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Abstract
Introduction: Resting	state	functional	magnetic	resonance	imaging	(rsfMRI)	studies	
demonstrate	that	individuals	with	posttraumatic	stress	disorder	(PTSD)	exhibit	atypi-
cal	 functional	connectivity	 (FC)	between	the	amygdala,	 involved	 in	 the	generation	
of	emotion,	and	regions	responsible	for	emotional	appraisal	(e.g.,	insula,	orbitofron-
tal	cortex	[OFC])	and	regulation	(prefrontal	cortex	[PFC],	anterior	cingulate	cortex).	
Consequently,	atypical	amygdala	FC	within	an	emotional	processing	and	regulation	
network	may	be	a	defining	feature	of	PTSD,	although	altered	FC	does	not	seem	con-
strained	to	one	brain	region.	Instead,	altered	amygdala	FC	involves	a	large,	distrib-
uted	brain	network	in	those	with	PTSD.	The	present	study	used	a	machine-learning	
data-driven	approach,	multi-voxel	pattern	analysis	(MVPA),	to	predict	PTSD	severity	
based	on	whole-brain	patterns	of	amygdala	FC.
Methods: Trauma-exposed	 adults	 (N	 =	 90)	 completed	 the	PTSD	Checklist-Civilian	
Version	to	assess	symptoms	and	a	5-min	rsfMRI.	Whole-brain	FC	values	to	bilateral	
amygdala	were	 extracted	 and	 used	 in	 a	 relevance	 vector	 regression	 analysis	with	
a	 leave-one-out	 approach	 for	 cross-validation	with	permutation	 testing	 (1,000)	 to	
obtain significance values.
Results: Results	demonstrated	that	amygdala	FC	predicted	PCL-C	scores	with	statis-
tically significant accuracy (r	=	.46,	p	=	.001;	mean	sum	of	squares	=	130.46,	p = .001; 
R2	=	0.21,	p	=	 .001).	Prediction	was	based	on	whole-brain	amygdala	FC,	although	
regions	that	informed	prediction	(top	10%)	included	the	OFC,	amygdala,	and	dorso-
lateral	PFC.
Conclusion: Findings	demonstrate	the	utility	of	MVPA	based	on	amygdala	FC	to	pre-
dict	individual	severity	of	PTSD	symptoms	and	that	amygdala	FC	within	a	fear	acqui-
sition and regulation network contributed to accurate prediction.
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1  | INTRODUC TION

Posttraumatic	 stress	 disorder	 (PTSD)	 is	 a	 debilitating	 disorder,	 as-
sociated	with	reduced	physical	 (El-Gabalawy,	Blaney,	Tsai,	Sumner,	
&	 Pietrzak,	 2018;	 Richardson,	 Long,	 Pedlar,	 &	 Elhai,	 2008),	 occu-
pational	 (Smith,	 Schnurr,	 &	 Rosenheck,	 2005),	 social	 (Freedman,	
Gilad,	Ankri,	Roziner,	&	Shalev,	2015),	 and	emotional	 (Radomski	&	
Read,	2016)	health	and	well-being.	Despite	the	negative	 impact	of	
PTSD	on	overall	quality	of	life	(Vogt	et	al.,	2017),	the	neurophysiology	
of this disorder is still not well understood. Prior research implicates 
atypical amygdala response and amygdala functional connectivity 
(FC)	as	a	cardinal	feature	of	the	disorder	(Liberzon	&	Sripada,	2007;	
Patel,	 Spreng,	Shin,	&	Girard,	2012;	Rauch,	Shin,	&	Phelps,	2006).	
In	regard	to	FC	studies,	findings	suggest	that	the	amygdala	is	atyp-
ically connected with a number of brain areas spanning both corti-
cal	and	subcortical	regions	(Bryant	et	al.,	2008;	Diener	et	al.,	2016;	
Felmingham	 et	 al.,	 2014;	 Fonzo	 et	 al.,	 2010;	 Hayes	 et	 al.,	 2011;	
Hendler	et	al.,	2003;	Killgore	et	al.,	2014;	Linnman,	Zeffiro,	Pitman,	
&	Milad,	 2011;	Nilsen	 et	 al.,	 2016;	 Patel,	 Girard,	 Pukay-Martin,	 &	
Monson,	2016;	Shin	et	al.,	2005;	Simmons	et	al.,	2011;	St.	Jacques,	
Botzung,	Miles,	&	Rubin,	2011;	Williams	et	al.,	2006).	This	suggests	
that	amygdala	FC	changes	in	PTSD	are	widespread.	As	such,	whole-
brain	amygdala	FC	may	be	a	meaningful	biomarker	of	PTSD	severity,	
although	this	has	yet	to	be	tested.	As	interest	in	precision	medicine	
grows	 (Collins	 &	 Varmus,	 2015),	 more	 research	 is	 needed	 on	 the	
amygdala and its broader connectivity across the brain in those with 
PTSD	in	order	to	assess	whether	this	may	be	meaningfully	related	to	
the disorder and provide insight into treatment can lead to remedi-
ation of symptoms.

The amygdala is active in response to motivationally relevant 
stimuli,	specifically	stimuli	that	convey	threat	or	danger	(Costafreda,	
Brammer,	David,	&	Fu,	2008).	Early	neuroimaging	work	 from	both	
functional	magnetic	resonance	imaging	(fMRI)	and	positron	emission	
tomography	(PET)	studies	report	that	the	amygdala	is	hyper-respon-
sive	to	negative	faces	(Bryant	et	al.,	2008;	Felmingham	et	al.,	2010;	
Fonzo	 et	 al.,	 2010;	 Killgore	 et	 al.,	 2014;	 Rauch	 et	 al.,	 2000;	 Shin	
et	 al.,	 2005;	 Simmons	 et	 al.,	 2011),	 scenes	 (Brohawn,	 Offringa,	
Pfaff,	Hughes,	&	Shin,	2010;	Brunetti	et	al.,	2010;	Patel	et	al.,	2016),	
words	(St.	Jacques	et	al.,	2011),	and	trauma-specific	stimuli	(Hendler	
et	al.,	2003;	Peres	et	al.,	2011;	Protopopescu	et	al.,	2005)	in	those	
with	PTSD	compared	to	both	trauma-exposed	and	healthy	controls.	
Aberrant	amygdala	FC	in	response	to	threat	also	occurs	in	those	with	
PTSD	and	spans	a	broad	neural	network.	For	instance,	in	response	
to	 threat,	 individuals	with	 PTSD	exhibit	 aberrant	 amygdala–brain-
stem	(Steuwe	et	al.,	2015),	amygdala–thalamus	(Morey	et	al.,	2015;	
Rabellino	et	al.,	2016),	amygdala–medial	prefrontal	cortex	(MPFC)	and	
amygdala–anterior	cingulate	cortex	(ACC)	connectivity	(Cisler,	Scott	
Steele,	Smitherman,	Lenow,	&	Kilts,	2013;	Keding	&	Herringa,	2016;	

Neumeister	et	al.,	2016;	Rabellino	et	al.,	2016;	Stevens	et	al.,	2013;	
White,	Costanzo,	Blair,	&	Roy,	2015;	Wolf	&	Herringa,	2016).	Both	
healthy	controls	 and	 traumatized	controls	 are	used	as	 comparison	
groups	 throughout	 the	 literature,	 with	 no	 clear	 relationship	 be-
tween the directionality of findings and the type of control group 
employed.	Individual	differences	in	altered	amygdala	FC	(e.g.,	either	
decreased	or	increased)	also	correspond	to	PTSD	symptom	severity	
(Cisler	et	al.,	2013;	Keding	&	Herringa,	2016;	Stevens	et	al.,	2013;	
White	et	al.,	2015;	Wolf	&	Herringa,	2016)	and	in	instances	where	
authors	did	not	find	a	relationship	between	PTSD	symptom	severity	
and amygdala activation	(Keding	&	Herringa,	2016).	Further,	severity	
of	PTSD	symptoms	correlates	with	amygdala	FC	in	trauma	survivors	
without	a	PTSD	diagnosis	 (Cisler	et	al.,	2013;	Stevens	et	al.,	2013)	
and in individuals with sub-threshold severity of symptoms (White 
et	al.,	2015).	Thus,	amygdala	FC	appears	to	be	a	sensitive	biomarker	
for	individual	differences	in	PTSD	symptom	severity.

During	rest	(e.g.,	when	not	viewing	threatening	stimuli),	individ-
uals	with	PTSD	also	display	aberrant	amygdala	FC	(either	increased	
or	 decreased	 compared	 to	 controls)	 with	 the	 insula	 (Nicholson	
et	al.,	2016;	Rabinak	et	al.,	2011;	Sripada	et	al.,	2012;	X.	Zhang,	Wu,	
et	al.,	2016)	orbitofrontal	cortex	(OFC	[(Aghajani	et	al.,	2016;	Zhang,	
Wu,	 et	 al.,	 2016;	 Zhu	 et	 al.,	 2017),	 MPFC	 (Aghajani	 et	 al.,	 2016;	
Brown	et	al.,	2014;	Jin	et	al.,	2014),	and	hippocampus	(Li	et	al.,	2017;	
Sripada	et	al.,	2012).	Direction	of	 findings	does	not	appear	 to	de-
pend	on	within	structure	differentiations	(e.g.,	comparing	dorsal	vs.	
ventral	MPFC)	 (Aghajani	 et	 al.,	 2016).	Differences	 in	 the	direction	
of	amygdala	FC	in	those	with	PTSD	(e.g.,	increased,	decreased)	may	
be	caused	by	differences	 in	amygdala	subnuclei,	as	the	basolateral	
amygdala	 (BLA)	 and	 centromedial	 amygdala	 (CMA)	 have	 differ-
ent	functions	(Phelps,	2004).	Yet,	to	date,	only	a	handful	of	unique	
studies	have	 investigated	FC	with	 amygdala	 subnuclei	 (N = 7)	 and	
again	report	disparate	findings,	specifically	differential	FC	patterns	
for	BLA	compared	 to	CMA	 (Brown	et	al.,	2014;	Koch	et	al.,	2016;	
Nicholson	 et	 al.,	 2015,	 2017;	 Varkevisser,	 Gladwin,	 Heesink,	 van	
Honk,	&	Geuze,	2017;	Zhu	et	al.,	2017)	or	no	differences	between	
the	subnuclei	(Zhu	et	al.,	2018),	while	no	study	reports	identical	ab-
errations	in	amygdala	FC	by	subregion.	Alongside	failure	to	replicate,	
across	all	studies,	altered	FC	is	diffuse	and	aberrations	span	the	fron-
tal	cortex,	cingulate,	parietal	lobe,	thalamus,	cerebellum,	and	precu-
neus.	Heterogeneous	findings	in	terms	of	direction	(e.g.,	increased,	
decreased)	and	brain	location	demonstrate	a	need	for	better	preci-
sion	in	mapping	atypical	neural	networks	in	PTSD.

Nevertheless,	 PTSD	 symptom	 severity	 correlates	with	 atypi-
cal	amygdala	FC	(Aghajani	et	al.,	2016;	Jin	et	al.,	2014;	Keding	&	
Herringa,	2016;	Li	et	al.,	2017;	Nicholson	et	al.,	2016;	Zhang,	Wu,	
et	 al.,	 2016;	 Zhu	 et	 al.,	 2017).	Other	work	 shows	 that	 amygdala	
FC	changes	as	a	function	of	treatment	response	and	thus	remains	
a good target for the pathophysiology of the disorder. Decline in 
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PTSD	symptoms	after	 trauma-focused	cognitive	behavioral	 ther-
apy	(TF-CBT)	(Cisler	et	al.,	2016),	CBT	(Shou	et	al.,	2017),	and	pro-
longed	 exposure	 (PE)	 (Stojek,	 McSweeney,	 &	 Rauch,	 2018;	 Zhu	
et	al.,	2018)	all	 correlate	with	amygdala	FC.	Pretreatment	amyg-
dala	FC	also	predicts	clinical	improvement	after	transcranial	mag-
netic	stimulation	(Philip	et	al.,	2018).	Although	not	in	the	context	
of	FC,	other	research	shows	that	amygdala	activation	in	response	
to	 threat	 correlates	 with	 PTSD	 severity	 even	 in	 cases	 where	
amygdala	activation	did	not	differ	by	group	(PTSD	vs.	Control)	(El	
Khoury-Malhame	et	 al.,	 2011).	Amygdala	 activation	 and	 its	 con-
nectivity are therefore a reliable measure of state-dependent 
symptom	severity,	while	changes	in	amygdala	FC	as	a	function	of	
treatment	 occur	 across	 treatment	 modalities.	 However,	 despite	
several	 studies	 investigating	 amygdala	 FC	 as	 a	 “neurobiological”	
marker	of	PTSD	disease	state,	prior	work	has	overwhelmingly	used	
a	univariate	approach	to	examine	the	relationship	between	rsfMRI	
amygdala	FC	with	a	 single	 region	 (e.g.,	 insula	or	PFC)	and	symp-
toms.	As	the	above	findings	demonstrate,	those	with	PTSD	exhibit	
altered	 amygdala	 FC	with	 a	 large	 brain	 network	 spanning	 limbic	
and	cortical	 regions.	Therefore,	 an	alternative	approach	 is	 to	 in-
vestigate whether patterns of distributed amygdala connectivity 
accounts for variability in stress symptomatology.

Multi-pattern	 voxel	 analyses	 (MVPA)	 have	 gained	 traction	
in recent years as a way to map spatially distributed patterns of 
brain	activation	and/or	FC	(Cohen	et	al.,	2017;	Pereira,	Mitchell,	&	
Botvinick,	2009).	Rather	than	testing	the	association	between	symp-
toms	and	discrete	reactivity	or	FC	(i.e.,	within	or	between	a	couple	
of	regions),	this	approach	examines	whether	whole-brain	distributed	
neural	activation	patterns	are	correlated	with	symptoms,	leveraging	
the fact that brain functioning is defined by spatially distributed pro-
cesses	(Davis	et	al.,	2014).	In	adding	machine	learning	as	an	analysis	
technique,	MVPA	 can	 be	 used	 to	 subsequently	 predict	 individual	
differences	in	symptom	severity	based	on	a	spatially	extensive	pat-
tern	of	activation	in	the	brain	(Clark	et	al.,	2014).	To	date,	relatively	
few	 studies	 have	 used	MVPA	 and	 machine	 learning	 to	 study	 the	
association between neural functioning and individual differences 
in	PTSD	symptom	severity,	 although	 this	 approach	has	been	used	
successfully	in	patients	with	depression	(Habes	et	al.,	2013;	Mwangi,	
Matthews,	 &	 Steele,	 2012;	 Yang	 et	 al.,	 2016)	 and	 anxiety	 (Visser,	
Haver,	Zwitser,	Scholte,	&	Kindt,	2016).	In	the	context	of	PTSD,	Liu	
and	colleagues	used	MVPA	and	a	machine-learning	method	known	
as	support	vector	machine	(SVM)	to	demonstrate	that	whole-brain	
amplitude	of	low-frequency	fluctuations	(ALFF)	and	whole-brain	FC	
based	on	116	regions	of	interest	predicts	patients	from	controls	with	
93%	accuracy	(Liu	et	al.,	2015).	Zhang	and	colleagues	found	similar	
results,	 using	 whole-brain	 ALFF	 to	 predict	 patients	 from	 controls	
with	89%	accuracy	(Zhang,	Zhang,	Zhang,	Wang,	Li,	&	Zhang,	2016).	
Gong	and	colleagues	used	MVPA	and	SVM	to	also	demonstrate	that	
whole-brain patterns of structural integrity accurately predict pa-
tients	with	PTSD	from	healthy	controls	with	91%	accuracy	(Gong,	Li,	
Du,	et	al.,	2014).	In	a	follow-up	paper,	this	group	of	researchers	also	
found	that	whole-brain	rsfMRI	ALFF	predicted	individual	differences	
in	PTSD	severity	using	 another	machine-learning	 technique	 called	

relevance	vector	regression	(RVR)	(Gong,	Li,	Tognin,	et	al.,	2014).	As	
opposed	to	SVM,	RVR	utilizes	a	regression	approach	to	test	whether	
distributed neural patterns can accurately predict individual differ-
ences	 in	 symptom	 severity,	 rather	 than	 predicting	 a	 dichotomous	
classification	such	as	PTSD	diagnosis.	Altogether,	these	publications	
demonstrate	 that	MPVA	and	machine-learning	approaches	 can	be	
used	to	accurately	distinguish	those	with	PTSD	and	predict	individ-
ual	differences	in	PTSD	symptom	severity.	However,	these	studies	
did	not	examine	whether	whole-brain	amygdala	FC	at	rest	also	pre-
dicts	PTSD	symptom	severity.

The	current	study	used	MVPA	and	machine	learning	to	predict	
PTSD	severity	based	on	whole-brain	patterns	of	amygdala	FC	col-
lected	from	rsfMRI.	Previous	studies	have	found	that	PTSD	severity	
is	related	to	amygdala	FC	with	a	large	host	of	brain	regions.	That	is,	
based	on	pre-existing	 literature,	 amygdala	FC	with	any	number	of	
subcortical and cortical regions is associated with severity of symp-
toms.	 By	 focusing	 on	 singular	 brain	 regions	 or	 even	 singular	 neu-
rocircuitries	(e.g.,	frontoparietal	network),	this	research	may	ignore	
larger-scale	dysfunction	 in	 amygdala	FC	across	 the	entire	brain	as	
an	 indication	 of	 PTSD	 severity.	 Based	 on	 prior	 literature,	 we	 hy-
pothesized	 that	whole-brain	patterns	of	amygdala	FC	would	accu-
rately	predict	individual	differences	in	PTSD	severity	in	a	sample	of	
trauma-exposed	 adults.	 Based	 on	 evidence	 of	 aberrant	 amygdala	
FC	 to	 regions	 involved	 in	 fear	 learning	 and	 regulation,	we	 further	
hypothesized	that	while	results	would	be	informed	by	whole-brain	
(e.g.,	global)	amygdala	FC,	amygdala	FC	to	regions	instrumental	for	
mounting	 a	 fear	 response	 (i.e.,	 brainstem,	 thalamus,	 insula,	 hippo-
campus,	 OFC)	 and	 regulation	 of	 this	 response	 (i.e.,	 MPFC,	 ACC)	
would	be	among	the	top	regions	that	contributed	to	PTSD	severity.

2  | MATERIAL AND METHODS

2.1 | Participants

Ninety-two	undergraduate	Caucasian	adults	were	 recruited	at	 the	
University	 of	Wisconsin-Milwaukee	 (Milwaukee,	WI).	 Participants	
were	deemed	eligible	if	they	were	between	the	ages	of	18–50,	had	
normal	or	corrected-to-normal	vision,	were	 right-handed,	a	Native	
English	 speaker,	 able	 to	 provide	 informed	 consent,	 and	 endorsed	
personally	 experiencing	 a	 trauma	 as	 reported	 on	 the	 Life	 Events	
Checklist	 (LEC)	 (Gray,	 Litz,	 Hsu,	 &	 Lombardo,	 2004).	 All	 partici-
pants	completed	the	Mini-International	Neuropsychiatric	Interview	
(M.I.N.I.	 [Sheehan	et	 al.,	 1997]),	 and	participants	were	excluded	 if	
they	had	a	clinically	significant	neurological	disorder,	history	of	sei-
zures	or	head	injuries,	endorsed	symptoms	of	mania,	schizophrenia,	
obsessive-compulsive	disorder,	or	panic	attacks.	Participants	were	
also	 excluded	 if	 they	 were	 currently	 taking	 antipsychotics,	 anti-
convulsants,	or	mood	stabilizers.	Due	 to	 the	use	of	MRI	scanning,	
participants	were	excluded	if	they	were	deemed	MRI	incompatible	
based	on	the	presence	of	ferromagnetic	material	in	the	body,	claus-
trophobia,	were	unable	to	 lie	still	 for	two	hours,	or	were	pregnant	
or trying to become pregnant. Participant demographics are listed 
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in	Table	1.	All	participants	completed	a	consent	form	approved	by	
the	local	Institutional	Review	Board	at	the	University	of	Wisconsin-
Milwaukee.	 Participants	 were	 compensated	 for	 their	 time	 and	 all	
procedures complied with the Helsinki Declaration.

2.2 | Measure of PTSD symptom severity

Symptoms	of	PTSD	were	acquired	using	the	PTSD	Checklist-Civilian	
Version	based	on	the	fourth	edition	of	the	Diagnostic	and	Statistical	
Manual	of	Mental	Disorders	(Weathers,	Litz,	Huska,	&	Keane,	1994).	
The	PCL-C	is	a	17-item	self-report	measure	of	stress	symptoms	with	
good internal consistency (Cronbach's α	=	0.94),	convergent	validity	

(r	 >	 .75),	 and	 test–retest	 reliability	 (r	 =	 .92)	 (Ruggiero,	Ben,	 Scotti,	
&	Rabalais,	2003),	 including	 in	nonclinical	samples	to	assess	stress	
severity	(Conybeare,	Behar,	Solomon,	Newman,	&	Borkovec,	2012).	
Use	of	the	PCL-C	to	quantify	PTSD	severity	is	consistent	with	prior	
publications	 using	MVPA	 and	machine	 learning	 in	 this	 population	
(Gong,	Li,	Du,	et	al.,	2014;	Gong,	Li,	Tognin,	et	al.,	2014).

2.3 | Resting state fMRI acquisition

All	participants	completed	a	5-min	resting	state	scan	during	 fMRI.	
During	the	scan,	participants	viewed	a	white	crosshair	displayed	on	
a black background and were instructed to keep their eyes open. 

TA B L E  1  Sample	demographics	(N	=	90)

M (SD)

Age 22.12	(3.72)

PCL-C 31.10	(12.93)

n (%)

Gender	(Female) 62	(68.90%)

Diagnoses

Agoraphobia 4	(4.44)

Alcohol	use	disorder	(AUD) 13	(14.44%)

Attention-deficit	hyperactivity	disorder	(ADHD) 1	(1.11%)

Generalized	anxiety	disorder	(GAD) 7	(7.78%

Major	depressive	disorder	(MDD) 5	(5.56%)

Posttraumatic	stress	disorder	(PTSD) 2 (2.22%

Social	anxiety	disorder	(SAD) 1	(1.11%)

Substance	use	disorder	(SUD) 5	(5.56%)

Trauma	Exposure	as	reported	on	the	Life	Events	Checklist	(LEC)

Natural	disaster 15	(16.70%)

Fire	or	explosion 13	(14.40%)

Transportation accident 64	(71.10%)

Serious	accident	at	work,	home,	or	during	recreational	activity 18	(20.00%)

Exposure	to	toxic	substance 8	(8.90%)

Physical assault 36	(40.00%)

Assault	with	a	weapon 8	(8.90%)

Sexual	assault 15	(16.70%)

Other	unwanted	or	uncomfortable	sexual	experience 29	(32.20%)

Combat	or	exposure	to	a	war	zone 1	(1.10%)

Captivity 2	(2.20%)

Life-threatening	illness	or	injury 5	(5.60%)

Severe	human	suffering 3	(3.30%)

Sudden,	violent	death 2	(2.20%)

Sudden,	unexpected	death	of	someone	close	to	you 40	(44.40%)

Serious	injury,	harm,	or	death	you	caused	to	someone	else 3	(3.30%)

Any	other	very	stressful	event	or	experience 39	(43.30%)

Note: Diagnoses	and	trauma	exposures	are	not	mutually	exclusive.
Abbreviation:	PCL-C,	PTSD	Checklist-Civilian	Version.
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Scanning	was	performed	on	a	3.0	Tesla	short	bore	GE	Signa	Excite	
MRI	 system	 at	 the	Medical	College	 of	Wisconsin.	 Functional	 T2*-
weighted	echoplanar	images	(EPI)	were	collected	in	a	sagittal	orien-
tation	with	the	following	parameters:	repetition	time	(TR)/echo	time	
(TE)	=	2,000/25	ms;	FOV	=	24	mm;	matrix	=	64	×	64;	flip	angle	=	77°;	
slice	thickness	=	3.5	mm.	A	high-resolution	T1-weighted	anatomical	
image	was	also	acquired	 for	co-registration	with	 the	 following	pa-
rameters:	TR/TE	=	8.2/3.2	ms;	FOV	=	240	mm;	matrix	=	256	×	224;	
flip	angle	=	12°;	voxel	size	=	0.9375	×	1.071	×	1	mm.

2.4 | Data analysis

2.4.1 | Image preprocessing

Individual	 functional	 images	 were	 analyzed	 using	 the	 CONN	 FC	
toolbox	 (Whitfield-Gabrieli	&	Nieto-Castanon,	2012).	 Images	were	
preprocessed	 according	 to	 standard	 procedures.	 Briefly,	 images	
underwent	spatial	realignment	using	the	SPM12	realign and unwarp 
procedure	(Andersson,	Hutton,	Ashburner,	Turner,	&	Friston,	2001)	
with all scans referenced to the first image and estimated motion 
parameters	calculated	across	six	variables	representing,	to	be	used	
as regressors of no interest. Temporal misalignment was corrected 
using	 slice	 time	 correction	 (Henson,	 Buchel,	 Josephs,	 &	 Friston,	
1998).	As	small	head	movements	can	cause	spurious	noise-	and	dis-
tance-dependent	changes	in	signal	correlations	(Power	et	al.,	2014;	
Power,	Schlaggar,	&	Petersen,	2015),	frame-wise	displacement	(FD)	
was computed to rule out confounding effects of motion. Volumes 
with	FD	>	0.2	mm	(plus	1-back	and	2-forward	neighboring	volumes)	
were	 “scrubbed”	 (e.g.,	 removed	 from	 analysis),	 and	 subjects	 with	
>3	mm	or	3°	of	rotational	cumulative	movement	were	dropped	from	
analysis.	 Structural	 segmentation	 and	 normalization	were	 done	 to	
classify	data	into	gray	matter,	white	matter,	cerebrospinal	fluid	(CSF)	
through the estimation of the posterior tissue probability maps in 
SPM12	(Ashburner	&	Friston,	2005).	Images	were	then	normalized	
to	the	Montreal	Neurological	Institute	template	and	smoothed	with	
a 4 mm3	Gaussian	kernel	(Hagler,	Saygin,	&	Sereno,	2006).	To	isolate	
rsfMRI	signal,	resulting	data	were	bandpass	filtered	at	0.01–0.09	Hz,	
while	signal	from	CSF,	white	matter,	and	motion	realignment	param-
eters were entered as regressors of no interest to control for these 
effects during scanning.

2.4.2 | Pattern recognition analysis

Using	CONN,	whole-brain	 bilateral	 amygdala	 FC	maps	were	 com-
puted	at	the	first	level	(e.g.,	within-subjects)	for	each	individual	using	
the	anatomical	automatic	labeling	(AAL)-defined	bilateral	amygdala	
mask	from	the	SPM	toolbox	(Maldjian,	Laurienti,	Kraft,	&	Burdette,	
2003;	Tzourio-Mazoyer	 et	 al.,	 2002)	 as	 the	 seed	 region.	 This	 pro-
duced	 an	 amygdala	 FC	map	 for	 each	 individual,	where	 each	 voxel	
represented	 a	 Fisher-transformed	 bivariate	 correlation	 coefficient	
between	 bilateral	 amygdala	 BOLD	 time	 series	 and	 every	 other	

voxel's	 BOLD	 time	 series.	 In	 traditional	 mass-univariate	 statisti-
cal	approaches,	 these	maps	are	subsequently	used	 in	second-level	
(e.g.,	between-subjects)	analyses	of	connectivity	values	 to	 investi-
gate	 the	 relationship	 between	 spatially	 discrete	 amygdala	 FC	 val-
ues	 (e.g.,	 within	 certain	 brain	 regions)	 and	 PCL-C	 scores.	 Instead,	
we	used	each	 individual	amygdala	FC	map	and	a	multivariate	RVR	
approach	using	the	PRoNTo	toolbox	([Schrouff,	Rosa,	et	al.,	2013]; 
http://www.mlnl.cs.ucl.ac.uk/pront	o/)	 to	 statistically	 test	 whether	
the	whole-brain	pattern	of	amygdala	FC	(e.g.,	across	all	voxels)	pre-
dicted	PCL-C	scores.

In	 contrast	 to	 SVM	 methods	 that	 predict	 classification	 of	
groups	 based	 on	 MVPA,	 RVR	 is	 a	 pattern	 recognition	 method	
that	 uses	 Bayesian	 inference	 to	 obtain	 sparse	 regression	 models	
(Tipping,	 2001).	 Sparsity	 is	 achieved	 in	 the	 classification	 of	 zero	
versus	 nonzero	 weights	 through	 the	 calculation	 of	 the	 Bayesian	
posterior	 distribution	 of	 all	 weights.	 In	 this	 process,	 the	 majority	
of	weights	peak	at	zero	with	relatively	few	nonzero	weights,	which	
are	 subsequently	 used	 to	 define	 parameter	 optimization.	 To	 con-
strain	the	maximum	likelihood	estimation	of	this	model	in	this	way,	
the	weight	distribution	 is	applied	with	a	zero-mean	Gaussian	prior	
probability	 distribution	 (Tipping,	 2001).	 The	 posterior	 distribution	
that	is	optimized	in	this	process	is	then	used	to	predict	target	values	
(e.g.,	PCL-C	score)	from	amygdala	FC	maps.	In	effect,	this	method	is	
used to predict continuous characteristics from patterns of neuro-
imaging	data	weighted	for	relevance	(Hou	et	al.,	2016;	Stonnington	
et	 al.,	 2010).	 In	 the	 RVR	 approach,	 training	 (“relevance”)	 vectors	
establishing	 all	 model	 weights	 are	 iteratively	 estimated,	 and	 only	
the	model	weights	 (e.g.,	 nonzero)	 that	 are	deemed	 relevant	based	
on	 training	 data	 remain	 in	 the	 model	 (Formisano,	 De	 Martino,	 &	
Valente,	 2008).	 Unlike	 SVM	 approaches,	 RVR	 is	 a	 sparse	 kernel	
method,	 and	 therefore,	 the	number	of	 relevance	 vectors	 used	 for	
model	estimation	does	not	automatically	 linearly	grow	with	size	of	
the training set.

For	 the	 current	 analysis,	 one	 image	 representing	 bilateral	
amygdala	FC	maps	for	each	individual	was	used	for	feature	selec-
tion,	with	amygdala	FC	representing	connectivity	across	the	entire	
scan	duration.	Feature	selection	was	constrained	to	voxels	inside	
the	 brain	 through	 the	 use	 of	 a	 standard	 binary	 mask	 (Schrouff,	
Rosa,	 et	 al.,	 2013).	 In	 the	 calculation	of	 features,	 a	 linear	 kernel	
was	 used	with	 a	 square	matrix	 of	 dimensions	N	×	N,	where	 the	
kernel	 reflected	 a	 similarity	 measure	 between	 each	 participant,	
called	 the	 dot	 product.	No	 second-level	mask	was	 used	 to	 con-
strain	 feature	 selection	by	 a	 subset	of	 voxels;	 instead,	 all	 voxels	
were	used	 to	compute	 features.	 In	model	 specification,	we	used	
the	 RVR	 approach,	 described	 above.	 In	 this	 process,	 features	
were	mean-centered	 using	 the	 training	 data	 and	 generalizability	
of the model was estimated using a leave-one-out approach for 
cross-validation.	Cross-validation	 is	used	to	ensure	generalizabil-
ity of the model and to not overfit the data. The performance of 
the	model	was	 characterized	using	 the	 (cross-validated)	Pearson	
correlation coefficient (r),	mean	squared	error	(MSE),	and	the	co-
efficient of determination (R2)	between	estimated	and	true	PCL-C	
scores.	 Significance	 values	 for	 prediction	 scores	 were	 obtained	

http://www.mlnl.cs.ucl.ac.uk/pronto/
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using	 permutation	 testing	 (1,000	 iterations),	 a	 necessary	 step	
when dealing with large neuroimaging datasets that violate the as-
sumption that data are independently and identically distributed. 
The	choice	for	1,000	permutations	is	 identical	with	the	methods	
found	 in	 with	 prior	 machine-learning	 MVPA	 publications	 using	
neuroimaging	data	(Gong,	Li,	Du,	et	al.,	2014).

To	 view	 results	 of	 the	 model,	 colormaps	 were	 created	 that	
reflected	 the	 contribution	 of	 each	 voxel,	 representing	 bilateral	
amygdala	FC	values,	toward	model	performance.	Voxels	with	high	
weight	values,	represented	by	warmer	colors,	indicate	that	these	
regions	positively	contributed	to	model	performance.	In	contrast,	
voxels	with	 low	weight	 values,	 represented	by	 cooler	 colors,	 in-
dicate weight values that negatively contributed to model per-
formance	 (e.g.,	 push	 it	 toward	 decreased	 prediction).	 Post	 hoc	
averaging of weight values by individual brain regions was also 
done	 during	 visualization	 of	 results	 (Schrouff,	 Cremers,	 et	 al.,	
2013).	 For	 averaging	 by	 brain	 region,	we	 utilized	 the	 AAL	 atlas,	
resulting in the averaging of weight values within N = 117 brain 
regions.

3  | RESULTS

3.1 | Participants

Two	participants	were	excluded	due	to	excessive	motion	(>3	mm	in	
any	direction)	during	rsfMRI,	leaving	a	total	of	90	participants	avail-
able for data analysis.

3.2 | Trauma exposure

All	participants	endorsed	personally	experiencing	at	least	one	trau-
matic	event	based	on	LEC	scores	as	stipulated	 in	the	 inclusion	cri-
teria.	 However,	 LEC	 scores	 indicated	 that	 85.60%	 of	 participants	
endorsed	 personally	 experiencing	multiple	 traumas,	while	 14.40%	
endorsed	experiencing	a	single	traumatic	event.	The	three	most	fre-
quent	types	of	traumas	reported	were	as	follows:	transportation	ac-
cidents	 (71.10%),	sudden	and	unexpected	death	of	someone	close	
(44.40%),	and	physical	assault	(40.00%).	Table	1	includes	a	detailed	
listing	of	LEC	trauma	types	and	frequencies.	To	note,	trauma	types	
are	not	mutually	exclusive	across	participants,	 reflecting	high	 inci-
dence of multiple traumas in this sample.

3.3 | PTSD symptoms

Posttraumatic	 stress	 disorder	 symptoms	 as	 measured	 by	 PCL-C	
scores ranged from 17 to 75 (M	=	31.10,	SD	=	12.93)	indicating	vari-
ability	in	PTSD	symptom	severity	from	minimal	to	moderate/severe	
and	a	good	distribution	in	scores.	Using	a	recommended	>	30	PCL-C	
cut-point	 score	 (Blanchard,	 Jones-Alexander,	 Buckley,	 &	 Forneris,	
1996),	45.60%	of	the	sample	were	eligible	for	a	PTSD	diagnosis.

3.4 | MVPA results

Amygdala	 FC	 predicted	 PCL-C	 scores	 with	 statistically	 signifi-
cant accuracy (r	=	0.46,	p	=	 .001;	mean	sum	of	 squares	=	130.46,	
p = .001; R2	=	0.21,	p	=	.001),	while	prediction	was	based	on	amyg-
dala	FC	across	the	whole	brain.	As	our	sample	was	unequal	in	gen-
der	distribution	(68.90%	female),	we	re-ran	analyses	controlling	for	
gender. Results were unchanged with almost no deviation in the 
strength	of	this	relationship,	such	that	amygdala	FC	remained	a	sig-
nificant	predictor	of	PCL-C	scores	 (r	=	 .48,	p = .001; mean sum of 
squares	=	128.43,	p = .001; R2	=	0.23,	p	=	.001).	Given	high	concord-
ance	between	PTSD	and	MDD	and	the	need	for	specificity	 in	 iso-
lating	prediction	for	PTSD	severity	(Flory	&	Yehuda,	2015),	we	also	
re-ran	analyses	controlling	for	diagnosis	of	MDD;	results	remained	
significant (r	=	.51,	p	=	.001;	mean	sum	of	squares	=	123.30,	p = .001; 
R2	=	0.26,	p	=	.002).	Figure	1	depicts	the	relationship	between	actual	
PCL-C	scores	on	the	y-axis	plotted	against	predicted	PCL-C	scores	
based	on	the	MVPA	algorithm	on	the	x-axis.	In	plotting	this	relation-
ship,	we	identified	two	possible	outliers	based	on	actual	or	predicted	
PCL-C	scores.	We	subsequently	removed	these	 individuals	and	re-
ran analyses on the N	=	88	remaining	participants.	Results	remained	
unchanged	and	amygdala	FC	was	still	a	significant	predictor	of	PTSD	
severity (r	=	.30,	p	=	.006;	mean	sum	of	squares	=	128.28,	p	=	.006;	
R2	=	0.09,	p	=	.047).

Similar	 to	 others	 (Gong,	 Li,	Du,	 et	 al.,	 2014;	Hou	 et	 al.,	 2016),	
we	used	a	10%	threshold	 to	visualize	RVR-derived	weights,	which	
resulted in a listing of regions with the greatest weight vector val-
ues.	Regions	implicated	in	fear	acquisition	and	regulation,	including	
the	OFC,	amygdala,	and	the	dorsolateral	prefrontal	cortex	(DLFPC),	
were	within	this	top	10%	(Table	2).	Figure	2	displays	results	of	the	
RVR	analysis	depicting	weight	value	for	each	voxel	representing	bi-
lateral	amygdala	FC,	while	Figure	3	provides	spatial	 location	of	re-
gions	within	the	top	10%	(e.g.,	with	greatest	weight	vector	values).	
A	distribution	of	relevant	model	weights	by	regions	in	the	atlas	was	
also	produced	(Figure	S1),	which	provided	more	information	on	spa-
tial	location	of	relevant	model	weights.	The	x-axis	of	the	distribution	
demonstrated that averaged model weights contributing to model 
estimation spanned all brain regions.

4  | DISCUSSION

The	current	study	used	an	MVPA	approach	to	determine	whether	
whole-brain	patterns	of	bilateral	amygdala	FC	predicted	 individual	
differences	 in	 PTSD	 severity	 in	 an	 adult	 trauma-exposed	 sample.	
Several	insights	emerged	from	this	investigation:	First,	whole-brain	
patterns	of	amygdala	FC	did	significantly	predict	severity	of	PTSD	
symptoms,	 indicating	 that	 whole-brain	 patterns	 of	 amygdala	 con-
nectivity	are	meaningfully	 related	 to	variability	 in	PTSD	outcomes	
in	 trauma-exposed	 individuals.	Second,	 connectivity	 to	 regions	 in-
volved	 in	 fear	 acquisition	 (i.e.,	 amygdala),	 appraisal	 (i.e.,	OFC),	 and	
regulation	 (e.g.,	DLPFC)	were	 among	 the	 top	 regions	most	helpful	
for	 predicting	 PTSD	 severity.	 The	 evidence	 from	 this	 data-driven	
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approach	 supports	 existing	 theoretical	 frameworks	 outlining	 the	
importance of regions implicated in fear dysregulation for the etiol-
ogy	of	 PTSD	 (Liberzon	&	 Sripada,	 2007;	 Patel	 et	 al.,	 2012;	 Rauch	
et	al.,	2006).

Principally,	these	findings	demonstrate	that	amygdala	FC	across	
the	entire	brain,	versus	with	discrete	regions,	 is	helpful	at	predict-
ing	 variability	 in	 PTSD	 severity	 in	 a	 sample	 of	 trauma-exposed	
adults. In focusing on a distributed pattern of activation in this 
analysis,	we	 have	 demonstrated	 that	 connectivity	 patterns	 across	
the entire brain may be a more precise biomarker for severity of 

PTSD	 symptoms,	 at	 least	 in	 some	 cases.	Based	on	 these	 findings,	
prior studies that did not find a relationship between symptom se-
verity	and	brain	response	(Bryant	et	al.,	2008;	Diener	et	al.,	2016;	
Felmingham	 et	 al.,	 2014;	 Fonzo	 et	 al.,	 2010;	 Hayes	 et	 al.,	 2011;	
Hendler	et	al.,	2003;	Killgore	et	al.,	2014;	Linnman	et	al.,	2011;	Nilsen	
et	al.,	2016;	Patel	et	al.,	2016;	Shin	et	al.,	2005;	Simmons	et	al.,	2011;	
St.	Jacques	et	al.,	2011;	Williams	et	al.,	2006)	or	between	symptom	
severity	and	amygdala	FC	(Rabinak	et	al.,	2011;	Sripada	et	al.,	2012)	
may benefit from investigating the relationship between symptoms 
and	distributed	patterns	of	activation.	By	demonstrating	sensitivity	

F I G U R E  1  Significant	relationship	
between	actual	and	predicted	PCL-C	
scores	based	on	the	MVPA	algorithm	
(r	=	.46,	p = .001; mean sum of 
squares	=	130.46,	p = .001; R2	=	0.21,	
p	=	.001).	MVPA,	multi-pattern	voxel	
analysis;	PCL-C,	Posttraumatic	stress	
disorder Checklist-Civilian Version

TA B L E  2  Model	weights	per	regions	of	interest

Region of Interest Laterality Weight (%) Size (voxels) Expected Ranking

MNI Coordinates

x y z

Cerebellar vermis Midline 1.56 105 3.13 0 −46 −32

Caudate L 1.55 942 2.11 −12 12 10

Caudate R 1.45 982 3.14 14 14 10

DLPFC R 1.40 1,208 4.67 48 14 22

Superior	parietal	cortex R 1.30 1,471 6.14 24 −58 60

Cerebellar vermis Midline 1.29 195 6.52 2 −72 −26

OFC R 1.25 556 7.00 18 46 −14

DLPFC R 1.21 1,559 9.61 46 28 14

PCC R 1.14 323 11.78 6 −42 24

Amygdala L 1.13 211 9.64 −24 0 −16

Supramarginal	gyrus R 1.12 1,598 16.28 56 −32 34

Note: Reported regions represent top 10% of regions based on weight. Weight is determined by the contribution of that region divided by the total 
contribution	of	all	regions	and	displayed	as	a	percentage.	Expected	ranking	reflects	how	stable	the	ranking	of	each	region	is	across	folds.	Bolded	text	
reflects	regions	of	interest	involved	in	acquisition	and	regulation	of	fear.
Abbreviations:	DLPFC,	dorsolateral	prefrontal	cortex;	L,	left;	MNI,	Montreal	Neurological	Institute;	OFC,	orbitofrontal	cortex;	PCC,	posterior	
cingulate	cortex;	R,	right.
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of	whole-brain	amygdala	FC	to	predict	individual	variation	in	PTSD	
symptoms,	 the	 current	 study	 replicates	 prior	 research	 that	 also	
found	 whole-brain	 measures	 of	 functional	 activity	 (e.g.,	 rsfMRI	
ALFF)	(Gong,	Li,	Tognin,	et	al.,	2014;	Liu	et	al.,	2015;	Zhang,	Zhang,	
et	al.,	2016)	and	whole-brain	gray	matter	volume	(Gong,	Li,	Du,	et	al.,	
2014;	Zhang,	Zhang,	et	al.,	2016)	useful	for	predicting	PTSD	illness.	
Altogether,	 this	 demonstrates	 that	 whole-brain	 data-driven	 ap-
proaches have merit for mapping the neurobiological underpinnings 
associated	with	PTSD.

In	addition,	we	also	found	evidence	that	regions	involved	in	fear	
acquisition	(i.e.,	amygdala),	appraisal	(i.e.,	OFC),	and	regulation	(i.e.,	
DLPFC)	were	among	the	top	regions	that	predicted	PTSD	severity.	
As	 stated	 prior,	 these	 regions	 are	 studied	 extensively	 in	 the	 con-
text	of	PTSD	 (Liberzon	&	Sripada,	2007;	Patel	 et	 al.,	 2012;	Rauch	
et	al.,	2006)	and	our	results	further	confirm	their	clinical	significance	
for	the	disorder.	Based	on	these	results,	intra-amygdala	connectiv-
ity	may	be	an	important	predictor	of	PTSD	status.	This	is	supported	
by recent work that has found fine-grained structural abnormalities 
within	the	amygdala	in	those	with	PTSD	(Akiki	et	al.,	2017),	alongside	

evidence	that	individuals	with	PTSD	with	versus	without	the	disso-
ciative	subtype	exhibit	differential	FC	to	other	brain	regions	based	
on	basolateral	 and	centromedial	divisions	of	 the	amygdala	 (Brown	
et	al.,	2014;	Nicholson	et	al.,	2015).	In	addition,	in	response	to	trau-
ma-related	 stimuli	 in	 individuals	with	PTSD,	direction	of	 amygdala	
FC	to	the	PFC	and	brainstem	depend	on	amygdala	subregion	distinc-
tions	(e.g.,	basolateral	vs.	centromedial	nuclei	(Rabellino	et	al.,	2016)).	
In	building	upon	these	findings,	the	current	study	provides	evidence	
that	intra-amygdala	FC	may	be	an	important	consideration	for	pre-
dicting	 variance	 in	 PTSD	 symptoms.	 In	 addition,	 atypical	OFC	 re-
sponding	(Huang	et	al.,	2014;	Thomaes	et	al.,	2013)	is	documented	in	
those	with	PTSD,	with	altered	engagement	of	this	region	theorized	
to	 contribute	 to	 symptoms	 of	 anger,	 irritability,	 and	 recklessness	
often	evident	in	the	disorder	(Weston,	2014).	As	highlighted	earlier,	
atypical	amygdala-OFC	FC	is	also	documented	in	those	with	PTSD	
(Aghajani	et	al.,	2016;	Zhang,	Wu,	et	al.,	2016;	Zhu	et	al.,	2017).	As	
the	OFC	is	involved	in	appraisal	of	emotional	states	in	conjunction	
with	assessing	reward	and	predictive	value	of	stimuli,	altered	FC	be-
tween	the	amygdala	that	detects	emotional	stimuli	and	the	OFC	that	

F I G U R E  2   Results of the RVR analysis 
depicting	weight	value	for	each	voxel.	
RVR,	relevance	vector	regression

F I G U R E  3  Spatial	location	of	top	10%	of	weighted	regions	that	predicted	PCL-C	scores.	The	(a)	OFC	and	(b)	amygdala	are	involved	in	the	
acquisition	of	fear.	Conversely,	the	(c)	DLPFC	is	involved	in	the	regulation	of	fear.	Additionally,	the	(d)	caudate,	(e)	cerebellum,	(f)	superior	
parietal	cortex,	(G)	posterior	cingulate	cortex,	and	(h)	supramarginal	gyrus	were	among	the	top	regions	that	contributed	to	the	model.	
DLPFC,	dorsolateral	prefrontal	cortex;	OFC,	orbitofrontal	cortex;	PCL-C,	Posttraumatic	stress	disorder	Checklist-Civilian	Version;	R,	right;	L,	
left
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assigns	 value	 to	 this	 experience	 could	 result	 in	 atypical	 emotional	
responding	 (Phillips,	Drevets,	 Rauch,	 &	 Lane,	 2003).	 Similarly,	 de-
creased	engagement	of	the	DLPFC	occurs	in	those	with	PTSD	during	
exposure	to	negative	images	(Blair	et	al.,	2013)	and	when	trying	to	
down-regulate	negative	emotions	(Rabinak	et	al.,	2014).	The	DLPFC	
is involved in top-down regulation of emotion and is involved in deci-
sion	making	and	selection	of	strategies	for	emotion	regulation	(Lee	&	
Seo,	2007;	Yamagishi	et	al.,	2016).	Although	not	directly	connected	
to	the	amygdala	as	much	as	ventral	and	medial	portions	of	the	PFC,	
the	 DLPFC	 modulates	 amygdala	 response	 in	 healthy	 individuals	
(Barbas,	2000;	Ghashghaeia,	Hilgetag,	&	Barbas,	2007;	Stefanacci	&	
Amaral,	2002).	Therefore,	atypical	connectivity	between	the	amyg-
dala	and	the	DLPFC	as	a	predictor	of	PTSD	severity	substantiates	
the	notion	that	PTSD	is	a	disorder	that	is	not	just	defined	by	aberrant	
bottom-up	generation	of	emotional	states,	but	also	disruption	in	the	
ability	 to	 regulate	 emotion	 through	 top-down	 control	 (Fitzgerald,	
DiGangi,	&	Phan,	2018).

In	addition,	we	found	that	amygdala	FC	with	regions	not	typi-
cally	explored	in	the	etiology	of	PTSD	helped	in	predicting	PTSD	
severity.	Specifically,	amygdala	FC	with	the	caudate,	cerebellum,	
superior	parietal	cortex,	posterior	cingulate	cortex	(PCC),	and	su-
pramarginal gyrus was also within the top 10% of regions that con-
tributed	to	correctly	predicting	PTSD	symptoms.	Limited	studies	
have	 found	disturbances	 in	FC	between	the	amygdala	and	 these	
regions	 at	 rest.	Nicholson	 and	 colleagues	 found	 that	PTSD	 indi-
viduals	 with	 dissociation	 displayed	 enhanced	 amygdala	 FC	 with	
the	 superior	 parietal	 cortex	 (Nicholson	 et	 al.,	 2015).	 Enhanced	
connectivity	 with	 this	 region,	 which	 receives	 projections	 from	
visual	and	sensory	cortices,	may	 indicate	disruptions	 in	 the	abil-
ity	 to	 integrate	 sensory	 experiences	 with	 affective	 responses	
(Nicholson	et	 al.,	 2015).	With	 regard	 to	 the	PCC,	 two	 investiga-
tions	 have	 found	 that	 greater	 PCC-amygdala	 FC	 prospectively	
predicts	 greater	 symptoms	 six	 weeks	 (Lanius	 et	 al.,	 2010)	 and	
six	months	 (Zhou	et	al.,	2012)	 later	as	assessed	by	the	Clinician-
Administered	PTSD	Scale	(CAPS).	The	PCC	is	involved	in	the	men-
talizing	process	and	plays	a	pivotal	role	in	integrating	information	
(Baliki,	 Mansour,	 Baria,	 &	 Apkarian,	 2014).	 Thus,	 amygdala-PCC	
connectivity	as	a	predictor	of	PTSD	variability	may	signal	the	dis-
ruption	between	detection	of	emotional	salience	(e.g.,	amygdala)	
and	internal	representation	of	this	state	(e.g.,	PCC)	in	those	with	
PTSD.	With	regard	to	the	role	of	the	cerebellum	in	PTSD,	its	role	
in the disorder is still unclear despite a number of studies that have 
found	altered	amygdala-cerebellum	FC	in	those	with	PTSD	(Brown	
et	al.,	2014;	Stevens	et	al.,	2013).	Recently,	altered	cerebellum	in-
tegrity was identified as a common feature of psychopathology 
(e.g.,	 across	 internalizing,	 externalizing,	 and	 thought	 disorders)	
(Romer	et	al.,	2018).	As	the	cerebellum	is	involved	in	coordination	
and	monitoring	of	 incoming	 information	 (Romer	et	 al.,	 2018),	 its	
role	in	PTSD	pathophysiology	may	be	linked	to	general	deficits	in	
the	integration	of	affective	experiences.

By	contrast,	to	our	knowledge	no	prior	studies	have	documented	
atypical	amygdala	FC	with	the	caudate	and	the	supramarginal	gyrus	
in	 those	 with	 PTSD.	 Nevertheless,	 altered	 connectivity	 between	

these regions and those closely linked to the amygdala has been 
found.	First,	Rabellino	and	colleagues	found	enhanced	FC	between	
the	bed	nucleus	 of	 the	 stria	 terminalis	 (BNST)	 and	 the	 caudate	 in	
those	with	PTSD	(Rabellino	et	al.,	2017).	The	BNST	 is	a	neural	 re-
gion closely connected to the amygdala that regulates the stress 
response	(Choi	et	al.,	2007).	Enhanced	FC	between	this	region	and	
the	 caudate,	 involved	 in	 action	 planning,	 associative	 learning,	 and	
inhibitory	control	 (Provost,	Hanganu,	&	Monchi,	2015),	may	signal	
atypical	cognitive	control	over	stress	responses	in	those	with	PTSD.	
Second,	decreased	connectivity	between	the	brainstem	and	supra-
marginal	gyrus	has	also	been	found	in	those	with	PTSD	(Harricharan	
et	 al.,	 2016).	 The	 amygdala	 receives	 direct	 connections	 from	 the	
brainstem	in	order	to	quickly	process	incoming	sensory	information	
that	may	signal	threat.	As	the	supramarginal	gyrus	integrates	visu-
al-spatial	 information	 (Harricharan	 et	 al.,	 2016),	 decreased	 brain-
stem–supramarginal	 gyrus	 FC	may	portend	 atypical	 integration	of	
sensory information.

Results of the present study should be considered in light of 
several	limitations.	First,	although	this	sample,	on	average,	did	ap-
pear	to	suffer	from	clinically	significant	PTSD	symptoms	based	on	
recommended	PCL-C	cutoffs,	 there	 is	substantial	variability	with	
regard	 to	 severity	 of	 illness.	 Thus,	 results	 should	 be	 interpreted	
with	 caution	with	 regard	 to	 extending	 findings	 to	 chronically	 ill	
samples.	 Second,	 PTSD	 symptom	 severity	 was	 self-reported.	
Future	 work	 should	 consider	 whether	 use	 of	 MVPA	 and	 amyg-
dala	 FC	 validates	 prediction	 of	 clinician-rated	 PTSD	 symptom	
severity. We also used a homogenous Caucasian adults’ sample 
for	 this	 study;	 thus,	 results	may	not	extend	 to	ethnic	minorities.	
More	work	needs	to	be	done	to	verify	results	using	diverse	pop-
ulations.	 Finally,	 although	 we	 found	 evidence	 that	 whole-brain	
amygdala	FC	predicted	PTSD	severity	in	a	statistically	significant	
manner,	the	strength	of	this	correlation	does	not	indicate	that	all	
the	variance	 in	PTSD	severity	can	be	explained	by	amygdala	FC.	
Other individual factors need to be investigated as predictors of 
stress	severity	in	trauma	survivors,	with	one	factor	being	the	ways	
in	which	 individual	differences	 in	FC	with	particular	subnuclei	of	
the amygdala—not investigated in this study—also correlates with 
PTSD	severity,	given	differential	roles	of	the	amygdala	divisions	in	
fear	learning	(Díaz-Mataix,	Tallot,	&	Doyère,	2014).	Future	analy-
ses should also consider other seed regions beyond the amygdala 
when	investigating	whole-brain	patterns	of	FC.

5  | CONCLUSIONS

In	 conclusion,	 we	 demonstrated	 that	 MVPA	 in	 the	 context	 of	
amygdala	FC	 is	a	valid	approach	 for	predicting	 severity	of	PTSD	
symptoms	at	the	individual	level.	Although	whole-brain	amygdala	
FC	 accurately	 predicted	 symptoms,	 amygdala	 FC	 within	 a	 fear	
acquisition,	 appraisal,	 and	 regulation	 network	 encompassing	 the	
amygdala,	OFC,	and	DLPFC	contributed	to	accurate	prediction.	In	
addition,	regions	not	typically	discussed	in	the	etiology	of	PTSD,	
including	the	caudate,	cerebellum,	superior	parietal	cortex,	PCC,	



10 of 14  |     FITZGERALD ET AL.

and	supramarginal	gyrus,	were	among	the	top	regions	to	contrib-
ute	 to	 the	 algorithm's	 success.	 In	 sum,	 results	 demonstrate	 that	
heterogeneous	responses	in	amygdala	FC	that	are	spatially	distrib-
uted	are	meaningful	 for	 the	prediction	of	PTSD	symptom	sever-
ity,	while	also	further	supporting	the	specificity	of	fear	acquisition	
and regulation neurocircuitries to predict individual differences in 
PTSD	severity.
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