

254

the final values of P and Q change from those shown in Table 5-10 as R changes. An

example is shown in Fig. 5-32 with the final linear displacement x(t) calculated with R =

1 and then R = 10. As shown in this figure, the final profile for x(t) was the same

independently of the values set for R. For reference, when R was set to 1, the final values

of P and Q were 428×I(3x3) and 3.3×I(3x3), respectively, as show in Table 5-9, while the

final values for P and Q were 4211×I(3x3) and 53.4×I(3x3), respectively, when R was set to

10.

Fig. 5-32 – Linear displacement x(t) calculated with R = 1 and R = 10.

In order to validate the effectiveness of the proposed iterative energy optimization

method in calculating a trajectory that reduces the energy cost, the energy required from

the motors of the self-balancing transporter to perform the optimized trajectory was

compared to the energy required by the motors to perform the same desired linear move x

of 2 meters in 5 seconds when defined by eight motion profiles typically used in

x
 [
m

]
a
n
d

 [
ra

d
]

255

industrial applications. The energy required by the motors of the self-balancing

transporter to perform this linear move designed with these motion profiles was estimated

with the model shown below in Fig. 5-33. This model in Fig. 5-33 is an extension of the

model shown in Fig. 3-40. The difference resides in the command signal. In Fig. 3-40, the

command signal is the implementation of the signal in Fig. 3-30, while in Fig. 5-33, the

command signal is the implementation of these eight motion profiles and the optimized

motion profile. These eight motion profiles defined in (1), (2), (3), (4), (5), (6), (7), (8),

(9), and (10) were implemented in the subsystem called “Motion Profiles” for a 2 meter

move in 5 seconds. Meanwhile, the optimized motion profile shown in Table 5-10 was

directly imported from the Matlab Workspace into the Simulink model as shown in Fig.

5-33.

The self-balancing transporter was then commanded by each of these motion

profiles. State-space control was used to control the system as described in Section 3.3.10

and tuned as described in Section3.3.11 with Q = [10 0 0 0 0;0 1 0 0 0; 0 0 500 0 0; 0 0 0

500 0; 0 0 0 0 1]. The control system generates the motor voltage command va for the

motors. The tuning gains remained the same while estimating the energy for each motion

profile. The torque signal from the model of both motors feeds the torque command

inputs of the self-balancing transporter. The parameter “Selector” in Fig. 5-33 was used

to automatically select, via Matlab script, the motion profile to be simulated while the

results are captured.

256

Fig. 5-33 – Model of the self-balancing transport for validation of the energy

optimization method.

While the system was being simulated for each one of these motion profiles, the

motor voltage va and motor current ia of one of the motors were used to compute the

energy of one motor using (79) and (81). The total energy Et was calculated as the twice

the energy of a single motor. Two motors were modeled in the subsystem “DC Motors”

in Fig. 5-33.

The total energy Et required by the system while commanded by each one of these

eight motion profiles was compared to the total energy required by the system while

commanded by the optimized motion profile. The results are shown in Fig. 5-34.

257

Fig. 5-34 - Total energy required by the self-balancing transporter while commanded by

several motion profiles and the optimized motion profile

The final energy required by the motor of the self-balancing transporter to move 2

meters in 5 seconds in x-direction while commanded by each one of these eight motion

profiles and the optimized motion profile is shown in Table 5-11. From the results shown

in Table 5-11, the optimized motion profile required the lowest amount of energy when

compared to these eight motion profile typically used in industrial applications. The

optimized motion profile presented an energy cost at least 4.5% lower than any of these

eight motion profiles. The cubic, sine-harmonic, and trapezoidal profiles, which are types

of motion to profiles to be avoided in industrial applications, had energy cost 4.5%, 5.2%,

and 5.4% higher than the optimized profile. These motion profiles are highlighted in

Table 5-11. When, the energy cost with the optimized motion profile is compared to the

Time (sec)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Optimized

Trapezoidal

Cycloidal

ModSine

Cubic

SHM

5
th

Order

7
th

Order

9
th

Order

258

energy cost with the other profiles shown in Table 5-11, which are the types of motion

profiles recommended for industrial applications, the energy savings with the optimized

profiles was at least 7.4%.

Table 5-11 - Comparison of energy consumption for various types of motion profiles

applied to the self-balancing transporter to move 2m in 5 seconds in simulation

Motion Profile Final

Energy (J)

Variation

(%)

Optimized 4.4012 0

Trapezoidal 4.6396 5.4

Cycloidal 4.8067 9.2

ModSine 4.7263 7.4

Cubic 4.5985 4.5

Sine-Harmonic 4.6281 5.2

5th Order Polynomial 4.7667 8.3

7th Order Polynomial 4.8732 10.7

9th Order Polynomial 4.9476 12.4

5.3.5 Experimental Results

The self-balancing transporter was built as described in Section 4.3 for the

experimental results.

As in simulation, the self-balancing transporter was commanded to perform a 2

meter in the x-direction in 5 seconds. The command signal x(t) was designed by each one

of the eight motion profiles typically used in industrial applications and defined in (1),

(2), (3), (4), (5), (6), (7), (8), (9), and (10). The energy required to perform this move with

each one of these motion profiles was experimentally measured and compared to the

energy required for the same move while the self-balancing transporter was commanded

by the optimized motion profile shown in Fig. 5-32. The energy required by the motors of

the self-balancing transporter while commanded by each one of these motion profiles was

259

compared. This comparison was used to validate the efficiency of the proposed iterative

energy optimization method in generating a motion profile that has lower energy cost

than other typical motion profiles.

The position command x generated by these eight motion profiles and the

optimized motion profile was implemented in the subsystem called “Psn Cmd” in Fig.

5-24.

The voltage and current of each motor was acquired during tests, and the resulting

total energy Et defined in (150) was calculated while each motion profile was

experimentally tested. The results for Et are shown in Fig. 5-35. As in simulation, the use

of optimized motion profile in Fig. 5-35 to command the motion of the self-balancing

transporter in x-direction yielded significant energy saving in comparison to the use of

the other motion profiles typically used in industrial applications. In these experimental

results, the optimized motion profile required 5.6% less energy than the sine-harmonic

profile which was the profile with the lowest energy cost from the eight typical motion

profile tested. Thus, the optimized motion profile saved at least 5.6% energy in

comparison to all the other motion profiles tested in this experiment as shown in Table

5-12. Meanwhile, the energy of the self-balancing transporter commanded by optimized

motion profile was at least 12.2% lower than its energy consumption while commanded

by the recommended motion profiles (cycloidal, modsine, 5th order polynomial, 7th order

polynomial, 9th order polynomial). This validates the ability of the proposed iterative

energy optimization method in computing a motion profile that allow to minimize the

energy consumption of the self-balancing transporter by simply modifying the motion

profile without any mechanical changes.

260

Fig. 5-35 - Energy consumption by the optimized motion profile and eight others for the

self-balancing transporter

Table 5-12 - Comparison of energy consumption for various types of motion profiles

applied to the physical self-balancing transporter to move 2m in 5 seconds in x-direction.

Motion Profile

Final

Energy

(J)

Variation

(%)

Optimized 3.6760 0

Trapezoidal 4.2800 16.4

Cycloidal 4.5100 22.7

ModSine 4.1230 12.2

Cubic 4.1620 13.2

Sine-Harmonic 3.8810 5.6

5th Order Polynomial 4.6850 27.4

7th Order Polynomial 4.6910 27.6

9th Order Polynomial 4.8370 31.6

261

5.3.6 Discussion of Results

In Section 5.3, an iterative energy optimization method was investigated to

minimize the electrical energy consumption of a self-balancing transporter. This method

was validated by comparing the energy cost of the system commanded by the optimized

profile to the energy cost of the system commanded by eight motion profiles typically

used in industrial applications. Simulations and experiments presented significant energy

reduction with the optimized motion profile in comparison to these eight motion profiles.

When the energy consumption of the system commanded by the optimized motion profile

was compared to the energy of the system commanded by the motion profiles to be

avoided in industrial applications (trapezoidal, cubic, and sine-harmonic), the energy

savings was between 4.5% and 5.4% from simulations, and 5.6% and 16.4% from the

experimental results. When the energy consumption of the system commanded by the

optimized motion profile was compared to the energy of the system commanded by the

recommended motion profiles (cycloidal, modsine, 5th order polynomial, 7th order

polynomial, and 9th order polynomial), the energy savings was between 7.4% and 12.4%

from simulations, and 12.2% and 31.6% from the experimental tests.

Since the self-balancing transporter is a slow dynamic system, the energy

optimization method may not yield the most energy savings for fast motion profiles due

to the inability to follow the command motion profile with low position-following error.

Thus, systems as the self-balancing transporter may not take full advantage of the energy

savings that could be provided with optimized motion profiles. Consequently, the energy

consumption of the system commanded by the optimized motion profiles may be higher

262

that what the optimized profile would provide if the system could follow the command

profile x with low position-following error.

263

 Conclusions

CHAPTER 6

Conclusions

The conclusions and suggested future work of this research are now presented.

6.1 Conclusions

The mechatronic design process and energy optimization methods presented in

this dissertation can be of great benefit for the industrial sector. The mechatronic design

process provides a methodology to properly select motors and systematically design the

motion profile that controls each motor. The developed trajectory planning method

avoids undesirable effects such as vibration, noise, and stress in mechanical and

electronic components. A machine, that has the motor sized though this mechatronic

design process and has the motion profiles designed with the developed trajectory

planning method, has the potential to achieve a very high performance level, once tuned

as described in Section 3.1.11 or through other tuning methods that lead to high

performance levels. This mechatronic design process can be applied to single-axis

machines, multi-axis machines, or multi-axis coordinated systems (e.g., robots).

Although, this method was demonstrated for three systems (two-inertia system, Cartesian

two-axis parallel robot – H-Bot, and a self-balancing transporter), it is a generic method

that can be used with any industrial machine.

 In motion-control applications, there is a range of motor sizes that yield a proper

solution for a given servo axis. Small-frame-size motors may not have enough torque to

264

power the axis, while large-frame-size motors may require too much acceleration torque

to drive the rotor inertia, and the remaining torque is too low to power the servo axis. The

proposed mechatronic design method provides a systematic approach to identify the

range of motors to best power the system.

The energy optimization methods presented in this dissertation can be used to

minimize the energy consumption of industrial machines. Three systems were used to

validate these methods. The energy optimization method demonstrated with the two-

inertia system yielded energy savings of 13.4% through simulations, and 15.5% through

experiments when compared to the energy consumption of the system while commanded

by recommended motion profiles typically used in industrial applications (cycloidal,

modsine, 5th-order polynomial, 7th-order polynomial, and 9th-order polynomial). The

energy optimization method developed for multi-axis coordinate systems and

demonstrated with the H-Bot yielded energy savings of at least 39.3% from the

simulations and 13.5% from the experimental results in comparison to the energy

consumption of the system while commanded by position reference signals designed with

the recommended motion profiles. The differences in energy savings between simulation

and experimental results are attributed to the simplification in the model of the H-Bot.

Meanwhile, the method demonstrated with the self-balancing transporter saved energy by

8.3% from the simulations and 12.2% from the experimental results in comparison to the

energy cost with the command signal designed with the recommended motion profiles.

Therefore, the proposed energy optimization methods provided energy cost reduction of

at least 12% from the experimental tests for any of the systems tested in this dissertation

265

when compared to the energy cost with the systems commanded by position reference

signals designed with typical motion profiles recommended for industrial applications.

In comparison to any of the eight motion profiles tested in this dissertation, which

includes the motion profiles to be avoided in industrial applications (trapezoidal, cubic,

and sine-harmonic), the energy optimization method tested with the H-Bot saved at least

23.1% of energy via simulations and 11.6% via experimental tests. Meanwhile, the

energy optimization method tested with the self-balancing transporter saved at least 4.5%

of energy via the simulations and 5.6% via experimental results.

The efficiency of the optimized motion profile in minimizing energy cost depends

on tuning. As the position-following error is reduced, the ability to reduce the energy cost

is also reduced. This is due to the fact that with high position-following error, the actual

motion profile that the load executes does not match the optimized motion profile, and

the actual profile at the load may not retain the characteristics that enable energy

minimization. Thus, a well-tuned system is important to achieve higher energy savings.

 It was also observed that as compliance in the system increases, the ability to

save more energy in comparison with the eight motion profiles tested in this dissertation

also increases. Although, compliance is not always desirable in industrial systems, it is

always present, and the amount of energy savings depends on the level of compliance.

The level of electrical energy savings that can be achieved with industrial

machines as demonstrated in this dissertation is of great importance to reduce production

costs with minimum impact to the machine design. The only change is in the design of

the motion profile commanding each servo axis. This method only modifies the profile of

the command signal without altering the timing for each segment of the original motion

266

profile. This facilitates the implementation of the optimized motion profile since it does

not change the time for each step of the machine. Additionally, no changes are necessary

in the mechanical or automation system. This also helps to reduce the cost of

implementation of this method in industrial machines.

6.2 Future Work

For the mechatronics design process presented in this dissertation, the thermal

model of the motor and the IGBT’s in the servo drive powering the motor can be

included in the analysis for the search of the proper motor to power the system.

For the energy optimization method, the analysis of the dc-bus in the drive can be

included in the analysis to optimize the energy also in terms of the regenerative energy

recovered in the capacitors in the servo drive.

The feasibility of applying this energy optimization method for on-line

optimization instead of off-line could also be investigated. This would allow one to re-

compute motion profiles during the machine process for the case in which the command

signal needs to be modified to account for changing processes, machine variability,

different products, etc.

The energy optimization method was validated for three systems, but to make this

system robust enough and generic enough to apply for any industrial machine, exhaustive

tests are still required.

267

BIBLIOGRAPHY

[1] SolidWorks. Incorporating Mechatronics into Your Design Process. [White

Paper]. Available: http://www.solidworks.com/

[2] K. Perrin, "Enabling Mechatronics Product Development with Digital

Prototyping," ed. Autodesk Website: Autodesk, 2008.

[3] R. Isermann, "Modeling and Design Methodology for Mechatronic Systems,"

IEEE/ASME Transactions on Mechatronics, vol. 1, pp. 16-28, 1996.

[4] H. Arioui, L. Nehaoua, S. Hima, N. Seguy, and S. Espie, "Mechatronics, Design,

and Modeling of a Motorcycle Riding Simulator," IEEE/ASME Transactions on

Mechatronics, vol. 15, pp. 805-818, 2010.

[5] GM. (2009), GM Standardizes on Model-Based Design for Hybrid Powertrain

Development. [User Story]. 1-2. Available: http://www.mathworks

[6] Z. Yong, P. Fangyu, L. Bin, and L. Yongzhi, "Mechatronic Modeling and

Analyzing for Feed Servo Control System Based on Torsion Dynamics of Lead-

Screw," in International Conference on Measuring Technology and Mechatronics

Automation (ICMTMA), 2010, pp. 632-635.

[7] Xerox. (2004), Xerox Reduces Development Time Using MathWorks Tools.

[User Story]. 1-2. Available: http://www.mathworks.com

[8] Segway. (2003), Segway LLC Delivers Innovative Transporter Using MathWorks

Tools. [User Story]. 1-2. Available: http://www.mathworks.com

[9] " Annual Energy Outlook 2014 Early Release Overview," U.S. Energy

Information Administration, www.eia.gov2014.

[10] "Estimated U.S. Energy Use in 2013: 97.4 Quads," Lawrence Livermore National

Laboratory, www.llnl.gov2014.

[11] A. Perrat, "Energy Efficiency for Machines: the smart choice for the

motorization," Schneider Electric, 2010.

[12] "Trade theory and natural resources," World Trade Organizaton, 2010.

[13] A. Beck and N. Jazdi, "Model-based electrical energy analysis of industrial

automation systems," in IEEE International Conference on Automation Quality

and Testing Robotics (AQTR), 2010, pp. 1-6.

[14] R. Panaitescu and M. Oppelt, "Mechatronic simulations with NX Motion and

MATLAB®/Simulink®," ed: Siemens PLM Software, 2010, p. 17.

268

[15] R. Steele and T. Lennon. (2009, November 2009) Integrate model-based machine

design with motion control. Design World.

[16] Mathworks. CARCO Electronics Reduces Development Costs by 30% Using

MathWorks Simulation Tools. [User Story]. 1-2. Available:

http://www.mathworks.com

[17] Mathworks. Instron Develops a Multiaxis Test Fixture Using SimMechanics.

[User Story]. 1-2. Available: http://www.mathworks.com

[18] W. J. P. III, Modeling, Analysis, and Control of Dynamic Systems, 2nd ed. New

York: John Wiley & Sons, Inc., 1998.

[19] R. Isermann, Mechatronic Systems: Fundamentals. London: Springer-Verlag,

2003.

[20] D. Margolis, "Bond graphs, modeling, and simulation in industry: some examples

where costly mistakes could have been avoided," in IEEE International

Conference on Systems, Man and Cybernetics, 2002, pp. 1-5.

[21] Q. Li and X. Wu, "Control performance improvement of a parallel robot via the

design for control approach," Mechatronics, vol. 14, pp. 947-964, October, 2004

2004.

[22] E. Goethert. Using High-Level Prototyping Hardware and Software in Machine

Control Applications. [Case Study]. Available:

http://sine.ni.com/cs/app/doc/p/id/cs-687

[23] S. Behbahani and C. W. de Silva, "System-Based and Concurrent Design of a

Smart Mechatronic System Using the Concept of Mechatronic Design Quotient

(MDQ)," IEEE/ASME Transactions on Mechatronics, vol. 13, pp. 14-21, 2008.

[24] S. Behbahani and C. W. de Silva, "Mechatronic Design Evolution Using Bond

Graphs and Hybrid Genetic Algorithm With Genetic Programming," IEEE/ASME

Transactions on Mechatronics, vol. 18, pp. 190-199, 2013.

[25] F. Roos, H. Johansson, and J. Wikander, "Optimal selection of motor and

gerahead in mechatronic applications," Mechatronics, vol. 16, pp. 63-72, 2006.

[26] V. S. Vasić and M. P. Lazarević, "Standard Industrial Guideline for Mechatronic

Product Design," FME Transactions, vol. 36, pp. 103-108, 2008.

[27] "VDI 2221 Systematic approach to the development and design of technical

systems and products," ed: The Association of German Engineers (VDI), 1993, p.

44.

[28] "VDI 2206 Design methodology for mechatronic systems," ed: The Association

of German Engineers (VDI), 2004, p. 118.

269

[29] R.-F. Fung and Y.-H. Cheng, "Minimum-Energy Trajectory Planning for an LCD

Glass-Handling Robot," in Fourth International Conference on Intelligent

Networks and Intelligent Systems, 2011, pp. 61-64.

[30] C. Hansen, J. Oltjen, D. Meike, and T. Ortmaier, "Enhanced Approach for

Energy-Efficient Trajectory Generation of Industrial Robots," in 8th IEEE

International Conference on Automation Science and Engineering, 2012, pp. 1-7.

[31] M.-S. Huang, Y.-L. Hsu, and R.-F. Fung, "Minimum-Energy Point-to-Point

Trajectory Planning for a Motor-Toggle Servomechanism," IEEE/ASME

Transactions on Mechatronics, vol. 17, pp. 337-344, 2012.

[32] M.-S. Huang, Y.-L. Hsu, and R.-F. Fung, "Minimum-energy point-to-point

trajectory planning of a simple mechatronic system," in 8th Asian Control

Conference (ASCC), 2011, pp. 647-652.

[33] S. Liu and D. Sun, "Optimal Motion Planning of a Mobile Robot with Minimum

Energy Consumption," in IEEE/ASME International Conference on Advanced

Intelligent Mechatronics, 2011, pp. 43-48.

[34] W. P. Bailón, E. B. Cardiel, I. J. Campos, and A. R. Paz, "Mechanical Energy

Optimization in Trajectory Planning for Six DOF Robot Manipulators Based on

Eighth-Degree Polynomial Functions and a Genetic Algorithm," in 7th

International Conference on Electrical Engineering, Computing Science and

Automatic Control, 2010, pp. 446-451.

[35] A. Khoukhi, "Hybrid multi-objective motion planning of Parallel Kinematic

Machines," in 7th International Symposium on Mechatronics and its Applications

(ISMA), 2010, pp. 1-7.

[36] G. Field and Y. Stepanenko, "Iterative Dynamic Programming: An Approach to

Minimum Energy Trajectory Planning for Robotic Manipulators," in IEEE

International Conference on Robotics and Automation, 1996, pp. 2755-2760.

[37] A. Vergnano, C. Thorstensson, B. Lennartson, P. Falkman, M. Pellicciari, F.

Leali, et al., "Modeling and Optimization of Energy Consumption in Cooperative

Multi-Robot Systems," IEEE Transactions on Automation Science and

Engineering, vol. 9, pp. 423-428, 2012.

[38] O. Wigstrom, B. Lennartson, A. Vergnano, and C. Breitholtz, "High-Level

Scheduling of Energy Optimal Trajectories," IEEE Transactions on Automation

Science and Engineering, vol. 10, pp. 57-64, 2013.

[39] W. Yebin, Z. Yiming, S. A. Bortoff, and K. Ueda, "A Real-Time Energy-Optimal

Trajectory Generation Method for a Servomotor System," IEEE Transactions on

Industrial Electronics, vol. 62, pp. 1175-1188, 2015.

270

[40] D. Meike, M. Pellicciari, and G. Berselli, "Energy Efficient Use of Multirobot

Production Lines in the Automotive Industry: Detailed System Modeling and

Optimization," IEEE Transactions on Automation Science and Engineering, vol.

11, pp. 798-809, 2014.

[41] A. Vergnano, C. Thorstensson, B. Lennartson, P. Falkman, M. Pellicciari, Y.

Chengyin, et al., "Embedding detailed robot energy optimization into high-level

scheduling," in IEEE Conference on Automation Science and Engineering

(CASE), 2010, pp. 386-392.

[42] W. P. Bailon, E. B. Cardiel, I. J. Campos, and A. R. Paz, "Mechanical energy

optimization in trajectory planning for six DOF robot manipulators based on

eighth-degree polynomial functions and a genetic algorithm," in 7th International

Conference on Electrical Engineering Computing Science and Automatic Control

(CCE), 2010, pp. 446-451.

[43] H. Barghijand, A. Akbarimajd, and J. Keighobadi, "Quasi-static object

manipulation by mobile robot: Optimal motion planning using GA," in 11th

International Conference on Intelligent Systems Design and Applications (ISDA),

2011, pp. 202-207.

[44] G. C. D. Sousa, B. K. Bose, and J. G. Cleland, "Fuzzy logic based on-line

efficiency optimization control of an indirect vector-controlled induction motor

drive," IEEE Transactions on Industrial Electronics, vol. 42, pp. 192-198, 1995.

[45] O. S. Ebrahim, M. A. Badr, A. S. Elgendy, and P. K. Jain, "ANN-Based Optimal

Energy Control of Induction Motor Drive in Pumping Applications," IEEE

Transactions on Energy Conversion, vol. 25, pp. 652-660, 2010.

[46] A. Khoukhi, L. Baron, M. Balazinski, and K. Demirli, "Fuzzy-Neuro Optimal

Time-Energy Control of a Three Degrees of Freedom Planar Manipulator," in

Annual meeting of the North American Fuzzy Information Processing Society

(NAFIPS), 2006, pp. 247-252.

[47] S. Kiwon and P. Oh, "Applying human motion capture to design energy-efficient

trajectories for miniature humanoids," in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2012, pp. 3425-3431.

[48] R. Citalan-Lara and C. A. Cruz-Villar, "Multidisciplinary optimization of

servodrives for robot manipulators," in IEEE/ASME International Conference on

Advanced Intelligent Mechatronics (AIM), 2014, pp. 38-43.

[49] A. M. A. Amin, M. I. El Korfally, A. A. Sayed, and O. T. M. Hegazy, "Efficiency

Optimization of Two-Asymmetrical-Winding Induction Motor Based on Swarm

Intelligence," IEEE Transactions on Energy Conversion, vol. 24, pp. 12-20, 2009.

271

[50] O. Wongwirat and A. Anuntachai, "Searching energy-efficient route for mobile

robot with ant algorithm," in 11th International Conference on Control,

Automation and Systems (ICCAS), 2011, pp. 1071-1075.

[51] G. Field and Y. Stepanenko, "Iterative dynamic programming: an approach to

minimum energy trajectory planning for robotic manipulators," in Proceedings of

the IEEE International Conference on Robotics and Automation, 1996, pp. 2755-

2760 vol.3.

[52] A. Sengupta, T. Chakraborti, A. Konar, and A. Nagar, "Energy efficient trajectory

planning by a robot arm using invasive weed optimization technique," in Third

World Congress on Nature and Biologically Inspired Computing (NaBIC), 2011,

pp. 311-316.

[53] I. Duleba and J. Z. Sasiadek, "Energy-efficient Newton-based nonholonomic

motion planning," in Proceedings of the 2001 American Control Conference,

2001, pp. 1859-1863 vol.3.

[54] J. Brateman, X. Changjiu, and L. Yung-Hsiang, "Energy-Effcient Scheduling for

Autonomous Mobile Robots," in IFIP International Conference on Very Large

Scale Integration, 2006, pp. 361-366.

[55] V. Smirnov, V. Plyusnin, and G. Mirzaeva, "Energy efficient trajectories of

industrial machine tools with parallel kinematics," in IEEE International

Conference on Industrial Technology (ICIT), 2013, pp. 1267-1272.

[56] C. Hansen, J. Kotlarski, and T. Ortmaier, "Experimental validation of advanced

minimum energy robot trajectory optimization," in 16th International Conference

on Advanced Robotics (ICAR), 2013, pp. 1-8.

[57] C. Hansen, J. Kotlarski, and T. Ortmaier, "Path planning approach for the

amplification of electrical energy exchange in multi axis robotic systems," in

IEEE International Conference on Mechatronics and Automation (ICMA), 2013,

pp. 44-50.

[58] S. Lorenz, M. Hesse, and A. Fischer, "Simulation and optimization of robot

driven production systems for peak-load reduction," in Proceedings of the 2012

Winter Simulation Conference (WSC), 2012, pp. 1-12.

[59] A. M. da Silva, P. A. Voglewede, and K. C. Craig, "Integrated Trajectory

Planning, System Modeling, and Control Design for Optimized Motor Selection,"

in Proceedings of the ASME 5th Annual Dynamic Systems and Control

Conference Joint with the JSME 11th Motion and Vibration Conference, Fort

Lauderdale, FL, 2012, pp. 103-112.

[60] "Integrated Motion on the EtherNet/IP Network Configuration and Startup," ed:

Rockwell Automation, 2014.

272

[61] "Solutions in Action - R.A. Jones," ed: Rockwell Automation, 2014.

[62] "Motion System Tuning," ed: Rockwell Automation, 2014.

[63] R. L. Norton, Cam Design and Manufacturing Handbook, 2nd ed. New York:

Industrial Press, Inc., 2009.

[64] C. H. Moon, "Cam Design," ed. Wheeling, IL: Commercial Cam Division,

Emerson Electric Company, 1961, p. 69.

[65] P. Lambrechts, M. Boerlage, and M. Steinbuch, "Trajectory planning and

feedforward design for high performance motion systems," in Proceedings of the

American Control Conference, 2004, pp. 4637-4642 vol.5.

[66] R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives.

Boca Raton: CRC Press, 2009.

[67] "Integrated Motion on the EtherNet/IP Network," ed: Rockwell Automation,

2014.

[68] "Plug and play – Sercos, the automation bus," ed: SERCOS The Automation Bus,

2014.

[69] "ControlLogixTM Motion Module," ed: Rockwell Automation, 2003.

[70] S. Macfarlane and E. A. Croft, "Jerk-bounded manipulator trajectory planning:

design for real-time applications," IEEE Transactions on Robotics and

Automation, vol. 19, pp. 42-52, 2003.

[71] H. Ming-Shyan, H. Yi-Lung, and F. Rong-Fong, "Minimum-Energy Point-to-

Point Trajectory Planning for a Motor-Toggle Servomechanism," IEEE/ASME

Transactions on Mechatronics, vol. 17, pp. 337-344, 2012.

[72] H. Panfeng, C. Kai, Y. Jianping, and X. Yangsheng, "Motion Trajectory Planning

of Space Manipulator for Joint Jerk Minimization," in International Conference

on Mechatronics and Automation, 2007, pp. 3543-3548.

[73] Y. Guan, K. Yokoi, O. Stasse, and A. Kheddar, "On robotic trajectory planning

using polynomial interpolations," in IEEE International Conference on Robotics

and Biomimetics, 2005, pp. 111-116.

[74] G. K. Singh and J. Claassens, "An analytical solution for the inverse kinematics of

a redundant 7DoF Manipulator with link offsets," in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2010, pp. 2976-2982.

[75] S. Parasuraman, H. Chiew Mun, and F. Sai Cheong, "Trajectory planning for

redundant manipulator using evolutionary computation technique," in IEEE

273

Instrumentation and Measurement Technology Conference (I2MTC), 2011, pp. 1-

6.

[76] C. Lanczos, The Variational Principles of Mechanics, 4th ed.: Dover

Publications, 1986.

[77] J. Ginsberg, Engineering Dynamics. New York: Cambrige University Press, 2008.

[78] G. D. Wood and D. C. Kennedy. (2003, Simulating Mechanical Systems in

Simulink with SimMechanics. 1-25. Available: www.mathworks.com

[79] "SimMechanics™ Link User's Guide - R2014b," ed: MathWorks, 2014.

[80] A. E. Fitzgerald, C. K. Jr., and S. D. Umans, Electric Machinery, 6th ed.:

McGraw-Hill, 2002.

[81] G. R. Slemon, Electric machines and drives: Addison-Wesley Pub. Co., 1992.

[82] A. Hughes, Electric Motors and Drives : Fundamentals, Types, and Applications,

3rd ed. Amsterdam Newnes, 2006.

[83] C. W. de Silva, Mechatronics: A Fundation Course. New York: CRC Press, 2010.

[84] K. Ogata, Modern Control Engineering, 5th ed.: Prentice Hall, 2009.

[85] M. Nagurka and O. Yaniv, " Robust PI Controller Design Satisfying Gain and

Phase Margin Constraints," presented at the Proceedings of the American Control

Conference, 2003.

[86] H. W. Fung and Q. Wang, G., "PI Tuning in terms of gain and phase margins,"

Automatica, vol. 34, pp. 1145-1149, 1998.

[87] K. J. Astrom and T. Hagglund, Automatic Tuning of Pid Controllers: Instrument

Society of America, 1988.

[88] K. J. Aström and T. Hägglund, PID Controllers: Theory, Design, and Tuning, 2nd

ed.: Instrument Society of America, 1995.

[89] I. H. Liu, M.-C. Tsai, M.-Y. Cheng, and K.-H. Su, "Planning and implementation

of motion trajectory based on C2 PH spline," in 37th Annual Conference on IEEE

Industrial Electronics Society (IECON), 2011, pp. 246-251.

[90] J. Wu, Y. Liang, and Z. Wang, "A Robust Control Method of Two-Wheeled

SelfBalancing Robot," in The 6th International Forum on Strategic Technology,

2011, pp. 1031-1035.

[91] H. G. Nguyen, J. Morrell, K. Mullens, A. Burmeister, S. Miles, N. Farrington, et

al., "Segway Robotic Mobility Platform," presented at the Proc. SPIE 5609,

Mobile Robots XVII, Philadelphia, PA, 2004.

274

[92] "Segway HT Reference Manual," ed: Segway LLC.

[93] F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd ed.: Wiley-Interscience,

1995.

[94] "Logix5000 Controllers Ladder Diagram - Programming Manual," ed: Rockwell

Automation, 2014.

[95] "ControlLogix System - User Manual," ed: Rockwell Automation, 2014.

[96] "Kinetix 6200 and Kinetix 6500 Modular Multi-axis Servo Drives - User

Manual," ed: Rockwell Automation, 2012.

[97] G. Ellis, Contro System Design Guide: A Practical Guide: Elsevier Inc. , 2003.

[98] (2015). Arduino. Available: www.arduino.cc

[99] S. Monk, Programming Arduino: Getting Started with Sketches, 1st ed.: McGraw-

Hill, 2012.

[100] M. Conrad and G. Sandmann, "A Verification and Validation Workflow for IEC

61508 Applications " SAE International, 2009.

[101] (2015). Embedded Code Generation. Available: http://www.mathworks.com/

[102] A. Tantos. (2015). H-Bridge Secrets. Available:

http://modularcircuits.tantosonline.com/blog/articles/h-bridge-secrets/

[103] "5-A H-Bridge for DC-Motor Applications - TLE 5206-2," ed: Infineon

Technologies, 2001.

[104] "SN5408, SN54LS08, SN54S08 SN7408, SN74LS08, SN74S08 Quadruple 2-

Input Positive-AND Gates," ed: Texas Instruments, 1988.

[105] "GM9236S021: Lo-Cog DR Servo Gearmotor," ed: Pittman Express, 2001.

[106] "LPY503AL - MEMS motion sensor: dual axis pitch and yaw ±30°/s analog

gyroscope," ed: STMicroelectronics, 2009.

[107] "±1.5g, ±6g Three Axis Low-g Micromachined Accelerometer," ed: Freescale

Semiconductor, 2008.

[108] W. Junfeng and Z. Wanying, "Research on Control Method of Two-wheeled Self-

balancing Robot," in Fourth International Conference on Intelligent Computation

Technology and Automation, Shenzhen, Guangdong, 2011, pp. 476-479.

[109] S. Zhiyu and L. Daliang, "Balancing Control of a Unicycle Riding," in 29th

Chinese Control Conference, Beijing, China, 2010, pp. 3250-3254.

275

[110] X. Ruan and J. Zhao, "The PWM Servo and LQR Control of a Dual-wheel

Upright Self-balancing Robot," in International Symposiums on Information

Processing, 2008, pp. 586-590.

[111] W. H. Gayman and K. Liechti, "Experimental Determination of the Principal

Moments of Inertia of the Helios Prototype Spacecraft," Jet Propulsion

Laboratory - California Institute of Technology - NASA, Technical Memorandum

33-707, 1974.

[112] "Wireless Hi Sensitivity Receiver Module (RF ASK): RWS-371," 3rd ed:

Wenshing, 2008.

[113] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko,

The Mathematical Theory of Optimal Processes. New-York: Wiley-Interscience,

1962.

[114] D. R. Wilkins. (2005, August 2005) William Rowan Hamilton: mathematical

genius. Physics World. 33-36.

[115] S. I. Grossman, Multivariable Calculus, Linear Algebra, and Differential

Equations, 2nd ed.: Academic Press, 2014.

[116] W. L. Brogan, Modern Control Theory, 3rd ed. New Jersey: Prentice-Hall, Inc.,

1991.

[117] Z. Hurak, "Pontryagin principle of maximum; time-optimal control," in Lecture 7

on Optimal and robust control, ed. Prague, Czech Republic: Czech Technical

University.

[118] M. Levi, Classical Mechanics with Calculus of Variations and Optimal Control:

An Intuitive Introduction vol. 69: American Mathematical Society, 2014.

[119] "MP-Series™ Low-Inertia Motors: Brushless servo motors with absolute

feedback," ed: Rockwell Automation, 2012.

[120] K. S. Sollmann, M. K. Jouaneh, and D. Lavender, "Dynamic Modeling of a Two-

Axis, Parallel, H-Frame-Type XY Positioning System," IEEE/ASME

Transactions on Mechatronics, vol. 15, pp. 280-290, 2010.

Appendix A - Arduino code to decodify encoders

The code shown below measures the rising edge of either channel A or B of an

incremental via Interrupts of the Arduino Mega board. Since only one edge or only on

channel of each encoder triggers a count in position in this code, the resolution of the

decodification matches the encoder pulses per revolution (PPR) specification. For

example, for a 500 PPR encoder, this code will measure 500 pulses per motor revolution.

This code can be modified to measure either the falling or rising edges of both channels

A and B which doubles the resolution of position measurement, or it can be modified to

measure the falling and rising edges of channels A and B which quadruples the resolution

of position measurement. When both edges or both channels are measured, the

decodification method is in general called “Quadrature” or “AQuadB”. If a geared-motor

is used, the gear ratio can be entered in this code and the measured angular position will

represent the angular position of the output of the gearbox. If the encoder resolution is too

high, it can be reduced by the parameter “Ratio” in this code. The measured angular

position is sent to the digital output at every loop in the code by directly writing to the

digital outputs.

This code to decodify two encoders can be copied and pasted in the Arduino

Software [98] and downloaded to an Arduino Mega board. The electrical diagram to wire

the encoders to the Arduino board is shown in Fig. 4-13.

// ==

// Single Edge Decodification for Two Incremental Encoders

// ==

// Description:

// This code can measure angular position and angular velocity of two incremental

encoders. Single Edge mode means that rising or

// falling edges of channel A of each encoder is watched via interrupts of

Arduino. Thus, a 500 PPR encoder for example,

// yield 500 counts per revolution, which matches the PPR of the encoder.

277

// Encoder 1 connected to Pins 2 and 4 on Arduino Mega

// Encoder 2 connected to Pins 3 and 5 on Arduino Mega

// The code shown below can be used for more than 40000 encoder pulses per second per

motor.

// Inputs:

// MotorMaxSpdRPS = this is the maximum motor speed in Rev/sec

// EncoderPPR = this is the Pulses per Revolution of the encoder.

// Outputs:

// Pos1 = it contains the unwinded angular position of the encoder 1. The value of

Pos1 varies from 0 to 250. Since the encoder used in this

// experiment has 500 PPR, Pos1 unwinds every half encoder revolution.

// Pos2 = it contains the unwinded angular position of the encoder 2. The value of

Pos1 varies from 0 to 250. Since the encoder used in this

// experiment has 500 PPR, Pos2 unwinds every half encoder revolution.

// By: Aderiano da Silva

// Marquette University

// Department of Mechanical Engineering

// Created: Nov 2011

// Updates:

// Sep 28, 2012: Added code to ouptut angular position of both encoders.

// Aug 16, 2013: created Pos1 and Pos2 variables and write value directly to

digital outputs.

// Dec 19, 2014: Added "Ratio" to decodification. Thus, lower resolution data is

sent to second Arduino.

//#include "WProgram.h" // This header file includes all the defintions

needed for the standard Arduino core. This enables us to use the pinMode, digitalWrite,

delay etc.

#include "Arduino.h" // This header file includes all the defintions

needed for the standard Arduino core. This enables us to use the pinMode, digitalWrite,

delay etc.

#include <digitalWriteFast.h> // library for high performance digital reads and

writes. Download library from http://code.google.com/p/digitalwritefast/

// Input Data

#define MotorMaxSpdRPS 35L // maximum motor speed in Revolutions Per Second

(RPS)

#define EncoderPPR 500L // PPR (Pulses per revolution) of encoder. Also

called CPR (counts per revolution)

const float GB_ratio = 1; // Gear Ratio of the gear box connected to the motor.

Enter 1 for no gear box case.

// Parameters to measure angular shaft position:

// Encoder 1

#define InterruptNumber_A1 0 // number of one out of two interrupt: interrupt 0 is

for Digital Input 2

#define PinNumberChannel_A1 2 // Digital Input pin number for interrup 0: Digital

Input 2, for Channel A of encoder

#define PinNumberChannel_B1 4 // Digital Input pin number for interrup 0: Digital

Input 3, for Channel B of encoder

//#define VelocityPinOutEnc1 9 // Number of Analog Output with angular shaft

velocity in RPS converted to digital values (0-255). Avoid pins 5 and 6 due to higher

duty cycles.

//#define PositionPinOut_1 6 // Number of Analog Output with angular shaft

position at output of gear box in Rev converted to digital values (0-255). Avoid pins 5

and 6 due to higher duty cycles.

volatile bool Channel_A1_Status; // status of Channel A of the encoder. The status is

checked when an interrupt occurs due to a transition in either A or B channels.

volatile bool Channel_B1_Status; // status of Channel B of the encoder. The status is

checked when an interrupt occurs due to a transition in either A or B channels.

volatile long AngPos_in_EncCnts_1 = 0; // angular shaft position in encoder counts.

Thus, 1 revolution = EncoderPPR x 4

// Encoder 2

#define InterruptNumber_A2 1 // number of one out of two interrupt: interrupt 0 is

for Digital Input 2

#define PinNumberChannel_A2 3 // Digital Input pin number for interrup 0: Digital

Input 2, for Channel A of encoder

278

#define PinNumberChannel_B2 5 // Digital Input pin number for interrup 0: Digital

Input 3, for Channel B of encoder

//#define VelocityPinOutEnc2 10 // Number of Analog Output with angular shaft

velocity in RPS converted to digital values (0-255). Avoid pins 5 and 6 due to higher

duty cycles.

//#define PositionPinOut_2 11 // Number of Analog Output with angular shaft

position at output of gear box in Rev converted to digital values (0-255). Avoid pins 5

and 6 due to higher duty cycles.

volatile bool Channel_A2_Status; // status of Channel A of the encoder. The status is

checked when an interrupt occurs due to a transition in either A or B channels.

volatile bool Channel_B2_Status; // status of Channel B of the encoder. The status is

checked when an interrupt occurs due to a transition in either A or B channels.

volatile long AngPos_in_EncCnts_2 = 0; // angular shaft position in encoder counts.

Thus, 1 revolution = EncoderPPR x 4

// Parameters to calculate angular position and velocity of Encoder 1 and 2

signed long NewTime; // current clock time in microseconds to calculate

velocity

signed long OldTime; // clock time in microseconds to calculate "dt" for

velocity (dP/dt)

signed long NewPos_1; // current angular position in encoder counts to

calculate velocity

signed long OldPos_1; // angular position in encoder counts to calculate

"dP" for velocity (dP/dt)

signed long NewPos_2; // current angular position in encoder counts to

calculate velocity

signed long OldPos_2; // angular position in encoder counts to calculate

"dP" for velocity (dP/dt)

signed long VelCntsPerSec_1; // calculated angular shaft velocity (dP/dt) in

encoder counts per second

signed long VelCntsPerSec_2; // calculated angular shaft velocity (dP/dt) in

encoder counts per second

signed long MotorMaxVelCntsPerSec; // maximum motor shaft velocity in encoder counts per

second

signed long VelAnalogOut_1; // calculated angular shaft velocity (dP/dt) in

digital value (0 to 255), where 0 = min neg velocity, 127 = zero velocity, 255 = max pos

velocity

signed long VelAnalogOut_2; // calculated angular shaft velocity (dP/dt) in

digital value (0 to 255), where 0 = min neg velocity, 127 = zero velocity, 255 = max pos

velocity

signed long PosAnalogOut_1; // calculated angular shaft position in digital value

(0 to 255), where 0 = zero position, 255 = 1 rev at output of gear box

signed long PosAnalogOut_2; // calculated angular shaft position in digital value

(0 to 255), where 0 = zero position, 255 = 1 rev at output of gear box

signed long Pos1; // angular position of encoder 1 in binary from 0 to

2^PinCount

signed long Pos2; // angular position of encoder 2 in binary from 0 to

2^PinCount

int LowPinNum = 30; // pin number of the first pin to be sent the digital

angular position

int PinCount = 12; // nummber of bits on digital angular position sent

to the digital outputs

int Pos1Mult; // used to unwind the encoder 1 position

int Pos2Mult; // used to unwind the encoder 1 position

int Ratio = 4; // this is the ratio btw full resolution of

decodification and the

 // value sent to the digital outputs, Examples:

 // Ratio = 1 --> 1000/1 = 1000 encoder counts per

motor rev

 // Ratio = 4 --> 1000/4 = 250 encoder counts per

motor rev

 // Ratio = 8 --> 1000/8 = 125 encoder counts per

motor rev

int Ratio250 = Ratio*250;

// The setup() function is called when a sketch starts. Use it to initialize variables,

pin modes, start using libraries, etc.

// The setup function will only run once, after each powerup or reset of the Arduino

board.

void setup()

{

279

 Serial.begin(115200);

 OldTime=micros(); // initialize

variable OldTime

 OldPos_1=0; // initialize

variable OldPos_1 for Encoder 1

 OldPos_2=0; // initialize

variable OldPos_2 for Encoder 2

 MotorMaxVelCntsPerSec = MotorMaxSpdRPS*EncoderPPR*4L; // calculate

maximum motor angular velocity in encoder counts per second.

 // The sufix "L"

forcex the constant into a long data format from -2,147,483,648 to 2,147,483,647.

 // Encoder 1

 pinMode(PinNumberChannel_A1, INPUT); // sets as input

the pin for channel A signal from the encoder

 digitalWrite(PinNumberChannel_A1, LOW); // turn on pullup

resistors for channel A signal from the encoder

 pinMode(PinNumberChannel_B1, INPUT); // sets as input

the pin for channel B signal from the encoder

 digitalWrite(PinNumberChannel_B1, LOW); // turn on pullup

resistors for channel A signal from the encoder

 attachInterrupt(InterruptNumber_A1, HandleMotorInterrupt_1, RISING); // sets interrupt

0 to watch for rising and falling edges in Pin 2 (Channel A). Call function

HandleMotorInterruptA when transition happens.

 // Encoder 2

 pinMode(PinNumberChannel_A2, INPUT); // sets as input

the pin for channel A signal from the encoder

 digitalWrite(PinNumberChannel_A2, LOW); // turn on pullup

resistors for channel A signal from the encoder

 pinMode(PinNumberChannel_B2, INPUT); // sets as input

the pin for channel B signal from the encoder

 digitalWrite(PinNumberChannel_B2, LOW); // turn on pullup

resistors for channel A signal from the encoder

 attachInterrupt(InterruptNumber_A2, HandleMotorInterrupt_2, RISING); // sets interrupt

1 to watch for rising and falling edges in Pin 3 (Channel B). Call function

HandleMotorInterruptB when transition happens.

 // Set as OUTPUTS all Digital Outputs used for encoder position

 for (int i = 0; i < PinCount * 2; i++) {

 pinMode(LowPinNum+i, OUTPUT);

 }

}

// --

// Calculation of angular position in encoder counts

// --

// Interrupt service routines when a transition in Pin 2 - Channel A of the encoder 1 -

occurs, and then calculate new angular position

void HandleMotorInterrupt_1()

{

 Channel_B1_Status = digitalReadFast(PinNumberChannel_B1); // fast read of the status

of the digital input in pin 2

 Channel_A1_Status = digitalReadFast(PinNumberChannel_A1); // fast read of the status

of the digital input in pin 3

 if (Channel_B1_Status != Channel_A1_Status) // if A!=B with transition

in A --> Positive Direction, then increment counts

 AngPos_in_EncCnts_1++;

 else // if A==B with transition

in A --> Negative Direction, then decrement counts

 AngPos_in_EncCnts_1--;

}

// Interrupt service routines when a transition in Pin 3 - Channel A of the encoder 2 -

occurs, and then calculate new angular position

void HandleMotorInterrupt_2()

{

 Channel_B2_Status = digitalReadFast(PinNumberChannel_B2); // fast read of the status

of the digital input in pin 2

280

 Channel_A2_Status = digitalReadFast(PinNumberChannel_A2); // fast read of the status

of the digital input in pin 3

 if (Channel_B2_Status == Channel_A2_Status) // if A==B with transition

in B --> Positive Direction, then increment counts

 AngPos_in_EncCnts_2++;

 else // if A!=B with transition

in B --> Negative Direction, then decrement counts

 AngPos_in_EncCnts_2--;

}

void loop()

{

// --

// Unwind Angular Postion of Encoder 1 to binary

// --

// Calculate Angular Shaft Position of Encoder 1:255

PosAnalogOut_1 = AngPos_in_EncCnts_1*1L;

// Unwinds the encoder position from 0 to 255 in any direction:

if (PosAnalogOut_1 < 0) {

 Pos1Mult = - PosAnalogOut_1/Ratio250;

 Pos1 = Ratio250 + PosAnalogOut_1 + Pos1Mult*Ratio250;

 Pos1 = Pos1 / Ratio;

}

if (PosAnalogOut_1 >= 0){

 Pos1Mult = PosAnalogOut_1/Ratio250;

 Pos1 = PosAnalogOut_1 - Pos1Mult*Ratio250;

 Pos1 = Pos1 / Ratio;

}

// --

// Send angular position of Encoder 1 to digital outputs:

// --

PORTC = Pos1 & B11111111; // see: http://arduino.cc/en/Reference/BitwiseAnd

// --

// Unwind Angular Postion of Encoder 2 to binary

// --

// Calculate Angular Shaft Position of Encoder 2

PosAnalogOut_2 = AngPos_in_EncCnts_2*1L;

// Unwinds the encoder position from 0 to 250 in any direction:

if (PosAnalogOut_2 < 0) {

 Pos2Mult = - PosAnalogOut_2/Ratio250;

 Pos2 = Ratio250 + PosAnalogOut_2 + Pos2Mult*Ratio250;

 Pos2 = Pos2 / Ratio;

}

if (PosAnalogOut_2 >= 0){

 Pos2Mult = PosAnalogOut_2/Ratio250;

 Pos2 = PosAnalogOut_2 - Pos2Mult*Ratio250;

 Pos2 = Pos2 / Ratio;

}

// --

// Send angular position of Encoder 2 to digital outputs:

// --

PORTL = Pos2 & B11111111; // see: http://arduino.cc/en/Reference/BitwiseAnd

delay(1); // this is the loop

time given in milliseconds.

//WriteSerial();

 // <><><><><><><><><><><><><><><><><><><>

 // ADD ANY CODE HERE!

 // <><><><><><><><><><><><><><><><><><><>

281

 // OR YOU CAN CREATE A NEW FUNCTION AND ADD YOUR CODE THERE. FOR EXAMPLE, CREATE THE

FUNCTION MyCode():

 // MyCode();

}

/*

void WriteSerial()

{

 Serial.print(Pos1,DEC);

 Serial.print(" ");

 delay(500);

}

*/

282

Appendix B – Arduino code to read angular position in the control

board

The sub-assembly in Simulink to read the angular position of motor 1 from the

digital inputs is shown in Fig. B-1.

Fig. B-1 - Sub-assembly in Simulink to read the angular position of motor 1 from the

digital inputs

The content of the sub-assembly shown in Fig. B-1 is shown in Fig. B-2.

Fig. B-2 - Content of the sub-assembly used to read the angular position of motor 1 from

the digital inputs

283

The content of the block “Convert Encoder Position from Cyclic to Linear” is shown in

Fig. B-3.

Fig. B-3 - Content of the block “Convert Encoder Position from Cyclic to Linear”

The code of the “MATLAB Function - Convert Encoder Position from Cyclic to

Linear” is shown below:

function [ActualVel,UnlimitedActualPos] =

EncUnwind(CyclicPosAtual,CyclicPosPrev,UnlimitedPosPrev,CntsPerCycle,Ts)

%#codegen

% Convert cyclic angular position of an encoder into a linear position

% Input variables:

% CyclicPosAtual: actual reading from encoder (this is an integer number

% from zero to "CntsPerCycle")

% [Encoder Counts]

% CyclicPosPrev: encoder position from the previous scan (this is an

% integer number from zero to "CntsPerCycle")

% [Encoder Counts]

% LinearPosPrev: converted encoder posion from cyclic to linear, but from

% the previous scan (this is a number from -inf to +inf)

% [Encoder Counts]

% CntsPerCycle: number of encoder counts per revolution. For a 500 PPR

% encoder with X2 decodification, the CntsPerCycle is:

% 500 Pulses/Rev x 2 Counts/Pulse = 1000 Counts/Rev

% [Counts/Rev]

%

% Output variables

% UnlimitedPosActual: converted encoder position from cyclic to unlimited

% (this is a number from -inf to +inf)

% ActualVel: calculated angular velocity [Encoder Counts/sec]

% Convert cyclic angular position in unlimited angular position:

if abs(CyclicPosAtual - CyclicPosPrev) > 0.5 * CntsPerCycle % detects unwind condition

 % A unwind condition occured, then calculate LinearPosActual based on CW or CCW

rotation:

 if CyclicPosAtual < CyclicPosPrev % CW rotation (0 ...CntsPerCycle)

284

 UnlimitedActualPos = UnlimitedPosPrev + (CntsPerCycle - CyclicPosPrev) +

CyclicPosAtual;

 else % CCW rotation (CntsPerCycle ... 0)

 UnlimitedActualPos = UnlimitedPosPrev - (CntsPerCycle - CyclicPosAtual) -

CyclicPosPrev;

 end

else % no unwind condition:

 UnlimitedActualPos = UnlimitedPosPrev + (CyclicPosAtual - CyclicPosPrev);

end

% Calculate angular velocity:

ActualVel = (UnlimitedActualPos - UnlimitedPosPrev)/Ts;

285

Appendix C – Sensor Fusion Derivation

The sensor fusion is given in Fig. 4-23 and introduced in Section 4.3.2.4. The

derivation of equation (57) is given next.

A low-pass filter is defined as follows:

��s = R% = 1�; + 1 (155)

Where, τ is the time constant of the filter. By manipulation of the fundamental

discrete-time equation of a LPF, %� − R� = ��R� − R�^�
 [Z⁄ , the LPF equation can be

written as follows:

R� = %��1 − �
 + R�^�� (156)

Where:

� = �� + [Z (157)

Where dt is the sampling time of the signals and τ is time constant that defines the

LPF response.

Meanwhile, the a high-pass filter is defined as:

��s = R% = �;�; + 1
(158)

Similarly, by manipulation of the fundamental discrete-time equation of a HPF,

R� = �e��%� − %�^�
 [Z⁄
 − ��R� − R�^�
 [Z⁄
f , the HPF equation can be written as

follows:

R� = �%� − %�^�
� + R�^�� (159)

286

The LPF equation (156) can then be defined in terms of the accelerometer signal

as follows:

�cÃ	� = �c	��1 − �
 + �cÃ	�^�� (160)

Similarly, HPF equation can be defined in terms of the gyroscope signal as

follows:

��Ã	� = ���	� − ��	�^�
� + ��Ã	�^�� (161)

The tilt angle is the sum of the angle measured by the accelerometer and the

gyroscope. Therefore, by combining both signal from the accelerometer, an accurate and

clean measurement of the tilt angle is possible. The tilt angle is then calculated as

follows:

�� = ��Ã	� + �cÃ	� (162)

Substituting (160) and (161) in (162), the following is obtained:

�� = ���	� − ��	�^�
� + ��Ã	�^�� + �c	��1 − �
 + �cÃ	�^�� (163)

Since:

��^� = ��Ã	�^� + �cÃ	�^� (164)

Then, substituting (164) into (163):

�� = ���	� − ��	�^�
� + �	�^�� + �c	��1 − �
 (165)

Which yields, the discretized sensor fusion equation:

 �� = ���	� − ��	�^�
� + �	�^�� + �c	��1 − �
 (166)

287

Appendix D – Matlab code for two-inertia system

This code is to generate the results shown in Fig. 5-2, Fig. 5-3,Fig. 5-4, and Fig.

5-5.

clear all; close all; clc

% INPUT DATA ===

% Move time and move distance

T = 0.1; % machine cycle time [sec]

ThetaM_T = 0.1*(2*pi); % desired final position for motor[rad]

ThetaL_T = 0.1*(2*pi); % desired final position for load [rad]

Ts = -1; % used for Simulink model

% MECHANICAL DATA ===

% Motor MPL-B310P-M

Kt = 1.58/1.7; % torque constant [Nm/A] calculated as stall

 % torque / stall rms current

Imax = 2.4/sqrt(2); % maximum motor current (peak current) [A]

Vmax = 460; % maximum motor voltage [V]

Rm = 18.9; % Motor resistance [ohms]

GR = 1; % gear ratio of gear box

Vm = 460; % motor voltage [V]

Ke = 98 * 60/(1000*2*pi); % Back EMF constant [V/rad/s]

Kb = Ke; % Back EMF constant [V/rad/s]

L = 92e-3; % inductance [H]

Tm=Kt*Imax*GR; %*0.95;

Jm = 0.000044 * (GR^2); % motor inertia reflected to output of gearbox

 %[kg-m2]. NOTE: Gearbox inertia is unknown.

Tf = 0.068; % Friction torque (note: the motor used has a

 % seal shft, so Tf is for seal motor shaft case

b = (0.016/1000/2/pi); % for MPLA310, b=0.016Nm/krpm and it needs to

 % be converted to Nm-s/rad

% Torsional stiffness of motor shaft and rod connecting (btw load and coupling)

k = 1281; % [Nm/rad]

% Fly-wheel (load)

Dens = 7900; % material density [kg/m^3]. Steel=7900,

OD_L = 0.127; % outer diameter of fly-wheel [m]

ID_L = OD; % inner diameter of fly-wheel [m]

L_L = 0.0125; % lenght of fly-wheel [m]

Vo = pi*(OD_L/2)^2*L_L; % volume [m^3]

Vi = pi*(ID_L/2)^2*L_L; % volume [m^3]

JL = 0.5*Dens*Vo*(OD_L/2)^2 - 0.5*Dens*Vi*(ID_L/2)^2; % Load inertial [kg/m2]

% ENERGY OPTIMIZATION METHOD

% Hamiltonian matrix using cost function as int((va/R)-(va*Kb*omega/R))
H = [0 1 0 0 0 0 0 0 0 0 ; ...

 -k/Jm -b/Jm k/Jm b/Jm Kt/Jm 0 0 0 0 0 ; ...

 0 0 0 1 0 0 0 0 0 0 ; ...

 k/JL b/JL -k/JL -b/JL 0 0 0 0 0 0 ; ...

 0 -(Ke/(2*L)) 0 0 -Rm/L 0 0 0 0 -Rm/(2*L^2); ...

 0 0 0 0 0 0 k/Jm 0 -k/JL 0 ; ...

 0 (Ke^2)/(2*Rm) 0 0 0 -1 b/Jm 0 -b/JL (Ke/(2*L)); ...

 0 0 0 0 0 0 -k/Jm 0 k/JL 0 ; ...

 0 0 0 0 0 0 -b/Jm -1 b/JL 0 ; ...

 0 0 0 0 0 0 -Kt/Jm 0 0 Rm/L];

% Boundary Conditions

288

x0 = [0 0 0 0 0]';

xT = [ThetaM_T 0 ThetaL_T 0 0]';

%=========== Calculation of Transition Matrix and control effort ==========

% Calculating lambda 0:

t=0:1/20000:T; % Note: t needs to be defined this way instead of linspace for

the Simulink model match the Matlab results

A = H;

PhiT=expm(A*T);

PhiT11=PhiT(1:5,1:5);

PhiT12=PhiT(1:5,6:10);

PhiT22=PhiT(6:10,6:10);

% From equations (13) and (11):

lambda0 = PhiT12\(xT - PhiT11*x0);

% Calculating the dynamic response of the system:

B = zeros(10,1);

C = [0 0.5*Ke 0 0 0 0 0 0 0 -Rm/(2*L)];

D = 0;

u = 0*t;

[ustar,X]=lsim(A,B,C,D,u,t,[x0;lambda0]);

% PLOTS

figure; plot(t,X(:,1:5), t,ustar,'LineWidth',2)

xlabel('Time (sec)')

grid on

legend('Mtr Pos(t)','Mtr Vel(t)','Load Pos(t)','Load Vel(t)','Ia(t)','u(t)')

figure

plot(t,X(:,1),t,X(:,3),'LineWidth',2)

xlabel('Time (sec)')

ylabel('Angular Position (rad)')

grid on

legend('\theta_m(t)','\theta_l(t)')

figure; plot(t,X(:,2),'LineWidth',2)

hold on; plot(t,X(:,4),'LineWidth',2)

xlabel('Time (sec)')

ylabel('Angular Velocity (rad/s)')

grid on

legend('\omega_m(t)','\omega_l(t)')

figure; plot(t,ustar,'LineWidth',2)

xlabel('Time (sec)')

ylabel('Motor Voltage (V)')

grid on

The code below is to generate the results shown in Fig. 5-7and Fig. 5-8 and also

in Table 5-1 and Table 5-2. The Simulink model called below is shown in Fig. 5-6:

%% Plot energy curves for all motion profiles

Selector=1;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.Optm=Energy;

FinalEnergy.Optm=Energy(length(Energy),2);

289

MaxPosError.Optm=max(PosError(:,2));

Selector=2;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.Trap=Energy;

FinalEnergy.Trap=Energy(length(Energy),2);

MaxPosError.Trap=max(PosError(:,2));

Selector=3;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.Cycloidal=Energy;

FinalEnergy.Cycloidal=Energy(length(Energy),2);

MaxPosError.Cycloidal=max(PosError(:,2));

Selector=4;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.ModSine=Energy;

FinalEnergy.ModSine=Energy(length(Energy),2);

MaxPosError.ModSine=max(PosError(:,2));

Selector=5;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.Cubic=Energy;

FinalEnergy.Cubic=Energy(length(Energy),2);

MaxPosError.Cubic=max(PosError(:,2));

Selector=6;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.SHM=Energy;

FinalEnergy.SHM=Energy(length(Energy),2);

MaxPosError.SHM=max(PosError(:,2));

Selector=7;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.Fifth=Energy;

FinalEnergy.Fifth=Energy(length(Energy),2);

MaxPosError.Fifth=max(PosError(:,2));

Selector=8;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.Seventh=Energy;

FinalEnergy.Seventh=Energy(length(Energy),2);

MaxPosError.Seventh=max(PosError(:,2));

Selector=9;

sim('TwoJ_SystemComparison_V3_for_Fig_DualLoop')

EnergyAllMP.Ninth=Energy;

FinalEnergy.Ninth=Energy(length(Energy),2);

MaxPosError.Ninth=max(PosError(:,2));

% Plot results

figure('Position',[500 500 700 500])

plot(EnergyAllMP.Optm(:,1),EnergyAllMP.Optm(:,2),'r')

hold on

plot(EnergyAllMP.Trap(:,1),EnergyAllMP.Trap(:,2),'k')

plot(EnergyAllMP.Cycloidal(:,1),EnergyAllMP.Cycloidal(:,2),'Color',[0 0.4 0])

plot(EnergyAllMP.ModSine(:,1),EnergyAllMP.ModSine(:,2),'Color',[0.682 0.467 0])

plot(EnergyAllMP.Cubic(:,1),EnergyAllMP.Cubic(:,2),'Color',[0.6 0 0.6])

plot(EnergyAllMP.SHM(:,1),EnergyAllMP.SHM(:,2),'g')

plot(EnergyAllMP.Fifth(:,1),EnergyAllMP.Fifth(:,2),'m')

plot(EnergyAllMP.Seventh(:,1),EnergyAllMP.Seventh(:,2),'b')

plot(EnergyAllMP.Ninth(:,1),EnergyAllMP.Ninth(:,2),'c')

290

xlabel('Time (sec)')

ylabel('Energy (J)')

legend1=legend('Optimized','Trapezoidal','Cycloidal','ModSine','Cubic','SHM','5

^t^h Order','7^t^h Order','9^t^h Order');

set(legend1,'Position',[0.1505 0.52968 0.184249 0.373124]);

Marquette University

This is to certify that we have examined this copy of the dissertation by

Aderiano M. da Silva, B.S., M.S.

and have found that it is complete and satisfactory in all respects.

The dissertation has been approved by:

__

Dr. Kevin Craig

Dissertation Director, Department of Mechanical Engineering

__

Dr. Mark L. Nagurka

__

Dr. Philip A. Voglewede

__

Dr. Anthony Bowman

__

Dr. Ronald H. Brown

Approved on

_____________________________`

