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ABSTRACT 

SENSOR INTRUSION DETECTION IN CONTROL SYSTEMS USING 

ESTIMATION THEORY 

 

 

Jiayi Su, B.S. 

 

Marquette University, 2018 

 

 

In this thesis, two different approaches to sensor intrusion detection are presented. 

In the first approach, an estimation algorithm using a bank of Kalman Filters is designed 

that is capable of estimating the intrusion signal when sensors are affected in control 

systems. The mathematical models of the control system will be estabilished and the system 

measurement will be shown and after that, various false signals, such as constant-type and 

ramp-type signal, will be selected as the intrusion signal to affect the system output 

mentioned above. The system measurement will be tested based on a bank of Kalman 

Filters. The probabilities of each intrusion state (affected and unaffected) of the control 

system will be calculated as a function of time. The estimation of the states from a bank of 

Kalman Filters together with the associated probabilities will determine whether the sensor 

is under attack or not by using the information from the estimation algorithm. The 

performance of the algorithm will be tested based on the various levels of the system and 

measurement noise. 

 

In the second approach, a new estimation algorithm is applied to detect the intrusion 

signal targeting the system mentioned above. By calculating the sample mean value of the 

system state and measurement in time, the changes of the system measurement can be 

detected by calculating the residual between the actual value and the theoretical sample 

mean value of the system measurement and in that case, the intrusion signal can be found. 

Thesis conclusions, summary and future work is also mentioned in the last chapter of this 

work. 
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1 INTRODUCTION 

 

Sensors are a critical part of feedback control systems, but they are volunerable to 

attacks in cyber-physical systems. Such attacks may cause significant damage to 

industrial control systems and this gives attackers a lot of chance to affect this important 

element. Thus, detection and protection against attack signals become a significant work 

to guarantee the proper operation of such systems. Estimation theory has been proposed 

for many years and, as one can expect, many researchers have expanded on it. One 

specific researcher, R.E. Kalman, came up with an approach to describe the discrete-data 

linear filtering problem [1]. The technique he developed could be the way to estimate 

system states and minimize system’s disturbance and noise, which could be a great tool 

of detecting sensor intrusions. The development of the detection algorithm in this thesis 

utilizes this method. To begin, it is important to have a general background to understand 

how sensor intrusion happens and how to use this algorithm as a tool to make the 

detection be possible.  

 

1.1 Sensor Intrusion 

 

Sensors play an important role for measuring system states while also being 

vulnerable and sometimes exposed on an external environment, which makes it easy to be 

attacked. Therefore, the number of sensor intrusions has increased significantly with the 

development of the process control system. Sometimes sensor intrusion happens because 

the system operates under a harsh environment, like being exposed to extremely cold 

weather or to the sun for a long time, which makes the sensor unable to detect the correct 
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system measurement signal.  Usually, intruders hack into the sensor, replace the system 

measurement with a false signal, which leads to a terrible result for the industrial process 

and may cause a malfunction or permanent damage to its constituents.  

 

There are various types of sensor attacks that could influence system’s 

performance, such as surge attacks, bias attacks and geometric attacks. Surge attacks 

allow intruders to achieve their maximum damage as soon as possible when they have 

access to the system. Bias attacks let attackers change the system output by adding a 

small disturbance over a large period of time. While geometric attacks let attackers try to 

switch the state of the system at the beginning of the attack and then maximize the 

damage after the system has been moved to a more vulnerable state [2].  

 

A good example of intrusion targeting a control system is the Maroochy Shire 

Council’s sewage control system in Queensland, Australia [3]. A hacker used a laptop 

and a radio transmitter to take control of 150 sewage pumping stations. Over a three-

month period, he released one million liters of untreated sewage into a storm water drain 

from where it flowed into local waterways. The attack was motivated by revenge on the 

part of the hacker after he failed to secure a job with the Maroochy Shire Council. 

Unfortunately, ways to detect those attacks are still limited because attack signals are 

always hidden, which increases the difficulties of detection and observation of sensors 

intrusion, and there are some techniques that show it is impossible to estimate sensor and 

actuator intrusions under certain conditions [4]. 
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Fortunately, estimation theory is widely applied for detecting and estimating 

system output and state, which makes it easier to develop a method of observing the 

attack signal.  

 

1.2 Estimation Theory 

 

Estimation theory is a branch of statistics that deals with estimating the values of 

parameters based on measured empirical data that has a random component. The 

estimation process could be done by using an estimator and historical data or 

measurements to observe unknown parameters in real applications [5]. Usually, there are 

three topics discussed under estimation theory, including smoothing, filtering and 

prediction. Smoothing is a method of estimating the unknown historical parameters by 

using current measurements. Filtering is a method of estimating the current unknown 

parameters by using known measurements and prediction, which is a way of estimating 

the future unknown parameters by using current measurements [6]. Problems with these 

three branches could be approached by using different estimation methods, such as 

Kalman Filter and its various derivatives, Particle Filter, Markov chain Monte Carlo 

(MCMC), Cramer-Rao Bound, Bayes estimators, Wiener Filter and Maximum likelihood 

estimators.  Also, a huge number of applications of estimation theory using the methods 

mentioned above have been used in different technical areas as shown in Table 1.1. 
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Table 1.1: Applications of estimation theory [7]. 

Area of applications Examples 

Control Systems Estimate the position of a powerboat for 

correcting navigation in the presence of sensor 

and environmental noise. 

Communications Estimate the carrier frequency of a signal for 

demodulation to the baseband in the presence of 

degradation noise. 

Seismology Estimate the underground distance of an oil 

deposit based on the different densities of oil and 

rock layers. 

Biomedical Estimate the heart rate of a fetus in the presence 

of environmental noise. 

Image Processing Estimate the position and orientation of an object 

from a camera image in the presence of lighting 

and background noise. 

Radar Communications Estimate the delay of the received pulse echo in 

the presence of noise. 

Speech Signal Processing Estimate the parameters of the speech model in 

the presence of speech/speaker variability and 

environmental noise. 

Sensor Fault Detection Estimate the sensor fault of the industrial control 

system in the presence of noise. 

 

In this thesis, estimation theory will be used to solve the sensor intrusion problem 

and, the Kalman filter bank will be introduced and applied as the main estimation 

algorithm for the topic disused in chapter 2 and 4. 

 

1.3 Previous Work Involving the Use of Estimation Theory 

 

In 1978, R. N. Clark introduced a method of detecting incipient instrument fault 

[8]. The dedicated observer scheme (DOS) he introduced could be applied for estimating 

the lateral axis control system of a hydrofoil boat. He used several observers where each 

observer was designed for each sensor, and each observer could only receive its input 



5 
 

 

 

signal from the paired sensors. Also, the plant input could be received from all observers. 

In this case, the incipient fault could be detected if there is a fault input signal from a 

certain sensor while the other estimated signal will remain identical. The logic unit he 

used to make the decision of which sensor is affected is to set up a threshold value for 

each instrument and the false alarm will not be triggered if the residual of each 

instrument is less than the threshold value, otherwise the fault could be found and known 

by using this unit.  

 

In 2003, T. Kobayashi and D. L. Simon introduced the application of a bank of 

Kalman filters for aircraft engine fault diagnostics [9]. They used multiple Kalman filters 

where each Kalman filter is designed for a specific sensor fault. When a fault comes 

through the sensor, all filters expect the one using a hypothesis similar to the faulty signal 

will show large errors, which could detect the unique sensor fault. Comparing to R. N. 

Clark’s work, T. Kobayashi and D. L. Simon were calculating the weighted sum of 

squared residual (WSSR) for each filter and use WSSRs to compare with their pre-

established thresholds. When a sensor is affected, every WSSRs expect the affected one 

will go beyond their thresholds, which means the affected one is found successfully based 

on their WSSR decision unit. 

 

 Similarly, W. Xue, Y. Guo and X. Dong applied the Kalman Filter bank as the main 

estimation algorithm to detect aircraft engine sensor and actuator intrusion in 2007 [10]. 

The basic logic of their fault detection and isolation is firstly calculate the residual value 

between low-pressure spool speed from sensors and estimated low-pressure spool speed 
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from observer measurements and, the second step is to compare the residuals with 

thresholds and as mentioned, all filters except the one using the correct hypothesis will 

produce large estimation errors, which could let the fault signal be isolated. 

 

In 2011, D. H. Trinh and H. Chafouk applied the Kalman Filter bank technique to 

detect the intrusion signals in a wind turbine generator system [11].  The difference 

between the previous work is that they used a different decision unit to isolate the 

affected signal. A threshold was set firstly based on the estimated values and residuals, 

and then the Page-Hinkley’s test was applied for the fault signal isolation. They claimed 

that using Page-Hinkley’s test for the fault assessment is because its simplicity and it only 

needs low computational power. 

 

    In 2017, G. Rigatos, D. Serpanos and N. Zervos implemented the same 

technique on the power grid sensors fault detection [12]. After estimating systems states, 

calculating residuals and setting up thresholds for each sensor, they applied the 𝜒2 tests to 

isolate the fault signal. The results of the detection of the intrusion signal could be found 

by using 𝜒2 tests, and the highest scores of the 𝜒2 tests could show the compromised 

sensor.  

 

In 2017, M. Rezaee, N. S-Nokhodberiz and J. Poshtan developed a method of 

using the Kalman Filter to detect and identify the sensor fault in an electro-pump system 

[13]. Similarly, as mentioned before, they calculated the estimated states and 

measurements of the electro-pump system and after that, they calculated the root mean 



7 
 

 

 

square error (RMSE) comparing to the system state and measurement. By setting up an 

upper bound of the RMSE, they could find if there’s an intrusion signal in the electro-

pump system.  

 

 In 2018, Y. Chen, S. Kar and J. M. F. Moura use the optimal attack strategy to 

attack the sensor and the controller they built in order to learn how a hacker could design 

an intrusion signal so that the attack signal could cause the maximum damage [14]. After 

knowing the optimal attack signal based on the system model, they also designed an 

estimation method, which use 𝜒2 tests to isolate the fault signal. 

 

 

1.4 Scope of This Work and Main Contributions 

 

This thesis proposes to develop a method to detect sensor intrusions in first-order 

and second-order discrete-time system that have disturbances both in the systems state 

and output. The distribution of the disturbances is proposed Gaussian and the intrusion 

signal is firstly proposed a constant-type and then a step and ramp-type on both first-

order and second-order system outputs. A bank of Kalman Filters will be the main 

algorithm of estimating system state and output, which provides the basis for information 

available to know if the system is affected or not [19].  Mathematical models of control 

system will be established and various false signals, such as constant and ramp signal, 

will be selected and tested based on a bank of Kalman Filter. The probabilities of each 

state (affected/unaffected) of the control system will be calculated as a function of time. 
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The estimation of the states from a bank of Kalman Filters together with the associated 

probabilities will determine whether the sensor is under attack or not by using the data 

from the estimation algorithm. The performance of the algorithm will be tested based on 

the various levels of the system and measurement noise. 

 

1.5 Thesis Organization 

 

This thesis is comprised of five chapters. Chapter 2 consists of an introduction 

and derivation of the Kalman Filter and bank of Kalman Filters that have been proposed. 

Chapter 3 consists of system modes with attack signals. The mathematical models for the 

first-order and second-order discrete time systems with system and measurement noise 

will be established and both the systems will be affected with constant-type and ramp-

type attack signal. Chapter 4 discusses the implementation of a bank of Kalman Filters 

both on the first and second order systems with different attack signals. The performance 

of the algorithm will then be tested based on the various levels of the system and 

measurement noise. Chapter 5 is a summary of the previous chapters and suggestions for 

future work. 
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2 A REVIEW OF ESTIMATION THEORY AND INTRODUCTION OF 

KALMAN FILTER 

 

2.1 Introduction: Development of the Estimation Theory and Kalman Filter 

 

As mentioned in Chapter 1, estimation theory is a branch of statistics that deals 

with estimating values of the states of a system based on measured empirical data that has 

a random component. By using an estimator with historical data or measurements, the 

estimation process could be used to estimate values of unknown parameters in real 

applications as introduced in Chapter 1 [5]. 

 

With the growth of computational power, it is easier to use an observer to 

estimate system states with a lot of measurement data. The Kalman filter (KF), as one of 

the estimation algorithms, is developed to estimate system states and measurements in a 

lot of fields. In this thesis, the sensor intrusion problem could be solved by using Kalman 

Filter and one of its extensions, a bank of Kalman filter (BKF), to detect the changes of 

the systems measurements and find the intrusion when there is an attack signal enters the 

system and replaces the system measurement. Both the Kalman filter and a bank of 

Kalman filters (KF and BKF) will be introduced and derived in this thesis and the 

algorithms for applying these estimation methods into the sensor intrusion problems will 

be shown. Some of the typical applications in different areas will also be given in section 

2.2  
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In fact, most of these modern estimation-theory-based techniques can be found at 

the heart of many electronic signal processing systems designed to extract information 

[16]. Typical application areas and example applications in areas utilizing estimation 

theory are listed in Table 2.1 [18]. 

 

2.2 Kalman Filter 

 

The Kalman filter, also known as linear quadratic estimation (LQE), is a method 

of estimating the unknown parameters and states of a system with statistical noise. It can 

produce the estimated values of unknown variables and can also minimizes the mean of 

the error. There are a huge amont of applications of using Kalman Filter in many 

different areas, such as tracking problems, navigation problems, signal processing 

problems and even in economics. Moreover, the Kalman filter is also a main topic in 

robotic motion, where its used to optimize the trajectory of the motions.  At the same 

time, as one the estimation algorithms, as mentioned in Chapter 1, the Kalman filter 

could be used to estimate not only the present state by giving the known measurements, 

but the past and the future states of a system by some changes to the filter.  

 

Basically, the Kalman filter works with two steps, the first step is called 

prediction step or time update step, where it could produce the current state estimate 

together with its associated noise value [15]. The second step is called measurement 

update step or correct step, where the measurement could be updated using a weighted 
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average, which could minimize the uncertainty of the measurement. Figure 2.1 shows the 

process of the two steps below. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Process of the two steps of the Kalman Filter [15] 

 

 

The Kalman filter is used to reduce the noise in systems states and outputs in 

numerous applications and the noise is assumed Gaussian on most of the applications. 

The Kalman filter can also work if the noise disturbance is not Gaussian.  

  

The Kalman filter is named after R.E. Kalman, one of the primary developers of 

its theory. In 1960, R.E. Kalman first developed a method of a recursive algorithm to deal 

with the discrete-time linear filtering problem [1,16]. The recursive algorithm means the 

estimated value 𝑥̂𝑘+1 can be calculated by using the previous estimated value 𝑥̂𝑘. Later 

on, the development of various extensions on the Kalman filter have been derived 

targeting different kinds of problems and applications, especially for systems within the 

security field. Nowadays it has been widely applied in engineering problems, 

mathematical problems, biomedical problems and even economic problems, and most of 

Measurement Update 

(“Correct”) 

Time Update  

(“Predict”) 
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the problems can be solved properly because of this technique. In some of the 

applications, Kalman filter is a crucial technique and one cannot solve it without using 

this technique. Some typical examples of applications by using Kalman filter are 

introduced in Table 2.2. 

 

Table 2.1: Typical applications of various forms of Kalman filter [18]. 

Area of applications Examples  

Navigation To control and assist the navigation of 

automobiles, aircraft or spacecraft using the 

measured sensor data in the environment 

with noise and disturbance [21]. 

Image processing Using various forms of Kalman filter to 

estimate the position and orientation of an 

object from a camera image in the presence of 

lighting and background noise. 

Radar communications Estimating the distance/velocity of the target 

object by various forms of the Kalman filter. 

Control system Active noise control in control systems [15]. 

Economics Parameter estimation of linear or non-linear 

econometric models [22]. 

Speech signal processing To estimate the parameters of the speech 

model and to get rid of the noise out of the 

speech signal. 

Forecasting Estimating the parameters of the forecasting 

model using the historical data. 

Sensor Fault Detection To estimate the sensor fault of the industrial 

control system in the presence of noise. 

 

2.2.1 Derivation of Kalman Filter 

 

Consider a linear discrete-time stochastic system with system states 𝑥𝑘 ∈ ℝ𝑛, 

system measurements 𝑦𝑘 ∈ ℝ𝑝, system inputs  𝑢𝑘 ∈ ℝ𝑚 and system matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 

and 𝐷𝑘, where 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐷𝑘 are all time-varying matrices, 
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𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐹𝑘𝑣𝑘 (2.1𝑎) 

 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘 (2.1𝑏) 

 

in (2.1a), 𝑣𝑘 is the system state noise, where the covariance of the noise is 𝑉𝑘, and  𝑤𝑘 is 

the system measurement noise, where the covariance of the noise is 𝑊𝑘 .  𝑆𝑘 is the cross 

covariance, where it is between the covariance of the state noise 𝑉𝑘 and the covariance of 

the measurement 𝑊𝑘.  The system state noise vector 𝑣𝑘, system measurement noise 

vector 𝑤𝑘 and the initial state value of the system 𝑥0 can be expressed with arbitrary 

densities below, 

 

[
𝑥0

𝑣𝑘
𝑤𝑘

] ~ ([
𝑥̅0

0
0

] , [

𝑋0 0 0
0 𝑉𝑘 𝑆𝑘

0 𝑆𝑘
𝑇 𝑊𝑘

])  

 

In this thesis, the sensor intrusion detection problem, 𝑥𝑘 represent the system 

states, where it needs to be observed by Kalman filter, and 𝑦𝑘 is the system outputs. 

Suppose 𝑢𝑘 represents the unit step input of the system, then the system estimated states 

𝑥𝑘 could be known by using a Kalman filter with the system outputs as long as the 

system is observable. 

 

Before deriving the Kalman filter, it is necessary to assume an observer that could 

estimate the system state at time 𝑘 + 1, where the estimated state should be 𝑥̂𝑘+1. After 

assuming an observer, some other information at time 𝑘, will also be needed to derive the 
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Kalman filter. The first information will be the present estimate states 𝑥̂𝑘, also the current 

input 𝑢𝑘 and the current system outputs 𝑦𝑘 should be available. After knowing these three 

pieces of information, an observer could be given in (2.2). 

 

𝑥̂𝑘+1 = 𝐴𝑘𝑥̂𝑘 + 𝐵𝑘𝑢𝑘 + 𝐾𝑘(𝑦𝑘 − 𝑦̂𝑘) (2.2) 

 

where 𝑦̂𝑘 is the estimate of the system output given by (2.3), 

 

𝑦̂𝑘 = 𝐶𝑘𝑥̂𝑘 + 𝐷𝑘𝑢𝑘 (2.3) 

    

𝐾𝑘 is the Kalman gain, which minimizes the variances of the error, and the error is defined 

as the residual of the true state and the estimated state, which is given by (2.4) 

 

𝑒𝑘+1 = 𝑥𝑘+1 − 𝑥̂𝑘+1 (2.4) 

 

The estimated value of the unknown states is unbiased (i.e. 𝐸{𝑒𝑘+1} = 0 ). The error 

covariance, which is defined as 𝑃𝑘+1 = 𝐸{(𝑒𝑘+1)(𝑒𝑘+1)
𝑇}, needs to be found before 

getting the Kalman gain, 𝐾𝑘. While from the definition of the error covariance, some 

relationship between system states, system matrices and error covariance could be found.  

 

First, substitute (2.1b) and (2.3) into (2.2), resulting in the estimated state 𝑥̂𝑘+1 

expressed below, 
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𝑥̂𝑘+1 = 𝐴𝑘𝑥̂𝑘 +  𝐵𝑘𝑢𝑘 + 𝐾𝑘[(𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘) − (𝐶𝑘𝑥̂𝑘 + 𝐷𝑘𝑢𝑘)] (2.5𝑎) 

 

Next, the error between the true state 𝑥𝑘+1 and estimated state  𝑥̂𝑘+1 can be 

expressed by submitting (2.1a) and (2.5a), 

 

𝑒𝑘+1 = {𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐹𝑘𝑣𝑘} −  

{𝐴𝑘𝑥̂𝑘 +  𝐵𝑘𝑢𝑘 + 𝐾𝑘[(𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘) − (𝐶𝑘𝑥̂𝑘 + 𝐷𝑘𝑢𝑘)]} (2.5𝑏) 

 

After some transformation, (2.5b) can be shown as (2.5), 

 

𝑒𝑘+1 = (𝐴𝑘 − 𝐾𝑘𝐶𝑘)𝑒𝑘 + 𝐹𝑘𝑣𝑘 − 𝐾𝑘𝐺𝑘𝑤𝑘 (2.6) 

     

Substituting (2.5) into the definition of the error covariance yields  

 

𝑃𝑘+1 = 𝐸{[(𝐴𝑘 − 𝐾𝑘𝐶𝑘)𝑒𝑘 + 𝐹𝑘𝑣𝑘 − 𝐾𝑘𝐺𝑘𝑤𝑘] 

[(𝐴𝑘 − 𝐾𝑘𝐶𝑘)𝑒𝑘 + 𝐹𝑘𝑣𝑘 − 𝐾𝑘𝐺𝑘𝑤𝑘]
𝑇} (2.7) 

 

 

After some transformation on (2.7), the error covariance equation can be found as  

 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 − 𝐴𝑘𝑃𝑘𝐶𝑘

𝑇𝐾𝑘
𝑇 − 𝐾𝑘𝐶𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝐾𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝐾𝑘

𝑇 + 𝐹𝑘𝑉𝑘𝐹𝑘
𝑇 

− 𝐾𝑘𝐺𝑘𝑆𝑘
𝑇𝐹𝑘

𝑇 − 𝐹𝑘𝑆𝑘𝐺𝑘
𝑇𝐾𝑘

𝑇 + 𝐾𝑘𝐺𝑘𝑊𝑘𝐺𝑘
𝑇𝐾𝑘

𝑇 (2.8)
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After finding the error covariance equation, it is possible to derive the Kalman gain, 𝐾𝑘. 

During the process of deriving the error covariance 𝑃𝑘+1, there is an important property 

that needs to be noticed and that is 𝑃𝑘+1 is a symmetric posite definite matrix. Thus, by 

using this property, one can minimize the error covariance to find the Kalman gain 𝐾𝑘, 

and this could be transformed to minimize the trace (𝑇𝑟{𝑃𝑘+1}) of the error covariance 

matrix 𝑃𝑘+1. Therefore, there is a way of getting Kalman gain by taking the partial 

derivative of the trace of the error covariance 𝑇𝑟{𝑃𝑘+1} with respect to 𝐾𝑘. After taking 

the partial derivative of 𝑇𝑟{𝑃𝑘+1}, one can let the partial derivative equation equal zero to 

get the expression of the Kalman gain 𝐾𝑘. [17] The equation of the partial derivative of 

the trace of the error covariance 𝑇𝑟{𝑃𝑘+1} can be expressed as (2.9), 

 

𝛿 𝑇𝑟{𝑃𝑘+1}

𝛿 𝐾𝑘
= −2𝐴𝑘𝑃𝑘𝐶𝑘

𝑇 −  2𝐹𝑘𝑆𝑘𝐺𝑘
𝑇 +  2𝐾𝑘(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇) (2.9) 

 

Setting the partial derivative equation (2.9) equal to zero, the Kalman gain could be found 

as below,  

 

𝐾𝑘 = (𝐴𝑘𝑃𝑘𝐶𝑘
𝑇 + 𝐹𝑘𝑆𝑘𝐺𝑘

𝑇)(𝐶𝑘𝑃𝑘𝐶𝑘
𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘

𝑇)−1 (2.10) 

 

As mentioned previously, the Kalman gain minimizes the error covariance in time, so the 

error covariance equation (2.8) is simplified after substituting (2.10) into it. Then the 

error covariance could be expressed as  
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𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇  +  𝐹𝑘𝑉𝑘𝐹𝑘

𝑇 − (𝐴𝑘𝑃𝑘𝐶𝑘
𝑇 + 𝐹𝑘𝑆𝑘𝐺𝑘

𝑇)(𝐶𝑘𝑃𝑘𝐶𝑘
𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘

𝑇)−1 

(𝐶𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝐺𝑘𝑆𝑘

𝑇𝐹𝑘
𝑇) (2.11) 

    

If the system state noise and system measurement noise are white noise, which is the 

most commonlt the case for most of the system, including the system considered in this 

thesis, then their values will be uncorrelated with each other [18] and because the system 

state noise and system measurement noise are uncorrelated with each other, the cross-

covariance, 𝑆𝑘, will be zero, then the system state noise vector 𝑣𝑘, system measurement 

noise vector 𝑤𝑘 and the initial state value of the system 𝑥0 are independent white random 

variables with arbitrary densities, which could be expressed as below [19]:  

  

[
𝑥0

𝑣𝑘
𝑤𝑘

] ~ ([
𝑥̅0

0
0

] , [

𝑋0 0 0
0 𝑉𝑘 0
0 0 𝑊𝑘

]) (2.12) 

 

The expression of the Kalman gain 𝐾𝑘 and the error covariance 𝑃𝑘+1 can be then 

simplified as (2.13) and (2.14) if the cross-covariance 𝑆𝑘 = 0, 

 

𝐾𝑘 = 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇  (𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)−1 (2.13) 

 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇  +  𝐹𝑘𝑉𝑘𝐹𝑘

𝑇 − 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇 (𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)−1(𝐶𝑘𝑃𝑘𝐴𝑘

𝑇) (2.14) 

 

After finding the expression of the Kalman gain and the error covariance, the state update 

equation can be shown as (2.15), 
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𝑥̂𝑘+1 = 𝐴𝑘𝑥̂𝑘 + 𝐵𝑘𝑢𝑘 + 𝐾𝑘𝑦̃𝑘 (2.15) 

 

Where 𝑦̃𝑘 is the innovation term, which is the difference between the system output 𝑦𝑘 

and the estimated output 𝑦̂𝑘 at each time 𝑘 and it could be shown below 

 

𝑦̃𝑘 = 𝑦𝑘 − 𝑦̂𝑘 

= 𝑦𝑘 − (𝐶𝑥̂𝑘 + 𝐷𝑢𝑘) (2.16) 

 

From (2.13), (2.14) and (2.15), the recursive algorithm to calculate the system state 

estimate is designed. This algorithm works recursively according to the measurement 

state at every time step 𝑘 and, because of its recursive nature, the only information that 

the Kalman filter needs to know are the current estimate states 𝑥̂𝑘, the input 𝑢𝑘 and the 

measurement states 𝑦𝑘 for calculating the updated estimated value 𝑥̂𝑘+1. The advantage 

of this recursive algorithm is that there is no need to store the past measurements because 

it only requires the last “best guess” to do the estimation rather than the entire historical 

data.  

 

2.2.2 Kalman Filter Algorithm 

 

As mentioned previously, the Kalman filter is a recursive estimation algorithm, 

where it only needs the latest estimate of the states and the measurement states to 

calculate the updated state estimate. After deriving the Kalman filter, an introduction will 

be shown on how this recursive algorithm works.    
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When implementing the Kalman filter algorithm, it is necessary to make sure the 

systems matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐷𝑘 are known and, the value of the measurement noise 

covariance 𝑊𝑘 and the value of state noise covariance 𝑉𝑘 are available. After making sure 

the systems matrices, the measurement noise covariance and the state noise covariance 

are all available, the next step is to assume the value of initial systems state estimate 𝑥̂0 

and the initial error covariance 𝑃0. Basically, 𝑥̂0 and 𝑃0 needs to be set up based on the 

situation. For example, if the system’s uncertainty is extremely high, then the initial error 

covariance 𝑃0 needs to be set up at a relatively high value, so that the Kalman filter could 

work “harder” to decrease the uncertainty of the system [1,18]. Also, the initial state 

estimate 𝑥̂0 needs to be set up within a reasonable range so that the Kalman filter could 

work properly.  Once 𝑥̂0 and 𝑃0 are set up, the next step is to find the Kalman gain 𝐾0 

where it could be found by using (2.13). After finding the Kalman gain 𝐾0, the state 

estimate 𝑥̂1 and the error covariance 𝑃1 could be updated with the associated system 

measurement 𝑦0 by using (2.14) and (2.15). It could be noticed that the process above 

happens at time 𝑘 = 0. The updated 𝑥̂1 and  𝑃1 could be used as the initial value at time 

𝑘 = 1 to calculate the new Kalman gain 𝐾1, after finding the new gain, repeat the process 

again until the error covariance 𝑃𝑘 becomes small or the measurement is taken at time 𝑘 

[18]. This process could be shown as Fig 2.2 below.  
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Setting up the initial state 

estimate 𝐱̂𝟎  

𝑥0 = 𝐸{𝑥0} 

 

Setting up the initial error 

covariance 𝐏𝟎 

𝑃0 = 𝐸{(𝑥0 − 𝑥0)(𝑥0 − 𝑥0)
𝑇} 

 

Calculate Kalman gain 

𝐾0 = 𝐴0𝑃0𝐶0
𝑇 (𝐶0𝑃0𝐶0

𝑇 + 𝐺0𝑊0𝐺0
𝑇)−1 

Update state estimate 

𝑥1 = 𝐴0𝑥̂0 + 𝐵0𝑢0 + 𝐾0(𝑦0

− [𝐶0𝑥̂0

+ 𝐷0𝑢0]) 

 

Update the error covariance 

𝑃1 = 𝐴0𝑃0𝐴0
𝑇  + 𝐹0𝑉0𝐹0

𝑇

− 𝐴0𝑃0𝐶0
𝑇 (𝐶0𝑃0𝐶0

𝑇

+ 𝐺0𝑊0𝐺0
𝑇)−1(𝐶0𝑃0𝐴0

𝑇) 

 

 𝑦0 

 

Calculate Kalman gain 

𝐾1 = 𝐴1𝑃1𝐶1
𝑇 (𝐶1𝑃1𝐶1

𝑇 + 𝐺1𝑊1𝐺1
𝑇)−1 

 

Update state estimate 

𝑥2 = 𝐴1𝑥̂1 + 𝐵1𝑢1 + 𝐾1(𝑦1 − [𝐶1𝑥̂1

+ 𝐷1𝑢1]) 

 

Update the error covariance 

𝑃2 = 𝐴1𝑃1𝐴1
𝑇  + 𝐹1𝑉1𝐹1

𝑇

− 𝐴1𝑃1𝐶1
𝑇 (𝐶1𝑃1𝐶1

𝑇

+ 𝐺1𝑊1𝐺1
𝑇)−1(𝐶1𝑃1𝐴1

𝑇) 

𝑦1 

 

Calculate Kalman gain 

𝐾𝑘 = 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇 (𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)−1 

 

Update state estimate 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐾𝑘(𝑦𝑘

− [𝐶𝑘𝑥𝑘

+ 𝐷𝑘𝑢𝑘]) 

Update the error covariance 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇  + 𝐹𝑘𝑉𝑘𝐹𝑘

𝑇

− 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇 (𝐶𝑘𝑃𝑘𝐶𝑘

𝑇

+ 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)−1(𝐶𝑘𝑃𝑘𝐴𝑘

𝑇) 

 𝑦𝑘 

 

………

…… 

………

…… 

………

…… 

k = 0 

k = 1 

After updating 

k times 

Figure 2.2: Flowchart of Kalman filter algorithm 
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2.3 A Bank of Kalman Filters 

 

When systems matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐷𝑘 are known and, the value of 

measurement noise covariance 𝑊𝑘 and the value of state noise covariance 𝑉𝑘 are 

available, it is easy to obtain the state estimate by implementing the Kalman. On the other 

hand, the process above would not be so easy when there are some uncertainties in the 

system model. For example, consider the sensor intrusion problem, a hacker come into 

the system and then modifies the system measurement state by replacing the state signal 

𝐶𝑘𝑒𝑘 with another one, then it will be hard for letting the Kalman filter to obtain the 

precise value of the system state estimate even with a large initial error covariance 𝑃𝑘 and 

an educated guess of the initial state estimate 𝑥̂0.    

 

In this technique, the parameter of a system can be adaptively estimated if the 

assumptions of the parameter can be made properly. Suppose the unknown parameter 

belongs to a discrete set which has known upper and lower bounds, and this set includes 

N values where each value is a possible value or a hypothesis for the unknown parameter, 

then the set of each possible values or hypothesis could be represented as θ =

 {θ1, θ2, … , θ𝑖, … , θ𝑁 }.  So, N number of Kalman filters can be designed specifically 

corresponding to each possible values of the unknown parameter. After knowing each 

possible hypothesis for the unknown parameter, the next step is to calculate the 

conditional probabilities for each hypothesis based on the Bayes’ rule and, after that the 

specific Kalman filter with a conditional probability that is closest to one represents the 

most probable value of the unknown parameter [19, 20].  
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2.3.1 Derivation of a bank of Kalman filters 

 

Knowing the possible values of the unknown parameter can be represented as θ =

 {θ1, θ2, … , θ𝑖, … , θ𝑁 }, Bayes’ rule can be used as follows  

 

𝑝(θ𝑖|𝑌𝑘) =  
𝑝(𝑌𝑘, θ𝑖)

𝑝(𝑌𝑘)
  

= 
𝑝(𝑌𝑘|θ𝑖)𝑝(θ𝑖)

∑ 𝑝(𝑌𝑘|θ𝑖)𝑝(θ𝑖)
𝑁
𝑖=1

(2.17) 

 

Here, 𝑝(θ𝑖|𝑌𝑘) represent the conditional probabilities of each hypothesis θ𝑖 and 𝑌𝑘 

represents all the system measurements up throuth time instant k. The 𝑝(𝑌𝑘|θ𝑖) are 

defined as the likelihood functions for each hypothesis and they are used for the recursive 

calculation of a bank of conditional Kalman filters [19]. (2.17) is further expanded and 

simplified as 

 

𝑝(𝜃𝑖|𝑌𝑘) =  
𝑝(𝑦𝑘, 𝑌𝑘−1, 𝜃𝑖)

𝑝(𝑦𝑘, 𝑌𝑘−1)
 

= 
𝑝(𝑦𝑘, 𝜃𝑖|𝑌𝑘−1)𝑝(𝑌𝑘−1)

𝑝(𝑦𝑘|𝑌𝑘−1)𝑝(𝑌𝑘−1)
 

= 
𝑝(𝑦𝑘, 𝜃𝑖|𝑌𝑘−1)

𝑝(𝑦𝑘|𝑌𝑘−1)
 

=  
𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑖)𝑝(𝜃𝑖|𝑌𝑘−1)

∑ 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑖)𝑝(𝜃𝑖|𝑌𝑘−1)
𝑁
𝑖=1

(2.18) 
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where 𝑦𝑘 represents the system measurement at time 𝑘, 𝑌𝑘−1 represents all system 

measurements from 𝑘 = 1 through 𝑘 − 1 and, as mentioned above, 𝜃𝑖 represents the 

possible value for the unknown parameter where each Kalman filter is designed 

specifically corresponding to each 𝜃𝑖. This equation can be solved recursively, and the 

calculation could begin with an assumed probability 𝑝(𝜃𝑖|𝑌0) between 0 and 1 when 𝑘 =

0, where the sum of the probabilities is one. Note that 𝑝(𝜃𝑖|𝑌𝑘−1) is the previous value of 

𝑝(𝜃𝑖|𝑌𝑘). 

 

After that, the most important step is to calculate 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑖) where it is part of 

the probability density function in (2.18). In this work, system state noise and 

measurement noise are all assumed to have Gaussian distribution, which produces 

Gaussian conditional probabilities. Therefore, 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑖) could be represented as 

(2.19) because the density function of Gaussian is known 

 

𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑖) =  (2𝜋)−𝑚
2⁄ |Ω𝑘|𝜃𝑖

−1 |
1

2⁄ exp {−
1

2
𝑦̃𝑘|𝜃𝑖

𝑇 Ω𝑘|𝜃𝑖

−1 𝑦̃𝑘|𝜃𝑖
} (2.19) 

 

where 𝑚 is the order of the system, 𝑦̃𝑘|𝜃𝑖
 is the innovation sequence where each Kalman 

filter is responsible for estimation based on its corresponding hypothesis 𝜃𝑖 

 

𝑦̃𝑘|𝜃𝑖
= 𝑦𝑘 − 𝑦̂𝑘|𝑘−1,𝜃𝑖

(2.20) 

 

and Ω𝑘|𝜃𝑖
 is the innovation covariance for each Kalman filter with its corresponding 

hypothesis where it could be calculated from below 
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Ω𝑘|𝜃𝑖
= 𝐶𝑘𝑃𝑘|𝜃𝑖

𝐶𝑘
𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘

𝑇 (2.21) 

 

Therefore, the conditional probability of each Kalman filter can be found using equation 

(2.18), (2.19), (2.20) and (2.21). The convergence will occur when there is a hypothesis 

closest to the correct value and that probability will be equal to one for this assumption 

while all the probabilities of other possible values of  𝜃𝑖 will go to zero [20]. 

 

2.3.2 Algorithm of a bank of Kalman filters 

 

Suppose θ =  {θ1, θ2, … , θ𝑖, … , θ𝑁 } where N represents the quantities of possible 

values for the unknown parameter, where the upper and lower bounds can be defined as 

θ1 and θ𝑁, which means the possible values of the unknown parameter is included in this 

range. After knowing the set of the hypotheses, a bank of Kalman filters is set up where 

each Kalman filter is designed specifically with its associated hypothesis and, then 𝑦̃𝑘|𝜃𝑖
 

and Ω𝑘|𝜃𝑖
 could be calculated by substituting the estimated measurement 𝑦̂𝑘|𝑘−1,𝜃𝑖

 and the 

error covariance 𝑃𝑘|𝜃𝑖
 to equation (2.20) and (2.21). After knowing 𝑦̃𝑘|𝜃𝑖

 and Ω𝑘|𝜃𝑖
 for 

each possible value of the unknown parameter, the conditional probabilities 𝑝(𝜃𝑖|𝑌𝑘) can 

be calculated recursively using equation (2.18) and the one which is closest to one 

represents the true value of the unknown parameter. Fig 2.3 shows the flowchart of the 

bank of Kalman filters algorithm.  
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Conditional  

Probability  

Density  

Estimates 

Hypothesis 1 

𝜃 =  𝜃1 

Hypothesis 2 

𝜃 =  𝜃2 

…
…
…

…
 

Hypothesis N 

𝜃 =  𝜃𝑁 

𝑦𝑘  

Hypothesis 

Selection 

𝜃𝑖 

𝑝(𝜃𝑖|𝑌𝑘) 

Conditional State 

Estimates 𝑥𝑘|𝜃1
  

𝑥𝑘|𝜃2

2 

𝑥𝑘|𝜃𝑁
 

Figure 2.3: Flowchart of a bank of Kalman filters algorithm [19] 
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3 SYSTEM MODELING  

 

In this chapter, a first-order and a second-order discrete time-invariant system will 

be used separately, and the performance of both systems will be shown. After knowing 

both systems’ performance, the constant-type attack signal and the ramp-type attack 

signal will enter the systems, replacing the systems’ output to affect the intrusion, so that 

the sensor cannot relay the true measurement signal. The performance of both the 

affected first-order and second-order system will be shown. The flow chart of the sensor 

intrusion process is shown in Fig 3.1 

 

 

 

 

 

 

 

Figure 3.1: Flowchart of the sensor intrusion process 

 

 

3.1 Model of the First-Order System 

 

Consider a first-order discrete-time stochastic system with state and measurement 

noise  

 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐹𝑘𝑣𝑘 (3.1𝑎) 

 

System Sensor 

True 

measurement 
System 

input 

Attack signal 

Affected 

measurement  
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𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘 (3.1𝑏) 

 

Where 𝐴𝑘 = 0.9,  𝐵𝑘 = 0, 𝐶𝑘 = 1, 𝐷𝑘 = 0, 𝐹𝑘 = 1, 𝐺𝑘 = 1, and the covariance of the 

system state noise 𝑉𝑘 = 0.1, the covariance of the system measurement noise 𝑊𝑘 = 0.05 

and both of the system state and measurement noises are zero-mean white and Gaussian. 

Therefore, the system can be represented as (3.2a) and (3.2b) 

 

𝑥𝑘+1 =  0.9𝑥𝑘 + 𝑣𝑘 (3.2𝑎) 

 

𝑦𝑘 = 𝑥𝑘  + 𝑤𝑘 (3.2𝑏) 

 

It can be noticed that this system is asymptotically stable from its system matrix 𝐴𝑘. Fig 

3.2 and Fig 3.3 show the system state and system measurement responses with its initial 

state 𝑥0 = 2 from 𝑘 = 0 to 200. 
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Figure 3.2: The First-Order Discrete-Time Stochastic system state response with its 

initial state 𝒙𝟎 = 𝟐. 
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Figure 3.3: The First-Order Discrete-Time Stochastic system measurement response 

with its initial state 𝒙𝟎 = 𝟐. 
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3.2 Attack Model for the First-Order System  

 

3.2.1 Constant-Type Attack Signal  

 

Consider the first-order discrete time-invariant system (3.2a) and (3.2b), where a 

hacker affects an intrusion, replacing most of the signal component of the system 

measurement by a constant signal ℎ𝑘 at a certain time. Then the model would be 

modified as below after hacking happens  

  

[
𝑥𝑘+1

ℎ𝑘+1
] =  [

0.9 0
0 1

] [
𝑥𝑘

ℎ𝑘
] + [

1
0
] 𝑣𝑘 (3.3𝑎) 

 

𝑦𝑘 = [0.05 1] [
𝑥𝑘

ℎ𝑘
]  + 𝑤𝑘 (3.3𝑏) 

 

Here, ℎ𝑘 is a time-invariant constant-type intrusion signal where ℎ𝑘 = ℎ𝑘+1, whose 

model is added to the state equation. It can be found that the model is changed with its 

associated intrusion signal, where 𝐴𝑘 = [
0.9 0
0 1

],  𝐵𝑘 = 0, 𝐶𝑘 = [0.05 1], 𝐷𝑘 = 0, 

𝐹𝑘 = [
1
0
] and 𝐺𝑘 = 1. While, one can find that the system measurement is not completely 

replaced by the intrusion signal from 𝐶𝑘 = [0.05 1], there is still some “unhacked” 

measurements left, and this is because if the hacker replaces the whole measurement with 

a constant-type attack signal ℎ𝑘, the model would be unobservable and the intrusion 

could be detected very easily by the failure of the Kalman filter used in estimating the 

state.  
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Suppose the intrusion happens at a certain time 𝑘 > 0 when the system is running, 

and in this thesis, the time point 𝑘 when intrusion happens is called “shiftpoint”, which 

represents that the system is hacked at time 𝑘, and as for hackers, they could select any 

shiftpoint to attack the system. Here, three different shiftpoints 𝑘 = 50, 𝑘 = 100 and 𝑘 =

150 are selected arbitrarily to show the changes of model state and measurement when 

there is a constant-type attack signal ℎ𝑘 = 10 enters the system  

 

 

Figure 3.4: The First-Order Discrete-Time stochastic system state response with its 

initial state 𝒙𝟎 = 𝟐 when the Constant-Type sensor intrusion happens at shiftpoint 

𝒌 = 𝟓𝟎. 
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Figure 3.5: The First-Order Discrete-Time stochastic system measurement state 

response with its initial state 𝒙𝟎 = 𝟐 when the Constant-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟓𝟎. 
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Figure 3.6: The First-Order Discrete-Time stochastic system state response with its 

initial state 𝒙𝟎 = 𝟐 when the Constant-Type sensor intrusion happens at shiftpoint 

𝒌 = 𝟏𝟎𝟎. 
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Figure 3.7: The First-Order Discrete-Time stochastic system measurement state 

response with its initial state 𝒙𝟎 = 𝟐 when the Constant-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 
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Figure 3.8: The First-Order Discrete-Time stochastic system state response with its 

initial state 𝒙𝟎 = 𝟐 when the Constant-Type sensor intrusion happens at shiftpoint 

𝒌 = 𝟏𝟓𝟎. 
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Figure 3.9: The First-Order Discrete-Time stochastic system measurement state 

response with its initial state 𝒙𝟎 = 𝟐 when the Constant-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟏𝟓𝟎. 
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3.2.2 Step and ramp-type Attack Signal 

 

Consider the first-order discrete time-invariant system (3.2a) and (3.2b), where a 

hacker enters the system, replaces most of the signal component of the system 

measurement by a step and step and ramp-type signal ℎ𝑘 at a certain time. Then the 

system model would be modified as below after hacking happens  

 

[

𝑥𝑘+1

ℎ𝑘+1
1

ℎ𝑘+1
2

] =  [
0.9 0 0
0 1 1
0 0 1

] [

𝑥𝑘

ℎ𝑘
1

ℎ𝑘
2
] + [

1
0
0
] 𝑣𝑘 (3.4a) 

 

𝑦𝑘 = [0.05 1 1] [

𝑥𝑘

ℎ𝑘
1

ℎ𝑘
2
] + 𝑤𝑘 (3.4𝑏) 

 

Here, ℎ𝑘
1  is a step and ramp-type and ℎ𝑘

2 is a step-type hacking signal with the state space 

models 

 

ℎ𝑘+1 = [
ℎ𝑘+1

1

ℎ𝑘+1
2 ] =  [

1 1
0 1

] [
ℎ𝑘

1

ℎ𝑘
2] (3.5) 

 

And this step and ramp-type signal could be shown as Fig 3.10 with its initial value ℎ0 =

 [
1

0.1
]  
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Figure 3.10: Step and Step and ramp-type intrusion signal with its initial response 

𝒉𝟎 = [
𝟏

𝟎. 𝟏
]. 

 

also, it can be found that the whole system is changed with its associated intrusion signal, 

where 𝐴𝑘 = [
0.9 0 0
0 1 1
0 0 1

],  𝐵𝑘 = 0, 𝐶𝑘 = [0.05 1 1], 𝐷𝑘 = 0, 𝐹𝑘 = [
1
0
0
] and 𝐺𝑘 = 1. 

As mentioned above, the system measurement could not be replaced completely by the 

intrusion signal from 𝐶𝑘 = [0.05 1 1] because of the unobservability of the system. 

There is still some “unhacked” measurement needs to be left to make sure the 

modification of the system measurement cannot be detected easily.  
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Here, three different shiftpoints 𝑘 = 50, 𝑘 = 100 and 𝑘 = 150 are selected 

arbitrarily to show the changes of system state and system measurement when there is a 

step and ramp-type attack signal (3.5) enters the system  

 

 

Figure 3.11: The First-Order Discrete-Time stochastic system state response with its 

initial state 𝒙𝟎 = 𝟐 when the Step and ramp-type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟏𝟓𝟎. 
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Figure 3.12: The First-Order Discrete-Time stochastic system measurement state 

response with its initial state 𝒙𝟎 = 𝟐 when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟏𝟓𝟎. 
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Figure 3.13: The First-Order Discrete-Time stochastic system state response with its 

initial state 𝒙𝟎 = 𝟐 when the Step and Ramp-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟏𝟓𝟎. 
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Figure 3.14: The First-Order Discrete-Time stochastic system measurement state 

response with its initial state 𝒙𝟎 = 𝟐 when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟏𝟓𝟎. 
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Figure 3.15: The First-Order Discrete-Time stochastic system state response with its 

initial state 𝒙𝟎 = 𝟐 when the Step and Ramp-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟏𝟓𝟎. 
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Figure 3.16: The First-Order Discrete-Time stochastic system measurement state 

response with its initial state 𝒙𝟎 = 𝟐 when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟏𝟓𝟎. 
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3.3 The Second-Order System Model 

 

Consider a second-order discrete-time stochastic system with state and 

measurement noise  

 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐹𝑘𝑣𝑘 (3.6𝑎) 

 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘 (3.6𝑏) 

 

where 𝐴𝑘 = [
0 0.9

−1 −1
],  𝐵𝑘 = 0, 𝐶𝑘 = [1 1], 𝐷𝑘 = 0, 𝐹𝑘 = [

1
0
], 𝐺𝑘 = 1, and the 

covariance of the system state noise 𝑣𝑘 = 1, the covariance of the system measurement 

noise 𝑤𝑘 = 1 and both of the system state and measurement noises are zero mean, white 

and Gaussian. Therefore, the system can be represented as (3.7a) and (3.7b) 

 

𝑥𝑘+1 = [
0 0.9

−1 −1
] 𝑥𝑘  +  [

1
0
] 𝑣𝑘 (3.7𝑎) 

 

𝑦𝑘 = [1 1]𝑥𝑘  +  𝑤𝑘 (3.7𝑏) 

 

It can be noticed that this system is also an asymptotically stable system where the 

system’s eigenvalues are   −0.5 ±  0.8062i, which are inside the unit circle. Fig 3.10a, 

Fig 3.10b and Fig 3.11 show the system state value and system measurement response 

with the initial state 𝑥0 = [
2
2
] from 𝑘 = 0 to 200. 
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Figure 3.17: The Second-Order Discrete-Time Stochastic system state 𝒙𝟏response 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
]. 
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Figure 3.18: The Second-Order Discrete-Time Stochastic system state 𝒙𝟐 response 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
]. 

 

  



48 
 

 

 

 

Figure 3.19: The Second-Order Discrete-Time Stochastic system measurement 

response with its initial state 𝒙𝟎 = [
𝟐
𝟐
]. 
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3.4 Attack Model for the Second-Order System 

 

3.4.1 Constant-Type Attack Signal 

 

Consider the second-order discrete time-invariant system (3.7a) and (3.7b), where 

a hacker enters the system, replace most of the signal component of the system 

measurement to a constant signal ℎ𝑘 at a certain shiftpoint. Then the system model would 

be modified as below after the intrusion happens 

 

[

𝑥𝑘+1
1

𝑥𝑘+1
2

ℎ𝑘+1

] =  [
0 0.9 0

−1 −1 0
0 0 1

] [

𝑥𝑘
1

𝑥𝑘
2

ℎ𝑘

] + [
1
0
0
] 𝑣𝑘 (3.8𝑎) 

 

𝑦𝑘 = [0 0.1 1]𝑥𝑘  + 𝑤𝑘 (3.8𝑏) 

 

Here, ℎ𝑘 is a time-invariant constant-type intrusion signal where ℎ𝑘 = ℎ𝑘+1, and it can 

be found that the whole system is changed with its associated intrusion signal, where 

𝐴𝑘 = [
0 0.9 0

−1 −1 0
0 0 1

],  𝐵𝑘 = 0, 𝐶𝑘 = [0 0.1 1], 𝐷𝑘 = 0, 𝐹𝑘 = [
1
0
0
] and 𝐺𝑘 = 1. While, 

it can also be noticed that the system measurement is not replaced completely by the 

intrusion signal from 𝐶𝑘 = [0 0.1 1], and that is because if the hacker wants to 

replace the whole states into the intrusion signal, then 𝐶𝑘 = [0 0 1] and in this case, 

the system would be unobservable. Thus, as mentioned, hackers cannot replace the whole 

states completely and they need to leave some “unhacked” measurement to keep the 

system observable so that the intrusion could not be found easily.  
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Here, three different shiftpoints 𝑘 = 100, 𝑘 = 250 and 𝑘 = 400 are selected 

arbitrarily to show the changes of system state and system measurement when there is a 

constant-type attack signal ℎ𝑘 = 10 enters the system  

 

 

Figure 3.20: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟏 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟏𝟎𝟎. 
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Figure 3.21: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟐 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟏𝟎𝟎. 
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Figure 3.22: The Second-Order Discrete-Time Stochastic system measurement 

response with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 
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Figure 3.23: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟏 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟐𝟓𝟎. 
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Figure 3.24: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟐 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟐𝟓𝟎. 

  



55 
 

 

 

 

Figure 3.25: The Second-Order Discrete-Time Stochastic system measurement 

response with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟐𝟓𝟎. 
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Figure 3.26: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟏 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟒𝟎𝟎. 
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Figure 3.27: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟐 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟒𝟎𝟎. 
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Figure 3.28: The Second-Order Discrete-Time Stochastic system measurement 

response with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Constant-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟒𝟎𝟎. 
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3.4.2 Ramp-Type Attack Signal 

 

Consider the second-order discrete time-invariant system (3.7a) and (3.7b), where 

a hacker enters the system, replace most of the signal component of the system 

measurement to a setp and ramp-type signal ℎ𝑘 at a certain shiftpoint. Then the system 

model would be modified as below after the intrusion happens 

 

[
 
 
 
 
𝑥𝑘+1

1

𝑥𝑘+1
2

ℎ𝑘+1
1

ℎ𝑘+1
2 ]

 
 
 
 

=  [

0 0.9 0 0
−1 −1 0 0
0 0 1 1
0 0 0 1

]

[
 
 
 
 
𝑥𝑘

1

𝑥𝑘
2

ℎ𝑘
1

ℎ𝑘
2]
 
 
 
 

+ [

1
0
0
0

] 𝑣𝑘 (3.9𝑎) 

 

𝑦𝑘 = [0 0.1 1 0]𝑥𝑘  +  𝑤𝑘 (3.9𝑏) 

 

Here, ℎ𝑘 is a step and ramp-type intrusion signal where it is the same signal as mentioned 

in (3.5) and because of the intrusion signal is added into the system, the system matrices 

are changed, where 𝐴𝑘 = [

0 0.9 0 0
−1 −1 0 0
0 0 1 1
0 0 0 1

], 𝐵𝑘 = 0, 𝐶𝑘 = [0 0.1 1 0], 𝐷𝑘 = 0, 

𝐹𝑘 = [

1
0
0
0

] and 𝐺𝑘 = 1. While, as mentioned before, it can be noticed that the system 

measurement is not replaced completely by the intrusion signal from 𝐶𝑘 =

[0 0.1 1 0], if the hacker wants to replace both states into the intrusion signal, then 

𝐶𝑘 = [0 0 1 0] and in this case, the system would be unobservable. Thus, in order 
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to make sure the intrusion could not be found easily, hackers still need to leave some 

“unhacked” measurement to keep the system be observable.  

 

Here, three different shiftpoints 𝑘 = 100, 𝑘 = 250 and 𝑘 = 400 are selected 

arbitrarily to show the changes of system state and system measurement when there is a 

step and ramp-type intrusion signal ℎ𝑘 enters the system  

 

 

Figure 3.29: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟏 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 
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Figure 3.30: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟐 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 
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Figure 3.31: The Second-Order Discrete-Time Stochastic system measurement 

response with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor 

intrusion happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 
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Figure 3.32: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟏 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟐𝟓𝟎. 
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Figure 3.33: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟐 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟐𝟓𝟎. 
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Figure 3.34: The Second-Order Discrete-Time Stochastic system measurement 

response with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor 

intrusion happens at shiftpoint 𝒌 = 𝟐𝟓𝟎. 
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Figure 3.35: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟏 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟒𝟎𝟎. 
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Figure 3.36: The Second-Order Discrete-Time Stochastic system state response 𝒙𝟏 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor intrusion 

happens at shiftpoint 𝒌 = 𝟒𝟎𝟎. 
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Figure 3.37: The Second-Order Discrete-Time Stochastic system measurement 

response with its initial state 𝒙𝟎 = [
𝟐
𝟐
] when the Step and Ramp-Type sensor 

intrusion happens at shiftpoint 𝒌 = 𝟒𝟎𝟎. 
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4 DETECTION OF ATTACKS AND CASE STUDIES 

 

In this chapter, the Constant-Type Intrusion Signal and the Ramp-Type Intrusion 

Signal targeting the systems mentioned in chapter 3 will be detected by using a bank of 

Kalman filters algorithm which is introduced in chapter 2. The estimated value of each 

system states and measurements will be shown and the probabilities of the state 

(affected/unaffected) of each control system will be calculated as a function of time. The 

estimation of the states from a bank of Kalman filters together with the associated 

probabilities will also be calculated as a function of time and, by showing the 

probabilities of each state (affected/unaffected) based on the data from the bank of 

Kalman filters, it’s determined whether the sensor is under attack or not. The 

performance of the algorithm will be tested based on various levels of system and 

measurement noises. An alternative estimation method (sample mean method) will also 

be introduced and the performance of that algorithm will also be shown. 

 

4.1 First-Order System with Constant-Type Intrusion Signal 

 

Consider the first-order system mentioned in chapter 3, where the system is 

shown as (4.1a) and (4.1b),  

𝑥𝑘+1 =  0.9𝑥𝑘 + 𝑣𝑘 (4.1𝑎) 

 

𝑦𝑘
1 = 𝑥𝑘  + 𝑤𝑘 (4.1𝑏) 
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where 𝐴1 = 0.9,  𝐵1 = 0, 𝐶1 = 1, 𝐷1 = 0, 𝐹1 = 1, 𝐺1 = 1, and the covariance of the 

system state noise 𝑉 = 0.1, the covariance of the system measurement noise 𝑊 = 0.05 

and both system state noise and system measurement noise are Gaussian. Note that the 

superscript 1 represents the system is currently not under attack. 

 

Before estimating system state and measurement, the observability of this first-

order system needs to be checked and it could be checked easily by using the system 

matrices 𝐴1 and 𝐶1 with the observability criteria, which shows the system is observable.  

 

Then, the system estimated state and measurement can be observed using the 

Kalman Filter by setting up the system’s initial state estimate 𝑥̂0 and initial error 

covariance 𝑃0
1 based on system’s uncertainty. According to (2.10), (2.11), (2.12) and 

(2.13), the Kalman Filter can be expressed as below 

 

𝑃𝑘+1
1 = 𝐴1𝑃𝑘

1𝐴1𝑇
 + 𝐹1𝑉𝐹1𝑇

− 𝐴1𝑃𝑘
1𝐶1𝑇

 (𝐶1𝑃𝑘
1𝐶1𝑇

+ 𝐺1𝑊𝐺1𝑇
)
−1

(𝐶1𝑃𝑘
1𝐴1𝑇

) (4.2) 

 

𝐾𝑘
1 = 𝐴1𝑃𝑘

1𝐶1𝑇
 (𝐶1𝑃𝑘

1𝐶1𝑇
+ 𝐺1𝑊𝐺1𝑇

)
−1

(4.3) 

 

𝑥̂𝑘+1 = 𝐴1𝑥̂𝑘 +  𝐾𝑘
1𝑦̃𝑘

1 (4.4) 

 

𝑦̃𝑘
1 = 𝑦𝑘

1 − 𝐶1𝑥̂𝑘 (4.5) 
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Here, the system measurement estimate is defined as 

 

𝑦̂𝑘
1 =  𝐶1𝑥̂𝑘 (4.6) 

 

The attack model of this first-order system can be known from (3.3a) and (3.3b) 

 

[
𝑥𝑘+1

ℎ𝑘+1
] =  [

0.9 0
0 1

] [
𝑥𝑘

ℎ𝑘
] + [

1
0
] 𝑣𝑘 (4.7𝑎) 

 

𝑦𝑘
2 = [0.05 1] [

𝑥𝑘

ℎ𝑘
]  + 𝑤𝑘 (4.7𝑏) 

 

From the previous chapter, it could be known that ℎ𝑘 is a constant-type intrusion signal 

where ℎ𝑘 = ℎ𝑘+1 = 10, and it can be found that the whole system is changed to a 

second-order system with its associated intrusion signal, where 𝐴2 = [
0.9 0
0 1

],  𝐵2 = 0, 

𝐶2 = [0.05 1], 𝐷2 = 0, 𝐹2 = [
1
0
] and 𝐺2 = 1. Note that superscript 2 represents the 

system is currently under attack. 

 

Similarly, the observability of this second-order attack model needs to be 

checked, by submitting 𝐴2 and 𝐶2 into 𝑂2, where 

 

𝑂2 = [
𝐶2

𝐶2𝐴2
] =  [

0.05 1
0.045 1

] 

 



72 
 

 

 

Here, 𝑂2 represents the observability matrix for this second-order attack model 

and it can be known that 𝑂2 is full rank, which shows the system is observable. 

 

Knowing the observability of this attack model, the estimated state and 

measurement of this second-order system can be estimated using the Kalman Filter by 

setting up the system’s initial state estimate 𝑥̂0, initial value of the intrusion signal 

estimate ℎ0 and initial error covariance 𝑃0
2 based on this system state’s uncertainty. 

According to (2.10), (2.11), (2.12) and (2.13), the Kalman Filter can be expressed as 

below 

 

𝑃𝑘+1
2 = 𝐴2𝑃𝑘

2𝐴2𝑇
 +  𝐹2𝑉𝐹2𝑇

− 𝐴2𝑃𝑘
2𝐶2𝑇

 (𝐶2𝑃𝑘
2𝐶2𝑇

+ 𝐺2𝑊𝐺2𝑇
)
−1

(𝐶2𝑃𝑘
2𝐴2𝑇

) (4.8) 

 

𝐾𝑘
2 = 𝐴2𝑃𝑘

2𝐶2𝑇
 (𝐶2𝑃𝑘

2𝐶2𝑇
+ 𝐺2𝑊𝐺2𝑇

)
−1

(4.9) 

 

𝑥̂𝑘+1 = 𝐴2𝑥̂𝑘 +  𝐾𝑘
2𝑦̃𝑘

2 (4.10) 

 

𝑦̃𝑘
2 = 𝑦𝑘

2 − 𝐶2𝑥̂𝑘 (4.11) 

 

Here, the system measurement estimate could also be known form above, where  

 

𝑦̂𝑘
2 =  𝐶2𝑥̂𝑘 (4.12) 
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After calculating both system measurement estimates 𝑦̂𝑘
1 and 𝑦̂𝑘

2system innovation 

terms 𝑦̃𝑘
1 and 𝑦̃𝑘

2, the conditional probabilities of each hypothesis θ𝑖 could also be found. 

Note that θ =  {θ1, θ2}, where θ1 represents the hypothesis when the system is not under 

attack and θ2 represents the system is under attack. According (2.15), (2.16), (2.17) and 

(2.18), the conditional probabilities of each hypothesis 𝑝(𝜃𝑖|𝑌𝑘) could be found. 

 

From the chapter 2, the first step of getting 𝑝(𝜃𝑖|𝑌𝑘) is to calculate each 

covariance for each Kalman Filter with its corresponding hypothesis Ω𝑘|𝜃𝑖
, where 

 

Ω𝑘|𝜃1
= 𝐶1𝑃𝑘|𝜃1

𝐶1𝑇
+ 𝐺1𝑊𝐺1𝑇

(4.13) 

 

Here, Ω𝑘|𝜃1
 represents the covariance for the hypothesis θ1, where the system is 

currently not under attack and 𝑃𝑘|𝜃1
= 𝑃𝑘

1. Thus,  Ω𝑘|𝜃1
 could be calculated by 

submitting system matrices 𝐶1, 𝐺1, system measurement noise 𝑊 and system error 

covariance 𝑃𝑘
1 from (4.2). 

 

Similarly, Ω𝑘|𝜃2
 represents the covariance for the hypothesis θ2, where the system 

is currently under attack and 𝑃𝑘|𝜃2
= 𝑃𝑘

2. Thus,  Ω𝑘|𝜃2
 could be calculated by submitting 

system matrices 𝐶2, 𝐺2, system measurement noise W and system error covariance 𝑃𝑘
2 

from (4.8). and Ω𝑘|𝜃2
 could be shown as below 

 

Ω𝑘|𝜃2
= 𝐶2𝑃𝑘|𝜃2

𝐶2𝑇
+ 𝐺2𝑊𝐺2𝑇

(4.14) 
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After calculating Ω𝑘|𝜃1
 and Ω𝑘|𝜃2

, the second step of getting 𝑝(𝜃𝑖|𝑌𝑘) is to 

calculate the likelihood function 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑖), where it is part of the probability density 

function in (2.15) and it could be known from (2.16) by submitting Ω𝑘|𝜃1
, Ω𝑘|𝜃2

, 𝑦̃𝑘|𝜃1
, 

and 𝑦̃𝑘|𝜃2
. Note that 𝑦̃𝑘|𝜃1

= 𝑦̃𝑘
1 and 𝑦̃𝑘|𝜃2

= 𝑦̃𝑘
2,. 

 

𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃1) =  (2𝜋)−𝑚
2⁄ |Ω𝑘|𝜃1

−1 |
1

2⁄ exp {−
1

2
𝑦̃𝑘|𝜃1

𝑇 Ω𝑘|𝜃1

−1 𝑦̃𝑘|𝜃1
} (4.15) 

 

𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃2) =  (2𝜋)−𝑚
2⁄ |Ω𝑘|𝜃2

−1 |
1

2⁄ exp {−
1

2
𝑦̃𝑘|𝜃2

𝑇 Ω𝑘|𝜃2

−1 𝑦̃𝑘|𝜃2
} (4.16) 

 

In (4.15),  𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃1) represents the likelihood function when the system is 

not under attack, and 𝑚 = 1 because the unhacked system is a first order system as 

mentioned in (4.1a) and (4.1b). Similarly,  𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃2) represents the likelihood 

function in (4.16) when the system is under attack, and 𝑚 = 2 because when the system 

is under attack, it will become a second order system mentioned in (4.7a) and (4.7b) with 

its associate constant-type intrusion signal. 

 

After calculating the likelihood function for both cases (hacked/ not hacked), the 

conditional probabilities of each hypothesis 𝑝(𝜃𝑖|𝑌𝑘) could be found by submitting (4.15) 

and (4.16) to (2.15) separately, where 
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𝑝(𝜃1|𝑌𝑘) =  
𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃1)𝑝(𝜃1|𝑌𝑘−1)

∑ 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃1)𝑝(𝜃1|𝑌𝑘−1)
𝑁
𝑖=1

(4.17) 

 

𝑝(𝜃2|𝑌𝑘) =  
𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃2)𝑝(𝜃2|𝑌𝑘−1)

∑ 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃2)𝑝(𝜃2|𝑌𝑘−1)
𝑁
𝑖=1

(4.18) 

 

Here, (4.17) and (4.18) can be solved recursively, and the calculation would begin with 

an initial probability 𝑝(𝜃𝑖|𝑌0) between 0 and 1 when 𝑘 = 0, note that 𝑝(𝜃𝑖|𝑌𝑘−1) is the 

previous value of 𝑝(𝜃𝑖|𝑌𝑘). 

 

The simulation results can be shown by submitting the two systems 

(hacked/unhacked) matrices into a bank of Kalman Filters and Fig. 4.1 shows the changes 

of the system measurement before and after it’s being hacked.  
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Figure 4.1: The First-Order Discrete-Time stochastic system measurement y with its 

initial state 𝒙𝟎 = 𝟐 and the Constant-Type sensor intrusion happens at shiftpoint 

𝒌 = 𝟏𝟎𝟎. 

 

As mentioned, before the constant-type intrusion signal enters this first-order 

system, the system measurement is 𝑦𝑘
1 = 𝑥𝑘  + 𝑤𝑘 like what Fig 4.1 shows before 𝑘 =

100. After that, the intrusion signal replaces the system measurement so that 𝑦𝑘
2 =

 [0.05 1] [
𝑥𝑘

ℎ𝑘
]  + 𝑤𝑘 like what Fig 4.1 shows after  𝑘 = 100. 

 

After showing the system measurement, the next step is to calculate the system 

state and measurement estimate by using a bank of Kalman Filters. By submitting (4.2), 

(4.3), (4.4) and (4.6) to (4.5) with its initial state estimate 𝑥̂0 = 1 and initial error 
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covariance 𝑃0
1 = 100, the innovation term 𝑦̃𝑘

1 could be calculated. Similarly, by 

submitting (4.8), (4.9), (4.10) and (4.12) to (4.11) with its initial state estimate [
𝑥̂0

ℎ̂0
] =

 [
0
0
] and initial error covariance 𝑃0

2 = [
100 0
0 100

], the innovation term 𝑦̃𝑘
2 could also be 

calculated. Fig 4.2 shows the innovation terms 𝑦̃𝑘
1 and 𝑦̃𝑘

2 in time 

 

Figure 4.2: The innovation terms 𝒚̃𝒌
𝟏 and 𝒚̃𝒌

𝟐 when there is a constant-type intrusion 

signal at shiftpoint 𝒌 = 𝟏𝟎𝟎 

 

After finding the innovation term 𝑦̃𝑘
1 and 𝑦̃𝑘

2, the likelihood function (4.15) and 

(4.16) could be calculated and the conditional probabilities of each hypothesis 𝑝(𝜃1|𝑌𝑘) 

and 𝑝(𝜃2|𝑌𝑘) could be found by submitting the likelihood function (4.15) and (4.16) to 

(2.15) separately and by setting up both the initial probability 𝑝(𝜃1|𝑌0) = 0.5 and 
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𝑝(𝜃2|𝑌0) = 0.5 when 𝑘 = 0, the conditional probabilities of each hypothesis can be 

shown as Fig 4.3, note that the intrusion happens at shiftpoint 𝑘 = 100 

 

Figure 4.3: Conditional probabilities of each hypothesis 𝒑(𝜽𝟏|𝒀𝒌) (unhacked case) 

and 𝒑(𝜽𝟐|𝒀𝒌) (hacked case) when there is a constant-type intrusion signal enters the 

system at shiftpoint 𝒌 = 𝟏𝟎𝟎, starting with each initial probability 𝒑(𝜽𝟏|𝒀𝟎) = 𝟎. 𝟓 

and 𝒑(𝜽𝟐|𝒀𝟎) = 𝟎. 𝟓 

 

From Fig 4.3, it could be noticed that both the hacked and unhacked cases are all 

start with the initial probability 𝑝(𝜃𝑖|𝑌0) = 0.5. The conditional probability for the 

unhacked case 𝑝(𝜃1|𝑌𝑘) convergences to 1 very quickly and keeps convergence until the 

shiftpoint 𝑘 = 100, and on the other hand, the conditional probability for the hacked case 

𝑝(𝜃2|𝑌𝑘) convergences to 0 very quickly and keeps convergence until the shiftpoint 𝑘 =

100, which means that the system is not under attack when 𝑘 < 100. When the shiftpoint 
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𝑘 = 100, which represents the system measurement is now replaced by the constant-type 

intrusion signal and now the conditional probability for the unhacked case 𝑝(𝜃1|𝑌𝑘) 

convergences to 0 from 1 very quickly and keeps convergence when the shiftpoint 𝑘 >

100, and on the other hand, the conditional probability for the hacked case 𝑝(𝜃2|𝑌𝑘) 

convergences to 1 form 0 very quickly and keeps convergence when the shiftpoint 𝑘 >

100, which means that the system is now under attack when 𝑘 > 100.  Note that the 

convergence time for 𝑝(𝜃1|𝑌𝑘) = 1 when 𝑘 < 100 is 𝑘 = 2, and the convergence time 

for 𝑝(𝜃2|𝑌𝑘) = 1 when 𝑘 > 100 is 𝑘 = 102, which means the algorithm designed in this 

thesis works very well under this condition. 

 

4.2 First-Order System with Ramp-Type Intrusion Signal 

 

Consider the first-order system (4.1a) and (4.1b), where the hacker enters the 

system, replace the system measurement to a step and ramp-type intrusion signal and in 

this case, the attack model of this first-order system can be known from (3.4a) and (3.4b) 

and it could be shown below 

 

[

𝑥𝑘+1

ℎ𝑘+1
1

ℎ𝑘+1
2

] =  [
0.9 0 0
0 1 1
0 0 1

] [

𝑥𝑘

ℎ𝑘
1

ℎ𝑘
2
] + [

1
0
0
] 𝑣𝑘 (4.19a) 

 

𝑦𝑘
2 = [0.05 1 1] [

𝑥𝑘

ℎ𝑘
1

ℎ𝑘
2
] + 𝑤𝑘 (4.19𝑏) 

 



80 
 

 

 

From the previous chapter, it could be known that ℎ𝑘 is now a ramp-type 

intrusion signal where ℎ𝑘+1 = [
ℎ𝑘+1

1

ℎ𝑘+1
2 ] =  [

1 1
0 1

] [
ℎ𝑘

1

ℎ𝑘
2], and it can be found that the whole 

system is changed to a third-order system with its associated intrusion signal, where 𝐴2 =

[
0.9 0 0
0 1 1
0 0 1

],  𝐵2 = 0, 𝐶2 = [0.05 1 1], 𝐷2 = 0, 𝐹2 = [
1
0
0
] and 𝐺2 = 1. Similarly, 

superscript 2 represents the system is currently under attack, and the intrusion signal is 

now a ramp-type signal. Fig 4.4 shows the changes of the system measurement y when 

the step and ramp-type sensor intrusion happened at shiftpoint 𝑘 = 100. 

 
Figure 4.4: The First-Order Discrete-Time stochastic system measurement y with its 

initial state 𝒙𝟎 = 𝟐 and the Step and Ramp-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟏𝟎𝟎. 
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As usual, the observability of this third-order system needs to be checked by 

submitting 𝐴2 and 𝐶2 into 𝑂2, where 

 

𝑂2 = [
𝐶2

𝐶2𝐴2

𝐶2𝐴22

] =  [
0.05 1 1
0.045 1 2
0.0405 1 3

] 

 

Here, 𝑂2 represents the observability matrix for this third-order attack model and 

it can be known that 𝑂2 is full rank, which shows the system is observable. 

 

Similarly, after knowing the system’s observability, this third order system 

estimated state and measurement can be observed using the Kalman Filter by setting up 

the system’s initial state estimate 𝑥̂0, initial intrusion signal estimate ℎ̂0 and initial error 

covariance 𝑃0
2 based on the system’s uncertainty. According to (2.10), (2.11), (2.12) and 

(2.13), the system state estimate and measurement estimate could be calculated and after 

that, the system innovation terms 𝑦̃𝑘
2  can also be calculated with its initial state estimate 

[

𝑥̂0

ℎ̂0
1

ℎ̂0
2

] =  [
0.1
0
0

] and initial error covariance 𝑃0
2 = [

7 0 0
0 7 0
0 0 7

].  

Fig 4.5 shows the innovation terms 𝑦̃𝑘
1 and 𝑦̃𝑘

2 in time, note that the intrusion is the ramp-

type signal now 
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Figure 4.5: The innovation terms 𝒚̃𝒌
𝟏 and 𝒚̃𝒌

𝟐 when there is a step and ramp-type 

intrusion signal at shiftpoint 𝒌 = 𝟏𝟎𝟎  

 

    Similar to the constant-type intrusion cases, after finding the innovation term 

𝑦̃𝑘
1 and 𝑦̃𝑘

2, the likelihood function (4.15) and (4.16) can be calculated and the conditional 

probabilities of each hypothesis 𝑝(𝜃1|𝑌𝑘) and 𝑝(𝜃2|𝑌𝑘) can be found by submitting the 

likelihood function (4.15) and (4.16) to (2.15) separately and by setting up both the initial 

probability 𝑝(𝜃1|𝑌0) = 0.5 and 𝑝(𝜃2|𝑌0) = 0.5 when 𝑘 = 0, the conditional probabilities 

of each hypothesis can be shown as Fig 4.6, note that the intrusion is the step and ramp-

type signal and the intrusion happens at shiftpoint 𝑘 = 100 
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Figure 4.6: Conditional probabilities of each hypothesis 𝒑(𝜽𝟏|𝒀𝒌) (unhacked case) 

and 𝒑(𝜽𝟐|𝒀𝒌) (hacked case) when there is a step and ramp-type intrusion signal 

enters the system at shiftpoint 𝒌 = 𝟏𝟎𝟎, starting with each initial probability 

𝒑(𝜽𝟏|𝒀𝟎) = 𝟎. 𝟓 and 𝒑(𝜽𝟐|𝒀𝟎) = 𝟎. 𝟓 

 

From Fig 4.6, it can be noticed that both the hacked and unhacked cases are all 

start with the initial probability 𝑝(𝜃𝑖|𝑌0) = 0.5. The conditional probability for the 

unhacked case 𝑝(𝜃1|𝑌𝑘) convergences to 1 very quickly and keeps convergence until the 

shiftpoint 𝑘 = 100, and on the other hand, the conditional probability for the hacked case 

𝑝(𝜃2|𝑌𝑘) convergences to 0 very quickly and keeps convergence until the shiftpoint 𝑘 =

100, which means that the system is not under attack when 𝑘 < 100. When the shiftpoint 

𝑘 = 100, which represents the system measurement is now replaced by the step and 

ramp-type intrusion signal and now the conditional probability for the unhacked case 
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𝑝(𝜃1|𝑌𝑘) convergences from 1 to 0 very quickly and keeps convergence when the 

shiftpoint 𝑘 > 100, and on the other hand, the conditional probability for the hacked case 

𝑝(𝜃2|𝑌𝑘) convergences from 0 to 1 very quickly and also keeps convergence, which 

means the system is now under attack when 𝑘 > 100.  Note that the convergence time for 

𝑝(𝜃1|𝑌𝑘) = 1 when 𝑘 < 100 is 𝑘 = 9, and the convergence time for 𝑝(𝜃2|𝑌𝑘) = 1 when 

𝑘 > 100 is 𝑘 = 102, which shows this estimation algorithm designed in this thesis works 

also well under this step and ramp-type intrusion condition. 

 

4.3 Second-Order System with Constant-Type Intrusion Signal 
 

 

Consider the second-order system mentioned in chapter 3, where the system is 

shown as (4.20a) and (4.20b),  

 

𝑥𝑘+1 = [
0 0.9

−1 −1
] 𝑥𝑘  +  [

1
0
] 𝑣𝑘 (4.20𝑎) 

 

𝑦𝑘
1 = [1 1]𝑥𝑘  +  𝑤𝑘 (4.20𝑏) 

 

where 𝐴1 = [
0 0.9

−1 −1
],  𝐵1 = 0, 𝐶1 = [1 1], 𝐷1 = 0, 𝐹1 = [

1
0
], 𝐺1 = 1, and the 

covariance of the system state noise 𝑉 = 1, the covariance of the system measurement 

noise W = 1 and both system state noise and system measurement noise are Gaussian 

and by using the observability criteria, the observability of the system could be checked 

by submitting 𝐴1 and 𝐶1 into 𝑂1 
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𝑂1 = [ 𝐶1

𝐶1𝐴1] =  [
1 1

−1 −0.1
] 

 

Here, 𝑂1 represents the observability matrix for this second-order system and it can be 

known that 𝑂1 is full rank, which shows the system is observable.  

 

In the same time, the attack model of this second-order system can be known 

from (3.8a) and (3.8b) 

[

𝑥𝑘+1
1

𝑥𝑘+1
2

ℎ𝑘+1

] =  [
0 0.9 0

−1 −1 0
0 0 1

] [

𝑥𝑘
1

𝑥𝑘
2

ℎ𝑘

] + [
1
0
0
] 𝑣𝑘 (4.21𝑎) 

 

𝑦𝑘
2 = [0 0.1 1]𝑥𝑘  + 𝑤𝑘 (4.21𝑏) 

 

Here, ℎ𝑘 is a constant-type intrusion signal where ℎ𝑘 = ℎ𝑘+1 = 10, and it can be found 

that the whole system is changed to a third-order system with its associated intrusion 

signal, where 𝐴2 = [
0 0.9 0

−1 −1 0
0 0 1

],  𝐵2 = 0, 𝐶2 = [0 0.1 1], 𝐷2 = 0, 𝐹2 = [
1
0
0
] and 

𝐺2 = 1. 

 

Same as mentioned before, the observability of this third-order system needs to be 

checked by submitting 𝐴2 and 𝐶2 into 𝑂2 
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𝑂2 = [
𝐶2

𝐶2𝐶2

𝐶2𝐴22

] =  [
0 0.1 1

−0.1 −0.1 1
0.1 0.01 1

] 

 

Here, 𝑂2 represents the observability matrix for this third-order attack model and it can 

be known that 𝑂2 is full rank, which shows the system is observable. Fig 4.7 shows the 

system measurement y when the constant-type sensor intrusion happens at shiftpoint 𝑘 =

250. 

 
Figure 4.7: The Second-Order Discrete-Time stochastic system measurement y with 

its initial state 𝒙𝟎 = [𝟐 𝟐] and the Constant-Type sensor intrusion happens at 

shiftpoint 𝒌 = 𝟐𝟓𝟎. 
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Before the constant-type intrusion signal enters the system, the system 

measurement is 𝑦𝑘
1 = [1 1]𝑥𝑘  +  𝑤𝑘 like Fig 4.7 shows before 𝑘 = 250. After that, the 

intrusion signal replaces the system measurement so that 𝑦𝑘
2 = [0 0.1 1]𝑥𝑘  +  𝑤𝑘 

like Fig 4.7 shows after  𝑘 = 250. 

 

After knowing the system measurement, the next step is to calculate the system 

state and measurement estimate by using a bank of Kalman Filters. By submitting (4.2), 

(4.3) and (4.4) to (4.5) and (4.5) with its initial state estimate 𝑥̂0 = [
0
0
] and initial error 

covariance 𝑃0
1 = [

100 0
0 100

], the system measurement estimate 𝑦̂𝑘
1 and the innovation 

term 𝑦̃𝑘
1 can be calculated. Similarly, by submitting (4.8), (4.9) and (4.10) to (4.11) and 

(4.12) with its initial state estimate [
𝑥̂0

ℎ̂0
] = [

0
0
0
] and initial error covariance 𝑃0

2 =

 [
100 0 0
0 100 0
0 0 100

], the system measurement estimate 𝑦̂𝑘
2 and the innovation term 𝑦̃𝑘

2 can 

also be calculated. Fig 4.8 shows the innovation terms 𝑦̃𝑘
1  and 𝑦̃𝑘

2 in time 
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Figure 4.8: The innovation terms 𝒚̃𝒌
𝟏 and 𝒚̃𝒌

𝟐  for the second-order system when there 

is a constant-type intrusion signal at shiftpoint 𝒌 = 𝟐𝟓𝟎.  

 

 

Like the first-order cases introduced previously in this chapter, after finding the 

innovation term 𝑦̃𝑘
1  and 𝑦̃𝑘

2, the likelihood function (4.15) and (4.16) can be calculated 

and the conditional probabilities of each hypothesis 𝑝(𝜃1|𝑌𝑘) and 𝑝(𝜃2|𝑌𝑘) can be found 

by submitting the likelihood function (4.15) and (4.16) to (2.15) separately and by setting 

up both the initial probability 𝑝(𝜃1|𝑌0) = 0.5 and 𝑝(𝜃2|𝑌0) = 0.5 when 𝑘 = 0, the 

conditional probabilities of each hypothesis can be shown as Fig 4.9, note that the 

intrusion happens at shiftpoint 𝑘 = 250 
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Figure 4.9: Conditional probabilities of each hypothesis 𝒑(𝜽𝟏|𝒀𝒌) (unhacked case) 

and 𝒑(𝜽𝟐|𝒀𝒌) (hacked case) when there is a constant-type intrusion signal enters the 

second-order system at shiftpoint 𝒌 = 𝟐𝟓𝟎, starting with each initial probability 

𝒑(𝜽𝟏|𝒀𝟎) = 𝟎. 𝟓 and 𝒑(𝜽𝟐|𝒀𝟎) = 𝟎. 𝟓 

 

From Fig 4.9, it can be noticed that both the hacked and unhacked cases are all 

start with the initial probability 𝑝(𝜃𝑖|𝑌0) = 0.5. The conditional probability for the 

unhacked case 𝑝(𝜃1|𝑌𝑘) convergences to 1 very quickly and keeps convergence until the 

shiftpoint 𝑘 = 250, and on the other hand, the conditional probability for the hacked case 

𝑝(𝜃2|𝑌𝑘) convergences to 0 very quickly and keeps convergence until the shiftpoint 𝑘 =

250, which means that the system is not under attack when 𝑘 < 250. When the shiftpoint 

𝑘 = 250, which represents the system measurement is now replaced by the constant-type 

intrusion signal and now the conditional probability for the unhacked case 𝑝(𝜃1|𝑌𝑘) 



90 
 

 

 

convergences from 1 to 0 very quickly and keeps convergence when the shiftpoint 𝑘 >

250, and on the other hand, the conditional probability for the hacked case 𝑝(𝜃2|𝑌𝑘) 

convergences from 0 to 1 very quickly and also keeps convergence, which means the 

system is now under attack when 𝑘 > 250.  Note that the convergence time for 

𝑝(𝜃1|𝑌𝑘) = 1 when 𝑘 < 250 is 𝑘 = 3, and the convergence time for 𝑝(𝜃2|𝑌𝑘) = 1 when 

𝑘 > 250 is 𝑘 = 264, which shows this estimation algorithm could also works well for 

the second-order system when there is a constant-type intrusion enters the system. 

 

4.4 Second-Order System with Step and ramp-type Intrusion Signal 
 

 

Consider the second-order system (4.20a) and (4.20b), where the hacker enters the 

system, replace the system measurement to a step and ramp-type intrusion signal and in 

this case, the attack model of this second-order system can be known from (3.9a) and 

(3.9b) and it could be shown below 

 

[
 
 
 
 
𝑥𝑘+1

1

𝑥𝑘+1
2

ℎ𝑘+1
1

ℎ𝑘+1
2 ]

 
 
 
 

=  [

0 0.9 0 0
−1 −1 0 0
0 0 1 1
0 0 0 1

]

[
 
 
 
 
𝑥𝑘

1

𝑥𝑘
2

ℎ𝑘
1

ℎ𝑘
2]
 
 
 
 

+ [

1
0
0
0

] 𝑣𝑘 (3.9𝑎) 

 

𝑦𝑘
2 = [0 0.1 1 0]𝑥𝑘  +  𝑤𝑘 (3.9𝑏) 

 

From the previous chapter, it could be known that ℎ𝑘 is a step and ramp-type 

intrusion signal where ℎ𝑘+1 = [
ℎ𝑘+1

1

ℎ𝑘+1
2 ] =  [

1 1
0 1

] [
ℎ𝑘

1

ℎ𝑘
2], and it can be found that the whole 
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system is changed to a fourth-order system with its associated intrusion signal, where 

𝐴2 = [

0 0.9 0 0
−1 −1 0 0
0 0 1 1
0 0 0 1

],  𝐵2 = 0, 𝐶2 = [0 0.1 1 0], 𝐷2 = 0, 𝐹2 = [

1
0
0
0

] and 𝐺2 =

1. Similarly, superscript 2 represents the system is currently under attack, and the 

intrusion signal is now a step and ramp-type signal. Fig 4.10 shows the system 

measurement y when the step and ramp-type sensor intrusion happened at shiftpoint 𝑘 =

250. 

 

Figure 4.10: The Second-Order Discrete-Time stochastic system measurement y 

with its initial state 𝒙𝟎 = [
𝟐
𝟐
] and the Step and ramp-type sensor intrusion happens 

at shiftpoint 𝒌 = 𝟐𝟓𝟎. 
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Same as mentioned before, the observability of this fourth-order system needs to 

be checked by submitting 𝐴2 and 𝐶2 into 𝑂2 

 

𝑂2 = [

𝐶2

𝐶2𝐴2

𝐶2𝐴22

𝐶2𝐴23

] =  [

0 0.1 1 0
−0.1 −0.1 1 1
0.1 0.01 1 2

−0.01 0.08 1 3

] 

 

Here, 𝑂2 represents the observability matrix for this fourth-order attack model and it can 

be known that 𝑂2 is a full rank fourth-order matrix, which shows the system is 

observable. 

 

Knowing the system’s observability, this fourth-order system estimated state and 

measurement can be monitored using the Kalman Filter by setting up the system’s initial 

state estimate 𝑥̂0, initial intrusion signal estimate ℎ̂0 and initial error covariance 𝑃0
2 based 

on the system state uncertainty. According to (2.10), (2.11), (2.12) and (2.13), the system 

state estimate and measurement estimate can be calculated and after that, the system 

innovation terms 𝑦̃𝑘
2 can also be calculated with its initial state estimate [

𝑥̂0

ℎ̂0
] =  [

0
0
0
0

] and 

initial error covariance 𝑃0
2 = [

100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100

]. Fig 4.5 shows the innovation 

terms 𝑦̃𝑘
1  and 𝑦̃𝑘

2 in time 
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Figure 4.11: The innovation terms𝒚̃𝒌
𝟏 and 𝒚̃𝒌

𝟐 for the second-order system when there 

is a step and ramp-type intrusion signal at shiftpoint 𝒌 = 𝟐𝟓𝟎  

 

 

    Similar with the constant-type intrusion cases, after finding the innovation term 

𝑦̃𝑘
1  and 𝑦̃𝑘

2, the likelihood function (4.15) and (4.16) can be calculated and the conditional 

probabilities of each hypothesis 𝑝(𝜃1|𝑌𝑘) and 𝑝(𝜃2|𝑌𝑘) can be found by submitting the 

likelihood function (4.15) and (4.16) to (2.15) separately and by setting up both the initial 

probability 𝑝(𝜃1|𝑌0) = 0.5 and 𝑝(𝜃2|𝑌0) = 0.5 when 𝑘 = 0, the conditional probabilities 

of each hypothesis can be shown as Fig 4.12, note that the intrusion happens at shiftpoint 

𝑘 = 250 
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Figure 4.12: Conditional probabilities of each hypothesis 𝒑(𝜽𝟏|𝒀𝒌) (unhacked case) 

and 𝒑(𝜽𝟐|𝒀𝒌) (hacked case) when there is a step and ramp-type intrusion signal 

enters the second-order system at shiftpoint 𝒌 = 𝟏𝟎𝟎, starting with each initial 

probability 𝒑(𝜽𝟏|𝒀𝟎) = 𝟎. 𝟓 and 𝒑(𝜽𝟐|𝒀𝟎) = 𝟎. 𝟓 

 

 

From Fig 4.12, it can be noticed that both the hacked and unhacked cases are all 

start with the initial probability 𝑝(𝜃𝑖|𝑌0) = 0.5. The conditional probability for the 

unhacked case 𝑝(𝜃1|𝑌𝑘) convergences to 1 very quickly and keeps convergence until the 

shiftpoint 𝑘 = 250, and on the other hand, the conditional probability for the hacked case 

𝑝(𝜃2|𝑌𝑘) convergences to 0 very quickly and keeps convergence until the shiftpoint 𝑘 =

250, which means that the system is not under attack when 𝑘 < 250. When the shiftpoint 

𝑘 = 250, the system measurement is replaced by the constant-type intrusion signal and 

the conditional probability for the unhacked case 𝑝(𝜃1|𝑌𝑘) convergences from 1 to 0 very 
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fast and keeps convergence when the shiftpoint 𝑘 > 250, and on the other hand, the 

conditional probability for the hacked case 𝑝(𝜃2|𝑌𝑘) convergences from 0 to 1 very fast 

and also keeps convergence, which means the system is now under attack when 𝑘 > 250.  

Note that the convergence time for 𝑝(𝜃1|𝑌𝑘) = 1 when 𝑘 < 250 is 𝑘 = 5, and the 

convergence time for 𝑝(𝜃2|𝑌𝑘) = 1 when 𝑘 > 250 is 𝑘 = 255, which shows this 

estimation algorithm could also work for the second-order system when there is a step 

and ramp-type intrusion enters the system. 

 

4.5 Analysis of Simulation Results  

 

 

 

Considering the four cases mentioned above, the algorithm using a bank of 

Kalman filters in this thesis can detect the intrusion signal when it enters the system 

measurement based on the intrusion model considered. For example, when a constant-

type signal enters the second-order system mentioned in section 4.3, The conditional 

probability for the hypothesis 1, which is the unhacked case 𝑝(𝜃1|𝑌𝑘), convergences to 1 

very quickly and keeps convergence until the shiftpoint 𝑘 = 250 when there is no 

intrusion signal enters the system, note that the convergence time for 𝑝(𝜃1|𝑌𝑘) = 1 is 

𝑘 = 3 and the probability for the hacked case 𝑝(𝜃2|𝑌𝑘) = 0 . When 𝑘 > 250, the 

probability of the hacked hypothesis 𝑝(𝜃2|𝑌𝑘) convergences from 0 to 1 with the 

convergence time 𝑘 = 264. Note that the shorter convergence time the better it will be, 

especially for the convergence time when the hypothesis 𝑝(𝜃2|𝑌𝑘) (hacking happens) 

convergences from 0 to 1. Since the different signal to noise ratios could influence the 
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convergence time, it is necessary to do some analysis between the system signal to noise 

ratio (SNR) and the convergence time. Here, the SNR is given as below 

 

SNR = 
𝐶𝐶𝑇𝑡𝑟(𝑋∞)

𝑊
(4.22) 

Where  

𝑋∞ = 𝐴𝑋∞𝐴𝑇 + 𝐹𝑉𝐹𝑇 

 

From (4.22) it can be found that the system SNR increases by increasing the value of 

system state noise covariance 𝑉 or decreasing the value of 𝑊. Here, Table 4.1 shows the 

changes of the convergence time for unhacked case for 𝑝(𝜃1|𝑌𝑘) to converge to one 

before the intrusion happens as a function of time the covariance of the system state noise 

𝑉. 

 

Table 4.1: Changes of the convergence time for the second-order system with 

constant-type intrusion signal when increasing the SNR from 3 to 30 

V 𝑊 SNR Convergence Time 

0.1 1 2.8352 3 

0.5 1 14.1762 3 

1 1 28.3525 4 

2 1 56.7050 5 

3 1 85.0575 5 

4 1 113.4100 5 

5 1 141.7625 5 

 

From Table 4.1, it can be noted that the changes of the system state noise can barely 

influence the convergence time for the probability of the hypothesis for 𝑝(𝜃1|𝑌𝑘) 
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converge to one before the intrusion happens. While if the system output is replaced by 

the intrusion signal, the SNR is presented as below 

  

SNR =  
𝑑2

𝑊
(4.23) 

 

where 𝑑 is the intrusion signal and in section 4.3 𝑑 =  ℎ𝑘 = ℎ𝑘+1 which is a constant-

type intrusion signal and it could be noticed that the value of 𝑑 could influence the value 

of SNR from (4.23). Here, Table 4.2 shows the changes of the convergence time of the 

hypothesis 𝑝(𝜃2|𝑌𝑘) to one after the intrusion happens as a function of time the SNR 

from 3 to 30. 

 

Table 4.2: Changes of the convergence time for the second-order system with 

constant-type intrusion signal when increasing the SNR from 3 to 30 

d 𝑊 SNR Convergence Time 

3 1 9 369 

5 1 25 278 

10 1 100 266 

15 1 225 257 

20 1 400 254 

25 1 625 254 

30 1 900 254 

 

From Table 4.2, it can be noted that increasing the SNR of the system can lead to a 

shorter detection time of intrusion. This might imply that might because the larger SNR 

could lead to the bank of Kalman filters working faster. However, it is necessary to do 

some study regarding the relationship between the SNR and the convergence time.  
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4.6 An Alternative Detection Algorithm for the Intrusion Problem 

 

In this section, an alternative detection method is where the computed throretical 

mean value of the system measurement is compared to the actual value of the 

measurement. 

 

Consider the first-order system  

 

𝑥𝑘+1 =  0.9𝑥𝑘 + 𝑣𝑘 (4.24𝑎) 

 

𝑦𝑘
1 =  3𝑥𝑘  + 𝑤𝑘 (4.24𝑏) 

 

where A = 0.9,  B = 0, C = 3, D = 0, F = 1, G = 1, and the covariance of the system 

state noise 𝑉 = 0.01, the covariance of the system measurement noise 𝑊 = 0.01 and 

both system state noise and system measurement noises are aero mean and Gaussian. 

Note that this system’s eigenvalue is inside the unit circle and the superscript 1 represents 

the system is currently not under attack. After the shiftppoint 𝑘 = 100, there is a 

constant-type intrusion signal ℎ𝑘 = ℎ𝑘+1 enters the system and replaces the system 

measurement and in this case, the system measurement becomes  

 

𝑦𝑘
2 = ℎ𝑘 + 𝑤𝑘 (4.25) 

 

and the system state and measurement could be shown as Fig 4.13  
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Figure 4.13: The first-order Discrete-Time stochastic system state 𝒙𝒌 and 

measurement 𝒚𝒌 with its initial state  𝒙𝟎 = 𝟐 and the Constant-Type sensor 

intrusion 𝒉𝒌 = 𝟐 happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 

 

The sample mean value of the system measurement 𝑦̅𝑘 can be approximately 

found using the sample mean method by setting up the initial state’s mean value 𝑥̅0. If 

there is a control signal 𝑢𝑘, then we have  

 

𝑦̅𝑘 = 𝐶𝐴𝑘𝑥̅0 + 𝐶 ∑ 𝐴𝑘−𝑖−1𝐵𝑢𝑖

𝑘−1

𝑖=0

(4.26) 

 

Since there is no control signal in this system, (4.26) could be simplified as below 
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𝑦̅𝑘 = 𝐶𝐴𝑘𝑥̅0 (4.27) 

 

And the sample mean value of the system measurement could be shown as Fig 4.14. 

 

Figure 4.14: The first-order Discrete-Time stochastic system sample mean value of 

the system measurement 𝒚̅𝒌 with its initial mean value of the system state  𝒙̅𝟎 = 𝟐 

and the Constant-Type sensor intrusion signal 𝒉𝒌 = 𝟐 happens at shiftpoint 𝒌 =
𝟏𝟎𝟎. 

  

 

After calculating the sample mean value of the system measurement 𝑦̅𝑘, the 

sample mean detection algorithm can be expressed as Fig 4.15 
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As mentioned in Fig 4.15, there is a comparison between the system measurement 

and the theoretical sample mean value of the system measurement, and it is defined as 

𝑦̃𝑘 = 𝑦𝑘 − 𝑦̅𝑘. Before the intrusion enters the system, the value of 𝑦̃𝑘 should be close to 

zero because the value of 𝑦̅𝑘 is the computed mean value of 𝑦𝑘 at each time step k. After 

the intrusion signal ℎ𝑘 enters the system and replaces the system measurement, the 

comparison becomes 𝑦̃𝑘 = ℎ𝑘 − 𝑦̅𝑘, which would not be close to zero because 𝑦̅𝑘 is no 

longer the intrusion signal’s mean value. Fig 4.16 shows the value of 𝑦̃𝑘 when the 

constant-type intrusion signal ℎ𝑘 enters the system at the shiftpiont 𝑘 = 100. 

 

 

  

ℎ𝑘  
Compare 𝑦̅𝑘 

and system 

measurement 

 

Discrete-time 

stochastic system  

System 

input 

sensor 

Sample 

mean 

method 

𝑥̅0 

Intrusion signal ℎ𝑘 

𝑦𝑘 

𝑦̅𝑘 

System is 

affected 

or not 

Figure 4.15: Flowchart of the sample mean detection algorithm 
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Figure 4.16: The value of 𝒚̃𝒌 when the Constant-Type sensor intrusion 𝒉𝒌 = 𝟐 

happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 

 

From Fig 4.16, changes of 𝑦̃𝑘 show that there is a constant-type intrusion signal 

ℎ𝑘 enters the system at shiftpoint 𝑘 = 100 and changes the system measurement.  

 

Consider the first-order system with a control signal 𝑢𝑘  

 

𝑥𝑘+1 =  0.9𝑥𝑘 +  𝑢𝑘 + 𝑣𝑘 (4.28𝑎) 

 

𝑦𝑘
1 =  2𝑥𝑘  +  𝑢𝑘 + 𝑤𝑘 (4.28𝑏) 
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where A = 0.9,  B = 0, C = 2, D = 0, F = 1, G = 1, the constant-type control signal 

𝑢𝑘 = 1, and the covariance of the system state noise 𝑉 = 0.01, the covariance of the 

system measurement noise 𝑊 = 0.01 and both system state noise and system 

measurement noises are zero mean and Gaussian. Note that this system’s eigenvalue is 

inside the unit circle and the superscript 1 represents the system is currently not under 

attack. Similarly, after the shiftppoint 𝑘 = 100, there is a constant-type intrusion signal 

ℎ𝑘 = ℎ𝑘+1 enters the system and replaces the system measurement and in this case, the 

system measurement becomes  

 

𝑦𝑘
2 = ℎ𝑘 + 𝑤𝑘 (4.29) 

 

and the system state and measurement are shown as Fig 4.17.  
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Figure 4.17: The first-order Discrete-Time stochastic system with a constant-type 

control signal 𝒖𝐤 = 𝟏, where its state 𝒙𝒌 and measurement 𝒚𝒌 with its initial state  

𝒙𝟎 = 𝟐 and the Constant-Type sensor intrusion 𝒉𝒌 = 𝟐 happens at shiftpoint 𝒌 =

𝟏𝟎𝟎. 

 

Similarly, the throretical mean value of the system measurement 𝑦̅𝑘 can be found 

using the sample mean method using (4.26) by setting up the system’s initial state mean 

value 𝑥̅0 and the control signal 𝑢𝑘. Knowing that 𝑢𝑘 is a constant control signal where 

𝑢𝑘 = 1, (4.26) can be simplified as below  

 

𝑦̅𝑘 = 𝐶 (𝐴𝑘𝑥̅0 + ∑ 𝐴𝑘−𝑖−1𝐵

𝑘−1

𝑖=0

) +  1 (4.30) 

 

and the theoretical mean value of the system measurement is shown as Fig 4.18 
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Figure 4.18: The first-order Discrete-Time stochastic system with a constant contorl 

signal 𝒖𝒌 = 𝟏, where its theoretical sample mean value of the system measurement 

𝒚̅𝒌 with its initial mean value of the system state  𝒙̅𝟎 = 𝟐 and the Constant-Type 

sensor intrusion signal 𝒉𝒌 = 𝟐 happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 

 

Similarly, using the algorithm mentioned in Fig 4.15, there is a comparison 

between the system measurement and the theoretical sample mean value of the system 

measurement, and it is defined as 𝑦̃𝑘 = 𝑦𝑘 − 𝑦̅𝑘. Before the intrusion enters the system, 

the value of 𝑦̃𝑘 should be close to zero because the value of 𝑦̅𝑘 is the mean value of 𝑦𝑘 at 

each time step k. After the intrusion signal ℎ𝑘 enters the system and replaces the system 

measurement, the comparision becomes 𝑦̃𝑘 = ℎ𝑘 − 𝑦̅𝑘, which would not be close to zero 

because 𝑦̅𝑘 is no longer the intrusion signal’s mean value. Fig 4.19 shows the value of 𝑦̃𝑘 

when the constant-type intrusion signal ℎ𝑘 enters the system at the shiftpiont 𝑘 = 100. 
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Figure 4.19: The value of 𝒚̃𝒌 when the Constant-Type sensor intrusion 𝒉𝒌 = 𝟐 

happens at shiftpoint 𝒌 = 𝟏𝟎𝟎. 

 

From Fig 4.19, changes of 𝑦̃𝑘 could show that there is a constant-type intrusion 

signal ℎ𝑘 enters the system at shiftpoint 𝑘 = 100 and changes the system measurement.  
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5 SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

5.1 Summary 

 

In this thesis, an estimation algorithm based on a bank of Kalman Filters was 

designed that is capable of detecting sensor intrusion problem in industrial control 

systems. It is shown that when a hacker replaces the system measurement by different 

types of the intrusion signals, the estimation algorithm designed in this thesis can detect 

the changes of the system measurement by calculating the system state and measurement 

estimates based on different intrusion possibilities. This was achieved by designing a 

bank of Kalman filters together with calculating the probabilities of different hypotheses 

on the system measurements. To set up the bank of Kalman filters, it is necessary to 

know the system’s state and measurement equations. Step and ramp types of intrusion 

signals either partially or totally replace the measurement signal at a certain time point so 

that the system measurement does not give information about the system state. Thus, a 

bank of Kalman filters was implemented, to calculate the system measurement with and 

without the measurement being replaced by the intrusion signal. 

 

After receiving the system measurement, the probabilities of each hypothesis 

(unhacked and hacked with step or ramp) can be calculated using the Bayesian 

Estimation algorithm. As mentioned in chapter 2, the initial probabilities for the hacked 

and unhacked cases both need to be assumed so that the algorithm could be initialized. 

After setting the initial probabilities for both assumptions, the probabilities can be 
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calculated recursively with the given system measurement data. The convergence time 

for the probabilities converging to one was measured and this was used as the speed 

criterion of the estimation method. This performance of the algorithm was also tested 

using different measurement signal to noise ratios.  

 

A simpler estimation method, which is called the sample mean method, was also 

implemented for the same system when there is a step-type intrusion signal replacing the 

measurement. Since the system state and measurement mean value can be calculated 

using this technique, the residual between the actual value of the measurement and the 

theoretical mean value of the system measurement can be found and this can be used to 

detect if there’s an intrusion signal. When there is no intrusion signal, the residual should 

be close to zero because the theoretical mean value of the system measurement should be 

close enough to the actual value of the system measurement. If the measurement is 

replaced by the intrusion signal, the residual would be relatively larger, and the intrusion 

signal can be detected. 

 

5.2 Conclusions 

 

The estimation algorithms implemented in this thesis were applied to two 

different systems, a first-order system and a second-order system, with an additive white 

noise component in the measurement. Two different type of intrusion signals are 

considered, step and ramp replacing partially or totally the signal component of the 

measurement in our attack model.   
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In our scenarios, first, a first-order system was attacked by the step-type intrusion 

signal, replacing the measurement by that intrusion signal. The simulations showed that 

the intrusion was detected and the probability of each hypothesis (hypotheses 1: no 

intrusion, hypoehtses 2: most of the signal component of intrusion) was calculated as 

expected. Then, we focused on the step and ramp-type intrusion on the same first-order 

system and after simulating the attack using step and ramp-type intrusion signal on the 

first-order system, the result was also positive.  

 

Next, the constant-type and the step and ramp-type intrusion targeting the second-

order system were also simulated. Similarly, the intrusion signal replaced modt of the 

signal component of the system measurement by the intrusion signal at a certain time 

point. For both cases, the simulations showed the attack can be detected and the 

probability of each hypothesis was calculated and converged to correct values sufficiently 

fast. 

 

Furthermore, a short study on how the signal to noise ratio influences the speed 

performance of the algorithm was also done, and this short study shows the behavior 

effect of large signal to noise ratios on the speed of detection of the algorithm.  

 

Lastly, a new estimation method, which is named the sample mean method, was 

developed to detect the sensor intrusions when the intrusion signal replaces the 

measurement. Using this sample mean technique, the theoretical sample mean value of 

the system state and measurement can be calculated in time and by forming the residual 
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between the system actual measurement and theoretical value of its sample mean, the 

intrusion can be effectively detected. 

 

5.3 Future Work 

 

This work brings out new ideas in the detection of sensor intrusion using 

estimation theory. The main objective of this work was to achieve a successful detection 

of certain types of the sensor intrusion targeting the industrial control systems, where two 

types of the intrusion signal were tested in this work. Other types of intrusion signals can 

be applied to control systems and the performance of these estimation algorithms can be 

tested. 

 

The main technique developed in this work using a bank of Kalman filters only 

applied to first order and second order linear, time-invariant systems with additive white 

noise, that is of zero mean and Gaussian distributed, but can be applied to nonlinear (e.g. 

with estended Kalman filters), time-varying systems of larger order affected by noises 

with various other characteristics.  

 

Furthermore, the extension of this work only used sample mean technique for the 

first order system with constant-type intrusion and step and ramp-type intrusion and this 

technique can also be applied to higher order systems.  

 

Also, the relationship between the signal noise to ratio and the speed of the first 

detection algorithm was only studied briefly. This relationship might be analyzed further 
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to be able to find optimal signal to noise ratios for the best performance of these intrusion 

detection estimation algorithms. 
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APPENDIX: MATLAB CODES 

 

The MATLAB codes used to implement the bank of Kalman filters algorithm and 

the Sample Mean algorithm in this thesis are given in this Appendix. 

 

1 MATLAB Code for the First-Order Discrete-Time system 

 

%% 

% Author: Jiayi Su 

%% 

% Description: MATLAB Code for the First-Order Discrete-Time system 

  

%% Cleaning  

clear all 

close all 

clc 

  

%% Systen matrices for the First-Order system 

A = 0.9; 

B = 0; 

C  = 1; 

D = 0; 

F = 1; 

G = 1; 

  

kmax = 200; % Set up the time step kmax 

  

x= zeros(1,kmax); % Create an x vector of length kmax and fill it with 0s 

y = zeros(kmax,1); % Create an y vector of width kmax and fill it with 0s 

  

vd = 0.1; % Set up the covariance of the system state noise 

wd = 0.05; % Set up the covariance of the system measurement noise 

  

%% Creating the noise for system state and measurement, which are distrubuted as 

Gaussian  

V=sqrt(vd)*randn(1,kmax); 

V1 = mean(V); 

V2 = V-V1; 

  

W=sqrt(wd)*randn(1,kmax); 

W1 = mean(W); 

W2 = W-W1; 
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%% Initial value of system state 

x(1) = 2; 

  

%% Simulating the system with its initial value for kmax times 

for k = 1:kmax 

     

        x(k+1) = A*x(k)+F*V2(k); 

        y(k) = C*x(:,k)+G*W2(k);  

         

end 

  

%% Plot of results 

figure, 

plot(x) % Plot of the system state  

xlabel('Time') 

ylabel('System State x') 

legend('x') 

  

figure, 

plot(y) % Plot of the system measurement  

xlabel('Time') 

ylabel('System Measurement y') 

legend('y') 
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2 MATLAB Code for the First-Order system with the Constant-Type intrusion 

signal enters the system. 

 

%% 

% Author: Jiayi Su 

%% 

% Description: MATLAB Code for the First-Order Discrete-Time system with the 

%constant-type intrusion signal enters the system  

%% Cleaning  

clear all 

close all 

clc 

%% Systen matrices for the First-Order system 

A = 0.9; 

B = 0; 

C  = 1; 

D = 0; 

F = 1; 

G = 1; 

  

kmax = 200; % Set up the time step kmax 

  

x1= zeros(1,kmax); % Create an x vector of length kmax and fill it with 0s 

y = zeros(kmax,1); % Create an y vector of width kmax and fill it with 0s 

  

vd = 0.1; % Set up the covariance of the system state noise 

wd = 0.05; % Set up the covariance of the system measurement noise 

  

%% Creating the noise for system state and measurement, which are distrubuted as 

Gaussian  

V=sqrt(vd)*randn(1,kmax); 

V1 = mean(V); 

V2 = V-V1; 

  

W=sqrt(wd)*randn(1,kmax); 

W1 = mean(W); 

W2 = W-W1; 

  

%% Initial value of system state 

x1(1) = 2; 

  

  

%% Attack model when the constant-type intrusion signal enters the system 

A2 = [A 0; 0 1]; 

B2 = B; 
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C2 = [0.05 C]; 

D2 = D; 

F2 = [F 0]';    

     

OBSERVABILITY = obsv(A2,C2) % Checking the system observability  

     

ShiftPoint = 100; % Set up the shiftpoint where the intrusion signal enters the system 

%randi([80 120],1,1); % The shiftpoint can be select arbitrary using this function  

       

  

p1(:,:,1)=100; % Set pup the initial value of the unhacked system error covariance P1 

xhat1(:,1)=1; % Set up the initial unhacked estimated state x1_0_hat 

  

p2(:,:,1) = p1(:,:,1)*eye(2); % Set pup the initial value of the hacked system error 

covariance P2 

xhat2(:,1) = [0,0]'; % Set up the initial hacked estimated state x2_0_hat 

  

t = 1:kmax+1; % Set up the total time step for the system 

  

ip = 0.5;   % Set up the initial probability for the unhacked hypothesis 

  

% Set up the space vector the storing the probability of the two hypothesis 

pThetaZk1 = [ip NaN(1,length(t)-1)]; 

pThetaZk2 = [1-ip NaN(1,length(t)-1)]; 

  

%% Bank of Kalman Filter scheme 

for k=1:kmax 

           

    if k< ShiftPoint 

         

        x1(k+1) = A*x1(k)+F*V2(k); 

        y(k) = C*x1(:,k)+G*W2(k);  

                         

    else 

         

        h(k) = 10; % Intrusion signal enters the system 

         

        x2(:,k+1) = A2*[x1(k) h(k)]' + F2*V2(k); 

        y(k) = C2*x2(:,k) + G*W2(k); 

         

    end     

         

        % Estimator  

        p1(:,:,k+1)=A*p1(:,:,k)*A' - 

(A*p1(:,:,k)*C'*C*p1(:,:,k)*A')/(C*p1(:,:,k)*C'+wd)+vd; % Error covariance update   
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        Kk1(:,k)=(A*p1(:,:,k)*C')/(C*p1(:,:,k)*C'+G*wd*G'); % Kalman Gain update 

                 

        xhat1(:,k+1)=A*xhat1(:,k)+Kk1(:,k)*(y(k)-C*xhat1(:,k)); % State update 

         

         

        p2(:,:,k+1)=A2*p2(:,:,k)*A2'-

(A2*p2(:,:,k)*C2'*C2*p2(:,:,k)*A2')/(C2*p2(:,:,k)*C2'+wd)+vd;  % Error covariance 

update  

         

        Kk2(:,k)=(A2*p2(:,:,k)*C2')/(C2*p2(:,:,k)*C2'+G*wd*G');% Kalman Gain update 

                 

        xhat2(:,k+1)=A2*xhat2(:,k)+Kk2(:,k)*(y(k)-C2*xhat2(:,k));% State update 

         

       % Calculating the covariance for each Kalman Filter with its 

       % corresponding hypothesis omega in time 

       omega_k_1(k) = C * p1(:,:,k+1) * C' + G*wd*G'; 

        

       omega_k_2(k) = C2 * p2(:,:,k+1) * C2' + G*wd*G';    

        

       % Calculating the system measurement estimate y_hat and the system 

       % innovation term y_tilde in time  

       yhat1(k) = C*xhat1(:,k); 

         

       y_tilde1(k)=y(k)-C*xhat1(:,k); 

        

       yhat2(k) = C2*xhat2(:,k); 

        

       y_tilde2(k)=y(k)-C2*xhat2(:,k);     

        

       % Likelihood function of each hypothesis  

       pzkTheta1 = (2*pi)^(-1/2)*sqrt(1/det(omega_k_1(k)))... 

        *exp(-0.5*y_tilde1(k)'*eye/omega_k_1(k)*y_tilde1(k)); 

     

       pzkTheta2 = (2*pi)^(-1/2)*sqrt(1/det(omega_k_2(k)))... 

        *exp(-0.5*y_tilde2(k)'*eye/omega_k_2(k)*y_tilde2(k)); 

     

     

    % Weight update equations  

    denom = pzkTheta1*pThetaZk1(k) + pzkTheta2*pThetaZk2(k); 

     

    % Conditional probability for each hypothesis 

    pThetaZk1(k+1) = pzkTheta1*pThetaZk1(k)/denom; 

    pThetaZk2(k+1) = pzkTheta2*pThetaZk2(k)/denom;     

    

end 

% Plot of results 
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figure, 

plot(y) % System ture output 

xlabel('Time') 

ylabel('System Measurement y') 

legend('y') 

  

  

tt = 1:kmax; 

figure, 

plot(tt,y_tilde1,tt,y_tilde2) % System innovation terms for both hypothesis  

xlabel('Time') 

ylabel('y tilde') 

legend('y tilde1 = y - yhat1','y tilde2 = y - yhat2') 

grid on   

  

figure, 

plot(t,pThetaZk1,'b',t,pThetaZk2,'r') % Conditional probability for each hypothesis  

xlabel('Time') 

ylabel('Probability') 

legend('unhacked system','hacked system') 

grid on 

  

%% Convergence time for the conditional probability goes to 1 

thresh = 0.99; 

convergenceIndex = [find(pThetaZk1 > thresh,1);find(pThetaZk2 > thresh,1)]; 

disp('Convergence time:') 

t(convergenceIndex) 
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3 MATLAB Code for First-Order system with the step and ramp-type intrusion 

signal enters the system. 

 

%% 

% Author: Jiayi Su 

%% 

% Description: MATLAB Code for the First-Order Discrete-Time system with Ramp-

%Type intrusion siganl  

  

%% Cleaning 

clear all 

close all 

clc 

%% Systen matrices for the First-Order system 

A = 0.9; 

B = 0; 

C  = 1; 

D = 0; 

F = 1; 

G = 1; 

  

kmax = 200; % Set up the time step kmax 

  

x1= zeros(1,kmax); % Create an x vector of length kmax and fill it with 0s 

y = zeros(kmax,1); % Create an y vector of width kmax and fill it with 0s 

  

vd = 0.1; % Set up the covariance of the system state noise 

wd = 0.05; % Set up the covariance of the system measurement noise 

  

%% Creating the noise for system state and measurement, which are distrubuted as 

Gaussian  

V=sqrt(vd)*randn(1,kmax); 

V1 = mean(V); 

V2 = V-V1; 

  

W=sqrt(wd)*randn(1,kmax); 

W1 = mean(W); 

W2 = W-W1; 

  

%% Initial value of system state 

x1(1) = 2; 

  

%% Attack model when the step and ramp-type intrusion signal enters the system 

    H = [1 1; 0 1]; 

    A2 = [A 0 0; 0 H(1,:); 0 H(2,:)]; 

    B2 = B; 
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    C2 = [0.05 1 1]; 

    D2 = D; 

    F2 = [F 0 0]';  

  

    OBSERVABILITY = obsv(A2,C2) % Check the observability for the attack model  

    RANK_OBSV_MODEL_2 = rank(OBSERVABILITY) 

     

    ShiftPoint = 100; % Set up the shiftpoint where the intrusion signal enters the system 

    %randi([80 120],1,1); % The shiftpoint can be select arbitrary between 80 and 120 

using this function  

     

p1(:,:,1)=100; % Set up the initial value of the unhacked system error covariance P1 

xhat1(:,1)=1; % Set up the initial unhacked estimated state x1_0_hat 

  

p2(:,:,1) = 7*eye(3); % Set up the initial value of the hacked system error covariance P2 

xhat2(:,1) = [0.1,0,0]'; % Set up the initial estimated state x2_0_hat for the attack model 

  

t = 1:kmax+1; 

  

ip = 0.5;   %initial probability for the unhacked hypothesis 

  

% Set up the space vector for storing the probability of the two hypothesis 

pThetaZk1 = [ip NaN(1,length(t)-1)]; 

pThetaZk2 = [1-ip NaN(1,length(t)-1)]; 

  

%% Bank of Kalman Filter scheme 

for k=1:kmax 

     

        % set up the step and ramp-type intrusion signal 

        h(:,1) = [1 0.1]'; 

        h(:,k+1) = H*h(:,k);  

     

    if k< ShiftPoint 

         

        x1(k+1) = A*x1(k)+F*V2(k); 

        y(k) = C*x1(:,k)+G*W2(k);  

                 

    else 

         

        % Intrusion signal enters the system 

        x2(:,k+1) = A2*[x1(k); h(:,k)] + F2*V2(k); 

        y(k) = C2*x2(:,k) + G*W2(k); 

         

    end     

         

        % Estimator  
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        p1(:,:,k+1)=A*p1(:,:,k)*A'-

(A*p1(:,:,k)*C'*C*p1(:,:,k)*A')/(C*p1(:,:,k)*C'+wd)+vd; % Error covariance  update  

         

        Kk1(:,k)=(A*p1(:,:,k)*C')/(C*p1(:,:,k)*C'+G*wd*G'); % Kalman Gain update 

                 

        xhat1(:,k+1)=A*xhat1(:,k)+Kk1(:,k)*(y(k)-C*xhat1(:,k)); % Estimated state update  

         

         

        p2(:,:,k+1)=A2*p2(:,:,k)*A2'-

(A2*p2(:,:,k)*C2'*C2*p2(:,:,k)*A2')/(C2*p2(:,:,k)*C2'+wd)+vd;  % Error covariance  

update  

         

        Kk2(:,k)=(A2*p2(:,:,k)*C2')/(C2*p2(:,:,k)*C2'+G*wd*G'); % Kalman Gain update 

                 

        xhat2(:,k+1)=A2*xhat2(:,k)+Kk2(:,k)*(y(k)-C2*xhat2(:,k)); % Estimated state 

update  

         

       % Calculating the covariance for each Kalman Filter with its 

       % corresponding hypothesis omega in time     

       omega_k_1(k) = C * p1(:,:,k+1) * C' + G*wd*G'; 

        

       omega_k_2(k) = C2 * p2(:,:,k+1) * C2' + G*wd*G';    

        

       % Calculating the system measurement estimate y_hat and the system 

       % innovation term y_tilde in time  

       y_tilde1(k)=y(k)-C*xhat1(:,k); 

         

       y_tilde2(k)=y(k)-C2*xhat2(:,k);     

        

       % Likelihood function of each hypothesis         

       pzkTheta1 = (2*pi)^(-1/2)*sqrt(1/det(omega_k_1(k)))... 

        *exp(-0.5*y_tilde1(k)'*eye/omega_k_1(k)*y_tilde1(k)); 

     

       pzkTheta2 = (2*pi)^(-1/2)*sqrt(1/det(omega_k_2(k)))... 

        *exp(-0.5*y_tilde2(k)'*eye/omega_k_2(k)*y_tilde2(k)); 

    

    % Weight update equations      

    denom = pzkTheta1*pThetaZk1(k) + pzkTheta2*pThetaZk2(k); 

  

    % Conditional probability for each hypothesis 

    pThetaZk1(k+1) = pzkTheta1*pThetaZk1(k)/denom; 

    pThetaZk2(k+1) = pzkTheta2*pThetaZk2(k)/denom;     

     

end 

  

% Plot of results 
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figure, 

plot(y) % System ture output 

xlabel('Time') 

ylabel('System Measurement y') 

legend('y') 

  

tt = 1:kmax; 

figure, 

plot(tt,y_tilde1,tt,y_tilde2) % System innovation terms for both hypothesis  

xlabel('Time') 

ylabel('y tilde') 

legend('y tilde1 = y - yhat1','y tilde2 = y - yhat2') 

grid on   

  

figure, 

plot(t,pThetaZk1,'b',t,pThetaZk2,'r') % Conditional probability for each hypothesis  

xlabel('Time') 

ylabel('Probability') 

legend('unhacked system','hacked system') 

grid on 

  

%% Convergence time for the conditional probability goes to 1 

thresh = 0.99; 

convergenceIndex = [find(pThetaZk1 > thresh,1);find(pThetaZk2 > thresh,1)]; 

disp('Convergence time:') 

t(convergenceIndex) 
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4 MATLAB Code for the second-order discrete-time system  

 
 

%% 

% Author: Jiayi Su 

%% 

% Description: MATLAB Code for modeling the Second-Order Discrete-Time system 

  

%% Cleaning  

clear all 

close all 

clc 

%% 

% Second-order Discrete-Time model 

A1 = [0 0.9; -1 -1]; 

F1 = [1 0]'; 

C1 = [1 1]; 

G1 = 1; 

  

EIGENVALUE_SYS_1 = eig(A1) % Check the system stability 

OBSERVABILITY_SYS_1 = obsv(A1,C1) % check the system observability 

RANK_OBSV_SYS_1 = rank(OBSERVABILITY_SYS_1) 

  

kmax = 200; 

  

% Error covariance for the systen state noise and measuremnt noise  

vd = 1; 

wd = 1; 

  

%% Creating the noise for system state and measurement, which are distrubuted as 

Gaussian  

V1=sqrt(vd)*randn(1,kmax); 

V2 = mean(V1); 

V = V1-V2; 

  

W1=sqrt(wd)*randn(1,kmax); 

W2 = mean(W1); 

W = W1-W2; 

  

x1 = zeros(2,kmax); % Create an x1 vector of length kmax, width 2 and fill it with 0s 

y = zeros(1,kmax); % Create an y vector of width kmax and fill it with 0s 

  

% Set up the initial value for the second-order system 

x1(:,1) = [2,2]'; 

  

%% Simulating the system with its initial value for kmax times 
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for k = 1:kmax 

             

        x1(:,k+1) = A1*x1(:,k) + F1*V(k); 

        y(k) = C1*x1(:,k) + G1*W(k); 

           

end 

  

%% Plot of results 

figure, 

plot(x1(1,:)) % Plot of the system first state  

legend('x1') 

xlabel('Time') 

ylabel('System State x_1') 

  

figure, 

plot(x1(2,:)) % Plot of the system second state  

legend('x2') 

xlabel('Time') 

ylabel('System State x_2') 

  

figure, 

plot(y) % Plot of the system measurement  

legend('y') 

xlabel('Time') 

ylabel('System Measurement y') 
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5 MATLAB Code for the second-order discrete-time system with constant-type 

intrusion signal 
 

%% 

% Author: Jiayi Su 

%% 

% Description: MATLAB Code for the Second-Order Discrete-Time system with 

% Constant-Type intrusion signal 

  

%% Cleaning  

clear all 

close all 

clc 

%% Systen matrices for the Second-Order system 

A1 = [0 0.9; -1 -1]; 

F1 = [1 0]'; 

C1 = [1 1]; 

G1 = 1; 

  

EIGENVALUE_SYS_1 = eig(A1) % Check the system eigenvalue for the system 

stability 

OBSERVABILITY_SYS_1 = obsv(A1,C1) % Check the system observability 

RANK_OBSV_SYS_1 = rank(OBSERVABILITY_SYS_1) 

  

kmax = 500; % Set up the time step kmax 

  

vd = 1; % Set up the covariance of the system state noise 

wd = 1; % Set up the covariance of the system measurement noise 

  

%% Creating the noise for system state and measurement, which are distrubuted as 

Gaussian  

V1=sqrt(vd)*randn(1,kmax); 

V2 = mean(V1); 

V = V1-V2; 

  

W1=sqrt(wd)*randn(1,kmax); 

W2 = mean(W1); 

W = W1-W2; 

  

x1 = zeros(2,kmax); 

y = zeros(1,kmax); 

  

%% Initial value of system state 

x1(:,1) = [2,2]'; 

  

%% Attack model when the constant-type intrusion signal enters the system 
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A2 = [A1(1,:)  0; A1(2,:)  0; 0 0 1 ]; 

F2 = [F1' 0]'; 

C2 = [0 0.1 1]; 

G2 = G1; 

  

EIGENVALUE_SYS_2 = eig(A2) % Check the eigenvalue for the attack model for the 

system stability 

OBSERVABILITY_ATTACK_MODEL = obsv(A2,C2) % Check the observability for 

the attack model 

RANK_OBSV_ATTACK_MODEL = rank(OBSERVABILITY_ATTACK_MODEL) 

  

p1(:,:,1) = 100*eye(2); % Set up the initial value of the unhacked system error covariance 

P1 

xhat1(:,1) = [0 0]'; % Set up the initial unhacked estimated state x1_0_hat 

  

p2(:,:,1) = 100*eye(3); % Set up the initial value of the hacked system error covariance 

P2 

xhat2(:,1) = [0 0 0]'; % Set up the initial hacked estimated state x2_0_hat 

  

t = 1:kmax+1; 

  

ip = 0.5;   % Set up the initial probability for the unhacked system 

  

% Set up the space vector the storing the probability of the two hypothesis 

pThetaZk1 = [ip NaN(1,length(t)-1)]; 

pThetaZk2 = [1-ip NaN(1,length(t)-1)]; 

  

ShiftPoint = 250;% Set up the shiftpoint where the intrusion signal enters the system 

%randi([200 300],1,1); % The shiftpoint can be select arbitrary between 200 and 300 

using this function  

  

% Bank of Kalman Filter scheme 

for k = 1:kmax 

     

         

    if k< ShiftPoint 

         

        x1(:,k+1) = A1*x1(:,k) + F1 *V(k); 

        y(k) = C1*x1(:,k) + G1*W(k); 

         

    else 

         

        h(k) = 20;% the constant-type intrusion signal enters the system 

        x2(:,k+1) = A2*[x1(:,k); h(k)] + F2 *V(k); 

        y(k) = C2*x2(:,k) + G2*W(k); 
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    end  

     

        % Estimator  

        p1(:,:,k+1)=A1*p1(:,:,k)*A1'-

(A1*p1(:,:,k)*C1'*C1*p1(:,:,k)*A1')/(C1*p1(:,:,k)*C1'+wd)+vd; % Error covariance 

update    

         

        Kk1(:,k)=(A1*p1(:,:,k)*C1')/(C1*p1(:,:,k)*C1'+G1*wd*G1'); % Kalman Gain 

update 

                 

        xhat1(:,k+1)=A1*xhat1(:,k)+Kk1(:,k)*(y(k)-C1*xhat1(:,k)); % State update 

         

         

        p2(:,:,k+1)=A2*p2(:,:,k)*A2'-

(A2*p2(:,:,k)*C2'*C2*p2(:,:,k)*A2')/(C2*p2(:,:,k)*C2'+wd)+vd; % Error covariance 

update    

         

        Kk2(:,k)=(A2*p2(:,:,k)*C2')/(C2*p2(:,:,k)*C2'+G2*wd*G2'); % Kalman Gain 

update 

                 

        xhat2(:,k+1)=A2*xhat2(:,k)+Kk2(:,k)*(y(k)-C2*xhat2(:,k)); % State update 

         

       % Calculating the covariance for each Kalman Filter with its 

       % corresponding hypothesis omega in time 

       omega_k_1(k) = C1 * p1(:,:,k+1) * C1' + G1*wd*G1'; 

        

       omega_k_2(k) = C2 * p2(:,:,k+1) * C2' + G2*wd*G2';    

        

       % Calculating the system innovation term in time using system true 

       % measurment and the system estimated measurement 

       y_tilde1(k)=y(k)-C1*xhat1(:,k); 

         

       y_tilde2(k)=y(k)-C2*xhat2(:,k);     

        

       % Likelihood functions for each hypothesis 

       pzkTheta1 = (2*pi)^(-1/2)*sqrt(1/det(omega_k_1(k)))... 

        *exp(-0.5*y_tilde1(k)'*eye/omega_k_1(k)*y_tilde1(k)); 

     

       pzkTheta2 = (2*pi)^(-1/2)*sqrt(1/det(omega_k_2(k)))... 

        *exp(-0.5*y_tilde2(k)'*eye/omega_k_2(k)*y_tilde2(k)); 

      % Weight update equations  

      denom = pzkTheta1*pThetaZk1(k) + pzkTheta2*pThetaZk2(k); 

       

      % Conditional probability for each hypothesis  

      pThetaZk1(k+1) = pzkTheta1*pThetaZk1(k)/denom; 

      pThetaZk2(k+1) = pzkTheta2*pThetaZk2(k)/denom;     
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end 

  

% Calculate the system Signal Noise Ration before the system is intruded  

X = dlyap(A1,F1*vd*F1'); 

SNR = (C1*C1'*trace(X))/wd 

  

  

% Plot of the results  

figure, 

plot(y) % System true output  

xlabel('Time') 

ylabel('System Measurement y') 

legend('y') 

  

  

  

tt = 1:kmax; 

figure, 

plot(tt,y_tilde1,tt,y_tilde2) % System innovation terms for each hypothesis  

xlabel('Time') 

ylabel('y tilde') 

legend('y tilde1 = y - yhat1','y tilde2 = y - yhat2') 

grid on   

  

figure, 

plot(t,pThetaZk1,'b',t,pThetaZk2,'r') % Conditional probability for each hypothesis  

xlabel('Time') 

ylabel('Probability') 

legend('unhacked system','hacked system') 

grid on 

  

%% Convergence time for the conditional probability goes to 1 

thresh = 0.99; 

convergenceIndex = [find(pThetaZk1 > thresh,1);find(pThetaZk2 > thresh,1)]; 

disp('Convergence time:') 

t(convergenceIndex) 
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6 MATLAB Code for the second-order discrete-time system with step and ramp-

type intrusion signal 

 

%% 

% Author: Jiayi Su 

%% 

% Description: MATLAB Code for the Second-Order Discrete-Time system with 

% Step and ramp-type intrusion signal 

  

%% Cleaning 

clear all 

close all 

clc 

%% Systen matrices for the Second-Order system 

A1 = [0 0.9; -1 -1]; 

F1 = [1 0]'; 

C1 = [1 1]; 

G1 = 1; 

  

EIGENVALUE_SYS_1 = eig(A1) % Check the system eigenvalue for the stability 

OBSERVABILITY_SYS_1 = obsv(A1,C1) % Check the system observability  

RANK_OBSV_SYS_1 = rank(OBSERVABILITY_SYS_1) 

  

kmax = 500; % Set up the time step kmax 

  

vd = 1; % Set up the covariance of the system state noise 

wd = 1; % Set up the covariance of the system measurement noise 

  

%% Creating the noise for system state and measurement, which are distrubuted as 

Gaussian  

V1=sqrt(vd)*randn(1,kmax); 

V2 = mean(V1); 

V = V1-V2; 

  

W1=sqrt(wd)*randn(1,kmax); 

W2 = mean(W1); 

W = W1-W2; 

  

x1 = zeros(2,kmax); % Create an x vector of length kmax, width 2 and fill it with 0s 

y = zeros(1,kmax); % Create an y vector of width kmax and fill it with 0s 

  

x1(:,1) = [2,2]'; % Set up the system initial state 

  

%% Attack model when the step and ramp-type intrusion signal enters the system 

H = [1 1; 0 1]; 

A2 = [A1(1,:) 0 0; A1(2,:) 0 0; 0 0 H(1,:); 0 0 H(2,:) ]; 
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F2 = [F1' 0 0]'; 

C2 = [0 0.1 1 0]; 

G2 = G1; 

  

OBSERVABILITY_ATTACK_MODEL = obsv(A2,C2)  % Check the observability for 

the attack model 

RANK_OBSV_ATTACK_MODEL = rank(OBSERVABILITY_ATTACK_MODEL) 

  

  

p1(:,:,1) = 100*eye(2); % Set up the initial value of the unhacked system error covariance 

P1 

xhat1(:,1) = [0 0]'; % Set up the initial unhacked estimated state x1_0_hat 

  

p2(:,:,1) = 100*eye(4); % Set up the initial value of the hacked system error covariance 

P2 

xhat2(:,1) = [0 0 0 0]'; % Set up the initial estimated state x2_0_hat for the attack model 

  

t = 1:kmax+1; 

  

ip = 0.5;   %initial probability for the unhacked hypothesis 

  

% Set up the space vector for storing the probability of the two hypothesis 

pThetaZk1 = [ip NaN(1,length(t)-1)]; 

pThetaZk2 = [1-ip NaN(1,length(t)-1)]; 

  

ShiftPoint = 250;% Set up the shiftpoint where the intrusion signal enters the system 

    %randi([200 300],1,1); % The shiftpoint can be select arbitrary between 200 and 300 

using this function  

  

  

%% Bank of Kalman Filter scheme 

for k = 1:kmax 

        % set up the step and ramp-type intrusion signal 

        h(:,1) = [1 0.1]'; 

        h(:,k+1) = H*h(:,k);  

         

    if k< ShiftPoint 

         

        x1(:,k+1) = A1*x1(:,k) + F1 *V(k); 

        y(k) = C1*x1(:,k) + G1*W(k); 

         

    else 

         

        % Intrusion signal enters the system 

        x2(:,k+1) = A2*[x1(:,k); h(:,k)] + F2 *V(k); 

        y(k) = C2*x2(:,k) + G2*W(k); 
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    end  

     

        % Estimator 

        p1(:,:,k+1)=A1*p1(:,:,k)*A1'-

(A1*p1(:,:,k)*C1'*C1*p1(:,:,k)*A1')/(C1*p1(:,:,k)*C1'+wd)+vd; % Error covariance  

update    

         

        Kk1(:,k)=(A1*p1(:,:,k)*C1')/(C1*p1(:,:,k)*C1'+G1*wd*G1'); % Kalman Gain 

update 

                 

        xhat1(:,k+1)=A1*xhat1(:,k)+Kk1(:,k)*(y(k)-C1*xhat1(:,k)); % State Estimate 

update  

         

         

        p2(:,:,k+1)=A2*p2(:,:,k)*A2'-

(A2*p2(:,:,k)*C2'*C2*p2(:,:,k)*A2')/(C2*p2(:,:,k)*C2'+wd)+vd; % Error covariance  

update    

         

        Kk2(:,k)=(A2*p2(:,:,k)*C2')/(C2*p2(:,:,k)*C2'+G2*wd*G2'); % Kalman Gain 

update 

                 

        xhat2(:,k+1)=A2*xhat2(:,k)+Kk2(:,k)*(y(k)-C2*xhat2(:,k)); % State Estimate 

update  

         

       % Calculating the covariance for each Kalman Filter with its 

       % corresponding hypothesis omega in time          

       omega_k_1(k) = C1 * p1(:,:,k+1) * C1' + G1*wd*G1'; 

        

       omega_k_2(k) = C2 * p2(:,:,k+1) * C2' + G2*wd*G2';    

        

       % Calculating the system measurement estimate y_hat and the system 

       % innovation term y_tilde in time                

       y_tilde1(k)=y(k)-C1*xhat1(:,k); 

         

       y_tilde2(k)=y(k)-C2*xhat2(:,k);    

        

       % Likelihood function of each hypothesis          

       pzkTheta1 = (2*pi)^(-1/2)*sqrt(1/det(omega_k_1(k)))... 

        *exp(-0.5*y_tilde1(k)'*eye/omega_k_1(k)*y_tilde1(k)); 

     

       pzkTheta2 = (2*pi)^(-1/2)*sqrt(1/det(omega_k_2(k)))... 

        *exp(-0.5*y_tilde2(k)'*eye/omega_k_2(k)*y_tilde2(k)); 

       

      % Weight update equations       

      denom = pzkTheta1*pThetaZk1(k) + pzkTheta2*pThetaZk2(k); 
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      % Conditional probability for each hypothesis 

      pThetaZk1(k+1) = pzkTheta1*pThetaZk1(k)/denom; 

      pThetaZk2(k+1) = pzkTheta2*pThetaZk2(k)/denom;     

               

end 

  

% Plot of results 

figure, 

plot(y) % System ture output 

xlabel('Time') 

ylabel('System Measurement y') 

legend('y') 

  

tt = 1:kmax; 

figure, 

plot(tt,y_tilde1,tt,y_tilde2) % System innovation terms for both hypothesis  

xlabel('Time') 

ylabel('y tilde') 

legend('y tilde1 = y - yhat1','y tilde2 = y - yhat2') 

grid on   

  

figure, 

plot(t,pThetaZk1,'b',t,pThetaZk2,'r') % Conditional probability for each hypothesis  

xlabel('Time') 

ylabel('Probability') 

legend('unhacked system','hacked system') 

grid on 

  

%% Convergence time for the conditional probability goes to 1 

thresh = 0.99; 

convergenceIndex = [find(pThetaZk1 > thresh,1);find(pThetaZk2 > thresh,1)]; 

disp('Convergence time:') 

t(convergenceIndex) 
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7 MATLAB Code for the Sample Mean algorithm  

 

 

%Cleaning 

clear all 

close all 

clc 

%% 

% Author: Jiayi Su 

%% 

% Description: MATLAB Code for the First-Order system without control signal with 

constant-type intrusion signal using Sample Mean algorithm  

%% Systen matrices for the First-Order system 

A = 0.9; 

B = 0; 

C  = 3; 

D = 0; 

F = 1; 

G = 1; 

  

kmax = 200; % Set up the time step kmax 

  

x= zeros(1,kmax);% Create an x vector of length kmax and fill it with 0s 

y = zeros(kmax,1);% Create an y vector of width kmax and fill it with 0s 

  

x_mean = NaN(1,kmax);% Create an x_mean vector of length kmax and fill it with 0s 

y_mean = NaN(kmax,1);% Create an y_mean vector of length kmax and fill it with 0s 

  

vd = 0.01;% Set up the covariance of the system state noise 

wd = 0.01;% Set up the covariance of the system measurement noise 

  

EIGENVALUE = eig(A) % Calculate the system eigenvalues  

%% Creating the noise for system state and measurement, which are distrubuted as 

Gaussian  

V=sqrt(vd)*randn(1,kmax); 

V1 = mean(V); 

V2 = V-V1; 

  

W=sqrt(wd)*randn(1,kmax); 

W1 = mean(W); 

W2 = W-W1; 

  

  

x(1) = 2;% Set up the system initial state 

  

shiftpoint = 100;% Set up the shiftpoint where the intrusion signal enters the system 
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%Sasmple Mean scheme 

for k = 1:kmax 

     

     x(k+1) = A*x(k)+F*V2(k); 

     d = 2; % set up the constant-tyoe intrusion signal 

    % calculating the sample mean value of the system state and system measurement  

        x_mean(k) = (A^k)*x(1); 

        y_mean(k) = C*x_mean(k); 

         

    if k<= shiftpoint 

        

        y(k) = C*x(:,k)+G*W2(k);  

         

        % Comparision between the ture measurement and the sample mean 

        % measurement 

        y_tilde(k) = y(k) - y_mean(k);        

         

    else 

        % intrusion signal enters the system 

        y(k) = d + G*W2(k);  

         

        % Comparision between the ture measurement and the sample mean 

        % measurement 

        y_tilde(k) = y(k) - y_mean(k); 

         

    end 

end 

  

  

% Plot of results 

figure, 

subplot(2,1,1) % system state 

plot(x) 

xlabel('Time') 

ylabel('System State x') 

legend('x') 

subplot(2,1,2) % system measurement 

plot(y) 

xlabel('Time') 

ylabel('System Measurement y') 

legend('y') 

  

  

figure, % sample mean value of the system measurement 

plot(y_mean) 
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xlabel('Time') 

ylabel('y mean') 

legend('y mean') 

  

  

figure, % residule between the system ture measurement and the system sample mean 

measurement 

plot(y_tilde) 

xlabel('Time') 

ylabel('y tilde') 

legend('y tilde = y - y mean') 
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8 MATLAB Code for the Sample Mean algorithm  
 

%Cleaning 

clear all 

close all 

clc 

%% 

% Author: Jiayi Su 

%% 

% Description: MATLAB Code for the First-Order system with constant control signal 

with constant-type intrusion signal using Sample Mean algorithm  

%% Systen matrices for the First-Order system 

A = 0.9; 

B = 1; 

C  = 2; 

D = 1; 

u = 1; % constant control signal u = 1 

F = 1; 

G = 1; 

  

kmax = 200;% Set up the time step kmax 

  

  

x= zeros(1,kmax);% Create an x vector of length kmax and fill it with 0s 

y = zeros(kmax,1);% Create an y vector of width kmax and fill it with 0s 

  

  

y_mean = NaN(kmax,1);% Create an y_mean vector of length kmax and fill it with 0s 

  

  

vd = 0.01;% Set up the covariance of the system state noise 

wd = 0.01;% Set up the covariance of the system measurement noise 

  

  

EIGENVALUE = eig(A)% Calculate the system eigenvalues 

%% Creating the noise for system state and measurement, which are distrubuted as 

Gaussian  

V=sqrt(vd)*randn(1,kmax); 

V1 = mean(V); 

V2 = V-V1; 

  

W=sqrt(wd)*randn(1,kmax); 

W1 = mean(W); 

W2 = W-W1; 

  

x(1) = 2;% Set up the system initial state 
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shiftpoint = 100;% Set up the shiftpoint where the intrusion signal enters the system 

  

syms i 

%Sasmple Mean scheme 

for k = 1:kmax 

     

     x(k+1) = A*x(k) + B*u + F*V2(k); 

     d = 2;% set up the constant-tyoe intrusion signal 

     % calculating the sample mean value of the system state and system measurement  

     y_mean(k) = C*(A^k)*x(1) + C*symsum(A^(k-i-1)*B*u, 0,k-1); 

      

    if k<= shiftpoint 

        

        y(k) = C*x(:,k)+G*W2(k);  

                 

        % Comparision between the ture measurement and the sample mean 

        % measurement 

        ytilde(k) = y(k) - y_mean(k); 

                

    else 

        % intrusion signal enters the system 

        y(k) = d + G*W2(k);  

        % Comparision between the ture measurement and the sample mean 

        % measurement         

        ytilde(k) = y(k) - y_mean(k); 

         

    end 

end 

  

  

% Plot of results 

figure, 

subplot(2,1,1)% system state 

plot(x) 

xlabel('Time') 

ylabel('System State x') 

legend('x') 

subplot(2,1,2)% system measurement 

plot(y) 

xlabel('Time') 

ylabel('System Measurement y') 

legend('y') 

  

  

figure,% sample mean value of the system measurement 

plot(y_mean) 
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xlabel('Time') 

ylabel('y mean') 

legend('y mean') 

  

figure, % residule between the system ture measurement and the system sample mean 

measurement 

plot(ytilde) 

xlabel('Time') 

ylabel('y mean') 

legend('y tilde = y - y mean') 
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