Three-Dimensional *In Vitro* Oral Mucosa Models of Fungal and Bacterial Infections

Fahimeh Tabatabaei

Keyvan Moharamzadeh

Lobat Tayebi

Follow this and additional works at: https://epublications.marquette.edu/dentistry_fac

Part of the Dentistry Commons
Three-Dimensional *In Vitro* Oral Mucosa Models of Fungal and Bacterial Infections

Fahimeh Tabatabaei
School of Dentistry, Marquette University, Milwaukee, Wisconsin.
Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Keyvan Moharamzadeh
School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom.

Lobat Tayebi
School of Dentistry, Marquette University, Milwaukee, Wisconsin.

Abstract
Oral mucosa is the target tissue for many microorganisms involved in periodontitis and other infectious diseases affecting the oral cavity. Three-dimensional (3D) *in vitro* and *ex vivo* oral mucosa equivalents have been used for oral disease modeling and investigation of the mechanisms of oral bacterial and fungal infections. This review was conducted to analyze different studies using 3D oral mucosa models for the evaluation of the interactions of different microorganisms with oral mucosa. In this study, based on our inclusion criteria, 43 articles were selected and analyzed. Different types of 3D oral mucosa models of bacterial and fungal infections were discussed in terms of the biological system used, culture conditions, method of infection, and the biological endpoints assessed in each study. The critical analysis revealed some contradictory reports in this field of research in the literature. Challenges in recovering bacteria from oral mucosa models were further discussed,
suggesting possible future directions in microbiomics, including the use of oral mucosa-on-a-chip. The potential use of these 3D tissue models for the evaluation of the effects of antiseptic agents on bacteria and oral mucosa was also addressed. This review concluded that there were many aspects that would require optimization and standardization with regard to using oral mucosal models for infection by microorganisms. Using new technologies—such as microfluidics and bioreactors—could help to reproduce some of the physiologically relevant conditions and further simulate the clinical situation.

Impact statement
Tissue-engineered or commercial models of the oral mucosa are very useful for the study of diseases that involve the interaction of microorganisms and oral epithelium. In this review, challenges in recovering bacteria from oral mucosa models, the potential use of these three-dimensional tissue models for the evaluation of the effects of antiseptic agents, and future directions in microbiomics are discussed.

Keywords:
3D tissue models, bacterial infection, biofilm, candidiasis, engineered oral mucosa, microbiomics, oral mucosa models

Introduction
The oral cavity contains a large number of microorganisms, most of which are part of the normal flora and have a commensalism relationship with the host tissues. In this diverse population of microorganisms, there are some opportunistic and also nonresident species, which can cause diseases.1 Oral mucosa is one of the barriers in the oral cavity with an important role in inhibition of microorganism's colonization. It consists of the epithelium—including stratified and differentiated keratinocytes—and the connective tissue layer, containing predominantly fibroblasts.2 Even though there is a harsh exposure to different microorganisms like Streptococci, Actinobacillus, Porphyromonas, Tannerella, Fusobacterium, Prevotella, Campylobacter, Eikenella, and Treponema species, the oral mucosa limits microflora colonization and protects the oral cavity from invasion of microorganisms with high turnover and shedding, and secretion of different types of cytokines and antimicrobial proteins, like defensins.3 However, in certain conditions, breakdown of homeostasis in the normal flora would result in change of commensalism relationship of normal flora to parasitism, increase in the number of opportunistic microorganisms, and invasion into the underlying tissues, leading to disease development.4 In periodontal diseases, invasion of oral epithelial cells by pathogens (like Porphyromonas gingivalis or Fusobacterium nucleatum), their survival and proliferation in the epithelial tissue, and their penetration to connective tissue cause some immune responses that have key roles in periodontal breakdown.5 In oral mucositis, following chemotherapy and radiotherapy in some patients, oral tissues encounter damage and pathogens can penetrate tissues and cause infection.6 In candidiasis, invasion of oral epithelium by Candida albicans—especially in immunocompromised patients—is responsible for infection.7

Study of the mechanism of disease development in periodontal tissue or infection of oral mucosa by fungi or bacteria—which leads to periodontal disease, mucositis, stomatitis, candidiasis, or other mucosal infections—requires in vitro tissue culture models containing microorganisms to simulate the in vivo situation. Although two-dimensional (2D) monolayer cell culture systems contributed to the progress of our knowledge of oral microbiome, a multilayer epithelium, which works as a barrier
against pathogen invasion and synergistic effects of fibroblasts and keratinocytes on secretion of cytokines, is missing from the monolayer cell culture systems. Degradation of epithelial layer, direct exposure of the connective tissue to the oral biofilm, and active participation of fibroblasts in bacterially induced inflammation are some of the limitations of *in vitro* multilayer epithelium models. Mimicking the *in vivo* condition requires models that reflect native tissue and their interactions with pathogens. For this purpose, many researchers use different types of oral mucosa equivalents as a relevant *in vitro* tool to investigate the interaction of microorganisms with oral mucosa, the process of epithelial layer's damage, and initial steps of infection, as well as treatment approaches.

Isolation and expansion of epithelial and fibroblast cells from gingiva, buccal or palatal mucosa, seeding and culture of fibroblast in a suitable substrate, and finally, seeding of epithelial cells onto the engineered connective tissue layer is a common procedure for engineering of oral mucosa models. There are also commercially available oral mucosa models, which can be used for microbiological studies. Engineered or commercial models of oral mucosa are very useful for the study of diseases that involve interaction of microorganisms and oral epithelium. Reducing animal experiments is one of the most advantages of using tissue-engineered models in microbiology. This aspect is also considered in skin tissue engineering, using skin substitutes for *in vitro* infection modes, and engineering of intestinal functional models for application in food microbiology. Interaction of oral microbiomes with other microbiomes in various sites of human body, their implications in systemic pathologies (like esophageal cancer, colorectal cancer, pancreatic cancer, and inflammatory diseases such as atherosclerosis, pneumonia, heart diseases, and rheumatoid arthritis), and its relationship to diabetes and Alzheimer's disease highlight the importance of engineering models that mimic oral cavity situation for better disease diagnosis and treatment.

Two review articles have been published thus far that investigate *in vitro* and *in vivo* model systems' potential for studying the human microbiome, but not oral mucosa equivalents. Coenye and Nelis drew attention to the tools that could be used for understanding medically relevant biofilms, while Werlang *et al.* investigated the requirement of mucin mimetics for *in vitro* culture systems and modulation of microbial community structure. The goal of this study was to answer the focused questions: what are the methods used for oral mucosa infection and which microorganisms are usually used for infection? Furthermore, the *in vitro* biological endpoint assessed as the outcome of the oral mucosa models’ infection was evaluated.

Materials and Methods

The defined question of the study was used for the extraction of keywords. PubMed and Scopus databases were searched for the period time of 2000–2020 using the following separated or combined keywords: 3d oral mucosa, engineered oral mucosa, oral mucosa models, oral mucosa equivalents, bacterial infection, microbiology, microorganism, microbiota, *Candida albicans*, *Porphyromonas*, *Fusobacterium*, candidiasis, periodontal diseases, periodontitis, *Streptococcus*, and biofilms. Only English-language articles in which commercialized oral mucosa or full-thickness oral mucosa models were used for infection with one or multispecies bacteria were included. Studies on the interaction of microorganisms with monolayer cell cultures, epithelial cell 2D cultures, or epithelial cell sheets with lack of fibroblasts were excluded. Articles on the
investigation of oral mucosa models for other purposes like biocompatibility of dental materials, assessment of radiotherapy-induced mucositis, or cytotoxic evaluation of oral antiseptics were excluded as well. The bibliography of selected articles was checked to identify other relevant articles. The classification of articles was according to the bacterial strain used, culture condition, oral mucosa model, time of contact between microorganism and oral mucosa model, infection evaluation, and results. Finally, 43 articles were selected for the final analysis and review.

Results

Methods of oral mucosa infection

For infection of oral mucosa models, bacteria or fungi are cultured in an appropriate broth for 24–48h, and after centrifugation, the suspension of bacteria in appropriate media—such as phosphate-buffered saline, cell culture media, or special media of microorganism—at a defined concentration is prepared. Oral mucosa is washed in antibiotic-free medium (24, 48, or 72h before infection). Then, the desired concentration of microorganisms (respecting multiplicity of infection [MOI] of 100 bacteria per surface cell) in limited amount of appropriate media (20–50 μL) is added onto the surface of epithelial layer (center of oral mucosa model). After incubation of infected and noninfected tissues (control group) at 37°C/5% CO₂ for different time points (24-, 48-, or 72-h incubation), the models are ready for analysis. The other option is producing biofilm of bacteria before infection.22–24 Also, one of the possibilities that should be considered in in vitro microbiological studies is producing damage to epithelial layer to provide a route for microbial invasion, as it occurs in some pathological conditions of the oral cavity.22–25

FIG. 1. Steps and methods of oral mucosa infection.

Candida

In the oral cavity, 85 species of fungi exist—one of the most important being *Candida*. Denture stomatitis and candidiasis are infections related to fungus, specially, *Candida albicans*. Although this microorganism is a part of commensal flora and is found normally in healthy individuals, because of its opportunistic nature, its colonization could switch it to a pathogen in some patients (like elderly or
immunocompromised hosts). Attachment of the yeast to mucosal cells by adhesins and invasion of cells by yeast–hyphal transition would result in mucosal inflammation. *C. albicans* is the most abundant yeast species in oral cavity, yet other species like *C. glabrata* or *C. famata* could co-infect with *C. albicans*, which can make the treatment more difficult. Even though single colonization of the cavity with *C. albicans* is possible, some other microorganisms—like oral *Streptococci* or *Staphylococci*—could help *Candida* in the production of biofilm. Coaggregation of these microorganisms as the primary colonizers of oral biofilm with *Candida* could enhance its filamentation and increase its pathogenicity.26-27
<table>
<thead>
<tr>
<th>Authors</th>
<th>Bacteria strain</th>
<th>Culture condition</th>
<th>Oral mucosa model</th>
<th>Time of contact between Candida and Mucosa</th>
<th>Assays</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claveau *et al.*28</td>
<td>Original clinical isolate</td>
<td>10^7 C. albicans/mL of PBS (10^5/cm²)</td>
<td>EHOM:NOKs seeded on the collagen-embedded NOFs</td>
<td>2, 4, 8, 24h</td>
<td>RT-PCR, Western blotting, Zymography, ELISA</td>
<td>Candida increase expression of laminin-5, type IV collagen, MMP-2 and MMP-9 genes; decrease type 2 matrix metalloproteinase tissue inhibitors (TIMP-2) by oral epithelial cells</td>
</tr>
<tr>
<td>Mostefaoui *et al.*29</td>
<td>C. albicans and Streptococcus salivarius (ATCC 25975)</td>
<td>Live and killed C. albicans (10^5/cm²) or S. salivarius (10^6/cm²)</td>
<td>EHOM:NOKs seeded on the collagen-embedded NOFs</td>
<td>2, 4, 8, 24, 48h</td>
<td>Epithelial cell viability, Masson trichrome staining, RT-PCR, ELISA</td>
<td>C. albicans or S. salivarius, induce release of proinflammatory mediators (IL-6, IL-8 and TNF-a) by oral epithelial cells (more efficiency of S. salivarius)</td>
</tr>
<tr>
<td>Mostefaoui *et al.*30</td>
<td>Original clinical isolate</td>
<td>Live and heat-inactivated C. albicans: 10^8 C. albicans/mL (10^5/cm²)</td>
<td>EHOM:NOKs seeded on the collagen-embedded NOFs</td>
<td>2, 4, 8, 24, 48h</td>
<td>RT-PCR, epithelial cell viability, ELISA, Western blotting, bacteria count, H&E</td>
<td>Increased expression of IL-1b by oral epithelial cells in early stages of infection with live C. albicans</td>
</tr>
<tr>
<td>Green *et al.*31</td>
<td>C. albicans strains: SC5314, B311 (ATCC 32354), GDH2346, and M61</td>
<td>50μL C. albicans/PBS suspension (2×10^6 cells, 2×10^5 cells, or</td>
<td>RHE (SkinEthic, Nice, France) (TR146 cell lines cultured on)</td>
<td>12, 24, 36, 48h</td>
<td>RT-PCR, SEM</td>
<td>Consistent detection of ALS genes in the Candida over time with progress</td>
</tr>
<tr>
<td>Study</td>
<td>Type of Study</td>
<td>Methodology</td>
<td>Controls/Slides</td>
<td>Results/Conclusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>--</td>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schaller et al.32</td>
<td>Clinical</td>
<td>2×10^4 cells/RHE model; polycarbonate filters</td>
<td>RHE (SkinEthic, Nice, France)</td>
<td>Increase expression of IL-8 and GM-CSF, and chemotraction of PMNs following infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tardif et al.33</td>
<td>Clinical</td>
<td>C. albicans LAM-1 (serotype A)</td>
<td>EHOM:NOKs</td>
<td>Increased secretion of IL-18 and IFNγ in response to C. albicans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dongari-Bagtzoglou and Kashleva34</td>
<td>Clinical</td>
<td>C. albicans strains: SC5314, efg1/efg1/cph1/cph1, rbt4/rbt4, rim101/rim101</td>
<td>EpiOral, OKF6/TERT-2 seeded on submucosa</td>
<td>Strain of Candida used for infection of oral mucosa influences the level of tissue invasion and damage infect oral epithelia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samaranayake et al.35</td>
<td>Clinical</td>
<td>PL− and PL+C. albicans isolates</td>
<td>RHOE</td>
<td>Expression of phospholipase gene in Candida influences its growth and invasion in the RHOE model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakrzewski and Rouabha36</td>
<td>Clinical</td>
<td>Clinical C. albicans (Candida-associated stomatitis)</td>
<td>Nonkeratinized and keratinized EHOM (NOKs seeded on the</td>
<td>Higher morphological change of C. albicans on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Strains/Model</td>
<td>Conditions</td>
<td>Methodology</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Villar et al.37</td>
<td>12 strains of C. albicans</td>
<td>1×10^5 C. albicans cells in 100μL of airlift medium</td>
<td>EHOM (NOKs seeded on the collagen-embedded NOFs)</td>
<td>17–48h IHC, CLSM, TEM Degradation of E-cadherin in epithelial cells by C. albicans facilitates its penetration in mucosal tissues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohnemus et al.38</td>
<td>C. albicans strain ATCC 10231</td>
<td>10^7 CFU C. albicans diluted in 2μL PBS</td>
<td>Ex vivo PMOCM</td>
<td>24h infection, 48 or 96h treatment with nystatin Evaluation of fungal growth, agar diffusion method, H&E, PASS Equal efficiency of different dosage of Nystatin (230, 100, 20 IU) in C. albicans infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lermann and Morschhauser 39</td>
<td>C. albicans strains</td>
<td>Infection of RHOE with 5×10^5 C. albicans cells.</td>
<td>RHOE (Skinethic Lab, Nice, France)</td>
<td>48h Light microscopy and staining, LDH activity, PCR Invasion of RHE by C. albicans is not dependent to expression of the SAP1–SAP6 genes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decanis et al.40</td>
<td>C. albicans isolated from Candida-associated candidiasis</td>
<td>Adjusted to 10^7/mL (10^6/cm²)</td>
<td>EHOM: OKF6/TERT-2 cells seeded on the collagen embedded NOFs</td>
<td>4, 24h qRT-PCR, ELISA Increase of epithelial cell defense against C. albicans infection by using farnesol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahri et al.41</td>
<td>C. albicans (ATCC 10231) as a reference species, C. famata was isolated from water (various sites in the Mediterranean Sea)</td>
<td>Adjusted to 10^5/mL (10^6/cm²)</td>
<td>EHOM: NOKs seeded on the collagen embedded NOFs</td>
<td>24h H&E, qRT-PCR C. famata activate local defenses of human epithelial cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaz et al.42</td>
<td>Candida albicans SC5314, Streptococ</td>
<td>10^6 cells of C. albicans or 10^7 cells</td>
<td>Immortalized human oral</td>
<td>4, 16, 24h CLSM, IF, FISH, RT-PCR Stimulation of biofilm formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Organism(s)</td>
<td>Cells</td>
<td>Concentration</td>
<td>S. oralis or a combination of both organisms, keratinocyte cell line (OKF6/TERT-2) seeded on collagen type I-embedded fibroblasts (3T3 fibroblasts)</td>
<td>Streptococci in presence of C. albicans, increased invasion of oral mucosa by C. albicans in presence of Streptococci</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Yadev et al.43</td>
<td>C. albicans wild-type strain (CAF2–1)</td>
<td>5×10⁷ CFU/mL (100μL: 5×10⁶ CFU)</td>
<td>RHOE (Skinethic Lab, Nice, France), EpiOral (GIN-100, MaTek, Ashland, MA), FTOM (NOKs seeded on the collagen embedded NOFs)</td>
<td>24h</td>
<td>ELISA, IHC, PASS</td>
<td>Similar damage in all models following infection; more cytokine release in FTOM</td>
</tr>
<tr>
<td>Rouabhaia et al.44</td>
<td>Strains of Candida albicans: CAI4 wild-type, Δipt1 mutant, IPT1 revertant</td>
<td>10⁷/mL in PBS (10⁵ cells/cm²)</td>
<td>EHOME:NOKs seeded on the collagen embedded NOFs</td>
<td>24h</td>
<td>qRT-PCR, ELISA</td>
<td>Reduced adhesion of Candida to epithelial cells in strains with disrupted IPT1 gene</td>
</tr>
<tr>
<td>Silva et al.45</td>
<td>Six clinical isolates of C. glabrata, recovered from the oral cavity (strains D1 and AE2), vagina (strains 534784 and 585626) and urinary tract (strains 562123 and 513100); reference strain of C. glabrata (ATCC 2001)</td>
<td>2×10⁶ cells/mL (infected only with C. glabrata, or simultaneously with C. glabrata and C. albicans)</td>
<td>RHOE (Skinethic Lab, Nice, France)</td>
<td>12h</td>
<td>PNA FISH, CLSM, LDH activity</td>
<td>Increased invasiveness of C. glabrata and increased LDH release by the RHOE in presence of C. albicans</td>
</tr>
<tr>
<td>Semlali et al.46</td>
<td>C. albicans (SC5314)</td>
<td>10⁶ cells in 200μL of Sabouraud dextrose broth</td>
<td>EHOME:NOKs seeded on the collagen embedded NOFs</td>
<td>24h</td>
<td>qRT-PCR, Western blot, ELISA</td>
<td>No toxicity of KSL-W on epithelial cells and decrease of Candida virulence in its presence</td>
</tr>
<tr>
<td>References</td>
<td>Organism(s)</td>
<td>Media, Cell Lines, and Methods</td>
<td>Duration</td>
<td>Assays</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Rouabia et al.47</td>
<td>Candida strains: CAF2-parental strain, RML1, RML2, RML3, RML4</td>
<td>10^4 cells/cm² in a serum-free, antifungal-free DMEM medium</td>
<td>24h</td>
<td>H&E, LDH assay, qRT-PCR, Western blot</td>
<td>Evidence on active role of ECM33 gene in biofilm formation and tissue damage of Candida</td>
<td></td>
</tr>
<tr>
<td>Whiley et al.7</td>
<td>Denture stomatitis strainNCYC 1467, strain AC-1 from the saliva of a healthy subject, NCPF 8112 from vaginal candidosis,NCYC 1472 from an asymptomatic cervical smear</td>
<td>4×10^7 CFU/mL: 50μL=2×10⁶ CFU)</td>
<td>4, 12, 24h</td>
<td>MTT, ELISA, H&E, PAS, PL assay, SAP assay</td>
<td>Different response of oral and vaginal epithelial cells to C. albicans</td>
<td></td>
</tr>
<tr>
<td>de Carvalho Dias et al.12</td>
<td>C. albicans SC5314 and S. aureus ATCC25923</td>
<td>1×10^7 cells/mL in RPMI 1640</td>
<td>8, 16h</td>
<td>H&E, LDH assay</td>
<td>Synergistic interaction of C. albicans and S. aureus in tissue damage and depth of infection in ROMT</td>
<td></td>
</tr>
<tr>
<td>Sobue et al.48</td>
<td>C. albicans strain SN425, C. glabrata strain GDH2269, S. oralis 34 (provided by Dr. P. Kolenbrander), and S. mitis 49456</td>
<td>20μL media containing 10^6 fungal (C. albicans or C. glabrata) or 10^7 bacterial (S. oralis or S. mitis) cells</td>
<td>6–16h</td>
<td>IF, FISH, ELISA</td>
<td>Intensification of the inflammatory response, but not significant effect on fungal or bacterial biofilm by using 5-FU</td>
<td></td>
</tr>
<tr>
<td>Morse et al.49</td>
<td>C. albicans ATCC 90028, S. sanguinis ATCC 10556, S. gordonii ATCC 10558, Actinomyces viscosus ATCC 15987,</td>
<td>Single or mixed-species biofilm grown on PMMA coupons inverted and placed in direct RHOE, Epioral, FTOM: TR146 or FNB6 keratinocytes seeded on</td>
<td>12h</td>
<td>H&E, Real-time qPCR, LDH activity</td>
<td>Increase in LDH activity and damage by C. albicans-only and mixed-species biofilms, higher</td>
<td></td>
</tr>
<tr>
<td>Bertolini et al.50</td>
<td>C. albicans SC5314 and 529L, C. albicans tup1Δ/Δ homozygous deletion mutant, E. faecalis OG1RF</td>
<td>contact with the OMMs</td>
<td>collagen-embedded NOFs</td>
<td>extent of damage in FTOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>----------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10⁶ cells of C. albicans SC5314, 10⁷ cells of E. faecalis, or a combination</td>
<td>SCC15 oral keratinocytes seeded on collagen-embedded fibroblasts (3T3) pretreated with 5-FU for mucosal injury</td>
<td>20h</td>
<td>CFU determinations, immuno-FISH</td>
<td>Pronounced fungal invasion in 5-FU-treated tissues infected with both organisms</td>
<td></td>
</tr>
</tbody>
</table>
Porphyromonas gingivalis

Although periodontitis is a multifactorial disease, an abundance of bacteria (like \textit{P. gingivalis} and \textit{Aggregatibacter actinomycetemcomitans}) and lower levels of some other bacteria in the oral cavity of patients with periodontitis show important interaction of these bacteria with the host. The Gram-negative, anaerobic bacterium \textit{P. gingivalis} is considered the main agent in etiology of periodontitis. This bacterium has the ability to invade oral mucosa cells, which result in its escape from therapeutic and host immune agents. This bacterium produces dental plaque biofilm in combination with primary (\textit{Streptococci}) and secondary colonizers (\textit{Fusobacterium}).51-52

The studies related to the infection of oral mucosa models with \textit{Porphyromonas} alone or in association with other bacteria are summarized in Table 2.
Table 2. Studies Related to the Infection of Oral Mucosa Models with *Porphyromonas* Alone or in Association with Other Bacteria

<table>
<thead>
<tr>
<th>Authors</th>
<th>Bacteria strain</th>
<th>Culture condition</th>
<th>Oral mucosa model</th>
<th>Time of contact between P. gingivalis and mucosa</th>
<th>Assays</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrian et al.5</td>
<td>P. gingivalis ATCC 33277 and the derivative gingipain-null mutant KDP128</td>
<td>10<sup>6</sup> and 10<sup>9</sup> bacteria (ATCC 33277 or KDP128)/mL in DMEH, incubated in an anaerobic chamber</td>
<td>EHOM (primary epithelial and fibroblasts cells in collagen)</td>
<td>24h</td>
<td>TEM, ELISA</td>
<td>Higher penetration of nonmutant form in lamina propria; high secretion of cytokines from oral mucosa models after infection</td>
</tr>
<tr>
<td>Kimball et al.25</td>
<td>P. gingivalis (ATCC 33277 or strain 861), S. gordonii DL-1, and Fusobacterium nucleatum ATCC 25586</td>
<td>6×10<sup>6</sup> bacteria in 10–50μL bacterial growth medium (MOI of 100:1 bacteria per surface cell)</td>
<td>EpiOralTM (MatTek Corporation, Ashland, MA)</td>
<td>24–72h</td>
<td>H&E, IHC, qRT-PCR</td>
<td>Increase of hBD2 expression after infection</td>
</tr>
<tr>
<td>Andrian et al.53</td>
<td>P. gingivalis ATCC 33277 or its derivative gingipain-null mutant (KDP128)</td>
<td>100μL of 10<sup>9</sup> bacteria/mL in DMEH, in an anaerobic chamber</td>
<td>EHOM (primary epithelial and fibroblasts cells in collagen)</td>
<td>4, 8, 24h</td>
<td>RT-PCR, ELISA</td>
<td>Increase activation of TIMP-2 and expression of MMP-2 and MMP-9 by oral mucosa following infection</td>
</tr>
<tr>
<td>Wayakanon et al.54</td>
<td>Clinical strains (A245br) of P. gingivalis</td>
<td>MOI=100</td>
<td>OMM (NOK or TR146 cells on collagen containing NOFs)</td>
<td>18h</td>
<td>Bacteria count, IHC</td>
<td>Reduced number of intracellular P. gingivalis in presence of polymersome-encapsulated metronidazole or doxycycline</td>
</tr>
<tr>
<td>Belibasakis et al.55</td>
<td>P. gingivalis ATCC 33277T, Campylobacter rectus (OMZ 697), F. nucleatum (OMZ 596), Prevotella intermedia ATCC</td>
<td>10-species “subgingival” biofilm model grown on sintered hydroxyapatite</td>
<td>EpiGing, (MatTek, Ashland, MA)</td>
<td>3–24h</td>
<td>qPCR, LDH activity, ELISA</td>
<td>Upregulation of IL-8 gene expression and secretion after 3h in both biofilms, in the</td>
</tr>
<tr>
<td>Study</td>
<td>Species/Sources</td>
<td>Description</td>
<td>Assay/Methodology</td>
<td>Conclusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnock et al. 56</td>
<td>P. gingivalis strains NCTC 11834 and W50</td>
<td>MOI of 100 (monolayer) or 2×10^7 cells/300mL</td>
<td>OMMs with either NOK or the H357 cell line on collagen containing NOFs</td>
<td>Antibiotic protection assay, IF, IHC, chemokine array; Higher intracellular survival of P. gingivalis in mucosal models compared with monolayer cultures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Species</td>
<td>Methods</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bao et al.59</td>
<td>Porphyromonas gingivalis W50 (OMZ 308), Prevotella intermedia ATCC 25611T, A. actinomycetemcomitans JP2 (OMZ 295), Campylobacter rectus (OMZ 398), Veillonella dispar ATCC 17748T, F. nucleatum subsp. Nucleatum (OMZ 598), S. oralis SK248 (OMZ 607), Treponema denticola ATCC 35405T, Actinomyces oris (OMZ 745), S. anginosus ATCC 9895, and Tannerella forsythia (OMZ 1047)</td>
<td>11-species biofilm formed on hydroxyapatite discs co-cultured with the OMM in the bioreactor (37°C, 2% O₂ and 5% CO₂)</td>
<td>Immortalized epithelial cells (HGEK-16), fibroblasts (GFB-16), and a monocytic cell line perfused through 3D collagen scaffold into the bioreactor</td>
<td>24h</td>
<td>qPCR, quantification of cytokine secretion, Masson’s Trichrome Staining, SEM</td>
<td>Reduced growth of Campylobacter rectus, Actinomyces oris, S. anginosus, Veillonella dispar, and P. gingivalis in the presence of OMM; upregulation of cytokine release in cell culture supernatants in presence of the biofilm</td>
</tr>
<tr>
<td>Bugueno et al.60</td>
<td>P. gingivalis strain 33277</td>
<td>MOI=100</td>
<td>3D microtissue of TERT-2 OKF-6 cell line on 3D spheroid of NOFs</td>
<td>2–24h</td>
<td>Antibiotic Protection Assay, qRT-PCR, IF, SEM, TEM</td>
<td>Invasion of the fibroblastic core and increased apoptosis after infection</td>
</tr>
</tbody>
</table>
attached to the underside of inserts, and then placed into inserts containing the HGE tissue.

3D, three dimensional; PBMCs, peripheral blood mononuclear cells; HGE, human gingival epithelium; MS, mass spectrometry.
Other microorganisms

In the oral cavity, some bacteria are involved in pathogenesis of dental caries (Gram-positive *Streptococcus mutans*), while others are responsible for periodontal diseases (Gram-negative *Actinobacillus actinomycetemcomitans* and *F. nucleatum*). Bacteria in the oral cavity—and especially in dental plaque—often interact with each other and are associated together in the procedure of disease progression. It is important to consider primary and second colonizers, as well as the third colonizers.

The studies considering infection of oral mucosa models with microorganisms other than *Candida* and *Porphyromonas* are summarized in Table 3.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Bacteria strains</th>
<th>Culture condition</th>
<th>Oral mucosa model</th>
<th>Time of contact between biofilm and mucosa</th>
<th>Assays</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gursoy et al.23</td>
<td>Two strains of F. nucleatum: ATCC25586 and AHN9508 (clinical oral isolate)</td>
<td>Two groups: anaerobically grown biofilm on a semipermeable membrane placed upside-down on OCC, 10μL (3×10⁶ CFUs/PBS) of planktonic bacteria</td>
<td>HaCaT epithelial cells grown on a fibroblast collagen matrix (OCC model)</td>
<td>24h</td>
<td>H&E, Ki-67, PASS, LDH release</td>
<td>Invasion of the collagen matrix by one of the strains; more cytotoxicity and invasiveness of biofilm in comparison to planktonic bacteria</td>
</tr>
<tr>
<td>Dabija-Wolter et al.62</td>
<td>Four strains of F. nucleatum: ATCC 10953, ATCC 25586, and two other clinical isolates: AHN 8158 and MRC-23</td>
<td>5×10⁷ unstained or FITC-labeled F. nucleatum in 20–30μL FAD medium, in anaerobic atmosphere for 3h and then at 37°C in aerobic conditions</td>
<td>3D engineered models of human gingiva using primary gingival keratinocytes and fibroblasts</td>
<td>24, 48h</td>
<td>CLSM, IHC, qRT-PCR</td>
<td>Penetration of F. nucleatum to gingival epithelium without causing permanent damage</td>
</tr>
<tr>
<td>Pollanen et al.63</td>
<td>F. nucleatum (ATCC) 25586 Biofilm grown on semipermeable nitrocellulose membranes placed on OMM</td>
<td></td>
<td>HaCaT cells seeded on collagen fibroblast gels and a tooth piece placed on top</td>
<td>≤24h</td>
<td>IHC</td>
<td>Epithelial migration and altered epithelial proliferation pattern</td>
</tr>
<tr>
<td>De Ryck et al.22</td>
<td>Microbiota derived from a swab of the inner cheek</td>
<td>Microbiota grown on an agar/mucin layer positioned on top of oral mucosa</td>
<td>TR146, HaCaT, or normal keratinocyte cells grown on collagen layer containing NIH-3T3 fibroblasts</td>
<td>72h</td>
<td>Oral scratch assay, Pyrosequencing, PCR-DGGE analysis, live/dead staining, flow</td>
<td>Reduced healing in the presence of microbiota, no reduction of the proliferation index, no increase of</td>
</tr>
<tr>
<td>Study</td>
<td>Biofilm Types</td>
<td>Preparation</td>
<td>Treatment</td>
<td>Time</td>
<td>Assays</td>
<td>Findings</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Buskermolen et al.64</td>
<td>Three biofilm types: commensal, gingivitis, and cariogenic</td>
<td>10μL of 10⁵, 10⁶, or 10⁷ CFUs/equivalent diluted in HBSS</td>
<td>Immortalized human keratinocyte (KC-TERT) and fibroblast (Fib-TERT) embedded in collagen hydrogel</td>
<td>24h</td>
<td>IHC, FISH, fluorescence resonance energy transfer, ELISA</td>
<td>Increased expression of elafin, secretion of the antimicrobial cytokine and inflammatory cytokines in the gingiva epithelium</td>
</tr>
<tr>
<td>Shang et al.24</td>
<td>From healthy human saliva, consists of typical commensal genera Granulicatella and major oral microbiota genera Veillonella and Streptococcus</td>
<td>10⁷ CFU of biofilm cells diluted in 10μL HBSS, dripped onto the surface of the RHG</td>
<td>RHG: immortalized human keratinocyte (KC-TERT) and fibroblast (Fib-TERT)-populated hydrogel</td>
<td>1, 2, 4, or 7 days</td>
<td>ELISA, RT-PCR, CFU count, H&E, FISH</td>
<td>Increased epithelial thickness, stratification, keratinocyte proliferation, and production of antimicrobial proteins in biofilm exposed RHG</td>
</tr>
<tr>
<td>Rahimi et al.65</td>
<td>Streptococcus mutans (strain UA-159)</td>
<td>Injection of 2μL of bacterial solution (with optical density between 0.2 and 0.3) into the keratinocyte-containing channel of the device</td>
<td>Microfluidic mucosal model-on-a-chip: fibroblast cell line-laden collagen, followed by a keratinocyte</td>
<td>24h</td>
<td>Dil fluorescence staining, TEER</td>
<td>Some infiltration in collagen layer, lower TEER after bacterial exposure</td>
</tr>
<tr>
<td>Reference</td>
<td>Biofilm System</td>
<td>Culture Method</td>
<td>Cell Line Details</td>
<td>Time (h)</td>
<td>Imaging/Assays</td>
<td>Findings</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Shang et al. 66</td>
<td>Commensal, gingivitis, or cariogenic biofilms from human healthy saliva.</td>
<td>Biofilms cultured in the AAA model diluted as 1×10^7 CFU biofilm cells in 10μL HBSS</td>
<td>RHG: keratinocyte (KC-TERT, OKG4/bmi1/TER) on collagen-embedded fibroblast (Fib-TERT)</td>
<td>24h</td>
<td>FISH, H&E, RT-PCR, Western blotting</td>
<td>Upregulation of gene expression involved in TLR signaling by commensal biofilm, and suppression of some by cariogenic biofilm; no significant damaging effect on RHG morphology</td>
</tr>
<tr>
<td>Ingendoh-Tsakmakidis et al. 67</td>
<td>Biofilm of S. oralis (DSM 20627) on polyethersulfone membrane, biofilm of A. actinomycetemcomitans JP2 strain on coverslip</td>
<td>S. oralis or A. actinomycetemcomitans biofilm facing the peri-implant oral mucosa model with direct contact to titanium disk</td>
<td>Peri-implant oral mucosa model assembly: OKF6/TERT-2 seeded on titanium disks-HGF-collagen matrix</td>
<td>24h</td>
<td>Microarray data analysis, ELISA, IHC</td>
<td>Induction of a protective stress response by S. oralis. Downregulation of genes involved in inflammatory response by A. actinomycetemcomitans</td>
</tr>
<tr>
<td>Beklen et al. 68</td>
<td>A. actinomycetemcomitans strain D7S</td>
<td>A. actinomycetemcomitans biofilm cultured on porous filter discs added on top of OMM</td>
<td>Immortalized human gingival keratinocyte cells seeded on fibroblast-collagen matrix</td>
<td>24h</td>
<td>IHC, TEM</td>
<td>Thick necrotic layer and decrease of keratin expression in epithelium following infection</td>
</tr>
</tbody>
</table>
Discussion
Monolayer culture of epithelial cells is considered to be a deficient model to study the interaction of pathogenic bacteria with host cells. In contrast, the potential of 3D models of human oral mucosa for histological analysis of the process of infection—and observation of the tissue invasion—makes these models very relevant and informative for microbiomics.69 In this study, we summarized the studies using 3D models of oral mucosa optimized for fungal pathogenesis and bacterial-derived oral infections. It seems that there are many aspects that require optimization and standardization with regard to using oral mucosal models (OMMs) for infection by microorganisms.

Equivalents of oral mucosa
Engineered oral mucosa includes a connective tissue layer containing fibroblasts as lamina propria covered by epithelium containing epithelial cells.8-70 The substrate used for cell culture in most of the engineered oral mucosa models used in this review was collagen. Ease of extraction and manipulation, reproducibility, and high growth of epithelial cells on its surface are the reasons for choosing this material to load fibroblast cells.71 The potential role of the scaffold as a barrier against infection has been mentioned by researchers.72 However, with advancing tissue engineering, scaffold-free approaches are now starting to be utilized in engineering of oral mucosa.73 One study prepared a 3D spheroid model of oral mucosa by hanging-drop method and infected it with \textit{P. gingivalis}.60 However, lack of keratinization is a limitation of this micro-tissue model.

Cells used for oral mucosa models include primary cells—NOKs (human-derived normal oral keratinocyte cells from oral mucosa) or cell lines such as TR146 (oral squamous cell carcinoma cell line), HaCaT (immortalized keratinocyte cell line), H357 (cell line from squamous cell carcinoma of the tongue), OKF6/TERT-2, 20 (normal oral epithelial cell line, immortalized by forced expression of telomerase), and Gie-No3B11 (immortalized gingival keratinocytes). Upregulation of genes in tumor-derived cells suggests more suitability of normal or immortalized cells for OMM production.3 On the other hand, primary cells have short life span, and their growth rate and response to infection are different based on various donors.34

The engineered oral mucosa for investigation of oral microbiomics has been used since 2004.5-28:30:31 Based on this review, 29 studies used engineered oral mucosa, while 14 studies used commercialized models. Reconstituted human oral epithelium (RHOE, SkinEthic) model is a multilayered epithelium consisting of TR146 cells on a polycarbonate transwell insert. EpiOral (MaTek) is based on primary oral keratinocytes grown in Millipore Millicell inserts. Although these models are inexpensive, easily handled, and reproducible, the absence of fibroblast-embedded collagen layer in both of these models raises concerns about their reliability. Mimicking steps of keratinocyte differentiation requires their culture on a connective tissue layer.74 More cytokine release and
expression of defensin from full-thickness engineered oral mucosa in comparison to split-thickness models suggest that they are better representative of *in vivo* conditions. Among articles reviewed in this study, only one study used porcine *ex vivo* oral mucosa model based on structural similarity to human oral mucosa.

In native oral mucosa, many other cells besides fibroblasts and epithelial cells exist, including immune cells, endothelial cells, and melanocytes. Presence of neutrophils within biofilms was confirmed in different studies. In this review, one study used RHOF supplemented with polymorphonuclear leukocytes to study oral candidiasis. Another study used co-culture of immune cells (peripheral blood mononuclear cells and CD14+ monocytes), human gingival epithelium (Skinethic), and multispecies biofilms. Bao et al. used a monocytic cell line in their oral mucosa-infected model. Interaction of oral epithelial cells with immune cells in response to infection has been reported in many studies. To simulate the *in vivo* situation as closely as possible, engineering of more complex oral mucosa models that are vascularized or contain immune cells would be indicated for microbiomics.

Oral mucosa infection

Long-term co-culture of bacteria and oral mucosa model is challenging, because each of them requires different culture media. Time of infection of oral mucosa with pathogen microorganisms in different studies varies between 1.5 and 48h. De Ryck et al. used 72-h bacterial exposure of oral mucosa model. Determination of time course of infection is important in different bacteria, because some microorganisms, like *P. gingivalis*, need anaerobic incubation, which compromises epithelial viability after 24h. Contact of *C. albicans* with epithelium after 8 and 24h causes tissue disorganization as well, but visible damage caused by *S. salivarius* is reported after 48h contact. Shang et al. showed that commensal oral microbiota from healthy saliva could be in contact with oral mucosa model for 7 days.

MOI used in most studies was 100. Groeger et al., reported no difference in the transepithelial electrical resistance at an MOI of 100, even after 48h. Higher MOI could result in destruction of cell–cell contacts.

Another aspect of oral mucosa infection is the atmosphere of culture for producing optimum results. While *Candida* and *Streptococcus* could grow in aerobic conditions, *Fusobacterium* and *P. gingivalis* require an anaerobic atmosphere. However, prolonged incubation of oral mucosa model in this condition destroys its structure. Researchers showed that there is no significant difference in bacterial viability between anaerobic and aerobic incubation over 4-h infection of oral mucosa model. Gursoy et al. also showed that bacterial viability does not alter after change of the environment from anaerobic to aerobic.

Beside oxygen, the effect of temperature on the growth of bacteria is important. Although the temperature of body is about 37°C, increase of temperature in some conditions—like inflammation in periodontitis—is reported, which must be considered in future studies. Dynamic environment of the oral cavity and shear forces by saliva also should be considered in infection of oral mucosa. In the study by Bao et al., a closed dynamic perfusion bioreactor system was used for the creation of continuous
sheer forces. Mimicking temperature, atmosphere, and shear stress of the natural environment and simulating the environment of periodontal pocket or oral cavity are now possible by using bioreactors.

Biofilm versus non-biofilm design
Most studies concerning microbiomics of oral mucosa used single species and planktonic bacteria (non-biofilm design). Buskermolen used saliva-derived commensal and pathogenic biofilms for oral mucosa exposure, and Shang et al. used multispecies commensal biofilm, both from healthy human saliva. While these two studies used 10 μL of determined concentration of oral biofilm, De Ryck et al. used oral biofilm derived from swabs wiped along the inner cheek and after growth of this biofilm on an agar/mucin layer, it was placed on top of oral mucosa model with no direct contact. Gursoy et al. in their study by placing a biofilm of F. nucleatum on top of OMM, investigated direct contact between single-species biofilm and oral mucosa. Using poly-methyl methacrylate and hydroxyapatite disc for producing oral biofilm before contact with oral mucosa has also been proposed in other studies. Microorganisms in the oral cavity have an affinity to form multispecies biofilm, and the behavior of them in a biofilm-embedded by matrix is very different from their planktonic form. Higher resistance of bacteria in biofilm to antibacterial agents and different gene expression by them highlight the importance of in vitro biofilm design.

Another relevant aspect to consider in producing biofilm is the role of saliva containing mucin and acquired pellicle. Only one study used saliva as supplement of biofilm growth medium. Using natural or artificial saliva rather than culture media in co-culture of bacteria-OMM is a possible option for mimicking the condition of the oral cavity.

Survival and penetration of microorganism in oral mucosa model
Survival of microorganisms in oral epithelial cells over different time periods was investigated in different studies. Studies related to C. albicans showed that transformation to the hyphal form, which begins 8h after infection, could result in the decrease of colony-forming units (CFUs). Yeast transition is reduced in keratinized form of oral mucosa in comparison to nonkeratinized form. Although Samaranayake et al. reported no penetration of C. albicans into the connective tissue layer at 48h, Whiley et al. and Dongari-Bagtzoglou and Kashleva showed that penetration into the submucosa was dependent on the strain used for infection. Association of C. albicans with other microorganisms, like Staphylococcus aureus or S. oralis, could result in deeper invasion into subepithelial collagen matrix. Hyphal transformation was not detectable in C. famata; however, its penetration to the lamina propria of the oral mucosa model was reported after 24h of infection. Invasion of F. nucleatum to collagen matrix is also strain dependent and is enhanced in the biofilm form of F. nucleatum compared to the planktonic form. P. gingivalis penetration into the connective tissue has been demonstrated. Andrian et al. showed the contribution of P. gingivalis gingipains in its potency to penetrate the connective tissue. Pinnock et al. reported that submerged OMM with a thin epithelium allows penetration of bacteria into the connective tissue, while airlifted OMM with thicker epithelium prohibits its penetration to lamina propria. They also showed that the viability of this bacterium in OMM decreases over time.

While almost all studies showed disorganization of epithelial layer after infection with pathogenic bacteria, Shang et al. reported higher epithelial thickness and keratinocyte proliferation in oral mucosa
models exposed to biofilm that was composed of multispecies commensal microorganisms from healthy human saliva after 7 days. It seems that commensal oral bacteria act as an antagonist against potential pathogens and help in maintenance of oral mucosa health.

Recovering bacteria from OMM
Different methods have been used for the release of bacteria from the infected oral mucosa models. One method is using tissue dissociator for dissociation of tissue, following by sonication. The second method is using homogenizer, lysing the keratinocyte plasma membrane, and robustly pipetting to release intracellular bacteria. One other option is treating tissue with lysis buffer and strictly mixing it. Scraping, or using the cycle of sonication and vortexing, was also suggested by Heersink. Hamilton et al., in their study of different methods of collecting biofilm cells from surfaces, emphasized the importance of using similar methods of harvesting biofilm for acceptable result of comparison.

Further consideration in this step is the possible disorganization of epithelial cells over time and release of cells containing bacteria in culture media, which could result in false report of reduction of bacteria over time. Standardization of the techniques used for recovering bacteria from OMM is very important.

Methods of evaluation of infected OMM
Extent of bacteria proliferation or oral mucosa damage can be evaluated by different methods. Most of studies use qualitative/semiquantitative analyses for description of oral mucosa infection. Histology staining, (dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) (MTT) and lactate dehydrogenase activity measurement were the most common methods for analysis of epithelial cell damage. Conventional plate count and CFU-based quantitation, which have been used in different studies, only consider the number of bacteria on the surface of OMM and not the bacteria in deeper layer. Also, this method is not useful for viable but nonculturable organisms. Alternative methods like crystal violet staining and resazurin staining can be used for biofilm research. Five studies used confocal laser scanning microscopy (CLSM) to investigate various aspects of microbial biofilm formation. One other approach for visualization of biofilm is using fluorescein isothiocyanate-labeled bacteria and flow cytometry. Flow cytometric cell sorting is also a useful tool for separation of bacteria. Because of concerns regarding dissociation of biofilm during handling and preparation for staining, Pittman et al. proposed using low-melting agarose on the surface of infected oral mucosa.

One of the best quantitative methods for evaluation of barrier integrity of cells is the measurement of transepithelial electrical resistance (TEER)/transendothelial electrical resistance. This noninvasive method can reflect changes in tight junction proteins. Reduced TEER of keratinocytes after infection with bacteria was reported in several studies. When using TEER for comparing different models, it is important to consider the influencing parameters—like porosity and material of the model, and the medium used for the measurement.
Fluorescent in situ hybridization (FISH) is also a useful technique that was used in seven studies for detection of microorganisms in OMMs. Combination of different methods, like FISH and CLSM, could help to better determine interaction between oral mucosa and biofilm.

Effect of antibacterial agents
OMMs are suitable and relevant in vitro test systems for evaluating antibacterial products. The effect of an antibacterial agent on bacteria should be considered in combination with its biosafety for oral tissues. Effect of different dosage of a commercially available topical Nystatin suspension on an ex vivo model of oral mucosa infected with Candida was studied by Ohnemus et al. They proved that, while a dosage of 0.25 IU Nystatin was efficient in agar diffusion model, it had no confirmed activity at dosage of 10 and 0.1 IU on infected oral mucosa, suggesting the closer properties of OMM to the in vivo situation. Biocompatibility of synthetic antimicrobial decapeptide KSL-W and its antibacterial effects against C. albicans was investigated by Semlali et al. using OMM. They showed its safety for epithelial cells and its negative effect on the growth of Candida. Wayakanon et al. investigated the effect of metronidazole-, doxycycline-, and gentamicin-encapsulated polymersome on biocompatibility of keratinocyte cells and reduction of intracellular P. gingivalis load in OMMs. Effects of plasma treatment on reduction of the biofilm of C. albicans and Staphylococcus aureus without toxic effects on OMM have also been reported by Delben et al.

Considering the importance of quorum-sensing and presence of adhesins for adhesion of bacteria to mucosal surfaces, future antibacterial approaches could be focused on the alteration of quorum-sensing or blocking of adhesins in combination with stimulation of defensin release from OMM. Finally, using oral mucosa-on-a-chip could be very helpful to study the reciprocal effects of antibacterial agents on bacteria and oral mucosa.

Conclusion
Invasion of oral bacteria to tissue-engineered oral mucosa is dependent on the strains of bacterium and can be influenced by the type of cells and culture conditions used. The methods used for tissue processing and assessment of the effects of bacteria on oral mucosa can be potentially invasive and may alter the cells or bacteria. Therefore, data reported in the literature regarding invasion of oral mucosa by bacteria must be interpreted with caution.

Although OMMs are more relevant and more informative than monolayer cultures of epithelial cells, they lack some other types of cells present in the normal human oral mucosa. Other limitations of OMMs include nonconstant desquamation, absence of saliva consisting mucin, deficiency in the number of present bacteria and immune responses, and static environment, which make it difficult to extrapolate the data from the in vitro experiments to the clinical situation. Using new technologies, such as microfluidics and bioreactors, could help to reproduce some of these physiologically relevant conditions.

Acknowledgments
This research is supported by National Institute of Dental and Craniofacial Research (NIDCR) of the National Institutes of Health (NIH) under award number R15DE027533.
Disclaimer
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Disclosure Statement
No competing financial interests exist.

Funding Information
This study was funded by the National Institute of Dental & Craniofacial Research (NIDCR) of the National Institutes of Health (NIH) (award no. R15DE027533).

References
1. Rouabhia M. Interactions between host and oral commensal microorganisms are key events in health and disease status. Can J Infect Dis Med Microbiol 13, 47, 2002
3. Bierbaumer L., Schwarze U.Y., Gruber R., and Neuhaus W. Cell culture models of oral mucosal barriers: a review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 6, 1479568, 2018
5. Andrian E., Grenier D., and Rouabhia M. In vitro models of tissue penetration and destruction by *Porphyromonas gingivalis*. Infect Immun 72, 4689, 2004
17. Gao L., Xu T., Huang G., Jiang S., Gu Y., and Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9, 488, 2018
29. Mostefaoui Y., Bart C., Frenette M., and Rouabhia M. *Candida albicans* and *Streptococcus salivarius* modulate IL-6, IL-8, and TNF-alpha expression and secretion by engineered human oral mucosa cells. Cell Microbiol 6, 1085, 2004
47. Rouabhia M., Semlali A., Chandra J., Mukherjee P., Chmielewski W., and Ghannoum M.A. Disruption of the ECM33 gene in Candida albicans prevents biofilm formation, engineered
human oral mucosa tissue damage and gingival cell necrosis/apoptosis. Mediators Inflamm 2012, 398207, 2012
64. Buskermolen J.K., Janus M.M., Roffel S., Krom B.P., and Gibbs S. Saliva-derived commensal and pathogenic biofilms in a human gingiva model. J Dent Res 97, 201, 2018
83. Pinnock A. A Study of the Invasion and the Cellular Response of an In Vitro 3D Oral Mucosal Model by *Porphyromonas gingivalis* [Ph.D thesis]. Department of Oral and Maxillofacial Pathology, University of Sheffield, Sheffield, United Kingdom, 2012

