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Abstract 

Recent improvements in cortically-controlled brain-machine interfaces (BMIs) have raised 
hopes that such technologies may improve the quality of life of severely motor-disabled 
patients. However, current generation BMIs do not perform up to their potential due to the 
neglect of the full range of sensory feedback in their strategies for training and control. Here 
we confirm that neurons in the primary motor cortex (MI) encode sensory information and 
demonstrate a significant heterogeneity in their responses with respect to the type of sensory 
modality available to the subject about a reaching task. We further show using mutual 
information and directional tuning analyses that the presence of multi-sensory feedback (i.e. 
vision and proprioception) during replay of movements evokes neural responses in MI that are 
almost indistinguishable from those responses measured during overt movement. Finally, we 
suggest how these playback-evoked responses may be used to improve BMI performance. 

Keywords 
Motor cortex, Observation, Mirror-neuron, Brain machine interface, Sensory feedback, 
Proprioception 

1. Introduction 

The field of brain-machine interfaces (BMIs) has seen rapid and substantial growth over the 
past decade. BMIs that record signals from the cortex offer the possibility of deciphering motor 
intentions in order to control devices. This capability could allow severely motor-disabled 
people to interact with the outside world, thereby improving their quality of life. In principle, 
BMIs could help people with such central or peripheral nerve injuries and disease states as 
spinal cord injury, amyotrophic lateral sclerosis (ALS), stroke, muscular dystrophy, amputation, 
and cerebral palsy. The principal assumption for successful operation of cortically-controlled 
BMIs is that cortical activity is still available and can be decoded despite the injury or disease. 
Early-stage clinical testing of BMIs has indicated that, in fact, cortical activity can be voluntarily 
modulated to control simple devices Hochberg et al. (2006), Kennedy and Bakay (1998), 
Truccolo, Friehs, Donoghue, and Hochberg (2008). 

Despite these initial clinical successes, the next-generation BMIs will need to take advantage 
of different forms of sensory information to reliably build or ‘train’ decoding algorithms as well 
as augment closed-loop BMI control in patients who cannot move. Experimental evidence has 
shown greater diversity in the responses of neurons in the primary motor cortex (MI) than is 
typically assumed. In addition to driving overt movement, neurons in MI discharge in response 
to passive visual observation of action (Tkach, Reimer, & Hatsopoulos, 2007), visual-motor 
imagery (Carrillo-de-la-Pena et al., 2008, Roth et al., 1996), kinesthetic perception (Naito, 
Roland, & Ehrsson, 2002), and passive joint motion (Fetz, Finocchio, Baker, & Soso, 1980). 
Recently, some have even proposed using the movement related activity in MI triggered by 
passive observation of an action to build a decoder (Tkach et al., 2007, Tkach et al., 2008, 
Wahnoun et al., 2006). To date, however, no one has demonstrated the utility of proprioceptive 
sensory information within the context of a BMI application. 
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The proprioceptive sense is critical for normal motor control. Experimental evidence indicates 
that abilities for on-line control and error correction are normally highly-dependent on the 
proprioceptive system, which in turn is mediated by the fastest conducting nerves in the body. 
In humans, alterations to movement trajectory have been detected as early as 70 ms after a 
proprioceptive cue (Crago, Houk, & Hasan, 1976). Furthermore, patients with large-fiber 
neuropathy affecting proprioceptive afferents exhibit uncoordinated and slowed movements 
(Ghez et al., 1995, Sainburg et al., 1995). Although proprioceptive feedback is vital for 
accurate and naturalistic movements, almost all current BMIs rely solely on visual feedback to 
correct errors during on-line control of a device. As a result, the output of such systems 
generates movements that tend to be erratic and difficult to control (Hochberg et al., 2006). A 
BMI that incorporates proprioceptive as well as visual feedback would likely show significantly 
improved device control. 

In this paper we describe the results of an experiment designed to test the hypothesis that 
proprioceptive feedback together with vision can trigger more informative motor commands 
from MI during passive stimulation than during observation of movement alone. Using mutual 
information (between spiking activity and cursor/hand direction) and directional tuning metrics, 
we compare the neural responses in MI elicited by visual and proprioceptive sensory feedback 
during passive playback of movement. The data suggest that proprioceptive feedback alone 
has a greater effect on neural activity than visual feedback alone. More importantly, when 
these two sensory modalities are combined, the resultant neural activity is nearly 
indistinguishable from that activity observed during active movement of the arm. Finally, we 
suggest how these responses could be used to improve training and control in BMI 
applications. 

2. Materials and methods 
2.1. Behavioral task 

Two adult male rhesus macaques (Macaca mulatta) were operantly trained to control a cursor 
in two dimensions using a two-link robotic exoskeleton (Scott, 1999). The animals sat in a 
primate chair and placed their arm in the exoskeleton. Their shoulder joint was abducted 90 
degrees and their arm supported by the exoskeletion such that all movements were made in 
the horizontal plane. Direct vision of the limb was precluded by a horizontal projection screen 
above the monkey’s arm. A visual cursor aligned with the location of the monkey’s hand was 
projected onto the screen and served as a surrogate for the location of the hand (Fig. 1, circle 
(red in the web version)). Shoulder and elbow angle and angular velocity were digitized at 
500 Hz and transformed to the visual cursor position (mm) using the forward kinematics 
equations for the exoskeleton (Scott, 1999). 
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Fig. 1. Experimental apparatus and trajectories during the Active Movement, Visual, 
Proprioceptive and Visual + Proprioceptive playback phases. The monkey performs the 
random target pursuit (RTP) task in the horizontal plane using a two-link exoskeletal robot. 
Direct vision of the arm is precluded. During the RTP task the monkeys move a visual cursor 
(circle (red in the web version)) to a target (filled (blue in the web version) square). The target 
appeared at a random location within the workspace (10 by 6 cm), and each time the monkey 
hits it, a new target appeared immediately in a new location selected at random (dashed filled 
(green in the web version) square). In order to complete a successful trial and receive a juice 
reward, the monkey was required to sequentially acquire seven targets. (A) During Active 
Movement, the position of the visual cursor (red circle) was controlled by the movements of the 



monkey’s hand. The right panel shows the X dimension of the visual cursor (red trace) and 
hand movement (black trace). (B) During Visual Playback, target positions (squares) and 
cursor trajectories (circle (red in the web version)) recorded during the Active Movement 
condition are replayed while the animal voluntarily maintains a static posture in the robotic 
exoskeleton. If the monkey moves his hand outside of the hold region (dashed (red in the web 
version) circle) the current trial is aborted and the cursor and target are extinguished until the 
hand is returned. (C) During Proprioceptive Playback condition, the monkey’s hand is moved 
through the cursor trajectories recorded during Active Movement. Here, the visual cursor and 
target are invisible (dashed black circle and squares). The right panel shows how the hand 
(black trace) is driven through the same trajectory as the invisible visual cursor (dashed gray 
(red in the web version) trace) providing a Proprioceptive Playback condition. Notice how the 
hand trajectory lags behind the cursor trajectory due to the dynamics of the position 
controller/exoskeleton. (D) During the Visual +Proprioceptive Playback condition, target 
positions (squares) and cursor trajectories (circle (red in the web version)) recorded during the 
Active Movement phase are replayed and the monkey’s hand is moved through the cursor 
trajectories by the exoskeleton. The right panel shows how the visual cursor (gray (red in the 
web version) trace) and hand (black trace) move through the same trajectory in the X 
dimension. Again, the hand movement lags slightly behind the movement of visual cursor due 
to position controller/exoskeleton dynamics. In all conditions, the same trends were observed 
in the Y dimension. 

The random target pursuit (RTP) task required the monkeys to repetitively move a cursor 
(6 mm diameter circle) to a square target (2.25 cm2). The target appeared at a random location 
within the workspace (10 cm by 6 cm), and each time it was hit, a new target appeared 
immediately in a new location selected at random (Fig. 1). In order to complete a successful 
trial and receive a juice reward, the monkeys were required to sequentially acquire seven 
targets. Because each trial completion was followed by the immediate presentation of another 
target, the monkeys typically did not pause between trials, but rather generated continuous 
movement trajectories. A trial was aborted if any movement between targets took longer than 
5000 ms or if the monkeys removed their arm from the apparatus. 

2.2. Experimental design 

This experiment consisted of four experimental conditions: (1) Active Movement, (2) Visual 
Playback, (3) Proprioceptive Playback and (4) Visual +Proprioceptive Playback. In the Active 
Movement condition, the animals performed the standard RTP task and controlled the cursor 
via the exoskeleton (Fig. 1(A)). During the playback conditions, target positions and cursor 
movements generated during the Active Movement phase were replayed to the monkeys 
through different sensory modalities. The playback conditions were designed to dissociate the 
effects of vision and proprioception on the spiking activity of MI. In the Visual Playback 
condition (Fig. 1(B)) both the cursor and the target were visible to the monkeys, just as during 
the Active Movement condition, while the monkeys maintained a static, relaxed posture in the 
exoskeleton (Fig. 1(B), black line). If the monkeys moved the handle of the exoskeleton 
outside of a “hold” region (Fig. 1(B), dotted (red in the web version) circle) or removed their 
arm from the exoskeleton the game was “turned off” until the monkeys returned their arm to 
the appropriate position. In the Proprioceptive Playback condition (Fig. 1(C)), both the cursor 
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and target were invisible and the monkeys‘ arms (Fig. 1(C), black line) were moved through 
the replayed trajectory of the invisible cursor (Fig. 1(C), dashed gray (red in the web version) 
line) by the robotic exoskeleton. The final condition (Visual +Proprioceptive Playback, Fig. 1(D) 
combined both the visual and proprioceptive sensory feedback modalities. Here, the monkeys 
visually observed a playback of the cursor trajectories and target positions recorded during the 
Active Movement condition while their arm was moved through the replayed cursor trajectory 
by the exoskeleton. During all passive playback conditions, the monkeys received juice at the 
completion of every successful trial just as during performance of the RTP task, even when the 
cursor and target were not visible. 

In the Proprioceptive and Visual +Proprioceptive Playback conditions, a PD controller was 
used to drive the robot’s end-effector (i.e. the monkeys’ hand) to follow the trajectory of the 
cursor. To assess the accuracy of the PD controller, we performed a separate control 
experiment where we measured the dynamics and average error between the commanded 
(i.e. the cursor) and actual positions of the robot (and hand) during replayed trajectories with 
anesthetized monkeys. The monkeys were anesthetized (Ketamine, 2 mg/kg; 
Dexmedatomidine, 75 mcg/kg; Atropine, 0.04 mg/kg) and then placed in the primate chair with 
their arm secured in the exoskeleton. The cursor position was digitized (500 Hz) and recorded 
independently while the monkeys’ relaxed arm was moved through replayed cursor trajectories 
for approximately 5 min. Playback of each trajectory was repeated three times for a total 
exposure time of 15 minutes. We computed the cross-correlation between the X and Y cursor 
and hand positions during passive arm movement to measure the time delay between 
movement of the cursor and the hand. As expected, a strong correlation (>0.95) was observed 
between cursor and hand position at time delays averaging 98 ms and 52 ms in the X and Y 
direction, respectively. To compute the error between cursor and hand positions, we first 
corrected for the temporal delay of the position controller/exoskeleton by shifting the hand 
position data in time by the appropriate delay and then computed the Euclidean distance 
(error) between the cursor and hand position on a sample-by-sample basis. In this control 
experiment the error between the cursor and hand position averaged 5.40 ± 4.03 (SD) mm for 
monkey MK and 8.99 ± 4.46 mm for monkey B. 

2.3. Electrophysiology 

Each monkey was chronically implanted with a 100-electrode (400 μm interelectrode 
separation) microelectrode array (Blackrock Microsystems, Inc., Salt Lake City, UT) in the 
primary motor cortex contralateral to the arm used for the task (Maynard et al., 1999). The 
electrodes on each array were 1.5 mm in length, and their tips were coated with iridium oxide. 
During a recording session, signals from up to 96 electrodes were amplified (gain of 5000), 
band-pass filtered between 0.3 kHz and 7.5 kHz, and recorded digitally (14-bit) at 30 kHz per 
channel using a Cerebus acquisition system (Blackrock Microsystems, Inc., Salt Lake City, 
UT). Only waveforms (1.6 ms in duration; 48 sample time points per waveform) that crossed a 
threshold were stored and spike-sorted offline using Offline Sorter (Plexon, Inc., Dallas, TX). 
Signal-to-noise ratios were defined as the difference in mean peak-to-trough voltage divided by 
twice the mean standard deviation. The mean standard deviation was computed by measuring 
the standard deviation of the spike waveform over all acquired spikes at each of the 48 sample 
time points of the waveform and then averaging. All isolated single units used in this study 
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possessed signal-to-noise ratios of three or higher. A total of seven data sets (four data sets 
for animal MK and three data sets for animal B) were analyzed in this experiment. A data set is 
defined as the simultaneously recorded neural activity during a single recording session and 
contained between 300 to 800 individual trials. 

2.4. Analysis 

Kinematics: Kinematic parameters (position and direction) of hand and cursor movement in 
each condition were binned in 50 ms bins and boxcar-smoothed using a 150 ms sliding 
window for most analyses. In this experiment, the monkeys were trained to voluntarily relax 
their arm while either maintaining a static posture (i.e. Visual Playback condition) or while their 
arm was moved by the exoskeleton (i.e. Proprioceptive and Visual +Proprioceptive Playback 
conditions). To avoid including those trials during which the monkeys may have drifted or 
voluntarily moved their arm away from the desired position, we defined a relaxation metric to 
filter the data. After correcting for the time delay of position controller based on values obtained 
from the control experiment, we computed the error (Euclidian distance) between the cursor 
and hand positions on a sample–by-sample basis. Trials with an average error exceeding the 
mean error plus two standard deviations (as obtained from the control experiment described 
above) were excluded from further analysis. This threshold was 13.46 mm for monkey MK and 
17.91 mm for monkey B. 

Mutual information: Mutual information between binned neural data and kinematics (50 ms 
bins) was calculated at multiple time leads and lags as in Paninski, Fellows, Hatsopoulos, and 
Donoghue (2004). This analysis captures nonlinear relationships between the two variables by 
means of signal entropy reduction. The computation yields a measure of the strength of the 
relationship between the two variables when they are shifted with respect to each other by 
different time lags. By examining the relative timing of the peak mutual information, we were 
able to determine at what time lag a neuron’s modulation was most related to the cursor 
movement. 

The kinematic probability distributions (one-dimensional distribution of instantaneous 
movement direction) conditioned on the number of observed spikes were estimated by 
histograms of the empirical data. To account for biases in this estimation, the information 
calculated from shuffled kinematic bins (mean of one hundred shuffles) was subtracted from 
the values obtained from the actual data for each cell. Furthermore, the statistical significance 
of the peaks in mutual information profiles was determined by comparing the magnitude of the 
resulting peak against the distribution of peak magnitudes at that lag resulting from the one 
hundred shuffles. If the magnitude of the peak mutual information was greater than ninety-nine 
of the values at that specific lag resulting from the one hundred computations on shuffled data, 
then the peak was deemed to be significant at the 𝑝𝑝 < 0.01level. Lastly, the significant lead/lag 
mutual information profiles were boxcar-smoothed with a 3-bin window (150 ms). 

Directional tuning: Preferred directions (PDs) were determined for each experimental condition 
by calculating the mean binned spike count (50 ms bins) as a function of instantaneous 
movement direction (at  
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radian resolution). The lag between neural activity and movement direction for each cell was 
chosen based on the lag of the peak mutual information (see “Mutual information profiles”). 
The mean spike counts per direction were fit with a cosine function (Georgopoulos, Kalaska, 
Caminiti, & Massey, 1982). Cells were considered to be cosine-tuned if the correlation 
between the empirical mean spike counts and the best-fit cosine function was greater than 0.5. 
Only cells that were cosine-tuned in both conditions were used to assess the difference in 
preferred directions between the Active Movement and individual playback conditions. 

3. Results 
3.1. Context dependent modulation of spiking activity 

We have previously demonstrated that neurons in the motor cortex demonstrate congruent 
activity during visual observation of action when compared to active movement (Tkach et al., 
2007). Here, we designed an experiment to test the hypothesis that proprioceptive as well as 
visual feedback during observation of action would elicit responses in the motor cortex similar 
to those seen during active movement of the arm. We utilized four experimental conditions to 
test this hypothesis: Active Movement, Visual Playback, Proprioceptive Playback, and Visual 
+Proprioceptive Playback. 

We first examined the spiking response of each neuron to changes in experimental condition 
by computing the instantaneous binned firing rate (50 ms bin size). Over the time scale of the 
entire experiment, we found significant heterogeneity in the responses of individual neurons. A 
one-sample 𝑡𝑡-test revealed that the firing rate of 97.4% (452/464) of neurons we recorded was 
modulated with respect to its mean firing rate over the duration of the experiment in at least 
one experimental condition. We compared the conditional firing rate to the mean firing rate 
over the duration of the experiment (baseline) because the experimental design did not include 
a time of quiet rest in which to measure a true baseline firing rate for each neuron. In most 
cases, we found that neurons responded (either an increase or decrease in firing rate) to more 
than one condition as 82.1% (371), 73.4% (332), 72.4% (327) and 65.7% (297) of neurons 
responded to the Active Movement, Visual Playback, Proprioceptive Playback, and Visual 
+Proprioceptive Playback conditions, respectively. The firing rate of the majority of cells 
decreased with respect to the baseline in each experimental condition [52% (193), 59.4% 
(199), 59.6% (195) and 64.3% (191) in the Active Movement, Visual Playback, Proprioceptive 
Playback, and Visual +Proprioceptive Playback conditions, respectively]. 

Some neurons seemed to prefer Active Movement, while others preferred individual sensory 
modalities or some complex combination of movement and sensory feedback. This diversity as 
well as structured neural activity are illustrated in Fig. 2 which shows the normalized binned 
firing rate as a function of time for each of the 87 neurons recorded during a single session. 
Changes in the experimental condition precisely correlate with substantial changes in the firing 
rate of individual neurons appearing as vertical striations in Fig. 2 (in particular, note those 
neurons emphasized by black brackets). 
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Fig. 2. Time series of binned firing rates for all units recorded during a single session (B-
080725). Firing rates from each individual neuron were binned (50 ms bin size) and normalized 
to their maximum firing rate. The resulting time series were then smoothed using a zero-phase, 
4th order, butterworth, lowpass filter with a cutoff frequency of 0.1 Hz for display purposes. 
Bins shown in white represent the highest firing rates for each cell, while those areas shown in 
black correspond those time when the firing rate was very low. Notice the substantial changes 
in the firing rates of some cells at the transitions between experimental conditions (especially 
those cells denoted by the black brackets). The colored bar at the top of the figure shows the 
transitions between the 4 experimental conditions. 

To formalize this diversity of neuronal responses, we first removed the mean firing rate of 
individual neurons over the duration of the experiment and computed the average firing rate 
per each experimental condition. Next, we used a one-way ANOVA to identify differences in 
the neuronal firing rates related to experimental conditions. ANOVA found a significant main 
effect of the experimental condition in 96% (446/452) of the neurons that modulated in any 
condition. We then used post hoc 𝑡𝑡-tests to sort each neuron into one of four groups based on 
their conditional firing rate. We first identified those cells that increased their firing rate only 
during the Active Movement condition (Fig. 3, top (blue in the web version) trace). Only 3.6% 
of cells (16/446) were placed in this group indicating that the activity of neurons in MI is related 
to more than just overt movements. We further classified each neuron based on its responses 
during the Visual and Proprioceptive Playback conditions. Those cells that increased their 
firing rate in the Visual Playback condition as compared to the Proprioceptive Playback 
condition were placed in the Prefers Vision group (Fig. 3, middle (orange in the web version) 
trace). Conversely, those cells that increased their firing rate in the Proprioceptive Playback as 
compared to the Visual Playback conditions were placed in the Prefers Proprioception group 
(Fig. 3, bottom (gray in the web version) trace). This is not to say that those cells classified as 
Prefers Vision or Prefers Proprioception responded only to the unimodal playback conditions 
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(these cells likely modulate during multiple experimental conditions including Active 
Movement), but rather that these cells simply responded more strongly to one sensory 
modality over another during playback. The remaining cells were modulated similarly in the 
Visual and Proprioceptive Playback conditions and were categorized as Multi-Sensory. The 
majority of cells were placed in one of the unimodal sensory feedback categories with 39.4% 
(176/446) and 34.8% (155/446) of cells categorized as Prefers Vision or Prefers 
Proprioception, respectively. The Multi-Sensory group contained 22.2% (99/446) of the 
neurons. 

 

Fig. 3. Diverse pattern of activity in single units during observation of action with different 
sensory modalities. Individual cells from the population of neurons we recorded were sorted 
into 4 categories based on their average firing rate in each experimental condition. Some cells 
only responded to Active Movement (B-080725_u01, top (blue in the web version) trace). The 
Prefers Vision group of cells responded most strongly to the Visual Playback condition (B-
080725_u53, middle (orange in the web version) trace), while the Prefers Proprioception 
population responded most strongly to the Proprioceptive Playback condition (B-080725_u47, 
bottom (gray in the web version) trace). The final group (Multi-Sensory, not shown) consisted 
of those cells that responded similarly to both the Visual and Proprioceptive Playback 
conditions. It is important to note that those cells classified as Prefers Vision or Prefers 
Proprioception did not respond only during the unimodal playback conditions; rather the firing 
rate of these cells was modulated during multiple experimental conditions (see increased firing 
rate during Visual +Proprioceptive Playback condition in the example cell classified as Prefers 
Proprioception). The colored bar at the top of the figure shows the transitions between the 4 
experimental conditions. Here the binned firing rate time series were smoothed using a zero-
phase, 4th order, butterworth, lowpass filter with a cutoff frequency of 0.05 Hz for display 
purposes. 



3.2. Information in neural spiking activity 

To assess the effect of sensory playback modality on the neural activity, we computed the 
mutual information between the instantaneous binned firing rate of each cell and the binned 
direction of either the cursor or monkey’s hand, depending on the experimental condition. The 
amount of mutual information about the direction of either the cursor or the hand movement is 
computed at temporal lags with respect to the instantaneous binned firing rate. Values at 
negative lags represent the amount of mutual information in the current neural activity about 
the direction movement that has already taken place. Alternatively, values at positive lags 
represent the amount of mutual information in the current neural activity about the direction of 
movement that has yet to occur. By considering the relative timing of the peak in mutual 
information together with the magnitude of the peak mutual information we were able to 
determine at what time lag a neuron’s modulation is most related to the direction of movement. 

We computed the mutual information measure using the direction of the visual cursor 
movement when analyzing the data from the Active Movement and Visual Playback conditions. 
In the Active Movement condition, the visual cursor position was identical to the position of the 
monkey’s hand. In the Visual Playback condition, the monkey’s arm was motionless while the 
visual cursor and targets were the only relevant sensory stimuli. Since in the Proprioceptive 
Playback condition the only relevant sensory stimulus was the movement of the monkey’s 
hand along the trajectory of the invisible cursor, we computed the mutual information measure 
using the direction of movement of the monkeys’ hand to analyze the data from this condition. 
In the Visual +Proprioceptive Playback conditions, both the visual and proprioceptive stimuli 
are present since the monkey’s arm is being driven along the trajectory of the visual cursor. 
For this condition, we computed the mutual information metric twice - on the direction of the 
cursor movement as well as on the direction of the hand movement. 

Consider the mutual information profiles for one cell, shown in Fig. 4. The activity of this 
particular cell carried the greatest information (0.127 bits) about the direction of cursor 
movement during the Active Movement condition (Fig. 4, solid black (blue in the web version) 
trace). Furthermore, the neural activity of this cell carried the greatest amount of information 
about the direction of cursor movement occurring ∼160 ms in the future. This temporal 
relationship may be interpreted as a feed-forward signal “driving” the cursor movement and is 
typical of motor cortical neurons that causally “drive” movement (Moran and Schwartz, 1999, 
Paninski et al., 2004). Note that the amount of peak information and the timing at which it 
occurred differed for this neuron under the four experimental conditions. The trend in the 
difference indicated that the Visual +Proprioceptive Playback condition (Fig. 4, dashed gray 
(red in the web version) trace) generated a more “motor” response and was most similar to the 
Active Movement condition, while the Visual Playback and Proprioceptive Playback conditions 
(Fig. 4, dashed black (orange in the web version) and solid gray traces, respectively) elicited a 
more “sensory” response. 
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Fig. 4. Example mutual information temporal profiles (in bits) for a single unit during Active 
Movement and playback conditions. Each trace plots the mutual information between the firing 
rate of a single neuron and the movement direction over different relative times between the 
two. A positive lag time denotes that the neural activity was measured before the movement 
direction whereas a negative lag time denotes that the neural activity was measured after the 
movement direction. A zero lag time denotes that the neural activity and movement direction 
were measured simultaneously. Mutual information profiles are plotted during the Active 
Movement (solid black (blue in the web version) trace), Visual Playback (dashed black (orange 
in the web version) trace), Proprioceptive Playback (solid gray trace) and Visual 
+Proprioceptive Playback conditions (dashed gray (red in the web version) trace). 

Using the mean firing rate-based cell classifications described earlier, we compared the 
magnitude of peak mutual information in the three playback conditions across the population of 
recorded neurons. A one-way ANOVA on mutual information found a significant effect of 
playback condition in cells classified as Prefers Proprioception or Multi-Sensory 
(𝑝𝑝 < 0.05;𝐹𝐹2,462 = 8.73 and 𝐹𝐹2,294 = 3.78, respectively). We then used post-hoc 𝑡𝑡-test to 
determine pair-wise differences in information magnitude for these groups of neurons. 

In those neurons classified as Prefers Proprioception, the magnitude of peak mutual 
information was greater in the conditions where the monkeys received proprioceptive sensory 
feedback (Proprioceptive Playback and Visual +Proprioceptive Playback) as compared to the 
Visual Playback condition (𝑝𝑝 < 0.05). In these neurons, there was no difference in resulting 
peak mutual information magnitudes between the Proprioceptive and Visual +Proprioceptive 
Playback conditions. Similarly, in those neurons categorized as Multi-Sensory, peak 
information magnitude was greater during Visual +Proprioceptive Playback as compared to 
Visual Playback (𝑝𝑝 < 0.05). In these neurons there was no difference, however, between the 
peak information magnitude in the Proprioceptive Playback condition and the Visual 



+Proprioceptive and Visual Playback conditions, respectively. We found no significant effect of 
playback condition in the neurons classified as Prefers Vision. 

We were specifically interested in understanding how the strength and temporal relationship of 
mutual information was modulated by sensory feedback modality in cells whose activity 
contained significant information about direction in each of the experimental conditions. 
Therefore, to be included in the following analyses, cells had to exhibit significant peak mutual 
information computed on the direction of cursor movement in the Active Movement and Visual 
Playback conditions as well as on the direction of the hand movement in the Proprioceptive 
and Visual +Proprioceptive Playback conditions. Approximately 27% (125/464) of all recorded 
cells from both monkeys passed this criterion. To make comparisons relevant to the Visual+ 
Proprioceptive Playback condition, cells had to meet the above criterion as well as exhibit 
significant mutual information peaks in the Visual +Proprioceptive Playback condition when 
computed on the direction of cursor movement. Having imposed this extra criterion we were 
left with 124 of the original 125 accepted neurons. Based on the mean conditional firing rate 
classification, 57 (45.9%), 29 (23.3%) and 35 (28.2%) of these 124 neurons were classified as 
Prefers Vision, Prefers Proprioception and Multi-Sensory, respectively. Only two neurons 
(1.6%) responded solely to the Active Movement condition, and one neuron was unclassified. 

We examined the mutual information content by pooling the peak mutual information values 
(Table 1) of each cell and pooling the lags (Table 2) at which those peak values occurred 
within each experimental condition (Fig. 5, Fig. 6, respectively), across the two monkeys. We 
then used paired 𝑡𝑡-tests to examine the experimental conditions for differences between the 
peak information magnitudes and lags. We used a threshold of 𝛼𝛼 = 0.05/4 = 0.0125 
(bonferroni correction for multiple comparisons) to determine statistical significance. 
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Table 1. Statistical comparison of mean peak mutual information values with respect to 
direction of movement among the four different experimental conditions. Significant values are 
shown in bold face. All tests were paired 𝑡𝑡-tests. 

 



 

Table 2. Statistical comparison of mean peak mutual information lags with respect to direction 
of movement among the four different experimental conditions. Significant values are shown in 
bold face. All tests were paired 𝑡𝑡-tests. 



 



 

Fig. 5. Graded changes in peak mutual information about movement direction. (A) Peak mutual 
information values (bits) with respect to direction of movement of the 125 cells used in our 
analyses during Active Movement (AM, blue), Visual Playback (V PLBK; orange), Proprioceptive 
Playback (PPLBK; gray) and Visual +Proprioceptive Playback (V +PPLBK; red) conditions. Values 
exceeding 0.2 bits in magnitude are reported at that value. (B) Top panel (gray dots in the web 
version) shows the comparison of the magnitude of peak mutual information with respect to 
direction of movement conveyed by neurons during the PPLBK condition with the magnitude of 
information conveyed during V PLBK condition. The bottom panel (red dots in the web version) 
shows the comparison of the magnitude of peak mutual information with respect to direction of 
movement conveyed by neurons during the V +PPLBK condition with the magnitude of 
information conveyed during the V PLBK condition. Data in both panels is reported as the natural 
log of the mutual information bit values. 



 

Fig. 6. Graded changes in the time lag of peak mutual information about movement direction. 
Distribution of lags at which mutual information with respect to direction of movement peaks for 
the 125 cells used in our analysis during Active Movement (blue histogram in the web version), 
Visual Playback (orange histogram in the web version), Proprioceptive Playback (gray 
histogram in the web version) and Visual +Proprioceptive Playback (red histogram in the web 
version) conditions. The dotted vertical line intersecting the four histograms represents the 0s 
time lag. 

When comparing the two unimodal sensory conditions (Visual Playback [V PLBK] and 
Proprioceptive Playback [PPLBK]; Fig. 5(A), (data shown in orange and gray, respectively in the 
web version), we found that the peak information provided by most cells about the direction of 
movement was significantly higher in the Proprioceptive than in the Visual Playback conditions 
(Fig. 5(B) top panel; Table 1). Neural activity sampled during the Visual and Proprioceptive 
Playback conditions provided significantly less information about the direction of movement 
than the activity in the Active Movement condition (Table 1). Similarly, the Visual Playback 
condition yielded significantly less information about the direction of movement when 
compared to the Visual +Proprioceptive Playback condition (Fig. 5(B) bottom panel; Table 1). 
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We found no difference, however, between the magnitude of peak mutual information in the 
Proprioceptive and Visual +Proprioceptive Playback conditions. 

We found that the peak information provided by most cells about the direction of movement 
was highest in the two experimental conditions that gave the monkeys both visual and 
proprioceptive feedback about the direction of movement, that is the Active Movement and 
Visual +Proprioceptive Playback conditions (Fig. 5(A), AM and V +PPLBK, respectively) (data 
shown in blue and red, respectively in web version). The amount of information was highest 
during the Active Movement condition and was second highest during the Visual 
+Proprioceptive Playback condition when computed on the direction of the hand movement as 
well as when computed on the direction of the cursor movement (Table 1). While small, the 
difference between the distributions of peak mutual information magnitudes for the Visual 
+Proprioceptive Playback condition derived from using the direction of the hand and the 
direction of the cursor movement was statistically significant (𝑇𝑇123 = 6.4;𝑝𝑝 < 0.005; paired t 
test). 

We also considered the timing of the mutual information peak in each experimental condition 
(Fig. 6, Fig. 7). Timing results from the Active Movement condition were regarded as a control, 
representing the timing of the expected neural activity in MI that ‘drives’ behavior (Table 2). In 
the Visual Playback condition, the timing of the peak mutual information shifted closer to zero 
lag. While the difference in the lags of peak mutual information during the Visual Playback 
condition and the Active Movement condition was significant, the difference in peak information 
timing during the Visual Playback condition and the Visual +Proprioceptive Playback condition 
was not (Table 2). The timing of peak mutual information was closest to zero lag during the 
Proprioceptive Playback condition (Fig. 6, (data shown in gray in the web version)). Here, the 
average lag at peak mutual information was not significantly different from the average lag in 
the other unimodal sensory condition–Visual Playback condition (Table 2). However, there was 
a significant difference in the timing of neural responses when comparing the peak mutual 
information lags during the Proprioceptive Playback condition and the lags during the Visual 
+Proprioceptive Playback condition (Table 2). 

 

Fig. 7. The summary of Fig. 6, showing average (± standard error) peak mutual information 
lags across all cells during Active Movement (AM), Visual Playback (V PLBK), Proprioceptive 
Playback (PPLBK) and Visual +Proprioceptive Playback (V +PPLBK) conditions. 

The timing of peak mutual information during the Visual +Proprioceptive Playback condition 
resembled the timing of the Active Movement condition most closely (Fig. 6). In fact, there was 
no difference between the mean peak mutual information time lag in the Active Movement 
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condition and Visual +Proprioceptive Playback condition computed on the direction of hand 
movement (Table 2). However, there was a marginally significant difference in average peak 
mutual information time lag between the Active Movement condition and the Visual 
+Proprioceptive Playback condition computed on the direction of cursor movement (Table 2). 
We found no difference between the average peak mutual information lags during Visual 
+Proprioceptive Playback condition derived from direction of cursor movement and direction of 
hand movement (𝑇𝑇123 = 1.4;𝑝𝑝 = 0.15; paired 𝑡𝑡-test). Therefore, for the remainder of this 
analysis we will only report on the peak mutual information lags computed with respect to the 
direction of hand movement. 

Our mutual information analysis showed that neural responses most closely resembled 
movement-like activity when both the visual and proprioceptive sensory modalities were 
present during playback. Proprioceptive Playback alone facilitates greater amount of mutual 
information about the direction of movement than Visual Playback alone. However, the 
temporal characteristics of neural activity during Visual Playback more strongly resembled 
neural activity during Active Movement when compared to the temporal characteristics of 
neural activity during Proprioceptive Playback (Fig. 7). 

3.3. Directional tuning 

To further characterize the relationship between neural modulation and direction of movement, 
we computed the preferred direction of each cell during each condition, and compared the 
preferred directions of neurons during the Active Movement condition with each of the 
respective playback conditions (Fig. 9). Of the 124 neurons that passed our mutual information 
significance criterion, only those that exhibited stable and significant cosine tuning during each 
of the compared conditions were considered for this analysis. We found no difference in the 
distributions of preferred directions during the Active Movement and Visual Playback 
conditions (𝑁𝑁 = 116 cells, 𝑝𝑝 = 0.81, Kuiper test). The mean (±SE) difference in the preferred 
directions between these two conditions was 16.85∘ (28.07∘). In contrast, the distributions of 
the preferred directions during Active Movement and Proprioceptive Playback conditions were 
statistically different (𝑁𝑁 = 122 cells, 𝑝𝑝 < 0.05, Kuiper test). We found no difference between the 
distribution of the preferred directions during the Active Movement and Visual +Proprioceptive 
Playback conditions (𝑁𝑁 = 121 cells, 𝑝𝑝 = 0.52, Kuiper test). The mean (±SE) difference in the 
preferred direction between these two conditions was 3.39∘ (15.65∘). 

Consistent with our previous report (Tkach et al., 2007), the analysis of differences in preferred 
directions demonstrates that the neurons had similar directional tuning properties during the 
Active Movement and Playback conditions where a visual target was present (i.e. Visual 
Playback and Visual +Proprioceptive Playback). In contrast, a bimodal distribution of 
differences in the preferred direction was observed when comparing tuning in the 
Proprioceptive Playback and Active Movement conditions (Fig. 9). The bimodal distribution of 
differences suggested the existence of two populations of neurons, one whose preferred 
directions were congruent in both conditions and another that were oppositely tuned in the two 
conditions. 
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We further examined this bimodal distribution of preferred direction differences by sorting each 
significantly tuned neuron into one of two categories. The ‘Oppositely Tuned’ category 
contained those neurons whose differences in preferred directions during the Proprioceptive 
Playback and Active Movement conditions were greater than 90∘ or less than −90∘ (Fig. 9(A), 
inset). Conversely, the ‘Similarly Tuned’ category contained those neurons whose differences 
in preferred directions were between −90∘ and 90∘ (Fig. 9(B), inset). Next, we computed the 
mean peak mutual information lag of neurons in these two groups. A one sample 𝑡𝑡-test 
showed that the mean peak mutual information lag of ‘Oppositely Tuned’ neurons (−10.9 ms; 
Fig. 9(A)) was significantly less than the mean peak mutual information lag of ‘Similarly Tuned’ 
neurons (25.7 ms; Fig. 9(B)). This indicates that the ‘Oppositely Tuned’ neurons show more of 
a sensory response during the Proprioceptive Playback condition. Paradoxically, these same 
cells exhibit a mean peak mutual information lag of 129 ms during the Active Movement 
condition, which is interpreted as a ‘driving’ lag as opposed to the sensory one as seen in the 
Proprioceptive Playback condition. 

4. Discussion 

Over the past ten years, considerable progress has been made in improving three of the four 
fundamental components of a cortically-controlled, brain-machine interface: (1) multi-electrode 
recording sensor arrays, (2) decoding algorithms, and (3) output interfaces to be controlled by 
the cortically-derived signals. Much less attention has been paid to the fourth component: 
sensory feedback (Hatsopoulos & Donoghue, 2009). In this work, we used a task involving the 
visual and proprioceptive replay of movements to dissociate the effect of each modality on the 
spiking activity of neurons in MI. We tested the hypothesis that task relevant proprioceptive 
sensory information is present in the activity of neurons in MI and that the addition of veridical 
proprioceptive feedback about the observed action enhances congruence in neural activity 
compared to visual observation alone. Consistent with our hypotheses, we found that the 
activity of neurons in MI was strongly modulated by the direction of arm movement in 
conditions where monkeys had access to proprioceptive feedback. Furthermore, the 
combination of visual and proprioceptive feedback during action observation elicited responses 
in motor cortex that were very similar to those responses recorded during overt arm 
movements. 

Although perhaps not surprising, one of the striking results of this work is the heterogeneity of 
neural activity evoked by the experimental manipulations. Specifically, the firing rate of the 
majority of neurons we sampled was modulated by multiple experimental conditions (both 
Active Movement and Passive Playback). Additionally, some cells demonstrated clear 
preferences for distinct feedback modalities during playback (Fig. 3, middle and bottom 
(orange and gray in the web version) traces). In fact, only 3.6% of the population responded 
during the Active Movement condition alone. This richness in response characteristics is 
consistent with the notion that the activity in MI is related to more than simply a single variable 
explicitly controlling motor output (see Scott (2003) for a review). There is, in fact, significant 
experimental evidence demonstrating that neural activity in MI is related to many different 
types of movement information including spatial goals (Kakei et al., 1999, Tkach et al., 2007), 
hand motion (Georgopoulos et al., 1982, Moran and Schwartz, 1999), sensory feedback (Fetz 
et al., 1980), force output (Evarts, 1968), and muscle activity (Morrow & Miller, 2003). 

https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#fig9
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#fig9
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#fig9
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#fig9
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b9
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#fig3
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b23
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b11
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b26
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b7
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b15
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b6
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b6
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b4
https://www.sciencedirect.com/science/article/pii/S0893608009000963?via%3Dihub#b16


4.1. Enhanced congruence with multisensory feedback 

The combination of sensory feedback modalities in the Visual +Proprioceptive Playback 
condition resulted in peak mutual information values which were statistically greater than 
Visual Playback alone. Furthermore, these peaks occurred at time lags very close to those 
observed in the Active Movement condition. We interpret these findings as evidence that when 
both visual and proprioceptive sensory information about the observed action are veridical, 
activity in MI more faithfully represents those motor commands that would be present if the 
animal were actually moving the cursor with his arm. We find further support for this 
interpretation in the results of our directional tuning analysis. Just as during the Visual 
Playback condition, neurons tend to maintain directional tuning properties during Visual 
+Proprioceptive Playback that are very similar to those observed during Active Movement 
condition (Fig. 8, bottom panel (red histograms in the web version)). 

 

Fig. 8. Similarity in preferred directions of cells during Active Movement and the three 
observation conditions shown as the distributions of differences in preferred directions 
between: Active Movement and the Visual Playback conditions (orange in the web version); 
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Active Movement and Proprioceptive Playback conditions (gray in the web version); Visual 
Playback and Visual +Proprioceptive Playback conditions (red in the web version). 

 

Fig. 9. Separable sensory and motor responses during Proprioceptive Playback. (A) 
Distribution of peak mutual information lags of cells that show a 180 degree shift in preferred 
direction between the Proprioceptive Playback and Active Movement conditions. The mean lag 
of this distribution occurs to the left of the zero lag and thus reflect ‘sensory’ activity. (B) 
Distribution of peak mutual information lags of cells that show no shift in preferred direction 
between the Proprioceptive Playback and Active Movement conditions. The mean lag of this 
distribution occurs to right of the zero lag reflecting activity that ‘drives’ movement. In both 
panels, the inset figures describe histogram of preferred direction differences for their 
respective group of cells. 

We attribute this enhanced congruence in the Visual +Proprioceptive Playback condition to the 
addition of proprioceptive feedback, which allows the monkey to better estimate the state of his 
hand in this condition. During the Visual Playback condition, monkeys are given veridical visual 
information about the goal of the desired movement, but they lack complete information about 
the starting location of the would-be movement. When the arm is unseen, planning a 
movement requires the visual sense to establish a movement goal and the proprioceptive 
sense to establish the starting position of the movement (Rossetti et al., 1995, Sober and 
Sabes, 2003, van Beers et al., 1999). When the two modalities are combined, the information 
necessary for a more accurate movement plan is available and therefore we observe the 
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greatest peak mutual information at the most ‘motor’ lags during conditions where veridical 
feedback from both sensory modalities is present (i.e. Vision +Proprioceptive Playback). 

An alternative explanation is that the monkeys might be actively moving their arm with 
assistance from the exoskeleton. This is unlikely because movements generated by the animal 
would not necessarily follow the same trajectory as the visual cursor thereby increasing the 
error between the visual cursor and the hand. This increase in error would cause the trial to be 
removed from our analyses due to a violation of the empirically established error threshold. 

Consistent with the expectation that proprioceptive feedback enhances the congruency in 
neural responses, we found that Proprioceptive Playback generates strong state information 
about the arm. We found no difference in the magnitude of peak mutual information about 
hand movement in the Proprioceptive Playback condition as compared to Visual 
+Proprioceptive Playback, and the information magnitude was greater than in Visual Playback. 
In contrast, we found that the tuning relationships of a subset of neurons were shifted by 
approximately 180 degrees (‘Oppositely Tuned’) during Proprioceptive Playback. When 
examining the responses of these cells more closely, we found that those neurons had a 
sensory peak information lag at −10.9 ms (i.e. movement precedes neural activity), while those 
neurons with congruent tuning had a peak information lag of 25 ms. 

4.2. Proprioceptive information induces rapid motor responses to sensory stimuli 

In a study examining the motor and sensory responses of neurons in MI, Fetz and colleagues 
observed a population of neurons that increased their spiking activity in response to active and 
passive elbow movements made in the same direction (Fetz et al., 1980). We also found that 
some cells maintained their tuning relationship during Proprioceptive Playback and discharged 
at lags consistent with a ‘driving’ response (Fig. 9(B)). The motor-like response of these cells is 
unexpected because the visual target is invisible during Proprioceptive Playback, and thus the 
stimulus required to plan a movement is absent. During playback, however, the monkeys are 
trained to comply with the movements of the exoskeleton. Continuous movement of the 
exoskeleton provides an understanding of where the arm is moving and because the hand’s 
future movement direction is related to the current direction, it is probable that the monkeys 
can make an accurate prediction of the goal of the movement for some short time delay (on 
the order of the driving response, 25 ms). Thus, a weak motor command that facilitates the 
current movement direction is likely generated, although it is not executed. 

Responses similar to the opposing responses we described have been observed previously in 
experiments exploring neural responses to load compensation (Evarts & Tanji, 1976) and 
active/passive movements (Fetz et al., 1980). Evarts and Tanji described this type of neural 
response in MI pyramidal tract neurons. In that study the monkeys were trained to maintain a 
static posture as they held on to a joystick. During a hold phase, a light instructed the direction 
of movement that the animals had to generate when a torque perturbation cue was applied to 
the joystick. The instructed direction of movement either coincided with or opposed the 
direction of torque perturbation. They found that a large number of neurons would discharge to 
generate a movement in a particular direction, and that the same neurons would discharge 
reflexively, when an external stimulus was applied in an opposing direction (Evarts & Tanji, 
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1976). Similarly, Fetz and colleagues found a population of neurons in MI that responded to 
active and passive elbow movements made in opposite directions (Fetz et al., 1980). They 
speculated that cells with these responses could function as a component of a ‘transcortical 
reflex’ loop. 

Our paradigm is similar to that of Evarts and Tanji in that an external stimulus is being applied 
to the handle that the monkeys hold. In our experiment, however, the stimulus is continuous 
and the monkeys are taught to comply with the perturbation and allow their arm to follow the 
motion of the exoskeleton. We speculate that when the movement of the exoskeleton changed 
direction, a reflexive response was evoked in some cells. We observed this response in the 
‘Oppositely Tuned’ cells as a 180 degree shift in the neurons’ preferred directions, as well as a 
shift in the mean peak mutual information lags to reflect a sensory relationship (Fig. 9(A)). 

These cells did not demonstrate an opposing response during the Visual +Proprioceptive 
Playback condition. Instead, we found that this population of cells had similar tuning properties 
as those observed when the monkeys actively moved their arm. During playback with a visual 
target, the motor command does not result in a movement because the monkeys are trained to 
relax. It is, however, likely that the sensory consequences of this covert motor command (i.e. a 
motor command that is generated but movement execution is suppressed) are available by 
way of the combination of efference copy and a forward model (for a review see Wolpert and 
Ghahramani (2000)). Because the relaxed arm is driven to the target by the exoskeleton and 
the visual target is present in the Visual +Proprioceptive Playback condition, the sensory 
prediction closely approximates the actual state of the limb resulting in a down-regulation of 
reflex responses via alpha-gamma motorneuron coactivation (Bullock, Cisek, & Grossberg, 
1998). This process results in the congruent tuning relationship observed in the Visual 
+Proprioceptive Playback condition (Fig. 8, bottom panel (red in the web version) histogram). 
In contrast, during Proprioceptive Playback the target is invisible and a weak motor command 
is generated due to the monkeys’ implicit understanding that they must comply with 
movements of the exoskeleton. Therefore, the neuromotor controller is not able to 
appropriately adjust the activity of the gamma motor neuron pool resulting in a neural response 
to arm motion having an opposite tuning relationship compared to active movement. 

4.3. BMI application of visually triggered responses in MI 

Consistent with our previous report, we demonstrated that the activity of neurons in MI during 
visual observation of action contains a significant amount of information related to movement 
direction at time lags consistent with the generation of motor commands (Rossetti et al., 1995, 
Tkach et al., 2007). The tuning properties of these neurons are also congruent with preferred 
directions measured during the Active Movement condition (Fig. 8, top panel (orange in the 
web version) histogram). These congruent (‘mirror-like’) responses during Visual Playback 
seem to be triggered involuntarily (i.e. in the absence of and volitional motor intention) as the 
monkeys are required to keep their arm still. 

These responses have utility in BMI applications. Previous strategies have used motor imagery 
to elicit activity in MI in patient populations in order to build a decoder (Hochberg et al., 2006). 
The ability of patients to imagine movements, however, was not consistently present (Maryam 
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Saleh, unpublished data). Moreover, there is some evidence that “first-person”, kinetic motor 
imagery elicits stronger activation in primary motor cortex as compared to “third-person”, visual 
motor imagery (Lotze & Halsband, 2006). However, it is more difficult to instruct the patient to 
generate kinetic imagery (Solodkin, Hlustik, Chen, & Small, 2004). It is likely that these 
automatic, visually-triggered responses we observed during Visual Playback can be used to 
build a mapping between neural modulation and cursor motion that can be used to guide the 
movement of a BMI in real-time in patients who are unable to generate movement. 

5. Conclusion 

The finding that passive, task-like movements enhance congruent responses in the motor 
cortex is very important in the context of augmenting BMIs with additional sensory modalities. 
Given this finding, two possible strategies arise for such an augmentation. One strategy is to 
rely on both visual and proprioceptive feedback to build or ‘train’ a decoder. One can imagine a 
paralyzed subject with residual proprioceptive sense — a patient suffering from ALS for 
instance — passively observing a repertoire of prerecorded movements while a temporary 
exoskeleton moves the subject’s limbs to mimic the observed movements. Since 
proprioceptive feedback enhances the mirror-like responses of MI neurons, the resulting 
performance of such an implementation could be superior to a decoder trained with visual 
feedback alone. 

The second strategy is to rely on proprioceptive feedback during real-time decoding. That is, 
relying on proprioceptive feedback to enhance the accuracy of the decoder that was trained 
using only passive observation. This approach could be implemented again either by the use 
of a portable exoskeleton or through functional electrical stimulation (FES). While the 
exoskeleton would be controlled by the output of the decoder to provide the subject with 
proprioceptive feedback about the decoded action, FES could be used to stimulate the 
muscles in the limb and thus the residual proprioceptive sense would inform the patient about 
the movements of their own limb (Hatsopoulos & Donoghue, 2009). Whichever strategy is 
ultimately chosen, the results of this study suggest that the performance of BMIs can be 
improved by adding additional forms of sensory feedback, like proprioception, during the 
training stage, the decoding stage, or both. 
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	Abstract
	Recent improvements in cortically-controlled brain-machine interfaces (BMIs) have raised hopes that such technologies may improve the quality of life of severely motor-disabled patients. However, current generation BMIs do not perform up to their potential due to the neglect of the full range of sensory feedback in their strategies for training and control. Here we confirm that neurons in the primary motor cortex (MI) encode sensory information and demonstrate a significant heterogeneity in their responses with respect to the type of sensory modality available to the subject about a reaching task. We further show using mutual information and directional tuning analyses that the presence of multi-sensory feedback (i.e. vision and proprioception) during replay of movements evokes neural responses in MI that are almost indistinguishable from those responses measured during overt movement. Finally, we suggest how these playback-evoked responses may be used to improve BMI performance.
	Keywords
	Motor cortex, Observation, Mirror-neuron, Brain machine interface, Sensory feedback, Proprioception
	1. Introduction
	The field of brain-machine interfaces (BMIs) has seen rapid and substantial growth over the past decade. BMIs that record signals from the cortex offer the possibility of deciphering motor intentions in order to control devices. This capability could allow severely motor-disabled people to interact with the outside world, thereby improving their quality of life. In principle, BMIs could help people with such central or peripheral nerve injuries and disease states as spinal cord injury, amyotrophic lateral sclerosis (ALS), stroke, muscular dystrophy, amputation, and cerebral palsy. The principal assumption for successful operation of cortically-controlled BMIs is that cortical activity is still available and can be decoded despite the injury or disease. Early-stage clinical testing of BMIs has indicated that, in fact, cortical activity can be voluntarily modulated to control simple devices Hochberg et al. (2006), Kennedy and Bakay (1998), Truccolo, Friehs, Donoghue, and Hochberg (2008).
	Despite these initial clinical successes, the next-generation BMIs will need to take advantage of different forms of sensory information to reliably build or ‘train’ decoding algorithms as well as augment closed-loop BMI control in patients who cannot move. Experimental evidence has shown greater diversity in the responses of neurons in the primary motor cortex (MI) than is typically assumed. In addition to driving overt movement, neurons in MI discharge in response to passive visual observation of action (Tkach, Reimer, & Hatsopoulos, 2007), visual-motor imagery (Carrillo-de-la-Pena et al., 2008, Roth et al., 1996), kinesthetic perception (Naito, Roland, & Ehrsson, 2002), and passive joint motion (Fetz, Finocchio, Baker, & Soso, 1980). Recently, some have even proposed using the movement related activity in MI triggered by passive observation of an action to build a decoder (Tkach et al., 2007, Tkach et al., 2008, Wahnoun et al., 2006). To date, however, no one has demonstrated the utility of proprioceptive sensory information within the context of a BMI application.
	The proprioceptive sense is critical for normal motor control. Experimental evidence indicates that abilities for on-line control and error correction are normally highly-dependent on the proprioceptive system, which in turn is mediated by the fastest conducting nerves in the body. In humans, alterations to movement trajectory have been detected as early as 70 ms after a proprioceptive cue (Crago, Houk, & Hasan, 1976). Furthermore, patients with large-fiber neuropathy affecting proprioceptive afferents exhibit uncoordinated and slowed movements (Ghez et al., 1995, Sainburg et al., 1995). Although proprioceptive feedback is vital for accurate and naturalistic movements, almost all current BMIs rely solely on visual feedback to correct errors during on-line control of a device. As a result, the output of such systems generates movements that tend to be erratic and difficult to control (Hochberg et al., 2006). A BMI that incorporates proprioceptive as well as visual feedback would likely show significantly improved device control.
	In this paper we describe the results of an experiment designed to test the hypothesis that proprioceptive feedback together with vision can trigger more informative motor commands from MI during passive stimulation than during observation of movement alone. Using mutual information (between spiking activity and cursor/hand direction) and directional tuning metrics, we compare the neural responses in MI elicited by visual and proprioceptive sensory feedback during passive playback of movement. The data suggest that proprioceptive feedback alone has a greater effect on neural activity than visual feedback alone. More importantly, when these two sensory modalities are combined, the resultant neural activity is nearly indistinguishable from that activity observed during active movement of the arm. Finally, we suggest how these responses could be used to improve training and control in BMI applications.
	2. Materials and methods
	2.1. Behavioral task
	2.2. Experimental design
	2.3. Electrophysiology
	2.4. Analysis

	Two adult male rhesus macaques (Macaca mulatta) were operantly trained to control a cursor in two dimensions using a two-link robotic exoskeleton (Scott, 1999). The animals sat in a primate chair and placed their arm in the exoskeleton. Their shoulder joint was abducted 90 degrees and their arm supported by the exoskeletion such that all movements were made in the horizontal plane. Direct vision of the limb was precluded by a horizontal projection screen above the monkey’s arm. A visual cursor aligned with the location of the monkey’s hand was projected onto the screen and served as a surrogate for the location of the hand (Fig. 1, circle (red in the web version)). Shoulder and elbow angle and angular velocity were digitized at 500 Hz and transformed to the visual cursor position (mm) using the forward kinematics equations for the exoskeleton (Scott, 1999).
	/
	Fig. 1. Experimental apparatus and trajectories during the Active Movement, Visual, Proprioceptive and Visual + Proprioceptive playback phases. The monkey performs the random target pursuit (RTP) task in the horizontal plane using a two-link exoskeletal robot. Direct vision of the arm is precluded. During the RTP task the monkeys move a visual cursor (circle (red in the web version)) to a target (filled (blue in the web version) square). The target appeared at a random location within the workspace (10 by 6 cm), and each time the monkey hits it, a new target appeared immediately in a new location selected at random (dashed filled (green in the web version) square). In order to complete a successful trial and receive a juice reward, the monkey was required to sequentially acquire seven targets. (A) During Active Movement, the position of the visual cursor (red circle) was controlled by the movements of the monkey’s hand. The right panel shows the X dimension of the visual cursor (red trace) and hand movement (black trace). (B) During Visual Playback, target positions (squares) and cursor trajectories (circle (red in the web version)) recorded during the Active Movement condition are replayed while the animal voluntarily maintains a static posture in the robotic exoskeleton. If the monkey moves his hand outside of the hold region (dashed (red in the web version) circle) the current trial is aborted and the cursor and target are extinguished until the hand is returned. (C) During Proprioceptive Playback condition, the monkey’s hand is moved through the cursor trajectories recorded during Active Movement. Here, the visual cursor and target are invisible (dashed black circle and squares). The right panel shows how the hand (black trace) is driven through the same trajectory as the invisible visual cursor (dashed gray (red in the web version) trace) providing a Proprioceptive Playback condition. Notice how the hand trajectory lags behind the cursor trajectory due to the dynamics of the position controller/exoskeleton. (D) During the Visual +Proprioceptive Playback condition, target positions (squares) and cursor trajectories (circle (red in the web version)) recorded during the Active Movement phase are replayed and the monkey’s hand is moved through the cursor trajectories by the exoskeleton. The right panel shows how the visual cursor (gray (red in the web version) trace) and hand (black trace) move through the same trajectory in the X dimension. Again, the hand movement lags slightly behind the movement of visual cursor due to position controller/exoskeleton dynamics. In all conditions, the same trends were observed in the Y dimension.
	The random target pursuit (RTP) task required the monkeys to repetitively move a cursor (6 mm diameter circle) to a square target (2.25 cm2). The target appeared at a random location within the workspace (10 cm by 6 cm), and each time it was hit, a new target appeared immediately in a new location selected at random (Fig. 1). In order to complete a successful trial and receive a juice reward, the monkeys were required to sequentially acquire seven targets. Because each trial completion was followed by the immediate presentation of another target, the monkeys typically did not pause between trials, but rather generated continuous movement trajectories. A trial was aborted if any movement between targets took longer than 5000 ms or if the monkeys removed their arm from the apparatus.
	This experiment consisted of four experimental conditions: (1) Active Movement, (2) Visual Playback, (3) Proprioceptive Playback and (4) Visual +Proprioceptive Playback. In the Active Movement condition, the animals performed the standard RTP task and controlled the cursor via the exoskeleton (Fig. 1(A)). During the playback conditions, target positions and cursor movements generated during the Active Movement phase were replayed to the monkeys through different sensory modalities. The playback conditions were designed to dissociate the effects of vision and proprioception on the spiking activity of MI. In the Visual Playback condition (Fig. 1(B)) both the cursor and the target were visible to the monkeys, just as during the Active Movement condition, while the monkeys maintained a static, relaxed posture in the exoskeleton (Fig. 1(B), black line). If the monkeys moved the handle of the exoskeleton outside of a “hold” region (Fig. 1(B), dotted (red in the web version) circle) or removed their arm from the exoskeleton the game was “turned off” until the monkeys returned their arm to the appropriate position. In the Proprioceptive Playback condition (Fig. 1(C)), both the cursor and target were invisible and the monkeys‘ arms (Fig. 1(C), black line) were moved through the replayed trajectory of the invisible cursor (Fig. 1(C), dashed gray (red in the web version) line) by the robotic exoskeleton. The final condition (Visual +Proprioceptive Playback, Fig. 1(D) combined both the visual and proprioceptive sensory feedback modalities. Here, the monkeys visually observed a playback of the cursor trajectories and target positions recorded during the Active Movement condition while their arm was moved through the replayed cursor trajectory by the exoskeleton. During all passive playback conditions, the monkeys received juice at the completion of every successful trial just as during performance of the RTP task, even when the cursor and target were not visible.
	In the Proprioceptive and Visual +Proprioceptive Playback conditions, a PD controller was used to drive the robot’s end-effector (i.e. the monkeys’ hand) to follow the trajectory of the cursor. To assess the accuracy of the PD controller, we performed a separate control experiment where we measured the dynamics and average error between the commanded (i.e. the cursor) and actual positions of the robot (and hand) during replayed trajectories with anesthetized monkeys. The monkeys were anesthetized (Ketamine, 2 mg/kg; Dexmedatomidine, 75 mcg/kg; Atropine, 0.04 mg/kg) and then placed in the primate chair with their arm secured in the exoskeleton. The cursor position was digitized (500 Hz) and recorded independently while the monkeys’ relaxed arm was moved through replayed cursor trajectories for approximately 5 min. Playback of each trajectory was repeated three times for a total exposure time of 15 minutes. We computed the cross-correlation between the X and Y cursor and hand positions during passive arm movement to measure the time delay between movement of the cursor and the hand. As expected, a strong correlation (>0.95) was observed between cursor and hand position at time delays averaging 98 ms and 52 ms in the X and Y direction, respectively. To compute the error between cursor and hand positions, we first corrected for the temporal delay of the position controller/exoskeleton by shifting the hand position data in time by the appropriate delay and then computed the Euclidean distance (error) between the cursor and hand position on a sample-by-sample basis. In this control experiment the error between the cursor and hand position averaged 5.40 ± 4.03 (SD) mm for monkey MK and 8.99 ± 4.46 mm for monkey B.
	Each monkey was chronically implanted with a 100-electrode (400 μm interelectrode separation) microelectrode array (Blackrock Microsystems, Inc., Salt Lake City, UT) in the primary motor cortex contralateral to the arm used for the task (Maynard et al., 1999). The electrodes on each array were 1.5 mm in length, and their tips were coated with iridium oxide. During a recording session, signals from up to 96 electrodes were amplified (gain of 5000), band-pass filtered between 0.3 kHz and 7.5 kHz, and recorded digitally (14-bit) at 30 kHz per channel using a Cerebus acquisition system (Blackrock Microsystems, Inc., Salt Lake City, UT). Only waveforms (1.6 ms in duration; 48 sample time points per waveform) that crossed a threshold were stored and spike-sorted offline using Offline Sorter (Plexon, Inc., Dallas, TX). Signal-to-noise ratios were defined as the difference in mean peak-to-trough voltage divided by twice the mean standard deviation. The mean standard deviation was computed by measuring the standard deviation of the spike waveform over all acquired spikes at each of the 48 sample time points of the waveform and then averaging. All isolated single units used in this study possessed signal-to-noise ratios of three or higher. A total of seven data sets (four data sets for animal MK and three data sets for animal B) were analyzed in this experiment. A data set is defined as the simultaneously recorded neural activity during a single recording session and contained between 300 to 800 individual trials.
	Kinematics: Kinematic parameters (position and direction) of hand and cursor movement in each condition were binned in 50 ms bins and boxcar-smoothed using a 150 ms sliding window for most analyses. In this experiment, the monkeys were trained to voluntarily relax their arm while either maintaining a static posture (i.e. Visual Playback condition) or while their arm was moved by the exoskeleton (i.e. Proprioceptive and Visual +Proprioceptive Playback conditions). To avoid including those trials during which the monkeys may have drifted or voluntarily moved their arm away from the desired position, we defined a relaxation metric to filter the data. After correcting for the time delay of position controller based on values obtained from the control experiment, we computed the error (Euclidian distance) between the cursor and hand positions on a sample–by-sample basis. Trials with an average error exceeding the mean error plus two standard deviations (as obtained from the control experiment described above) were excluded from further analysis. This threshold was 13.46 mm for monkey MK and 17.91 mm for monkey B.
	Mutual information: Mutual information between binned neural data and kinematics (50 ms bins) was calculated at multiple time leads and lags as in Paninski, Fellows, Hatsopoulos, and Donoghue (2004). This analysis captures nonlinear relationships between the two variables by means of signal entropy reduction. The computation yields a measure of the strength of the relationship between the two variables when they are shifted with respect to each other by different time lags. By examining the relative timing of the peak mutual information, we were able to determine at what time lag a neuron’s modulation was most related to the cursor movement.
	The kinematic probability distributions (one-dimensional distribution of instantaneous movement direction) conditioned on the number of observed spikes were estimated by histograms of the empirical data. To account for biases in this estimation, the information calculated from shuffled kinematic bins (mean of one hundred shuffles) was subtracted from the values obtained from the actual data for each cell. Furthermore, the statistical significance of the peaks in mutual information profiles was determined by comparing the magnitude of the resulting peak against the distribution of peak magnitudes at that lag resulting from the one hundred shuffles. If the magnitude of the peak mutual information was greater than ninety-nine of the values at that specific lag resulting from the one hundred computations on shuffled data, then the peak was deemed to be significant at the 𝑝<0.01level. Lastly, the significant lead/lag mutual information profiles were boxcar-smoothed with a 3-bin window (150 ms).
	Directional tuning: Preferred directions (PDs) were determined for each experimental condition by calculating the mean binned spike count (50 ms bins) as a function of instantaneous movement direction (at 
	radian resolution). The lag between neural activity and movement direction for each cell was chosen based on the lag of the peak mutual information (see “Mutual information profiles”). The mean spike counts per direction were fit with a cosine function (Georgopoulos, Kalaska, Caminiti, & Massey, 1982). Cells were considered to be cosine-tuned if the correlation between the empirical mean spike counts and the best-fit cosine function was greater than 0.5. Only cells that were cosine-tuned in both conditions were used to assess the difference in preferred directions between the Active Movement and individual playback conditions.
	3. Results
	3.1. Context dependent modulation of spiking activity
	3.2. Information in neural spiking activity

	3.3. Directional tuning

	We have previously demonstrated that neurons in the motor cortex demonstrate congruent activity during visual observation of action when compared to active movement (Tkach et al., 2007). Here, we designed an experiment to test the hypothesis that proprioceptive as well as visual feedback during observation of action would elicit responses in the motor cortex similar to those seen during active movement of the arm. We utilized four experimental conditions to test this hypothesis: Active Movement, Visual Playback, Proprioceptive Playback, and Visual +Proprioceptive Playback.
	We first examined the spiking response of each neuron to changes in experimental condition by computing the instantaneous binned firing rate (50 ms bin size). Over the time scale of the entire experiment, we found significant heterogeneity in the responses of individual neurons. A one-sample 𝑡-test revealed that the firing rate of 97.4% (452/464) of neurons we recorded was modulated with respect to its mean firing rate over the duration of the experiment in at least one experimental condition. We compared the conditional firing rate to the mean firing rate over the duration of the experiment (baseline) because the experimental design did not include a time of quiet rest in which to measure a true baseline firing rate for each neuron. In most cases, we found that neurons responded (either an increase or decrease in firing rate) to more than one condition as 82.1% (371), 73.4% (332), 72.4% (327) and 65.7% (297) of neurons responded to the Active Movement, Visual Playback, Proprioceptive Playback, and Visual +Proprioceptive Playback conditions, respectively. The firing rate of the majority of cells decreased with respect to the baseline in each experimental condition [52% (193), 59.4% (199), 59.6% (195) and 64.3% (191) in the Active Movement, Visual Playback, Proprioceptive Playback, and Visual +Proprioceptive Playback conditions, respectively].
	Some neurons seemed to prefer Active Movement, while others preferred individual sensory modalities or some complex combination of movement and sensory feedback. This diversity as well as structured neural activity are illustrated in Fig. 2 which shows the normalized binned firing rate as a function of time for each of the 87 neurons recorded during a single session. Changes in the experimental condition precisely correlate with substantial changes in the firing rate of individual neurons appearing as vertical striations in Fig. 2 (in particular, note those neurons emphasized by black brackets).
	/
	Fig. 2. Time series of binned firing rates for all units recorded during a single session (B-080725). Firing rates from each individual neuron were binned (50 ms bin size) and normalized to their maximum firing rate. The resulting time series were then smoothed using a zero-phase, 4th order, butterworth, lowpass filter with a cutoff frequency of 0.1 Hz for display purposes. Bins shown in white represent the highest firing rates for each cell, while those areas shown in black correspond those time when the firing rate was very low. Notice the substantial changes in the firing rates of some cells at the transitions between experimental conditions (especially those cells denoted by the black brackets). The colored bar at the top of the figure shows the transitions between the 4 experimental conditions.
	To formalize this diversity of neuronal responses, we first removed the mean firing rate of individual neurons over the duration of the experiment and computed the average firing rate per each experimental condition. Next, we used a one-way ANOVA to identify differences in the neuronal firing rates related to experimental conditions. ANOVA found a significant main effect of the experimental condition in 96% (446/452) of the neurons that modulated in any condition. We then used post hoc 𝑡-tests to sort each neuron into one of four groups based on their conditional firing rate. We first identified those cells that increased their firing rate only during the Active Movement condition (Fig. 3, top (blue in the web version) trace). Only 3.6% of cells (16/446) were placed in this group indicating that the activity of neurons in MI is related to more than just overt movements. We further classified each neuron based on its responses during the Visual and Proprioceptive Playback conditions. Those cells that increased their firing rate in the Visual Playback condition as compared to the Proprioceptive Playback condition were placed in the Prefers Vision group (Fig. 3, middle (orange in the web version) trace). Conversely, those cells that increased their firing rate in the Proprioceptive Playback as compared to the Visual Playback conditions were placed in the Prefers Proprioception group (Fig. 3, bottom (gray in the web version) trace). This is not to say that those cells classified as Prefers Vision or Prefers Proprioception responded only to the unimodal playback conditions (these cells likely modulate during multiple experimental conditions including Active Movement), but rather that these cells simply responded more strongly to one sensory modality over another during playback. The remaining cells were modulated similarly in the Visual and Proprioceptive Playback conditions and were categorized as Multi-Sensory. The majority of cells were placed in one of the unimodal sensory feedback categories with 39.4% (176/446) and 34.8% (155/446) of cells categorized as Prefers Vision or Prefers Proprioception, respectively. The Multi-Sensory group contained 22.2% (99/446) of the neurons.
	/
	Fig. 3. Diverse pattern of activity in single units during observation of action with different sensory modalities. Individual cells from the population of neurons we recorded were sorted into 4 categories based on their average firing rate in each experimental condition. Some cells only responded to Active Movement (B-080725_u01, top (blue in the web version) trace). The Prefers Vision group of cells responded most strongly to the Visual Playback condition (B-080725_u53, middle (orange in the web version) trace), while the Prefers Proprioception population responded most strongly to the Proprioceptive Playback condition (B-080725_u47, bottom (gray in the web version) trace). The final group (Multi-Sensory, not shown) consisted of those cells that responded similarly to both the Visual and Proprioceptive Playback conditions. It is important to note that those cells classified as Prefers Vision or Prefers Proprioception did not respond only during the unimodal playback conditions; rather the firing rate of these cells was modulated during multiple experimental conditions (see increased firing rate during Visual +Proprioceptive Playback condition in the example cell classified as Prefers Proprioception). The colored bar at the top of the figure shows the transitions between the 4 experimental conditions. Here the binned firing rate time series were smoothed using a zero-phase, 4th order, butterworth, lowpass filter with a cutoff frequency of 0.05 Hz for display purposes.
	To assess the effect of sensory playback modality on the neural activity, we computed the mutual information between the instantaneous binned firing rate of each cell and the binned direction of either the cursor or monkey’s hand, depending on the experimental condition. The amount of mutual information about the direction of either the cursor or the hand movement is computed at temporal lags with respect to the instantaneous binned firing rate. Values at negative lags represent the amount of mutual information in the current neural activity about the direction movement that has already taken place. Alternatively, values at positive lags represent the amount of mutual information in the current neural activity about the direction of movement that has yet to occur. By considering the relative timing of the peak in mutual information together with the magnitude of the peak mutual information we were able to determine at what time lag a neuron’s modulation is most related to the direction of movement.
	We computed the mutual information measure using the direction of the visual cursor movement when analyzing the data from the Active Movement and Visual Playback conditions. In the Active Movement condition, the visual cursor position was identical to the position of the monkey’s hand. In the Visual Playback condition, the monkey’s arm was motionless while the visual cursor and targets were the only relevant sensory stimuli. Since in the Proprioceptive Playback condition the only relevant sensory stimulus was the movement of the monkey’s hand along the trajectory of the invisible cursor, we computed the mutual information measure using the direction of movement of the monkeys’ hand to analyze the data from this condition. In the Visual +Proprioceptive Playback conditions, both the visual and proprioceptive stimuli are present since the monkey’s arm is being driven along the trajectory of the visual cursor. For this condition, we computed the mutual information metric twice - on the direction of the cursor movement as well as on the direction of the hand movement.
	Consider the mutual information profiles for one cell, shown in Fig. 4. The activity of this particular cell carried the greatest information (0.127 bits) about the direction of cursor movement during the Active Movement condition (Fig. 4, solid black (blue in the web version) trace). Furthermore, the neural activity of this cell carried the greatest amount of information about the direction of cursor movement occurring ∼160 ms in the future. This temporal relationship may be interpreted as a feed-forward signal “driving” the cursor movement and is typical of motor cortical neurons that causally “drive” movement (Moran and Schwartz, 1999, Paninski et al., 2004). Note that the amount of peak information and the timing at which it occurred differed for this neuron under the four experimental conditions. The trend in the difference indicated that the Visual +Proprioceptive Playback condition (Fig. 4, dashed gray (red in the web version) trace) generated a more “motor” response and was most similar to the Active Movement condition, while the Visual Playback and Proprioceptive Playback conditions (Fig. 4, dashed black (orange in the web version) and solid gray traces, respectively) elicited a more “sensory” response.
	/
	Fig. 4. Example mutual information temporal profiles (in bits) for a single unit during Active Movement and playback conditions. Each trace plots the mutual information between the firing rate of a single neuron and the movement direction over different relative times between the two. A positive lag time denotes that the neural activity was measured before the movement direction whereas a negative lag time denotes that the neural activity was measured after the movement direction. A zero lag time denotes that the neural activity and movement direction were measured simultaneously. Mutual information profiles are plotted during the Active Movement (solid black (blue in the web version) trace), Visual Playback (dashed black (orange in the web version) trace), Proprioceptive Playback (solid gray trace) and Visual +Proprioceptive Playback conditions (dashed gray (red in the web version) trace).
	Using the mean firing rate-based cell classifications described earlier, we compared the magnitude of peak mutual information in the three playback conditions across the population of recorded neurons. A one-way ANOVA on mutual information found a significant effect of playback condition in cells classified as Prefers Proprioception or Multi-Sensory (𝑝<0.05;𝐹2,462=8.73 and 𝐹2,294=3.78, respectively). We then used post-hoc 𝑡-test to determine pair-wise differences in information magnitude for these groups of neurons.
	In those neurons classified as Prefers Proprioception, the magnitude of peak mutual information was greater in the conditions where the monkeys received proprioceptive sensory feedback (Proprioceptive Playback and Visual +Proprioceptive Playback) as compared to the Visual Playback condition (𝑝<0.05). In these neurons, there was no difference in resulting peak mutual information magnitudes between the Proprioceptive and Visual +Proprioceptive Playback conditions. Similarly, in those neurons categorized as Multi-Sensory, peak information magnitude was greater during Visual +Proprioceptive Playback as compared to Visual Playback (𝑝<0.05). In these neurons there was no difference, however, between the peak information magnitude in the Proprioceptive Playback condition and the Visual +Proprioceptive and Visual Playback conditions, respectively. We found no significant effect of playback condition in the neurons classified as Prefers Vision.
	We were specifically interested in understanding how the strength and temporal relationship of mutual information was modulated by sensory feedback modality in cells whose activity contained significant information about direction in each of the experimental conditions. Therefore, to be included in the following analyses, cells had to exhibit significant peak mutual information computed on the direction of cursor movement in the Active Movement and Visual Playback conditions as well as on the direction of the hand movement in the Proprioceptive and Visual +Proprioceptive Playback conditions. Approximately 27% (125/464) of all recorded cells from both monkeys passed this criterion. To make comparisons relevant to the Visual+ Proprioceptive Playback condition, cells had to meet the above criterion as well as exhibit significant mutual information peaks in the Visual +Proprioceptive Playback condition when computed on the direction of cursor movement. Having imposed this extra criterion we were left with 124 of the original 125 accepted neurons. Based on the mean conditional firing rate classification, 57 (45.9%), 29 (23.3%) and 35 (28.2%) of these 124 neurons were classified as Prefers Vision, Prefers Proprioception and Multi-Sensory, respectively. Only two neurons (1.6%) responded solely to the Active Movement condition, and one neuron was unclassified.
	We examined the mutual information content by pooling the peak mutual information values (Table 1) of each cell and pooling the lags (Table 2) at which those peak values occurred within each experimental condition (Fig. 5, Fig. 6, respectively), across the two monkeys. We then used paired 𝑡-tests to examine the experimental conditions for differences between the peak information magnitudes and lags. We used a threshold of 𝛼=0.05/4=0.0125 (bonferroni correction for multiple comparisons) to determine statistical significance.
	Table 1. Statistical comparison of mean peak mutual information values with respect to direction of movement among the four different experimental conditions. Significant values are shown in bold face. All tests were paired 𝑡-tests.
	Table 2. Statistical comparison of mean peak mutual information lags with respect to direction of movement among the four different experimental conditions. Significant values are shown in bold face. All tests were paired 𝑡-tests.
	/
	/
	Fig. 5. Graded changes in peak mutual information about movement direction. (A) Peak mutual information values (bits) with respect to direction of movement of the 125 cells used in our analyses during Active Movement (AM, blue), Visual Playback (V PLBK; orange), Proprioceptive Playback (PPLBK; gray) and Visual +Proprioceptive Playback (V +PPLBK; red) conditions. Values exceeding 0.2 bits in magnitude are reported at that value. (B) Top panel (gray dots in the web version) shows the comparison of the magnitude of peak mutual information with respect to direction of movement conveyed by neurons during the PPLBK condition with the magnitude of information conveyed during V PLBK condition. The bottom panel (red dots in the web version) shows the comparison of the magnitude of peak mutual information with respect to direction of movement conveyed by neurons during the V +PPLBK condition with the magnitude of information conveyed during the V PLBK condition. Data in both panels is reported as the natural log of the mutual information bit values.
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	Fig. 6. Graded changes in the time lag of peak mutual information about movement direction. Distribution of lags at which mutual information with respect to direction of movement peaks for the 125 cells used in our analysis during Active Movement (blue histogram in the web version), Visual Playback (orange histogram in the web version), Proprioceptive Playback (gray histogram in the web version) and Visual +Proprioceptive Playback (red histogram in the web version) conditions. The dotted vertical line intersecting the four histograms represents the 0s time lag.
	When comparing the two unimodal sensory conditions (Visual Playback [V PLBK] and Proprioceptive Playback [PPLBK]; Fig. 5(A), (data shown in orange and gray, respectively in the web version), we found that the peak information provided by most cells about the direction of movement was significantly higher in the Proprioceptive than in the Visual Playback conditions (Fig. 5(B) top panel; Table 1). Neural activity sampled during the Visual and Proprioceptive Playback conditions provided significantly less information about the direction of movement than the activity in the Active Movement condition (Table 1). Similarly, the Visual Playback condition yielded significantly less information about the direction of movement when compared to the Visual +Proprioceptive Playback condition (Fig. 5(B) bottom panel; Table 1). We found no difference, however, between the magnitude of peak mutual information in the Proprioceptive and Visual +Proprioceptive Playback conditions.
	We found that the peak information provided by most cells about the direction of movement was highest in the two experimental conditions that gave the monkeys both visual and proprioceptive feedback about the direction of movement, that is the Active Movement and Visual +Proprioceptive Playback conditions (Fig. 5(A), AM and V +PPLBK, respectively) (data shown in blue and red, respectively in web version). The amount of information was highest during the Active Movement condition and was second highest during the Visual +Proprioceptive Playback condition when computed on the direction of the hand movement as well as when computed on the direction of the cursor movement (Table 1). While small, the difference between the distributions of peak mutual information magnitudes for the Visual +Proprioceptive Playback condition derived from using the direction of the hand and the direction of the cursor movement was statistically significant (𝑇123=6.4;𝑝<0.005; paired t test).
	We also considered the timing of the mutual information peak in each experimental condition (Fig. 6, Fig. 7). Timing results from the Active Movement condition were regarded as a control, representing the timing of the expected neural activity in MI that ‘drives’ behavior (Table 2). In the Visual Playback condition, the timing of the peak mutual information shifted closer to zero lag. While the difference in the lags of peak mutual information during the Visual Playback condition and the Active Movement condition was significant, the difference in peak information timing during the Visual Playback condition and the Visual +Proprioceptive Playback condition was not (Table 2). The timing of peak mutual information was closest to zero lag during the Proprioceptive Playback condition (Fig. 6, (data shown in gray in the web version)). Here, the average lag at peak mutual information was not significantly different from the average lag in the other unimodal sensory condition–Visual Playback condition (Table 2). However, there was a significant difference in the timing of neural responses when comparing the peak mutual information lags during the Proprioceptive Playback condition and the lags during the Visual +Proprioceptive Playback condition (Table 2).
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	Fig. 7. The summary of Fig. 6, showing average (± standard error) peak mutual information lags across all cells during Active Movement (AM), Visual Playback (V PLBK), Proprioceptive Playback (PPLBK) and Visual +Proprioceptive Playback (V +PPLBK) conditions.
	The timing of peak mutual information during the Visual +Proprioceptive Playback condition resembled the timing of the Active Movement condition most closely (Fig. 6). In fact, there was no difference between the mean peak mutual information time lag in the Active Movement condition and Visual +Proprioceptive Playback condition computed on the direction of hand movement (Table 2). However, there was a marginally significant difference in average peak mutual information time lag between the Active Movement condition and the Visual +Proprioceptive Playback condition computed on the direction of cursor movement (Table 2). We found no difference between the average peak mutual information lags during Visual +Proprioceptive Playback condition derived from direction of cursor movement and direction of hand movement (𝑇123=1.4;𝑝=0.15; paired 𝑡-test). Therefore, for the remainder of this analysis we will only report on the peak mutual information lags computed with respect to the direction of hand movement.
	Our mutual information analysis showed that neural responses most closely resembled movement-like activity when both the visual and proprioceptive sensory modalities were present during playback. Proprioceptive Playback alone facilitates greater amount of mutual information about the direction of movement than Visual Playback alone. However, the temporal characteristics of neural activity during Visual Playback more strongly resembled neural activity during Active Movement when compared to the temporal characteristics of neural activity during Proprioceptive Playback (Fig. 7).
	To further characterize the relationship between neural modulation and direction of movement, we computed the preferred direction of each cell during each condition, and compared the preferred directions of neurons during the Active Movement condition with each of the respective playback conditions (Fig. 9). Of the 124 neurons that passed our mutual information significance criterion, only those that exhibited stable and significant cosine tuning during each of the compared conditions were considered for this analysis. We found no difference in the distributions of preferred directions during the Active Movement and Visual Playback conditions (𝑁=116 cells, 𝑝=0.81, Kuiper test). The mean (±SE) difference in the preferred directions between these two conditions was 16.85∘ (28.07∘). In contrast, the distributions of the preferred directions during Active Movement and Proprioceptive Playback conditions were statistically different (𝑁=122 cells, 𝑝<0.05, Kuiper test). We found no difference between the distribution of the preferred directions during the Active Movement and Visual +Proprioceptive Playback conditions (𝑁=121 cells, 𝑝=0.52, Kuiper test). The mean (±SE) difference in the preferred direction between these two conditions was 3.39∘ (15.65∘).
	Consistent with our previous report (Tkach et al., 2007), the analysis of differences in preferred directions demonstrates that the neurons had similar directional tuning properties during the Active Movement and Playback conditions where a visual target was present (i.e. Visual Playback and Visual +Proprioceptive Playback). In contrast, a bimodal distribution of differences in the preferred direction was observed when comparing tuning in the Proprioceptive Playback and Active Movement conditions (Fig. 9). The bimodal distribution of differences suggested the existence of two populations of neurons, one whose preferred directions were congruent in both conditions and another that were oppositely tuned in the two conditions.
	We further examined this bimodal distribution of preferred direction differences by sorting each significantly tuned neuron into one of two categories. The ‘Oppositely Tuned’ category contained those neurons whose differences in preferred directions during the Proprioceptive Playback and Active Movement conditions were greater than 90∘ or less than −90∘ (Fig. 9(A), inset). Conversely, the ‘Similarly Tuned’ category contained those neurons whose differences in preferred directions were between −90∘ and 90∘ (Fig. 9(B), inset). Next, we computed the mean peak mutual information lag of neurons in these two groups. A one sample 𝑡-test showed that the mean peak mutual information lag of ‘Oppositely Tuned’ neurons (−10.9 ms; Fig. 9(A)) was significantly less than the mean peak mutual information lag of ‘Similarly Tuned’ neurons (25.7 ms; Fig. 9(B)). This indicates that the ‘Oppositely Tuned’ neurons show more of a sensory response during the Proprioceptive Playback condition. Paradoxically, these same cells exhibit a mean peak mutual information lag of 129 ms during the Active Movement condition, which is interpreted as a ‘driving’ lag as opposed to the sensory one as seen in the Proprioceptive Playback condition.
	4. Discussion
	4.1. Enhanced congruence with multisensory feedback
	4.2. Proprioceptive information induces rapid motor responses to sensory stimuli
	4.3. BMI application of visually triggered responses in MI

	Over the past ten years, considerable progress has been made in improving three of the four fundamental components of a cortically-controlled, brain-machine interface: (1) multi-electrode recording sensor arrays, (2) decoding algorithms, and (3) output interfaces to be controlled by the cortically-derived signals. Much less attention has been paid to the fourth component: sensory feedback (Hatsopoulos & Donoghue, 2009). In this work, we used a task involving the visual and proprioceptive replay of movements to dissociate the effect of each modality on the spiking activity of neurons in MI. We tested the hypothesis that task relevant proprioceptive sensory information is present in the activity of neurons in MI and that the addition of veridical proprioceptive feedback about the observed action enhances congruence in neural activity compared to visual observation alone. Consistent with our hypotheses, we found that the activity of neurons in MI was strongly modulated by the direction of arm movement in conditions where monkeys had access to proprioceptive feedback. Furthermore, the combination of visual and proprioceptive feedback during action observation elicited responses in motor cortex that were very similar to those responses recorded during overt arm movements.
	Although perhaps not surprising, one of the striking results of this work is the heterogeneity of neural activity evoked by the experimental manipulations. Specifically, the firing rate of the majority of neurons we sampled was modulated by multiple experimental conditions (both Active Movement and Passive Playback). Additionally, some cells demonstrated clear preferences for distinct feedback modalities during playback (Fig. 3, middle and bottom (orange and gray in the web version) traces). In fact, only 3.6% of the population responded during the Active Movement condition alone. This richness in response characteristics is consistent with the notion that the activity in MI is related to more than simply a single variable explicitly controlling motor output (see Scott (2003) for a review). There is, in fact, significant experimental evidence demonstrating that neural activity in MI is related to many different types of movement information including spatial goals (Kakei et al., 1999, Tkach et al., 2007), hand motion (Georgopoulos et al., 1982, Moran and Schwartz, 1999), sensory feedback (Fetz et al., 1980), force output (Evarts, 1968), and muscle activity (Morrow & Miller, 2003).
	The combination of sensory feedback modalities in the Visual +Proprioceptive Playback condition resulted in peak mutual information values which were statistically greater than Visual Playback alone. Furthermore, these peaks occurred at time lags very close to those observed in the Active Movement condition. We interpret these findings as evidence that when both visual and proprioceptive sensory information about the observed action are veridical, activity in MI more faithfully represents those motor commands that would be present if the animal were actually moving the cursor with his arm. We find further support for this interpretation in the results of our directional tuning analysis. Just as during the Visual Playback condition, neurons tend to maintain directional tuning properties during Visual +Proprioceptive Playback that are very similar to those observed during Active Movement condition (Fig. 8, bottom panel (red histograms in the web version)).
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	Fig. 8. Similarity in preferred directions of cells during Active Movement and the three observation conditions shown as the distributions of differences in preferred directions between: Active Movement and the Visual Playback conditions (orange in the web version); Active Movement and Proprioceptive Playback conditions (gray in the web version); Visual Playback and Visual +Proprioceptive Playback conditions (red in the web version).
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	Fig. 9. Separable sensory and motor responses during Proprioceptive Playback. (A) Distribution of peak mutual information lags of cells that show a 180 degree shift in preferred direction between the Proprioceptive Playback and Active Movement conditions. The mean lag of this distribution occurs to the left of the zero lag and thus reflect ‘sensory’ activity. (B) Distribution of peak mutual information lags of cells that show no shift in preferred direction between the Proprioceptive Playback and Active Movement conditions. The mean lag of this distribution occurs to right of the zero lag reflecting activity that ‘drives’ movement. In both panels, the inset figures describe histogram of preferred direction differences for their respective group of cells.
	We attribute this enhanced congruence in the Visual +Proprioceptive Playback condition to the addition of proprioceptive feedback, which allows the monkey to better estimate the state of his hand in this condition. During the Visual Playback condition, monkeys are given veridical visual information about the goal of the desired movement, but they lack complete information about the starting location of the would-be movement. When the arm is unseen, planning a movement requires the visual sense to establish a movement goal and the proprioceptive sense to establish the starting position of the movement (Rossetti et al., 1995, Sober and Sabes, 2003, van Beers et al., 1999). When the two modalities are combined, the information necessary for a more accurate movement plan is available and therefore we observe the greatest peak mutual information at the most ‘motor’ lags during conditions where veridical feedback from both sensory modalities is present (i.e. Vision +Proprioceptive Playback).
	An alternative explanation is that the monkeys might be actively moving their arm with assistance from the exoskeleton. This is unlikely because movements generated by the animal would not necessarily follow the same trajectory as the visual cursor thereby increasing the error between the visual cursor and the hand. This increase in error would cause the trial to be removed from our analyses due to a violation of the empirically established error threshold.
	Consistent with the expectation that proprioceptive feedback enhances the congruency in neural responses, we found that Proprioceptive Playback generates strong state information about the arm. We found no difference in the magnitude of peak mutual information about hand movement in the Proprioceptive Playback condition as compared to Visual +Proprioceptive Playback, and the information magnitude was greater than in Visual Playback. In contrast, we found that the tuning relationships of a subset of neurons were shifted by approximately 180 degrees (‘Oppositely Tuned’) during Proprioceptive Playback. When examining the responses of these cells more closely, we found that those neurons had a sensory peak information lag at −10.9 ms (i.e. movement precedes neural activity), while those neurons with congruent tuning had a peak information lag of 25 ms.
	In a study examining the motor and sensory responses of neurons in MI, Fetz and colleagues observed a population of neurons that increased their spiking activity in response to active and passive elbow movements made in the same direction (Fetz et al., 1980). We also found that some cells maintained their tuning relationship during Proprioceptive Playback and discharged at lags consistent with a ‘driving’ response (Fig. 9(B)). The motor-like response of these cells is unexpected because the visual target is invisible during Proprioceptive Playback, and thus the stimulus required to plan a movement is absent. During playback, however, the monkeys are trained to comply with the movements of the exoskeleton. Continuous movement of the exoskeleton provides an understanding of where the arm is moving and because the hand’s future movement direction is related to the current direction, it is probable that the monkeys can make an accurate prediction of the goal of the movement for some short time delay (on the order of the driving response, 25 ms). Thus, a weak motor command that facilitates the current movement direction is likely generated, although it is not executed.
	Responses similar to the opposing responses we described have been observed previously in experiments exploring neural responses to load compensation (Evarts & Tanji, 1976) and active/passive movements (Fetz et al., 1980). Evarts and Tanji described this type of neural response in MI pyramidal tract neurons. In that study the monkeys were trained to maintain a static posture as they held on to a joystick. During a hold phase, a light instructed the direction of movement that the animals had to generate when a torque perturbation cue was applied to the joystick. The instructed direction of movement either coincided with or opposed the direction of torque perturbation. They found that a large number of neurons would discharge to generate a movement in a particular direction, and that the same neurons would discharge reflexively, when an external stimulus was applied in an opposing direction (Evarts & Tanji, 1976). Similarly, Fetz and colleagues found a population of neurons in MI that responded to active and passive elbow movements made in opposite directions (Fetz et al., 1980). They speculated that cells with these responses could function as a component of a ‘transcortical reflex’ loop.
	Our paradigm is similar to that of Evarts and Tanji in that an external stimulus is being applied to the handle that the monkeys hold. In our experiment, however, the stimulus is continuous and the monkeys are taught to comply with the perturbation and allow their arm to follow the motion of the exoskeleton. We speculate that when the movement of the exoskeleton changed direction, a reflexive response was evoked in some cells. We observed this response in the ‘Oppositely Tuned’ cells as a 180 degree shift in the neurons’ preferred directions, as well as a shift in the mean peak mutual information lags to reflect a sensory relationship (Fig. 9(A)).
	These cells did not demonstrate an opposing response during the Visual +Proprioceptive Playback condition. Instead, we found that this population of cells had similar tuning properties as those observed when the monkeys actively moved their arm. During playback with a visual target, the motor command does not result in a movement because the monkeys are trained to relax. It is, however, likely that the sensory consequences of this covert motor command (i.e. a motor command that is generated but movement execution is suppressed) are available by way of the combination of efference copy and a forward model (for a review see Wolpert and Ghahramani (2000)). Because the relaxed arm is driven to the target by the exoskeleton and the visual target is present in the Visual +Proprioceptive Playback condition, the sensory prediction closely approximates the actual state of the limb resulting in a down-regulation of reflex responses via alpha-gamma motorneuron coactivation (Bullock, Cisek, & Grossberg, 1998). This process results in the congruent tuning relationship observed in the Visual +Proprioceptive Playback condition (Fig. 8, bottom panel (red in the web version) histogram). In contrast, during Proprioceptive Playback the target is invisible and a weak motor command is generated due to the monkeys’ implicit understanding that they must comply with movements of the exoskeleton. Therefore, the neuromotor controller is not able to appropriately adjust the activity of the gamma motor neuron pool resulting in a neural response to arm motion having an opposite tuning relationship compared to active movement.
	Consistent with our previous report, we demonstrated that the activity of neurons in MI during visual observation of action contains a significant amount of information related to movement direction at time lags consistent with the generation of motor commands (Rossetti et al., 1995, Tkach et al., 2007). The tuning properties of these neurons are also congruent with preferred directions measured during the Active Movement condition (Fig. 8, top panel (orange in the web version) histogram). These congruent (‘mirror-like’) responses during Visual Playback seem to be triggered involuntarily (i.e. in the absence of and volitional motor intention) as the monkeys are required to keep their arm still.
	These responses have utility in BMI applications. Previous strategies have used motor imagery to elicit activity in MI in patient populations in order to build a decoder (Hochberg et al., 2006). The ability of patients to imagine movements, however, was not consistently present (Maryam Saleh, unpublished data). Moreover, there is some evidence that “first-person”, kinetic motor imagery elicits stronger activation in primary motor cortex as compared to “third-person”, visual motor imagery (Lotze & Halsband, 2006). However, it is more difficult to instruct the patient to generate kinetic imagery (Solodkin, Hlustik, Chen, & Small, 2004). It is likely that these automatic, visually-triggered responses we observed during Visual Playback can be used to build a mapping between neural modulation and cursor motion that can be used to guide the movement of a BMI in real-time in patients who are unable to generate movement.
	5. Conclusion
	The finding that passive, task-like movements enhance congruent responses in the motor cortex is very important in the context of augmenting BMIs with additional sensory modalities. Given this finding, two possible strategies arise for such an augmentation. One strategy is to rely on both visual and proprioceptive feedback to build or ‘train’ a decoder. One can imagine a paralyzed subject with residual proprioceptive sense — a patient suffering from ALS for instance — passively observing a repertoire of prerecorded movements while a temporary exoskeleton moves the subject’s limbs to mimic the observed movements. Since proprioceptive feedback enhances the mirror-like responses of MI neurons, the resulting performance of such an implementation could be superior to a decoder trained with visual feedback alone.
	The second strategy is to rely on proprioceptive feedback during real-time decoding. That is, relying on proprioceptive feedback to enhance the accuracy of the decoder that was trained using only passive observation. This approach could be implemented again either by the use of a portable exoskeleton or through functional electrical stimulation (FES). While the exoskeleton would be controlled by the output of the decoder to provide the subject with proprioceptive feedback about the decoded action, FES could be used to stimulate the muscles in the limb and thus the residual proprioceptive sense would inform the patient about the movements of their own limb (Hatsopoulos & Donoghue, 2009). Whichever strategy is ultimately chosen, the results of this study suggest that the performance of BMIs can be improved by adding additional forms of sensory feedback, like proprioception, during the training stage, the decoding stage, or both.
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