes a local enhancement in pH via the exchange with H+ of the cell medium, which is 
deteriorous for cells [29], [35]. Thus, the improvement in the cell viability after hydrophobization 
(Samples 5, 6, 7 and 8) can be explained by the increase in the corrosion resistance (Fig. 6, Fig. 7) and 
thereby the control of the toxic ions release. 

 



Fig. 8. Spectrophotometer optical density of viable cells (a) and cell viability (b) cultured on the samples. * 
indicates a significant difference with respect to Sample 1. 
 

To assess the ability of the cell adhesion on the surfaces, the morphology of the cultured cells was 
analyzed by SEM (Fig. 9). In terms of wide and flat cell spreading with anchored tentacles, the 
pretreated sample presents a relatively proper cell adhesion feature. The cell adhesion is improved as 
a result of the alkaline treatments, due to the evolution of roughness (Fig. 1, Fig. 2), wettability (Fig. 4) 
and bioactivity. The positive contribution of nano roughness and hydrophilicity of biomaterials to the 
adhesion and proliferation of cells with an encouraging influence on proteins is well 
established [64], [65], [66], [67]. In addition, some studies have concluded that alkaline-treated 
titanium-based alloys benefit from a significant level of bioactivity and thereby suitable cell adhesion 
because of the high biocompatibility of hydroxyapatite [38], [51], [68]. Thus, for these samples, it is 
inferred that the deteriorous effect of the alkaline treatment on pH and corrosion resistance is not 
dominant from the viewpoint of the cell adhesion. For the HDTMS-coated samples, Sample 5 
represents a partial flattening feature of cell spreading; however, the number of detectable cells and 
cells spreading are reduced by increasing hydrophobicity (Samples 6, 7 and 8). This suggests the 
essential effect of wetting on cell adhesion in comparison to the corrosion characteristics, in 
agreement with Ref. [39]. It would be worth mentioning that these cell adhesion features are 
compatible with other hydrophobic surfaces [40], [41]. Indeed, the early stages of cell adhesion are 
essentially affected by vitronectin and fibronectin. The adsorption of these proteins on surfaces 
strongly depends on the roughness and wettability of the surfaces, whereas some proteins like 
albumin (an anti-adhesion protein for cells) tend to hydrophobic surfaces [16]. Anyway, hydrophobicity 
and low cellular adhesion are promising for cardiovascular applications, because of the reduced 
probability of clotting and blood coagulation [69]. 



 
Fig. 9. SEM images of cells fixed on Samples 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g) and 8 (h). 
 

4. Conclusions 
In this research, the effect of alkaline treatment and HDTMS coating on the structure, wettability, 
corrosion and biocompatibility of nitinol was studied. The findings of this research are summarized as 
follows: 

1) The morphology of the alkaline-treated surfaces included blades with an increasing tendency 
to size and compression by enhancing the alkaline treatment temperature. 
2) The alkaline treatment increased the surface roughness, with the maximum roughness 
obtained for the sample treated at 120 °C. 
3) The alkaline treatment developed a layer of sodium titanate (NaTiO2) on the nitinol surface. 



4) The alkaline treatment increased wettability, but the subsequent HDTMS processing induced 
hydrophobicity. The highest wettability angle of 138.0 ± 1.3° was obtained for the sample 
treated at 120 °C followed by the HDTMS functionalization. 
5) The alkaline treatment reduced, but HDTMS hydrophobization improved the corrosion 
resistance, where the sample treated at 180 °C showed the highest corrosion resistance. 
6) All of the alkaline hydrothermal and hydrophobic functionalized samples were 
cytocompatible (non-toxic) with respect to HUVECs. 
7) The cell adhesion was improved after the alkaline treatments, but declined by 
hydrophobization, which can be advantageous for vascular applications. 
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