
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Electrical and Computer Engineering Faculty 
Research and Publications 

Electrical and Computer Engineering, 
Department of 

1982 

On the Uniqueness of Solution of Magnetostatic Vector‐potential On the Uniqueness of Solution of Magnetostatic Vector potential 

Problems by Three‐dimensional Finite‐element Methods Problems by Three dimensional Finite element Methods 

O. A. Mohammed 
Virginia Polytechnic Institute and State University 

W. A. Davis 
Virginia Polytechnic Institute and State University 

B. D. Popovic 
Virginia Polytechnic Institute and State University 

T. W. Nehl 
Virginia Polytechnic Institute and State University 

Nabeel Demerdash 
Marquette University, nabeel.demerdash@marquette.edu 

Follow this and additional works at: https://epublications.marquette.edu/electric_fac 

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Mohammed, O. A.; Davis, W. A.; Popovic, B. D.; Nehl, T. W.; and Demerdash, Nabeel, "On the Uniqueness of 
Solution of Magnetostatic Vector‐potential Problems by Three‐dimensional Finite‐element Methods" 
(1982). Electrical and Computer Engineering Faculty Research and Publications. 429. 
https://epublications.marquette.edu/electric_fac/429 

https://epublications.marquette.edu/
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric_fac?utm_source=epublications.marquette.edu%2Felectric_fac%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=epublications.marquette.edu%2Felectric_fac%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=epublications.marquette.edu%2Felectric_fac%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/electric_fac/429?utm_source=epublications.marquette.edu%2Felectric_fac%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Electrical Engineering Faculty Research and Publications/College of 
Engineering 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

Journal of Applied Physics, Vol. 53, No. 11 (1982): 8402-8404. DOI. This article is © American Institute 
of Physics and permission has been granted for this version to appear in e-Publications@Marquette. 
American Institute of Physics does not grant permission for this article to be further copied/distributed 
or hosted elsewhere without the express permission from American Institute of Physics. 

 

On the uniqueness of solution of 
magnetostatic vector-potential problems by 
three-dimensional finite-element methods 
 
O. A. Mohammed 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 
 
W. A. Davis 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 
 
B. D. Popovic 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 
 
T. W. Nehl 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 
 
N. A. Demerdash 
Marquette University, Milwaukee, Wisconsin 53233 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 
 
 

http://epublications.marquette.edu/


ABSTRACT 
In this paper, particular attention is paid to the impact of finite-element approximation on uniqueness and to 
approximations implicit in finite element formulations from the uniqueness requirements standpoint. It is also 
shown that the flux density is unique without qualifications. The theoretical and numerical uniqueness of the 
magnetic vector potential in three-dimensional problems is also given. This analysis is restricted to linear, 
isotropic media with Dirichlet Boundary conditions. As an interesting consequence of this analysis it is shown 
that, under usual conditions adopted in obtaining three-dimensional finite-element solutions, it is not necessary 
to specify div A ���in order that A ���be uniquely defined.  
 
PACS numbers: 41.10.Dg 

INTRODUCTION  
Although for a relatively long time the magnetic vector-potential has been used for obtaining numerical 
solutions of magnetostatic problems, it seems that the question of uniqueness of the vector-potential itself has 
not been treated in detail, particularly in conjunction with three--dimensional finite-element solutions. (This, of 
course, is due to the fact that in the end curl A�, and not A ���itself, is needed.) Interest in questions of validity and 
uniqueness of numerical 3-D finite element (FE) solutions to magnetostatic problems has been intensified as a 
result of the presentation.and publication of two papers, References [1] and [2], and their accompanying 
discussions. 
 
This paper addresses the questions of validity and uniqueness of such 3-D FE solutions. For simplicity, we shall 
restrict consideration to linear, isotropic media with Dirichlet boundary conditions. Both the curl and divergence 
nature of the magnetic vector potential (mvp) shall be considered.  
 

STATEMENT OF THE PROBLEM  
In this work, one is interested in obtaining a solution to the magnetostatic form of Maxwell's equations given by 
 

∇  ×  H � =  J ̅ (1a) 
 

∇  •  B � =  0  (1b) 
 

νB�  =  H�   (1c) 
 

where ν is the reluctivity of the medium. 
 
It is well known that B �  may be expressed as [3] 
 

B � =  ∇ × A�  (2) 
 
where  A�  is the magnetic vector potential (mvp), The mvp is a solution to 
 

νX (ν∇ × A�)  = J ̅  (3) 
 

It is assumed here that A ���is the exact solution which satisfies the given boundary conditions. The object of the 
following section is to consider the uniqueness of A� obtained in the solution of (3). 
 



THE UNIQUENESS OF THE CURL (∇ × A� =  B� ) 
If A�1 and A�2 are both solutions to (3) with σA�  =  A�1  −  A�2, then it follows that 
 

∇ × ν (∇ × δA)  =  0.    (4) 

 

To the define integral the uniqueness statement, we first consider the integral of 𝜈𝜈|𝛻𝛻 × 𝛿𝛿A�|2. One obtains we 
first the consider following through integration by parts: 
 
∫ 𝜈𝜈|∇ × 𝛿𝛿A�|2dv 
V = ∫ [𝛿𝛿A� ∙ ∇ × 𝜈𝜈(∇ × 𝛿𝛿A�)]dv 

V + ∮ [𝛿𝛿A� × ν(∇ × A�)] 
S ∙ ds̅   (5) 

 
where S is the given Dirichlet boundary at which n� × A� =  0. Based on this boundary condition, the surintegral in 
(5) vanishes. This integral would also vanish for the Neumann condition. Hence, upon substituting (4) into (5) 
one obtains 
 

∫ 𝜈𝜈|∇ × 𝛿𝛿A�|2dv 
V = 0  (6) 

 
which, for �ositive v, requires that  
 

∇ × δA� = 0   (7) 
 
and by the Helmholtz theorem [4] 
 

δA� ≈ ∇∅  (8) 
 
Thus, we see that specifying tangential A� on the boundary surface requires A� to be unique to within the gradient 
of a potential.  
 
The same results may be obtained for the finite element solution to (3). We begin with the following energy 
functional which was previously used in references [1] and [2]: 
 

ρ(U�) = ∫ �(U� − A�) ⋅ ∇ × �𝜈𝜈 × (U� − A�)�� 
V dv  (9) 

 
where U� is the approximate solution of (3). 
 
Expanding U� as 
 

U� = �𝜀𝜀𝑖𝑖U�𝑖𝑖

N

𝑖𝑖=1

 

 
with N approximation functions U�𝑖𝑖 we may write the first variation of ρ as follows: 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

= −∫ �U�𝑖𝑖 ⋅ ∇ × �𝜈𝜈∇ × (U� − A�)� + (U� − A�) ⋅ ∇ × (𝜈𝜈∇ × U�𝑖𝑖)�
 
V dv = 0  (11) 

 
Integrating (11) by parts yields 



 
∫ [2U�𝑖𝑖 ⋅ (∇ × (𝜈𝜈∇ × U�) − J)̅] 
V dv − ∮ �(U� − A�) × (𝜈𝜈∇ − U�𝑖𝑖) − U�𝑖𝑖 × �𝜈𝜈∇ × (U� − A�)�� 

S ⋅ ds̅ = 0 (12) 
 
which gives the Euler equation 
 

∇ × (𝜈𝜈∇ × U�) = J ̅  (13) 
 
For computational purposes, it is convenient to rewrite (12 ) with Dirichlet conditions as 
 

2∫ [𝜈𝜈∇ × U�𝑖𝑖 ∙ ∇ × U� − U�𝑖𝑖 ∙ J]̅ 
V dv = 0  (14) 

 
for 𝑖𝑖 =  1,2,••• ,𝑁𝑁. For linear approximation functions, the curls in (14) are piecewise constants requiring only 
simple integrals. If A�1 and A�2 are two solutions to U� in the numerical problem, then based on (10) and (14) it is 
easily shown that 
 

∫ [𝜈𝜈|∇ × (A�1 − A�2)|2] 
V dv = 0  (15) 

 
and thus A� must also be unique to within V0 for the numerical problem. However-'- since the curl of ∇∅ is zero, the solution for ∇ × A�, that is the flux 
density B�, is unique with no qualifications. 
 

THE DIVERGENCE OF THE VECTOR POTENTIAL  
In obtaining B� as the curl of A� as in the previous section, the divergence of A� is not required and the solution for 
B� has been shown above to be unique. However, in the numerical aspect of solving (14) this non-uniqueness of 
A� by ∇∅ will create a singular numerical process for obtaining A� which must be solved by constraining the 
problem in some way. One method would be to add (∇ ∙ U� − ∇ ∙ A�)2 to the functional integrand and specify the 
gauge ∇ ∙ A� as suggested by Van Bladel [5] to satisfy the sufficiency requirements of the Helmholtz equation. A 
second method would be to solve the resultant matrix equation for A� by pseudoinverse methods [6]. A third 
method which has been used successfully in references [l] and [2] is to specify n� ∙ A� (or (n� ∙ ∇)(n� ∙ A�) at the 
boundary surface. It has been found that this last technique gives good results for piecewise linear, continuous 
approximation functions. It is the purpose of this section to show that this uniqueness may be predicted a priori 
and thus a specific gauge need not be imposed.  
 
A simplistic view of this uniqueness may be obtained in a numerical form by counting the number of unknowns 
and equations (independence assumed). For the finite-element formulation we obtain three equations and 
three unknowns at each interior node. To complete the problem, we require boundary conditions on all three 
components of the mvp at boundary nodes. This is consistent with the additional constraint suggested above.  
 
Let us consider A�1 and A�2 to be solutions of (12) with Dirichlet boundary conditions on A� (not just n� × A�). We 
wish to show that the difference, ∇∅, between A�1 and A�2 must vanish in V for piecewise linear, continuous 
bases (using tetrahedral elements). 
 
Let us consider an element at the boundary surface. Since ∇∅ is linear and must vanish at the boundary, one can 
write 
 

∇∅ = C1�n�1 ∙ (r − rs)�  (16) 
 
Where n�1 is the boundary surface normal and r̅s is on the surface. Taking the curls of ∇∅ we obtain 
 



∇ × (∇∅) = n�1 × C�1  (17) 
 
which must be identically zero. Thus C�1 must e parallel to n�1 and we may write (16) as 
 

∇∅ = c1[n�1 ∙ (r̅ − r̅s)]n�2  (19) 
 
If these elements fall along an edge such that 
 

n�1 ≠ n�2  (20) 
 
then c and c must be zero since ∇∅ must be continuous at the 1 adjoining 2 faces. Hence, these two 
tetrahedrons may be deleted from ∇ to determine ∇∅. This result may be generalized to elements with 
adjacent edges, but non-adjacent faces. Since for a closed, finite volume there must always be two such 
tetrahedrons, all tetrahedrons may be deleted to obtain ∇∅ = 0. Thus the ∇ ∙ A� in the solution is unique 
(though we have not determined the value). This result may be extended to the problem with Neumann 
boundary conditions. 

NUMERICAL COMPARISONS  
The air-cored coil described in reference (2] has been solved using the discritization grids given in that reference. 
The solution is obtained here with the boundary conditions A� = 0 on the outermost surface (same as in 
reference (2]), and also with the condition on the normal component of A replaced by setting the normal 
derivative to zero (Neumann condition). Table (1) shows these results for arbitrarily chosen tetrahedral 
elements in the given volume. The results for the curl and the divergence of the vector potential are also shown 
for both of the above cases in that table. As can be easily noticed, the values (single precision on an IBM 370) of 
the curl of the vector potential A� are the same in both cases, hence the curl is unique. However, there is no fixed 
pattern for the divergence of A�, and the value of the divergence of A� is inconsequential to the flux densities as 
expected. 
 
Table (1) Values of Curl (lines /sq. inch) and Divergence of the Vector Potential at Arbitrary Points 
 

Pt.  Dirichlet Boundaries    Neumann Boundaries    
 Bx By Bz ∇ ∙ A� Bx By Bz ∇ ∙ A� 
1 64.4 0.0 2055. 2.7 64.3 0.0 2058. 6.5 
2 40.4 57.8 2159. -7.7 40.5 57.5 2161. -0.7 
3 22.0 -2.1 -67. -2.8 22.5 -2.6 -64. -15.1 
4 69.3 -6.9 -190. 1.3 68.9 -7.5 -190. -2.2 
5 2.3 17.8 -50 -13.4 2.5 17.7 -50. 1.0 
6 220.0 22.5 -274. -22.7 220.2 22.4 -271. -2.3 
7 48.4 19.7 -45. -0.9 48.9 18.3 -44. -7.0 
8 87.7 548.5 -166. -4.4 87.6 547.9 -165. -22.5 
9 -102.3 26.1 310. 85.7 -102.4 25.8 310. 90.8 
10 89.7 95.3 -113. 2.7 89.6 95.1 -114. 9.1 

CONCLUSION  
A theoretical proof of uniqueness for a three dimensional finite element magnetostatic field solution has been 
given for a class of 3-D problems. It has been shown that the flux density solution is unique with no 
qualifications. The theoretical and numerical uniqueness of the magnetic vector potential for linear finite-



elements have also been derived, where the derivation has been restricted to linear, isotropic media with 
Dirichlet boundary conditions. The consequence of this analysis is that under usual conditions assumed in 
obtaining a three-dimensional finite-element solution, it is not necessary to explicitly, specify the gauge ∇ ∙ A� in 
order to uniquely define the vector potential A�. 
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