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ABSTRACT 

STATE ESTIMATION FOR VARIOUS SYSTEMS WITH PARTIALLY 

UNKNOWN DYNAMICS 

 

 

ABDULELAH ALSHAREEF 

 

MARQUETTE UNIVERSITY, 2018 

 

 

This thesis is on state estimation for various system and measurement models with 

uncertain dynamics. The uncertain dynamics may be due to imprecise system modeling or 

change in parameters due to varying environmental conditions. Uncertainty may be a result 

of malicious acts such as hacking of sensors or actuators in the system. Uncertainty may 

also be a result of external disturbances whose waveforms, magnitudes and arrival times 

may not be known. These types of model uncertainties will be considered and different 

estimators will be implemented to deal with such uncertainties in state estimation.  

 

In this thesis, for linear stochastic systems with additive noise, the measurements and 

input are available and noises statistics are known, Kalman filter is used to estimate the 

state. However, for nonlinear systems, Extended Kalman filter is used under the same 

conditions. When noise statistics are unknown, H-infinity filter is used to estimate the state 

of the system if the noises are assumed to be of finite energy.  

 

For identification of parameters, coefficients in transfer functions are identified by 

using Kalman and H-infinity filters. By using Extended Kalman and H-infinity filters, 

unknown parameters of the state-space model can be estimated. For parameters whose 

range of values is available, a bank of Kalman filters is used to find the actual values. 

  

For detection of an intrusion signal that attacks a sensor or actuator of a system, there 

are several methods considered in this thesis, including the sample mean method, Kalman 

filter method and stochastic parameter estimation method. 

 

The simulation results of the various applications of these filters will be presented and 

the performance of these filters will be discussed.
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1 Introduction  

 

1.1 Introduction 

 

In industry, there are many complex systems that are exposed to several adverse factors. 

Such factors can make the dynamics of control systems become uncertain. The external 

and internal disturbances that effect both the system’s state and output may be a reason for 

these uncertainties. An intrusion signal that attacks sensors or actuators of a system, may 

be another reason for these uncertainties as well. Moreover, when parameters of a system 

are varying in time due to such factors as change in the ambient temperature, uncertainty 

may also be experienced. These uncertainties may affect the operation of the system 

adversely. Therefore, there is a need to investigate techniques that could be implemented 

in order to detect these uncertainties and compensate for them.  

 

A possible approach is by using estimation theory and various estimators can be used 

to deal with such uncertainties in state estimation. Kalman, Extended Kalman, H-infinity 

filters have been used to estimate the states of a system. In addition, there are many 

techniques to identify parameters using the same type of estimation methods, as well as a 

bank of Kalman filter to find values of parameters when their values are known to be in a 

certain range. The same bank of Kalman filters can also be used to detect attacks that may 

occur through a sensor or actuator.  

 

 

 

  



2 

 

 

 

1.2 Literature Study  

 

To estimate the states of a system, there are several approaches. When the statistics of 

the noise acting on the system and measurements are known (e.g. Gaussian distribution, 

zero mean with a certain covariance, and white), Kalman filter can be used to estimate the 

state of a linear system with minimum estimation error covariance [1, 2]. In addition, when 

the noise statistics are also known and the system is nonlinear, the extended Kalman filter 

can be used to estimate the state by linearizing the nonlinear system around the current 

estimate [1, 2]. On the other hand, when the noise statistics are uncertain but if the noise 

acting on the system has finite energy, the state of the linear system is estimated by an H-

infinity filter by minimizing the maximum estimation error [1, 8, 9, 10]. 

 

To identify parameters of a system, recursive least squares algorithm can be used to 

identify coefficients of a transfer function [11]. In addition, Extended Kalman filter could 

also be used to identify parameters of a linear state-space model by assuming that unknown 

parameters as states [12]. On the other hand, when the values of the parameters of the 

system are uncertain but constant or slowly time-varying with a knowledge of their range 

of values, a bank of Kalman filters can be used to estimate the uncertain parameters [5, 13]. 

Moreover, a bank of Kalman filters can be used to detect intrusion signals during sensor or 

actuator attacks [14, 15, 16]. 
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1.3 Contributions of the Thesis  

 

This thesis proposes to apply a range of methods from estimation theory to estimate the 

states, identify parameters, and detect intrusion signals for various systems with uncertain 

dynamics and/or disturbances. In this thesis, systems are considered to be either linear or 

nonlinear but time- invariant and discrete-time. Disturbances affect the system's state and 

output additively and can have certain or uncertain characteristics. When disturbances have 

known characteristics (zero mean, known covariance, white, etc), Kalman and Extended 

Kalman filters are used to estimate the states of linear and nonlinear systems, respectively. 

Moreover, they are also used to identify parameters of linear system. On the other hand, 

when disturbances are uncertain (but have finite energy), H-infinity filter is used to 

estimate the states of linear and nonlinear systems. In addition, H-infinity techniques are 

also used to identify parameters of linear systems. When disturbances have known 

statistics, a bank of Kalman filters is  used to detect a certain type of  intrusion that attacks 

the system through  sensors and/or actuators of the system.    

 

1.4 Thesis organization 

 

Chapter 1 gives a brief introduction to the work performed and the notation used in this 

thesis. In chapter 2, we will discuss linear and nonlinear filters. Linear filters are Kalman 

filter (when noise statistics are known) and H-infinity filter (when noise statistics are 

unknown) that are used to estimate a state of linear systems. In addition, we introduce a 

bank of Kalman filters that has many applications such as to estimate the value of a 

parameter whose range is known. In chapter 3, we will show how to use Kalman, Extended 

Kalman, and H-infinity filters to estimate parameters of a system. In addition, we will also 
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discuss how to find the actual value of a parameter when its value is in a given range of 

values. In chapter 4, we will discuss how to detect an intrusion signal when attack happens 

to a system through a sensor or actuator by sample mean method, bank of Kalman filters 

method, and stochastic parameter estimation method. Finally, in chapter 5, we will draw 

conclusions from the study, and we will discuss some future work. 

 

1.5 Notation  

 

      𝐴: Constant system matrix 

𝐵: Input matrix 

𝐹: Process noise coefficient matrix 

𝐶: Output matrix 

𝐷: Direct transmission matrix 

𝐺: Measurement noise matrix 

      𝐴𝑘: Time-variant system matrix 

𝐶𝑘: Time-variant output matrix 

𝐹𝑘: Time-variant process noise matrix 

𝐺𝑘: Time-variant measurement noise matrix 

      𝐶𝑧:  Performance matrix coefficient 

      ℂ𝑘: A random measurement matrix 

      ℂ̅𝑘: Expected value of the random measurement matrix 

      ℂ̃𝑘: Zero mean value of the random measurement matrix       

 𝑢𝑘: Input of a system 

𝑥𝑘: State of a system 

𝑦𝑘:  Measurement of a system  

�̂�𝑘: Estimated state of a system 

�̂�𝑘: Estimated measurement of a system 

𝑒𝑘: Estimation error 

�̃�𝑘: The difference between an actual and estimated measurement 
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𝑧𝑘:  Performance output 

      𝑥~𝑁(�̅� , Χ): 𝑥 is distributed normally with �̅� mean and Χ covariance 

𝑣𝑘: Process noise    

𝑤𝑘: Measurement noise 

𝑉  : Process noise covariance 

𝑊: Measurement noise covariance 

𝐾𝑘: Kalman filter gain 

     𝐾𝑘
∞: H-infinity filter gain  

     𝐾𝐹 : Kalman Filter  

     𝐸𝐾𝐹 : Extended Kalman filter  

𝑃𝑘: Estimation error covariance  

     𝛾: Bound on the ratio between energy of the performance output to noise energy     

      𝑝: Probability of event  

     Ω: Covariance of  �̃�𝑘 

     ℎ𝑘: Intrusion signal 

     𝛼 ∶ Parameter 

    𝛽 ∶ Probability for the absence of attack   
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2 Optimal Filtering  

An optimal filter gives us the best solution according to a performance criterion to 

estimate the states of a system. In this chapter, we will show how an optimal (or near-

optimal) filter is used to estimate states in several situations when the system is either linear 

or nonlinear; also, when statistics of the system and measurement noises are either certain 

or uncertain. 

 

2.1 Linear Filters 

 

In this section, we will estimate the states of the system with known noise statistics 

using a Kalman filter. In addition, we will use an H-infinity filter to estimate the states of 

a system when statistics of noises are uncertain. Finally, we will explain how a bank of 

Kalman filters works in order to estimate the parameters of the system. 

 

2.1.1 Kalman Filter 

 

First, we will look at the derivation of Kalman Filter (K.F.) that can be used to estimate 

the states of linear discrete-time system with additive white noise having known statistics. 

Kalman filter is a set of equations in one-step-ahead a predictor corrector form that 

estimates the states with minimum error covariance [2]. 

 

In this section, first, the derivation of Kalman filter equation is discussed. After that, 

we will use the Kalman filter equations to estimate states of two systems (first and second 

order system). Then, we will discuss the effects of covariance of process and measurement 
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noises the Kalman filter estimation error when the noises of process and measurement were 

increased or decreased. Finally, the properties and limitations of the Kalman filter are 

discussed.  

Consider a linear discrete time-invariant system as represented in equations (2.1) and 

(2.2). 

 

𝑥𝑘+1 =  𝐴 𝑥𝑘 +  𝐵 𝑢𝑘 +  𝐹𝑣𝑘 

(2.1) 

 

𝑦𝑘 =  𝐶𝑥𝑘 +  𝐷 𝑢𝑘 +  𝐺 𝑤𝑘 

(2.2) 

 

where  𝐴, 𝐵, 𝐶, 𝐷, 𝐹, 𝑎𝑛𝑑 𝐺 are matrices. By assuming that the input 𝑢𝑘 is known, the 

output measurement 𝑦𝑘 is available, and the states of the system 𝑥𝑘 are unmeasurable, we 

will attempt to estimate 𝑥𝑘 by minimizing the estimation error covariance matrix. In 

addition, 𝑣𝑘 presents process noise, its covariance is V, 𝑤𝑘 represents measurement noise, 

its covariance is W, and the cross-covariance of process and measurement noises is S. Both 

noises are of zero mean and white. 

 

To determine the expected value of the state, the observer �̂�𝑘 can be represented using 

the following equation [3, 7]. 

 

�̂�𝑘+1 =  𝐴 �̂�𝑘 +  𝐵 𝑢𝑘 + 𝐾𝑘 ( 𝑦𝑘 − (𝐶�̂�𝑘 +  𝐷 𝑢𝑘)) 
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(2.3) 

 

𝐸{𝑥𝑘} = 𝐸{�̂�𝑘} 

(2.4) 

 

All coefficients of the estimated state equation (i.e. equation (2.3)) are known except the 

gain, 𝐾𝑘. The way to find the gain is by computing estimation error covariance (𝑃𝑘) first 

and then by minimizing the estimation error covariance. The estimation error is given by 

equation (2.5). 

𝑒𝑘 = 𝑥𝑘 − �̂�𝑘 

and it evolves in time as  

𝑒𝑘+1 = 𝑥𝑘+1 − �̂�𝑘+1 =  𝐴 𝑥𝑘 +  𝐴 𝑢𝑘 + 𝐹𝑘𝑣𝑘 −  𝐴 �̂�𝑘 −  𝐵 𝑢𝑘 − 𝐾𝑘 (𝐶𝑥𝑘 +

 𝐷 𝑢𝑘 +  𝐺 𝑤𝑘 −  𝐶�̂�𝑘 − 𝐷 𝑢𝑘) 

 

𝑒𝑘+1 = (𝐴 − 𝐾𝑘𝐶)𝑒𝑘 +  𝐹𝑣𝑘 −  𝐾𝑘𝐺𝑤𝑘 

(2.5) 

The covariance of the estimation error is  

 

𝑃𝑘+1 =  𝐸 {(𝑒𝑘+1)(𝑒𝑘+1)
𝑇} 

and it satisfies the following equation 

 

𝑃𝑘+1 =  𝐴𝑃𝑘𝐴
𝑇 − 𝐾𝑘𝐶𝑃𝑘𝐴𝑇 − 𝐴𝑃𝑘𝐶𝑇𝐾𝑘

𝑇 + 𝐾𝑘𝐶𝑃𝑘𝐶
𝑇𝐾𝑘

𝑇 + 𝐹𝑉𝐹𝑇 − 𝐾𝑘𝐺𝑆𝑇𝐹𝑇

−  𝐹𝑆𝐺𝑇𝐾𝑘
𝑇 + 𝐾𝑘𝐺𝑊𝐺𝑇𝐾𝑘

𝑇 

or 
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𝑃𝑘+1 = (𝐴 − 𝐾𝑘𝐶)𝑃𝑘(𝐴 − 𝐾𝑘𝐶)𝑇 + [𝐹 −𝐾𝑘𝐺] [
𝑉 𝑆
𝑆 𝑊

] [
𝐹𝑇

𝐺𝑇𝐾𝑘
𝑇] 

 

(2.7) 

 

 

One very important property of the error covariance matrix, 𝑃𝑘, is that it is positive 

semi-definite and symmetric. By using these properties, error covariance matrix can be 

minimized. Matrix minimization will be done by minimizing the trace of this matrix. First, 

we will find the trace of the error covariance matrix, then we minimize the trace by taking 

the derivative of the trace of the matrix with respect to gain and set it equal to zero as shown 

below. Finally, gain of Kalman filter, 𝐾𝑘 can be found by solving this in terms of gain [3, 

7]. 

 

𝜕𝑇(𝑃𝑘+1)

𝜕𝐾𝑘
=  0  

 

𝜕𝑃𝑘+1

𝜕𝐾𝑘
= −2𝐴𝑘𝑃𝑘𝐶𝑘

𝑇 −  2𝐹𝑘𝑆𝑘𝐺𝑘 +  2𝐾𝑘(𝐶𝑘𝑃𝑘𝐶𝑘
𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘

𝑇) = 0 

(2.8) 

From equation (2.8) the gain of Kalman filter 𝐾𝑘   can be simplified to   

 

𝐾𝑘 = (𝐴𝑃𝑘𝐶
𝑇 +  𝐹𝑆𝐺)(𝐶𝑃𝑘𝐶𝑇 + 𝐺𝑊𝐺𝑇)−1  

(2.9) 
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Table 2.1 shows the summary of Kalman filter equations. When process and 

measurement noises are uncorrelated, the covariance of process and measurement (𝑆) is 

zero. Equations (2.10) and (2.11) are presented for the estimation error covariance 𝑃𝑘 and 

the gain of the Kalman filter 𝐾𝑘 when process and measurement noises are uncorrelated.  

 

Table 2.1: Summary of Kalman Filter Equations in General Case 

State 

Estimate 
�̂�𝑘+1 =  𝐴 �̂�𝑘 +  𝐵 𝑢𝑘 + 𝐾𝑘 ( 𝑦𝑘 − (𝐶�̂�𝑘 +  𝐷 𝑢𝑘)) 

 

Gain of 

Kalman 

Filter 

𝐾𝑘 = (𝐴𝑃𝑘𝐶
𝑇 +  𝐹𝑆𝐺)(𝐶𝑃𝑘𝐶𝑇 + 𝐺𝑊𝐺𝑇)−1

 

 

Error 

Covariance  

𝑃𝑘+1 = (𝐴 − 𝐾𝑘𝐶)𝑃𝑘(𝐴 − 𝐾𝑘𝐶)𝑇 + [𝐹 −𝐾𝑘𝐺] [
𝑉 𝑆
𝑆 𝑊

] [
𝐹𝑇

𝐺𝑇𝐾𝑘
𝑇] 

 

 

 

𝐾𝑘 = (𝐴𝑘𝑃𝑘𝐶𝑘
𝑇)(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)

−1
 

 

(2.10) 

 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 − 𝐴𝑘𝑃𝑘𝐶𝑘

𝑇(𝐶𝑘𝑃𝑘𝐶𝑘
𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘

𝑇)
−1

𝐶𝑘𝑃𝑘𝐴𝑘
𝑇 + +𝐹𝑘𝑉𝑘𝐹𝑘

𝑇 

 

(2.11) 

 

Now, we will use the Kalman filter equations to estimate states for first and second order 

systems. Consider a first order system that is presented by the following equations: 

 

𝑥𝑘+1 =  𝐴 𝑥𝑘 + 𝐵𝑢𝑘 + 𝐹𝑣𝑘 

(2.12) 
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𝑦𝑘 =   𝐶𝑥𝑘 + 𝐺𝑤𝑘 

(2.13) 

 

where 𝐴 =  0.9, 𝐵 =  0.09, 𝑎𝑛𝑑 𝐶 =  𝐹 =  𝐺 =  1. 𝑢𝑘 is a unit step function, 𝑥𝑘=0 = 10.  

𝑣𝑘 ~ 𝑁 (0,0.01)    𝑤𝑘 ~ 𝑁 (0,0.01). 

 

The initial values were set as 

 

�̂�𝑘=0 = 12, 𝑃𝑘=0 =  100  

 

By assuming that 𝑥𝑘 is unmeasurable and  𝑦𝑘 is available, Kalman filter can be used 

to estimate 𝑥𝑘. By applying equations (2.3), (2.10), and (2.11), the result as shown in 

Figure 2.1 can be obtained. Figure 2.1 shows the actual and estimated value of the state.  

 

Because the actual value of the state is unknown in real life, we define �̂�𝑘 that is called 

estimated measurement, by equation (2.14)   

 

�̂�𝑘 =  𝐶 �̂�𝑘 

(2.14) 

Figure 2.2 shows the actual and estimated value of measurements. The difference between 

the actual and estimated value of measurements is called the output estimation error that 

can be computed using equation (2.15) below and Figure 2.3 shows the output estimation 

error. In addition, the percentage of output estimation error is calculated using equation 
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(2.16) below that is the ratio between the square of the norm of the output estimation error 

vector to the squared norm of the measurement vector.  

 

 

Figure 2.1: The estimation of state for first order system by Kalman Filter 
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Figure 2.2: The actual and estimated measurement of the system by Kalman Filter to estimate the state 

for first order system 

 

 

𝑒𝑟𝑟𝑜𝑟𝑦 = 𝑦𝑘 − �̂�𝑘 

(2.15)  

 

𝐸𝑟𝑟𝑜𝑟𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 
𝑒𝑟𝑟𝑜𝑟𝑦

𝑇𝑒𝑟𝑟𝑜𝑟𝑦

𝑦𝑘
𝑇𝑦𝑘

× 100% 

(2.16) 

By repeating the simulation 25 times, a sample mean for all results is calculated via 

equation (2.17) below. The percentage of output estimation error for this system after 

repeated 25 times is 1.58 %. 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑒𝑎𝑠𝑒𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 
1

𝑁
∑𝐸𝑟𝑟𝑜𝑟𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑖

𝑁

𝑖=1
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 (2.17) 

where  N is the number of simulation runs. 

Now, we will use Kalman filter equations to estimate states for a second order system 

that are presented by equations (2.18) and (2.19) below:  

 

[
𝑥𝑘+1

1

𝑥𝑘+1
2] =  [

1 0.1
−1 0

] [
𝑥𝑘

1

𝑥𝑘
2] + [

0.1
1

] 𝑢𝑘 + [
1 0
0 1

] [
𝑣1𝑘

𝑣2𝑘
] 

(2.18) 

 

𝑦𝑘 = [1 0] [
𝑥𝑘

1

𝑥𝑘
2] +  𝑤𝑘 

(2.19) 

 

 

Figure 2.3: The output estimation error for first order system by Kalman Filter 
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where   𝐴 =  [
1 0.1

−1 0
] , 𝐵 = [

0.1
1

] , 𝐶 =  [1 0], 𝐹 =  [
1 0
0 1

] , 𝐺 = 1, 𝑣𝑘 = [
𝑣1𝑘

𝑣2𝑘
]  , 

and the process and measurement noise are white and mutually, with statistics  

 

𝑣1𝑘  ~ 𝑁 (0,0.01) , 𝑣2𝑘  ~ 𝑁 (0,0.01) ,  and  𝑤𝑘 ~ 𝑁 (0,0.01) 

 

𝑉 = [
𝑉1 0
0 𝑉2

] , 𝑊 = 0.01 

 

For simulation purposes, the initial values were set as 

 

[
�̂�0

1

�̂�0
2] = [

12
1.2

] , 𝑃0 = 100 [
1 0
0 1

]  

 

By assuming, the states are unknown and measurements are available. We apply equations 

(2.3), (2.10), and (2.11) to estimate states of the systems.  

 

Figure 2.4 shows us the actual and estimated values of 𝑥𝑘
1 whereas, Figure 2.5 shows 

the actual and estimated values of 𝑥𝑘
2. The actual and estimated measurements are shown 

in Figure 2.6. By using equations (2.16) and (2.17), the percentage output estimation error 

is 1.4 %. 
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Figure 2.4 The actual and estimated values of x1 by Kalman Filter 
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Figure 2.5 The actual and estimated values of x2 by Kalman Filter 
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Figure 2.6 The actual and estimated measurement of the system by Kalman Filter for the second order 

system 
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Figure 2.7 The output estimation error for second order system by using Kalman Filter 

 

Now we will shortly discuss the effect of the value of noise covariances on the output 

estimation error. To show the effect, we use a first order system that is presented by 

equations (2.13) and (2.13) to estimate the state of the system by changing the covariance 

of process and measurement noise. Table 2.2 shows the result on the effect of noise on the 

error estimation. Based on the result, it can be concluded that when one or both of process 

and measurement noise increases, the estimation error also increases. 

 

Table 2.2: The effect of values of covariance of the noise of the system on the error estimation 

V 0.01 0.1 0.01 0.1 

W 0.01 0.01 0.1 0.1 

Error % 1.41 4.965 6.387 10.671 
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Now, we will discuss the properties of Kalman filter. There are several important 

properties of  Kalman filter. If a system is linear, noises are additive, noises and initial state 

are Gaussian, the Kalman filter is the best filter in minimizing the estimation error 

covariance. However, Kalman filter is the best linear filter if the noises are not Gaussian. 

If the system is nonlinear, Extended Kalman filter can be used, which we will be discussed 

in the next section in this chapter. 

 

In addition, some conditions limit the performance of the Kalman filter. These are: 

system and measurement equation coefficient matrices, the statistics of the initial sate and, 

process and measurement noises need to be known [1]. On the other hand, when noise 

statistics are uncertain but if the noises are of finite energy, H-infinity filter, which will be 

discussed in the next section, can be used. 

 

2.1.2 H-infinity Filter 

 

H-infinity filter (H∞) is an optimal filter which minimizes the maximum estimated 

error assuming that the noise has finite energy [1]. In this work, we will use a filter that is 

sub-optimal but can be easily extended to the nonlinear case. Consider a linear discrete 

linear system described by equations (2.20) and (2.21).   

 

𝑥𝑘+1 =  𝐴 𝑥𝑘 + 𝐵 𝑢𝑘 +  𝐹𝑤𝑘 

(2.20) 
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𝑦𝑘 =  𝐶𝑥𝑘 +  𝐷 𝑢𝑘 +  𝐺 𝑤𝑘 

(2.21) 

 

The state estimate can be computed using equation (2.22). 

 

�̂�𝑘+1 =  𝐴 �̂�𝑘 +  𝐵 𝑢𝑘 + 𝐾𝑘
∞ ( 𝑦𝑘 − ( 𝐶�̂�𝑘 +  𝐷 𝑢𝑘)) 

(2.22) 

as in the Kalman filter. 

 

The estimation error is defined the same way: 

𝑒𝑘 = 𝑥𝑘 − �̂�𝑘 

(2.23) 

 

Estimation error evolves in time as follows: 

 

𝑒𝑘+1 =  𝐴 𝑥𝑘 +  𝐵 𝑢𝑘 +  𝐹𝑤𝑘 −  𝐴 �̂�𝑘 −  𝐵 𝑢𝑘 − 𝐾𝑘
∞  (𝐶𝑥𝑘 +  𝐷 𝑢𝑘 +  𝐺 𝑤𝑘 −

 𝐶�̂�𝑘 − 𝐷 𝑢𝑘) 

 

which is simplified to: 

𝑒𝑘+1 =  (𝐴 − 𝐾𝑘
∞ 𝐶)𝑒𝑘 + (𝐹 − 𝐾𝑘

∞𝐺)𝑤𝑘 

(2.24) 

 

Performance output (𝑧𝑘) is defined by  
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𝑧𝑘 = 𝐶𝑧𝑒𝑘 

(2.25) 

 

 

The positive definite Lyapunov candidate function is defined by equation (2.26) [4]. 

 

𝑉𝑘 = 𝑒𝑘
𝑇𝑃𝑘

−1𝑒𝑘  > 0 

 

(2.26) 

 

where 𝑃𝑘 will be called estimation error covariance because it will be found as the solution 

to a Riccati equation as in a Kalman filter, although physically 𝑤𝑘 is not stochastic and 

therefore this is a misnomer. The H-infinity filter is based on the inequality 

 

𝑉𝑘+1 − 𝑉𝑘 + 𝑧𝑘
𝑇𝑧𝑘  −  𝛾 𝑤𝑘

𝑇𝑤𝑘 ≤  0 

(2.27a) 

where  𝛾 is called the attenuation constant. This inequality results in  

  

lim
𝑁→∞

1

𝑁
∑ 𝑧𝑘

𝑇𝑧𝑘

𝑁−1

𝑘=0

−  𝛾 lim
𝑁→∞

1

𝑁
∑ 𝑤𝑘

𝑇𝑤𝑘

𝑁−1

𝑘=0

≤  0 

(2.27b) 

 

Since  
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lim
𝑁→∞

1

𝑁
∑ 𝑉𝑘+1 − 𝑉𝑘

𝑁−1

𝑘=0

= 𝑉0  

because for a asymptotically stable filter 𝑉∞ = 0 and assuming 𝑒0 = 0 and the filter 

task is to reduce the effect of  𝑤𝑘 on 𝑧𝑘.  

 

(2.27b) leads to 

  

lim
𝑁→∞

1
𝑁

∑ 𝑧𝑘
𝑇𝑧𝑘

𝑁−1
𝑘=0

lim
𝑁→∞

1
𝑁

∑ 𝑤𝑘
𝑇𝑤𝑘

𝑁−1
𝑘=0

≤  𝛾 

 (2.28) 

 

The ratio between energy of the performance output and energy of  the noise must be 

equal or less than γ i.e. the required condition of H-infinity filter to work. 

 

Inequality (2.27a) is used to derive the H-infinity filter. The gain of H-infinity filter ( 

𝐾𝑘
∞) is computed by  

 

𝐾𝑘
∞ = (𝐴(𝑃𝑘

−1 − 𝐶𝑧
𝑇𝐶𝑧)

−1
𝐶𝑇 + 𝛾−1𝐹𝐺) (𝐶𝑘(𝑃𝑘

−1 − 𝐶𝑧
𝑇𝐶𝑧)

−1
𝐶𝑇 + 𝛾−1𝐺𝐺𝑇)

−1

 

(2.29) 

 

Estimation error covariance ( 𝑃𝑘) is computed by 
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𝑃𝑘+1 =  𝐴(𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

𝐴𝑇 + 𝛾−1𝐹𝐹𝑇 − (𝐴(𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

𝐶𝑇 +

 𝛾−1𝐹𝐺) (𝐶(𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

𝐶𝑇 + 𝛾−1𝐹𝐺𝑇)
−1

(𝐶(𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

𝐴𝑇 + 𝛾−1𝐺𝐶𝑇)  

(2.30) 

 

Now, we will use the H-infinity filter to estimate states of first and second order systems 

when their noise energy is finite.  

 

Consider a first order system that is presented by the following equations  

 

𝑥𝑘+1 =  𝐴 𝑥𝑘 + B 𝑢𝑘 + 𝑤1𝑘  

(2.31) 

 

𝑦𝑘 =  𝐶 𝑥𝑘 + 𝑤2𝑘 

(2.32)  

 

where   𝐴 =  0.9 , 𝐵 = 0.09, 𝐶 = 1, 𝐹 =  𝐺 = 1, 𝑤1𝑘 =  5𝑒−𝑘, 𝑤2𝑘 =  3𝑒−𝑘 , 𝑢𝑘 is unit 

step function.  

 

Note that it  is assumed that the noise statistics are unknown, but their energies are 

finite, and the control input is known and measurements are available. To estimate the state 

of the system 𝑥𝑘, filter can be by applying equation (2.22), (2.29), and (2.30).  

The initial values were set as 

�̂�0 = 12, 𝑃0 =  100  
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The values for 𝛾 and 𝐶𝑧 were chosen as 

 

𝛾 = 6   ,    𝐶𝑧 = 1 

 

Figure 2.8 shows the actual and estimated value of  𝑥𝑘. The estimation error is 

presented in Figure 2.9. In addition, the percentage of the output estimation error is 0.499% 

that is computed using equations (2.16) and (2.17). The ratio of the energy of output and 

energy of noise is 1.272, which means the condition of H-infinity filter which is represented 

via equation (2.27) is verified,  1.272  ≤  𝛾 =  6.   

 

 

Figure 2.8: The actual and estimated value of the state of first order system by H-infinity filter 
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Figure 2.9: The output estimation error of state for first order system by H-infinity filter  

 

 

Now, we want to estimate states for a second-order system that is presented by the 

following equations. 

 

[
𝑥𝑘+1

1

𝑥𝑘+1
2] =  𝐴 [

𝑥𝑘
1

𝑥𝑘
2] +  𝐵 𝑢𝑘 +  𝐹 𝑤1,𝑘  

(2.33) 

 

𝑦𝑘 =  𝐶 [
𝑥𝑘

1

𝑥𝑘
2] +  𝐺 𝑤2,𝑘 

(2.34) 
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where   𝐴 =  [
1 0.1

−1 0
] , 𝐵 = [

0.1
1

] , 𝐶 =  [1 0], 𝐹 =  [
1 0
0 1

] , 𝐺 = [1,0] , 𝑢𝑘 is unit 

step function ,𝑤1,𝑘 = [10𝑒−𝑘

10𝑒−𝑘]  , 𝑤2,𝑘 = [ 3𝑒−𝑘, 0]. 

 

By assuming that the control input is known and measurements are available; also, 

the states of the system are unmeasurable and the noise statistics are unknown but they are 

finite energy, we can use H-infinity filter to estimate the states of the system 𝑥𝑘 by applying 

equation (2.22), (2.29), and (2.30).  

 

The initial values were set as 

 

[
�̂�0

1

�̂�0
2] = [

12
1.2

] , 𝑃0 = 100 [
1 0
0 1

]  

 

The values of γ and Cz that were chosen  

 

γ = 10  and  Cz = [1,1] 
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Figure 2.10: The actual and estimated value of the x1 by H-infinity filter 

 

 

 

Figure 2.11: The actual and estimated value of the x2 by H-infinity filter  
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Figure 2.12: The output estimation error for second order system by H-infinity filter  

 

 

 

Figure 2.10 and Figure 2.11 show the actual and estimated value of states; also, the 

estimation error that is computed by equation (2.15) is shown in Figure 2.12. In addition, 

the percentage of the estimation by this filter is 0.95%. Also, by equation (2.27), we found 

the ratio of the energy of output and the energy of noise is 2.14≤ γ = 10. 

 

After we show how to estimate states of a system via H-infinity filter when noise 

statistics are unknown but energy of finite, we wanted to try to estimate a state of first order 

system when its noise is Gaussian distributed via H-infinity filter.  
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Consider a first order system that is presented by equation (2.12) and (2.13). By 

assuming the noise statistics are unknown, H-infinity filter can be used to estimate the state 

of the system. 

 

The initial values were set as 

 

�̂�0 = 12, 𝑃0 =  100  

 

The values of γ and Cz that were chosen  

 

γ = 15 ,   Cz = 1 

 

Figure 2.13 shows the actual and estimated value of x and Figure 2.8 shows the output 

estimation error. The percentage of the output estimation error is 1.01 % that was computed 

by equation (2.16) and (2.17). 

 

From these results, it can be concluded that H-infinity filter can be used to estimate 

states of a linear system when noise statistics are unknown but energy of finite. In this case, 

H-infinity may work as an optimal filter. However, when the noise energy is not finite, H-

infinity filter still is a good estimator, but it works as observer not as an optimal filter.    
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Figure 2.13: The actual and estimated value of the state of first order system by H-infinity filter  

 

 

 

Figure 2.14: The output estimation error for first order system by H-infinity filter  
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Up to this point, we have presented two techniques to estimate the state of a linear 

discrete-time system when statistics of process and measurement noises are known 

(Gaussian distribution, zero mean, white) via the Kalman filter. In addition, when noise 

statistics are unknown, we have used the H-infinity filter. In the next section, we will show 

a bank of Kalman filters, that is a parallel set of Kalman filters which is used to estimate 

the parameters of a system but it has several other applications as well.  

 

2.1.3 Bank of Kalman Filters 

 

A bank of Kalman filters is a parallel set of Kalman filters fed by the same 

measurement sequence. There are many applications of a bank of Kalman filters, for 

example, it is used in [5] to estimate winding resistance of a motor. Another application of 

a bank of Kalman filter is used in [6] to detect and isolate sensor and actuator faults for 

aircraft engine. In this section, we will show how a bank of Kalman filters works. 

Moreover, in section 3.3, we will use a bank of Kalman filters to estimate uncertain 

parameters for a first order system. In addition, we will use a bank of Kalman filters to 

detect an uncertain intrusion signal for a first order system in section 4.2. 

Consider linear time-invariant discrete-time below 

 

𝑥𝑘+1 =  𝐴 𝑥𝑘 + B𝑢𝑘 + 𝐹𝑣𝑘 

(2.35) 

𝑦𝑘 =  𝐶 𝑥𝑘 + G𝑤𝑘 

(2.36) 

and 



33 

 

 

 

𝑣𝑘 ~ 𝑁 (0, 𝑉)  ,   𝑤𝑘 ~ 𝑁 (0,𝑊) 

 

where 𝐴 matrix includes many parameters. By assuming one of them, that is called 𝛼, is 

unknown but its value is in a set of hypothesis values that are 𝛼 =  {𝛼1, 𝛼2 … 𝛼𝑛}. Our 

objective is to find the actual value of α  by a bank of Kalman filters. Since the parameter  

𝛼 has 𝑛 possible values, a bank of 𝑛 Kalman filters will be used. Each Kalman filter is 

designed for each possible value of 𝛼. The purpose of a bank of Kalman filters is to 

compute the conditional probability for each possible value by a Kalman filter. Equation 

shows how to compute the conditional probability of a Kalman filter by Bayes’ theorem. 

 

Ƥ(𝛼𝑖|𝑌𝑘) =  
Ƥ( 𝑦𝑘|𝑌𝑘−1, 𝛼𝑖)Ƥ(𝛼𝑖|𝑌𝑘−1) 

∑ Ƥ( 𝑦𝑘|𝑌𝑘−1, 𝛼𝑗)
𝑛=1
𝑗=1 Ƥ(𝛼𝑗|𝑌𝑘−1)

 

(2.37) 

 

Since system’s noise is a Gaussian distribution, the Gaussian probability density 

function give below can be used to compute Ƥ( 𝑦𝑘|𝑌𝑘−1, 𝛼𝑖) [5].   

 

Ƥ( 𝑦𝑘|𝑌𝑘−1, 𝛼𝑖) =  
1

√2𝜋−𝑟
 |𝛺𝑘|𝛼𝑖

−1 |
1
2 𝑒𝑥𝑝 (−

1

2
 �̃�𝑘|𝛼𝑖

𝑇  𝛺𝑘|𝛼𝑖

−1 �̃�𝑘|𝛼𝑖
) 

(2.38) 

 

where r is the order of the system, and Ω is the covariance of �̃�𝑘.  

Ω can be computed [5] as follows    

 

Ω = Ck  Pk|αi
Ck

T + GkWGk
T
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(2.39) 

 

 �̃�𝑘 is computed as 

�̃�𝑘 = 𝑦𝑘 − ŷk|k−1,αi
  

(2.40) 

  ŷk|k−1,αi
 is computed by  

 

ŷk|k−1,αi
= Ck x̂k|k−1,αi

 

(2.41) 

 

where x̂k|k−1,αi
 is an estimated state that is computed by a Kalman filter based  𝛼 = 𝛼𝑖. 

Now, we know the way to compute the conditional probability for each possible value. 

When a conditional probability of a possible value is close to one, it means that the 

algorithm has converged to the actual value of the parameter. Moreover, if we want to 

estimate more than one parameter, more Kalman filters can be added to the bank. The 

equation below can be used to compute how many Kalman filters are needed in the bank. 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝐹 =  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠 ) 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

(2.42) 

 

For example, if we want to find the actual values for three parameters, each with five 

hypotheses, a bank of Kalman filters needs 125 Kalman filters to find the actual values of 

them. Finally, a bank of Kalman filters is a linear filter which has many applications, two 

of which we will show in chapters 3 and 4. 
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2.2 Nonlinear Filters 

 

After we show how to estimate the state of a linear system via Kalman and H-infinity 

filters in section 2.1, we will discuss how to estimate the state of a nonlinear system in this 

section by Extended Kalman and Nonlinear H-infinity filters.  

 

2.2.1 Extended Kalman Filter 

 

The extended Kalman filter is used to estimate the state of a nonlinear system when 

noise statistics are known (Gaussian distribution, zero mean with a certain covariance, 

white). The extended Kalman filter is estimated by linearizing a system around current 

estimated state.  In this section, we will show how Extended Kalman filter works and will 

show some examples to estimate a state of nonlinear systems. 

 

Consider a nonlinear system that is presented by (2.43) and (2.44). 

 

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘 , 𝑣𝑘) 

(2.43) 

 

𝑦𝑘 = 𝑔 (𝑥𝑘, 𝑢𝑘 , 𝑤𝑘) 

(2.44) 
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By linearizing a nonlinear system around the current state estimate via Taylor series 

(with ignoring the high order terms of a Taylor series), we can find 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐺𝑘 that 

are presented below [3, 8]: 

 

 

𝐴𝑘 = 
𝛿𝑓

𝛿𝑥
|
𝑥= �̂�𝑘,𝑢,𝑣=0

 

(2.45) 

 

𝐹𝑘 = 
𝛿𝑓

𝛿𝑣
|
𝑥= �̂�𝑘,𝑢,𝑣=0

 

(2.46) 

 

𝐶𝑘 = 
𝛿𝑔

𝛿𝑥
|
𝑥= �̂�𝑘 ,𝑢 ,𝑤=0

  

(2.47) 

 

𝐺𝑘 = 
𝛿𝑔

𝛿𝑤
|
𝑥= �̂�𝑘 ,𝑢 ,𝑤=0

 

(2.48) 

 

The gain of Extended Kalman filter is found as  

 

𝐾𝑘 = (𝐴𝑘𝑃𝑘𝐶𝑘
𝑇)(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)

−1
 

(2.49) 

 



37 

 

 

 

The estimated state is computed as  

 

�̂�𝑘+1 =  𝑓 (�̂�𝑘 , 𝑢𝑘 ,0) +  𝐾( 𝑦𝑘 −  𝑔 (�̂�𝑘 , 𝑢𝑘  ,0)) 

(2.50) 

 

the approximate estimation error covariance is found from the Riccati equation 

 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 − 𝐴𝑘𝑃𝑘𝐶𝑘

𝑇(𝐶𝑘𝑃𝑘𝐶𝑘
𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘

𝑇)
−1

𝐶𝑘𝑃𝑘𝐴𝑘
𝑇
 

(2.51) 

 

Now, we use Extended Kalman filter to estimate a state of a nonlinear systems. 

Consider the nonlinear system that is presented below 

 

𝑥𝑘+1 = − 𝑥𝑘
2 + 𝑣𝑘 

(2.52) 

 

𝑦𝑘 = 𝑥𝑘 + 𝑤𝑘 

(2.53) 

with 

𝑣𝑘 ~ 𝑁 (0,0.01)  𝑤𝑘 ~ 𝑁 (0,0.01) 

 

By assuming the measurements are available and the states of the system are unknown, 

Extended Kalman filter is used to estimate the state of the nonlinear system. By equations 

(2.45) – (2.48), Jacobian matrices can be calculated as 
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𝐴𝑘 = −2 �̂�𝑘 , 𝐹𝑘 =  1 , 𝐶𝑘 = 1, 𝐺𝑘 =  1   

 

By substituting into Extended Kalman filter equations; (2.49), (2.51), and (2.50). 

Setting the initial values to  

�̂�0 = 1.1, 𝑃0 =  1000  

 

Figure 2.15 shows us the actual and estimated value of the state. In addition, we show 

the output estimation error in Figure 2.16. Moreover, the percentage of the output 

estimation error that is computed by equation (2.16) and (2.17) is 1.726 %.    

 

 

Figure 2.15: The actual and estimated value of the state of nonlinear system by Extended Kalman filter 
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Figure 2.16: The output estimation error of state for nonlinear system by Extended Kalman filter 

 

The next nonlinear system whose state is estimated is below: 

 

𝑥𝑘+1 = −𝑥𝑘
3 + 𝑣𝑘 

(2.54) 

 

𝑦𝑘 = 𝑥𝑘 + 𝑤𝑘 

(2.55) 

with 

𝑣𝑘 ~ 𝑁 (0,0.01)       𝑤𝑘 ~ 𝑁 (0,0.01) 

 

We assume that the measurements are available, and the states are unmeasurable. By 

equations (2.45) – (2.48), the Jacobian matrices are  
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𝐴𝑘 = −3 𝑥𝑘
2 , 𝐹𝑘 =  1 , 𝐶𝑘 = 1, 𝐺𝑘 =  1   

 

Using the same initial condition and by substituting into filter equations, we show the 

results of estimation in Figure 2.17 that presents the actual and estimated values of the 

state, and Figure 2.18 shows the output estimation error and the percentage of the output 

estimation error is found to be 2.447 %  and it is computed by equations (2.16) and (2.17). 

 

 

Figure 2.17: The actual and estimated value of the state of nonlinear system by Extended Kalman filter 
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Figure 2.18: The output estimation error of state for nonlinear system by Extended Kalman filter 

 

The last system whose state is estimated is presented by below: 

 

𝑥𝑘+1 = − sin(𝑥𝑘) + 𝑣𝑘 

(2.56) 

 

𝑦𝑘 = 𝑥𝑘 + 𝑤𝑘 

(2.57) 

with 

𝑣𝑘 ~ 𝑁 (0,0.01)       𝑤𝑘 ~ 𝑁 (0,0.01) 

  

From equations (2.45) – (2.48) the Jacobian matrices are  
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𝐴𝑘 = − cos(𝑥𝑘) , 𝐹𝑘 =  1 , 𝐶𝑘 = 1, 𝐺𝑘 =  1   

 

By setting up the Extended Kalman filter with the same initial conditions, Figure 2.19 

shows the actual and estimated values of the state of the nonlinear system. In addition, the 

output estimation error is shown in Figure 2.20. The percentage of the output estimation 

error is 0.81 %.  

 

In the examples considered in this section, the Extended Kalman is shown to effectively 

estimate the state of nonlinear systems when noise statistics are known. 

 

Figure 2.19: The actual and estimated values of the state of nonlinear system by Extended Kalman 

filter 
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Figure 2.20: The estimation error of state for nonlinear system by Extended Kalman filter  

 

2.2.2 Nonlinear H-infinity Filter 

 

In section 2.1.2, we showed how to estimate the state for linear systems when 

statistics of the noises are uncertain. In this section, we will show a novel method to 

estimate the state of a nonlinear system when noise statistics are unknown but the noise is 

of finite energy type. The method is a combination of the Extended Kalman and linear H-

infinity filters to estimate the state of a nonlinear system by linearizing the system around 

the current estimated state. The derivation of this filter given in the paper that is being 

prepared [17]. Consider a nonlinear system given by in equations 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑤𝑘) 

(2.58) 
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𝑦𝑘 = 𝑔(𝑥𝑘, 𝑤𝑘) 

(2.59) 

 

where 𝑤𝑘 is a finite energy type noise with otherwise unknown properties. 

 

By assuming the form of the state estimate update equation as  

 

�̂�𝑘+1 = 𝑓(�̂�𝑘) + 𝐾𝑘
∞(𝑦𝑘 − 𝑔(�̂�𝑘)) 

(2.60) 

 

The estimation error is defined as below:  

 

𝑒𝑘 = 𝑥𝑘 − �̂�𝑘 

and it evolves in time as  

 

𝑒𝑘+1 =  𝑓(𝑥𝑘, 𝑤𝑘) −   𝑓(�̂�𝑘) + 𝐾𝑘
∞(𝑦𝑘 − 𝑔(�̂�𝑘)) 

(2.61) 

 

An approximate estimation error (ek) equation that is computed via truncating of Taylor 

series is given by: 

𝑒𝑘+1 ≈ (𝐴𝑘 − 𝐾𝑘
∞𝐶𝑘)𝑒𝑘 + (𝐹𝑘 − 𝐾𝑘

∞𝐶𝑘)𝑤𝑘 

 

Jacobian matrices are found as used: 
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𝐴𝑘 = 
𝛿𝑓

𝛿𝑥
|
𝑥= �̂�𝑘,𝑤=0

                     𝐹𝑘 = 
𝛿𝑓

𝛿𝑤
|
𝑥= �̂�𝑘,𝑤=0

 

 

𝐶𝑘 = 
𝛿𝑔

𝛿𝑥
|
𝑥= �̂�𝑘,𝑤=0

             𝐺𝑘 = 
𝛿𝑔

𝛿𝑤
|
𝑥= �̂�𝑘,𝑤=0 

 

(2.62) 

 

The performance output is defined as 

 

𝑧𝑘 = 𝐶𝑧𝑒𝑘 

(2.63) 

The gain of the H-infinity filter is given by 

 

𝐾𝑘
∞ = (𝐴𝑘(𝑃𝑘

−1 − 𝐶𝑧
𝑇𝐶𝑧)

−1
𝐶𝑘

𝑇 + 𝛾−1𝐹𝑘𝐺𝑘) (𝐶𝑘(𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

𝐶𝑘
𝑇 + 𝛾−1𝐺𝑘𝐺𝑘

𝑇)
−1

 

(2.64) 

 

where the Riccati equation is: 

  

𝑃𝑘+1 = 𝐴𝑘(𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

𝐴𝑘
𝑇 + 𝛾−1𝐹𝑘𝐹𝑘

𝑇 − 𝐾𝑘
∞  (𝐶𝑘(𝑃𝑘

−1 − 𝐶𝑧
𝑇𝐶𝑧)

−1
𝐴𝑘

𝑇 + 𝛾−1𝐺𝑘𝐹𝑘
𝑇) 

(2.65) 

 

Now, we will estimate states of some nonlinear systems by this H-infinity filter. Consider 

the nonlinear system that is presented by the following: 

 

𝑥𝑘+1 = − sin(𝑥𝑘) + [1 0] [ 2𝑒−𝑘

2𝑒−2𝑘] 
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(2.66) 

 

𝑦𝑘 = 𝑥𝑘 + [0 1] [ 2𝑒−𝑘

2𝑒−2𝑘] 

(2.67) 

 

By assuming the measurements are available and the noise statistics are unknown 

(noise energy is finite), we can be use the nonlinear H-infinity filter to estimate the state. 

Jacobian matrices are found by equation (2.62) 

 

𝐴𝑘 = − cos(�̂�𝑘) , 𝐹𝑘 = [1,0] , 𝐶𝑘 =  1,   𝐺𝑘 = [0,1] 

 

The initial values were set as 

 

�̂�0 = 1.1, 𝑃0 =  1000  

 

The values for γ and Cz were chosen as 

 

𝛾 = 2    ,    𝐶𝑧 = 0.5 

 

By setting up into the nonlinear H-infinity filter, Figure 2.21 show the actual and 

estimated values of the state. The estimation error is presented in Figure 2.22. The 

percentage of estimation error that is computed via equations (2.16) is 0.809 %.   
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Figure 2.21: The actual and estimated values of the state of the nonlinear system by H-infinity Filter 

 

 

 
 

 

 

Figure 2.22 : The output estimation error of the state of the nonlinear System by H-infinity Filter 
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The next system that we want to estimate is the state of a system presented by 

equations: 

𝑥𝑘+1 = −𝑥𝑘
2 + [1 0] [ 0.3𝑒−𝑘

−2𝑒−2𝑘] 

(2.68) 

 

𝑦𝑘 = 𝑥𝑘 + [0 1] [ 0.3𝑒−𝑘

−2𝑒−2𝑘] 

(2.69) 

 

Jacobian matrices are found by equation (2.62). 

 

 𝐴𝑘 = −2�̂�𝑘  ,    𝐹𝑘 =  1 ,  𝐶𝑘 =  1 ,  𝐺𝑘 =  1 

 

The initial values were set as 

 

�̂�0 = 0.4 , 𝑃0 =  100  

 

The values for γ and Cz were chosen as 

 

𝛾 = 2    ,    𝐶𝑧 = 0.5 

 

By setting up into H-infinity filter to estimate the state, we obtained the estimation 

result that includes actual and estimated values of the state as shown in Figure 2.23. Figure 

2.22 shows us the estimation error. The percentage of estimation error is 0.3447 %. 
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From these results, it can be seen that this nonlinear H-infinity filter can be used to 

effectively estimate the state of the nonlinear system when the noise statistics are unknown 

by linearizing the system around the current estimated state. 

  

 

Figure 2.23: The actual and estimated values of the state of the nonlinear filter by H-infinity 
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Figure 2.24: The output estimation error of the state of the nonlinear System by H-infinity Filter  

 

In this section, we have presented two techniques to estimate the state of a nonlinear 

discrete-time system by linearizing the system around the current estimated state. The first 

technique, Extended Kalman filter can be used to estimate the state of nonlinear systems 

when statistics of process and measurement are known. However, when noise statistics are 

unknown but the noise is of finite energy, nonlinear H-infinity can be used to estimate the 

state.  
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3 Case Studies of Parameter Estimation by Various Methods  

 

In this chapter, several methods that can be used to estimate the parameters of a 

stochastic system are presented. First, parameter estimation technique using linear optimal 

filters, specifically, using Kalman filter and H-infinity filters are presented. These linear 

optimal filters will be used to estimate the coefficients of a transfer function. Next, 

parameter estimation technique using nonlinear optimal filter, Extended Kalman filter and 

H-infinity filter are presented and will be demonstrated using a state-space model of a 

system. Finally, parameter estimation technique using a bank of Kalman filters are 

presented. The bank of Kalman filters will be used to estimate an actual value of a 

parameter when it has many possible hypotheses. 

 

3.1 Estimation of Coefficients in Transfer Functions  

 

In this section, we will discuss how to estimate coefficients of a transfer function using 

linear optimal filters (which was discussed in Chapter 2) [7]. Then, the estimated 

parameters will be validated by comparing simulated measurement data and estimated 

measurement data. 

 

Consider a discrete time transfer function which as shown in equation (3.1), where m 

≤ n, 

 

𝑌𝑧 = 
𝑏0 + 𝑏1𝑧

−1 + ⋯+ 𝑏𝑚𝑧−𝑚 𝑈𝑧 + 𝑤𝑧

1 + 𝑎1𝑧−1 + ⋯+ 𝑎𝑛𝑧−𝑛
  

(3.1) 
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Equation (3.1) can be rewritten as, 

  

𝑌𝑧( 1 + 𝑎1𝑧
−1 + ⋯+ 𝑎𝑛𝑧−𝑛) = (𝑏0 + 𝑏1𝑧

−1 + ⋯+ 𝑏𝑚𝑧−𝑚)𝑈𝑧 + 𝑤𝑧 

(3.2) 

 

By taking inverse Z- transform the following equation can be obtained,  

 

𝑦𝑘 + 𝑎1𝑦𝑘−1 + ⋯+ 𝑎𝑛𝑦𝑘−𝑛 = 𝑏0𝑢𝑘 + 𝑏𝑘𝑢𝑘−1 + ⋯+ 𝑏𝑚𝑢𝑘−𝑚 + 𝑤𝑘 

(3.3) 

 

Equation (3.3) can be rewritten as,  

 

𝑦𝑘 = − 𝑎1𝑦𝑘−1 − ⋯− 𝑎𝑛𝑦𝑘−𝑛 + 𝑏0𝑢𝑘 + 𝑏𝑘𝑢𝑘−1 + ⋯+ 𝑏𝑚𝑢𝑘−𝑚 + 𝑤𝑘 

 

𝑦𝑘 = 𝐶𝑘𝑥𝑘  + 𝑤𝑘 

(3.4) 

where, 

𝐶𝑘 = [− 𝑦𝑘−1, −𝑦𝑘−2 , … , −𝑦𝑘−𝑛 , 𝑢𝑘 , 𝑢𝑘−1, 𝑢𝑘−2, … , 𝑢𝑘−𝑚] 

 

𝑥𝑘 = 

[
 
 
 
 
 
 
 
𝑎1

𝑎2

⋮
𝑎𝑛

𝑏0

𝑏1

⋮
𝑏𝑚]
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Note that 𝑥𝑘 represents the constant coefficients of a transfer function. Therefore, 𝑥𝑘 does 

not change in time and can be represented as  

 

𝑥𝑘+1 = 𝑥𝑘 

(3.7) 

The state-space model of the transfer function can be represented as, 

𝑥𝑘+1 =  𝐴𝑥𝑘 

(3.8a) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐺𝑤𝑘 

   (3.8b) 

where, 

𝐴 =  [
1 … 0
⋮ ⋱ ⋮
0 … 1

] 

 

𝐶𝑘 = [− 𝑦𝑘−1, −𝑦𝑘−2 , … , −𝑦𝑘−𝑛 , 𝑢𝑘 , 𝑢𝑘−1, 𝑢𝑘−2, … , 𝑢𝑘−𝑚] 

 

𝐺 = 1 

 

Using the state-space model of equation (3.8), linear optimal filters can be used to estimate 

the states of the system (i.e. the coefficients of the transfer function of equation (3.1). 

Estimation techniques using optimal filters will be demonstrated using the following cases: 
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 Case 1: 

In the first case, it is assumed that the statistics of noise is known. In this case, 

Kalman filter will be used to estimate the coefficients of transfer function. Consider a 

first order system which is presented in equation (3.9). 

 

𝑌𝑧 = 
𝑏0 𝑈𝑧 + 𝑤𝑧

1 + 𝑎1𝑧−1
 

(3.9) 

 

 where 𝑎1 = 0.9  , 𝑏0 = 1 , assuming that the coefficients are unknown and measurement 

and the control input are known. After taking the inverse Z-transform of equation (3.9) 

and simplifing it, the following equation can be obtained, 

 

𝑥𝑘+1 =  𝐴𝑥𝑘 

(3.10a) 

 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐺𝑤𝑘 

(3.10b) 

where 𝐴 =  [
1 0
0 1

] , 𝐶𝑘 = [− 𝑦𝑘−1 , 𝑢𝑘] , 𝑥𝑘 = [
𝑎1,𝑘

𝑏0,𝑘
] 

 

𝑤𝑘 ~ 𝑁 (0,0.1) 

 

Based on state-space model of equation (3.10), equations (2.3), (2.10), and (2.11), can 

be modified into   
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�̂�𝑘+1 =  �̂�𝑘 + 𝐾𝑘 ( 𝑦𝑘 − 𝐶𝑘�̂�𝑘) 

(3.11) 

 

𝐾𝑘 = (𝑃𝑘𝐶𝑘
𝑇)(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝑊𝑘)
−1

 

(3.12) 

 

𝑃𝑘+1 = 𝑃𝑘 − 𝑃𝑘𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝑊𝑘)
−1

𝐶𝑘𝑃𝑘 

(3.13) 

 

The system of equation (3.9) was simulated by assuming 𝑎1 = 0.9  , 𝑏0 = 1 using 

MATLAB. The simulated measurement data was then used to test the estimation technique 

using state-space model of equation (3.10) and modified Kalman filter equations (3.11) – 

(3.13). The initial values were set as  

 

[
�̂�1,𝑘=0

�̂�0,𝑘=0
] = [

0.85
1.5

]  ,   𝑃𝑘=0 = 103 [
1 0
0 1

] 

 

 Figure 3.1 shows us the actual and estimated values of coefficients obtained using 

Kalman filter. The estimated values of the coefficients, were found to be  

 

�̂�1 =  0.891   ,      �̂�0 =0.996 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟𝑎 = |𝑎 − �̂�| × 𝑎−1 × 100 =  1 % 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟𝑏 = |𝑏 − �̂�| × 𝑏−1 × 100 =  0.4 %  

 

It should be noted that in real life, one will not know the actual value of the coefficients. 

In such cases, one has to come up with a method to check the performance of the estimator.  

 

 

Figure 3.1 : The actual and estimated values of coefficients via Kalman filter 
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Figure 3.2: The actual and estimated values of measurement and the estimation error 

  

One possible method to evaluate the performance of the estimator is by comparing 

estimated measurement with the actual measurement. 

 

The estimated measurement is computed by simulating a system with estimated 

coefficients. Figure 3.2 shows us the actual and estimated measurement and the error 

between them. From Figure 3.2, it can be concluded that Kalman filter effectively estimates 

the coefficients of transfer function when noise statistics is known.  

 

 Case 2: 

In this case, the same system as discussed in Case 1 will be studied. However, here it 

is assumed that the noise has finite energy and the statistics of the noise unknown, The 

noise 
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𝑤𝑘 = 5 𝑒−𝑘   

 

will be used in simulation. In this case, H-infinity filter will be used to estimate the 

coefficients. Based on this assumption and state-space model of equation (3.10), equations 

(2.22), (2.29), and (2.30) are modified,  

 

�̂�𝑘+1 =  �̂�𝑘 + 𝐾∞ ( 𝑦𝑘 − 𝐶𝑘�̂�𝑘) 

(3.14) 

    

𝐾𝑘
∞ = (𝑃𝑘

−1 − 𝐶𝑧
𝑇𝐶𝑧)

−1
𝐶𝑘

𝑇 (𝐶𝑘(𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

𝐶𝑘
𝑇 + 𝛾−1)

−1

 

(3.15) 

 

𝑃𝑘+1 =  (𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

− ((𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

𝐶𝑘
𝑇) (𝐶(𝑃𝑘

−1 − 𝐶𝑧
𝑇𝐶𝑧)

−1
𝐶𝑘

𝑇 +

𝛾−1)
−1

(𝐶𝑘(𝑃𝑘
−1 − 𝐶𝑧

𝑇𝐶𝑧)
−1

)  

(3.16) 

The initial values were set as  

 

[
�̂�1,𝑘=0

�̂�0,𝑘=0
] = [

0.75
1.2

]  ,   𝑃𝑘=0 = 103 [
1 0
0 1

] 

 

The values for γ and Cz were chosen as 

 

𝛾 = 10    ,    𝐶𝑧 = [0.1 , 0.1 ] 
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After getting the simulated measurements of the system using MATLAB, the estimated 

values of the coefficients were obtained via equations (3.14), (3.15), and (3.16).  The results 

obtained are 

 

�̂�1 =  0.888  ,     �̂�0 =1.004 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑟𝑜𝑟𝑎 = (𝑎 − �̂�) × 𝑎−1 × 100 =  1.33 % 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑟𝑜𝑟𝑏 = (𝑏 − �̂�) × 𝑏−1 × 100 =  0.4 %  

 

The estimation results are shown in Figure 3.3 and Figure 3.4. Figure 3.4 shows the 

actual and estimated values of measurements and the estimation error. From the values of 

the error, it can be concluded that the estimated values of coefficients are very close to the 

actual values of coefficients. Hence, this method under these conditions is a good way to 

estimate coefficients of transfer function. 
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Figure 3.3: The actual and estimated values of coefficients via H-infinity filter 

 

 

 

Figure 3.4: The actual and estimated values of measurement and the estimation error  
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Case 3: 

In this case, the coefficients of the transfer function will be estimated the using H-

infinity filter when the noise is Gaussian distributed. H-infinity filter in this case will 

function as an observer and not as an optimal filter. The noise statistic used in this case is  

 

𝑤𝑘 ~ 𝑁 (0,0.1) 

 

Here the values of γ and Cz are chosen as  

 

𝛾 = 10    ,    𝐶𝑧 = [0.1 , 0.1 ] 

 

The initial values were set as  

 

[
�̂�1,𝑘=0

�̂�0,𝑘=0
] = [

0.75
1.5

]  ,   𝑃𝑘=0 = 103 [
1 0
0 1

] 

 

By using the H-infinity filter to estimate the coefficients, the results of the estimation 

were obtained as follows 

�̂�1 =  0.898   ,      �̂�0 =0.997 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑟𝑜𝑟𝑎 = |𝑎 − �̂�| × 𝑎−1 × 100 =  0.22 % 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑟𝑜𝑟𝑏 = |𝑏 − �̂�| × 𝑏−1 × 100 =  0.3 %  
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Figure 3.5: The actual and estimated values of coefficients via H-infinity filter 

 

 

 

Figure 3.6: The actual and estimated values of measurement and the error via H-infinity filter 
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Figure 3.5 shows the estimated values of coefficients, which were estimated via the H-

infinity filter when the noise follows a Gaussian distribution. In addition, the error between 

the actual and estimated values of measurement are shown in Figure 3.6. From Figure 3.5, 

it is clear that H-infinity filter has the ability to estimate coefficients of the transfer function 

when the noise of a model is a Gaussian distributed. However, note that the H-infinity filter 

functions as an observer in this case and not as an optimal filter because the noise energy 

is not finite. 

 

In conclusion, in this section, two parameter estimation techniques have been 

discussed included the Kalman filter and the H-infinity filter. Based on the results obtained, 

it can be concluded that both of these methods are effective in estimating coefficients of 

transfer functions. In the next section, we will show how to estimate parameters based on 

state-space representation.      

   

3.2 Simultaneous Parameter / State Estimation  

 

After we showed how to use a linear optimal filter (Kalman and H-infinity filters) to 

estimate coefficients of a transfer function, in this section, we will show how to use 

nonlinear filters (i.e. Extended Kalman and nonlinear H-infinity filters) to estimate 

parameters of a state space model. Estimation techniques using Extended Kalman filter 

will be demonstrated using the following cases    
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 Case 1: 

Consider a first order system, which is represented in equation (3.17). 

 

𝑥𝑘+1 = 𝑎𝑥𝑘 + 𝑣𝑘 

 (3.17a) 

𝑦𝑘 = 𝑐𝑥𝑘 + 𝑤𝑘 

(3.17b) 

 

where 𝑎 = 0.9 , 𝑐 = 1, 𝑥𝑘=0 = 5, 𝑣𝑘 ~ 𝑁 (0,0.1) , and  𝑤𝑘 ~ 𝑁 (0,0.1), assume that 𝑎 is 

unknown and the measurement is available. The constant unknown parameter of state-

space model can be represented as 

 

𝑎𝑘+1 = 𝑎𝑘 

(3.18) 

 

From equations (3.17) and (3.18), the nonlinear system can be modeled as shown in 

equation (3.19). 

 

[
𝑥𝑘+1

𝑎𝑘+1
] = [

𝑓1(𝑥𝑘, 𝑎𝑘, 𝑣𝑘)

𝑓2(𝑥𝑘, 𝑎𝑘, 𝑣𝑘)
] 

(3.19a) 

 

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑎𝑘, 𝑤𝑘) 

(3.19b) 
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where 

𝑓1(𝑥𝑘, 𝑎𝑘 , 𝑣𝑘) = 𝑎𝑘𝑥𝑘 + 𝑣𝑘 

 

𝑓2(𝑥𝑘 , 𝑎𝑘, 𝑣𝑘) = 𝑎𝑘 

 

𝑔(𝑥𝑘, 𝑎𝑘 , 𝑤𝑘) =  𝑐𝑥𝑘 + 𝑤𝑘. 

 

By using equations (2.45),(2.46),(2.47), and (2.48), we found  

 

𝐴𝑘 =  
𝛿𝑓

𝛿𝑥
|
𝑥= �̂�𝑘,𝑣=0

= [
�̂�𝑘 �̂�𝑘

0 1
]               𝐶𝑘 = 

𝛿𝑔

𝛿𝑥
|
𝑥= �̂�𝑘 ,𝑤=0

= [1 0] 

 

 

𝐹𝑘 = 
𝛿𝑓

𝛿𝑣
|
𝑥= �̂�𝑘,𝑣=0

= [
1 0
0 0

]                 𝐺𝑘 = 
𝛿𝑔

𝛿𝑤
|
𝑥= �̂�𝑘 ,𝑤=0

= 1 

 

By using, the equation (2.50), the state estimate equations for the model can be represented 

as 

 

�̂�𝑘+1 =  �̂�𝑘�̂�𝑘 + 𝐾𝑘( 𝑦𝑘 − �̂�𝑘 ) 

(3.20a) 

 

�̂�𝑘+1 =  �̂�𝑘 + 𝐾𝑘( 𝑦𝑘 − �̂�𝑘 ) 

(3.20b) 

The initial values were set as  
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[
�̂�0

�̂�0
] = [

7
0.8

]  ,   𝑃𝑘=0 = 103 [
1 0
0 1

] 

 

The system that is presented in equation (3.17) was simulated using MATLAB in order 

to obtain the measurement data which will be used to test the estimation technique. By 

applying the Extended Kalman filter algorithm, the unknown parameter was found to be  

 

�̂� =  0.892 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑟𝑜𝑟𝑎 = |𝑎 − �̂�| × 𝑎−1 × 100 =  0.88 % 

 

Figure 3.7 shows the actual and estimated value of the parameter obtained using 

Extended Kalman filter. The actual and estimated measurement and the error between them 

are shown in Figure 3.8. From Figure 3.8, it can be concluded that Extended Kalman filter 

can be used to estimate the parameters of state-space model when noise statistics are 

known. 
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Figure 3.7: The actual and estimated value of parameters via Extended Kalman filter  

 

 

 

Figure 3.8: The actual and estimated values of measurement and the error via Extended Kalman filter 
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 Case 2: 

Consider a first order system that as presented in equations (3.21). 

 

𝑥𝑘+1 = 𝑎𝑥𝑘 + 𝑤𝑘 

 (3.21a) 

𝑦𝑘 = 𝑐 𝑥𝑘 + 𝑤𝑘 

(3.21b) 

 

where 𝑎 = 0.9 , 𝑐 = 1, 𝑥𝑘=0  =  10 , 𝑤𝑘  =  [ 3𝑒−𝑘

5𝑒−2𝑘], assuming the measurement is 

available and that 𝑎 is unknown. Assuming the unknown parameter is constant, it can be 

represented as shown in equation (3.18). A nonlinear system that is presented in equation 

(3.22) is modeled by using equations (3.21) and (3.18).   

 

[
𝑥𝑘+1

𝑎𝑘+1
] = [

𝑎𝑘𝑥𝑘

𝑎𝑘
] + [

1 0
0 0

] [ 3𝑒−𝑘

5𝑒−2𝑘] 

(3.22a) 

 

𝑦𝑘 = 𝑐 𝑥𝑘 + [0 1] [ 3𝑒−𝑘

5𝑒−2𝑘]  

(3.22b) 

By equation (2.62),  

 

𝐴𝑘 = 
𝛿𝑓

𝛿𝑥
|
𝑥= �̂�𝑘,𝑤=0

= [
�̂�𝑘 �̂�𝑘

0 1
]   ,    𝐶𝑘 = 

𝛿𝑔

𝛿𝑥
|
𝑥= �̂�𝑘 ,𝑤=0
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 𝐹𝑘 = [
1 0
0 0

]        , 𝐺𝑘 = [0 1] 

 

By equation (2.60), the estimated state equations for the model is presented by equation 

(3.23) 

 

�̂�𝑘+1 =  �̂�𝑘�̂�𝑘 + 𝐾𝑘
∞( 𝑦𝑘 − �̂�𝑘 ) 

(3.23a) 

 

�̂�𝑘+1 =  �̂�𝑘 +  𝐾𝑘
∞( 𝑦𝑘 − �̂�𝑘 ) 

(3.23b) 

 

After getting the measurement by simulation from MATLAB, it can be used to 

validate the H-infinity filter’s ability to estimate the unknown parameter, by using 

equation (2.64), (2.65), and (3.23).  

 

The initial values were set as  

 

[
�̂�0

�̂�0
] = [

9
0.8

]  ,   𝑃𝑘=0 = 103 [
1 0
0 1

] 

 

The values of γ and Cz are chosen as 

 

𝛾 = 25    ,    𝐶𝑧 = [1 , 1 ] 
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The result obtained is  

�̂� =  0.902   

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑟𝑜𝑟𝑎 = |𝑎 − �̂�| × 𝑎−1 × 100 =  0.22 % 

 

The actual and estimated values of parameter is shown in Figure 3.9, also, Figure 3.10 

shows us the actual and estimated values of measurement and their error. Based on this 

result, it can be concluded that H-infinity filter can be used to estimate the unknown 

parameter in the state-space model when the noise statistics are unknown, but with finite 

energy. 

 

In conclusion, the estimation technique based on nonlinear filters (such as Extended 

Kalman and H-infinity filters) can be used to estimate parameters of state-space model. 
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Figure 3.9 : The actual and estimated value of parameters via H-infinity filter 

 

 

 

Figure 3.10: The actual and estimated values of measurement and the error via H-infinity filter 
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3.3 Estimating Parameters using a Bank of Kalman Filters 

 

The objective of this section is to find an actual value of a parameter when its value is 

not known but its range of values is known. A bank of Kalman filters (which was discussed 

in Chapter 2) can be used to find an actual value of the unknown parameter. In this section, 

a bank of Kalman filters is used to find actual value of a parameter for two different cases. 

The first case is when there is only one parameter with five possibilities for its actual 

values. The second case is when there are two parameters; the actual value for each one 

have three possible values.  

 

 Case 1: 

Consider a first order system that is presented in equations (3.24). 

 

𝑥𝑘=1 = 𝑎 𝑥𝑘 + 𝑏𝑢𝑘 + 𝑣𝑘 

(3.24a) 

 

𝑦𝑘 = 𝑐𝑥𝑘 + 𝑤𝑘 

(3.24b) 

 

where 𝑎 = 0.9 , 𝑏 = 1 , 𝑐 =  1, 𝑣𝑘 ~ 𝑁 (0,0.1)  , 𝑤𝑘 ~ 𝑁 (0,0.1) 

 

It is assumed that the possible values for  𝑎 is one of these values   

 

𝑎𝑖 = [0.7 0.8 0.9 1 1.1] 
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In addition, we assume that the input and output are available, and noise statistics are 

known. The number of Kalman filter in the bank can be determined using equation 

(2.42). 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝐹 =  (5 ) 1 = 5  

 

Because there are five possible values for the parameter, we assume that the initial value 

of probabilities for all possible values are 20%. In addition, the initial value of the state and 

the error covariance for each Kalman filter are 

 

�̂�𝑖,𝑘=0 = 6, 𝑃𝑖,𝑘=0 = 100  

 

By setting up the Kalman filters, we can update the conditional probability for each 

possible value by equation (2.37); which is based on (2.38), (2.39), (2.40), and (2.41). From 

Figure 3.11, we conclude the actual value of the parameter is 0.9 because the conditional 

probability for 0.9 converges one and others converge to zero.  

   



74 

 

 

 

 

Figure 3.11:  Probabilities for each Kalman filter for case 1 

  

 

 Case 2: 

Consider the same system that is shown in equations (3.38) and (3.39). In this case, we 

assume that both 𝑎 and 𝑏 each have three possible values:  

 

𝑎𝑖 = [0.8 0.9 1]  , 𝑏𝑖 = [0.9 1 1.1] 

From equation (2.42), we need nine Kalman filters. Table 3.1 shows us hypothesis value 

of parameters for each Kalman filter: 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾 =  (3 ) 2 = 9  

                 

Table 3.1: Hypotheses values for each Kalman filter 

Hypotheses 

of a  

Hypotheses 

of b 

Number of 

K.F. 

0.8 0.9 1 

0.8 1 2 

0.8 1.1 3 

0.9 0.9 4 

0.9 1 5 

0.9 1.1 6 

1 0.9 7 

1 1 8 

1 1.1 9 

 

After setting up the bank of Kalman filters, we can update the conditional probability 

for hypothesis using equation (2.37) based on measurement data. By running the bank of 

Kalman filters algorithm, we have found that the conditional probability of fifth hypothesis 

( 𝑎 =  0.9 , 𝑏 =  1 ) converges to one and others converge to zero. Figure 3.12 shows the 

conditional probability for each hypothesis. 

 

In conclusion, based on the results obtained, a bank of Kalman filter can be used to find 

the actual value of parameter(s) that is unknown but with the range of possible values are 

known.  
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Figure 3.12: Probabilities for each Kalman filter for case 2 
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4 Case Studies in Intrusion Detection  

 

The objective of this chapter is to detect an intrusion signal when attacks occur to an 

actuator or a sensor of a system. The techniques that will be used include sample mean, 

Kalman filter (bank of Kalman filters), and stochastic parameter estimation. We assume 

that the intrusion signal, which is used to attack a system is a step function that is given as 

 

 ℎ =  {
10 ,   𝑘 ≥ 0  

   0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.1.a) 

 

which is modelled in state space as  

  

ℎ𝑘+1 = ℎ𝑘 

(4.1.b) 

 

In the first section, the sample mean method is presented to detect the intrusion signal 

when attack happens to the sensor and actuator of the system. In the section section, 

Kalman filter method will be used to detect the intrusion signal when the attacks happen, 

specifically, by using a bank of Kalman filters. In the last section, we will present the 

stochastic parameter estimation method to detect the intrusion signal when the attack 

happens to the system. In every case, we assume that the state information in the 

measurement in the sensor or actuator are either partially or totalley replaced by a constant 

intrusion signal.   
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4.1 Sample Mean Method 

 

In this section, we will show how to detect the intrusion signal using the sample mean 

method. The sample mean method is based on comparison between an actual and a 

theoretical sample mean values of a state or a measurement of a system to detect the 

intrusion signal.  We will discuss two cases in this section. The first case is when the 

intrusion signal attacks the system through the sensor. Second case is when the intrusion 

signal attacks the system through the actuator.  

 

 Case 1: Sensor is attacked 

Consider a linear discrete time system equation 

 

𝑥𝑘+1 =  𝐴 𝑥𝑘 +  𝐵𝑢𝑘 + 𝑣𝑘 

(4.2a) 

and the measurement  

 

𝑦𝑘 =  𝐶 𝑥𝑘 + 𝑤𝑘 

(4.2b) 

 

where  𝐴 = 0.85 , 𝐵 = 2 , 𝐶 = 3 , 𝑥0 =  3 , 𝑢𝑘 = {
1 ,   𝑘 ≥ 0  

   0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 𝑣𝑘 ~ 𝑁 (0,0.1) 𝑤𝑘 ~ 𝑁 (0,0.1)  
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However, the measurement will fluctuate around a constant value when the sensor is 

attacked and the measurement will be described by 

 

𝑦𝑘 =  𝐶 ℎ +  𝑤𝑘 

(4.3) 

 

The theoretical sample mean of the system state ( �̅�𝑘) that is presented in equation (4.2a) 

is  calculated  by [1]. 

 

�̅�𝑘+1 =  𝐴 �̅�𝑘 + + 𝐵𝑢𝑘 

(4.4) 

By solving equation (4.4), we obtain [1].  

 

�̅�𝑘 = 𝐴𝑘 �̅�0 + ∑ 𝐴𝑘−𝑖−1

𝑘−1

𝑖=0

𝐵𝑢𝑘 

(4.5) 

 

From equation (4.5), the sample mean of the measurement is computed as 

 

�̅�𝑘 = 𝐶 (𝐴𝑘  �̅�0 + ∑ 𝐴𝑘−𝑖−1

𝑘−1

𝑖=0

𝐵𝑢𝑘) 

(4.6) 
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After computing the sample mean of the measurement, we define a new variable that 

calculates the difference between the actual measurement and the theoretical sample mean, 

�̃�𝑘 as 

 

�̃�𝑘 = 𝑦𝑘 − �̅�𝑘 

(4.7) 

 

When the sensor is not attacked, the difference between the actual and sample mean of 

measurement is around zero for a first order system if |𝐴| < 1 and the input is a unit step 

function. The sample mean method algorithm when a sensor is attacked is presented in 

Figure 4.1. 

  

 

 

 

By setting up the system, which is presented in equation (4.2), and the sensor is 

attacked by the intrusion signal when 𝑘 = 100. Figure 4.2 shows us the state and 

Linear Discrete time 

system 
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Not attacked Case 

𝐶 𝑥𝑘 +  𝑤𝑘 

Attacked Case 

𝐶 ℎ𝑘 +  𝑤𝑘 

The Sample Mean of 
Measurement 

�̃�𝑘 = 𝑦𝑘 − �̅�𝑘 

 

�̅�𝑘 

𝑥𝑘=0 
  

𝑥𝑘 

  

ℎ𝑘 

  

𝑢𝑘 
  

𝑦𝑘 

  

Decision: 

The sensor is attacked or 
not 

Figure 4.1: The sample mean method algorithm when the sensor is attacked 
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measurement of the system. In addition, we show the difference between the theoretical 

sample mean and actual measurement in Figure 4.3. 

 

 

 

Figure 4.2: The state and measurement of the system when the sensor is attacked at k = 100 
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Figure 4.3: The difference between the actual and the theoretical sample mean measurement   

 

From Figure 4.3, it is noticed that the difference between the actual and theoretical 

sample mean values of measurement is around zero before the attack happens. However, 

when the sensor is attacked at 𝑘 = 100, difference between the actual and theoretical 

sample mean values goes to -30. Of course, the state value is not changed before and after 

𝑘 = 100. This gives us indication that the sensor is attacked via the intrusion signal. 

 

 Case 2: Actuator is attacked 

Consider a linear discrete time system below: 

𝑥𝑘+1 = 𝐴 𝑥𝑘 + 𝐵 𝑢𝑘 + 𝑣𝑘 

(4.8a) 

𝑦𝑘 = 𝐶 𝑥𝑘 + 𝑤𝑘 

(4.8b) 
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where  𝐴 = 0.9 , 𝐵 = 1 , 𝐶 = 2 , 𝐾 =  1.1 , 𝑥0 = 10 , 𝑢𝑘 = −𝐾𝑥𝑘. 

 

𝑣𝑘 ~ 𝑁 (0,0.1)  , 𝑤𝑘 ~ 𝑁 (0,0.1). 

 

When the actuator is not attacked, the state of the system is    

 

𝑥𝑘+1 = (𝐴 − 𝐵𝐾)𝑥𝑘 + 𝑣𝑘 

(4.9) 

 

assuming that the state is measurable and is fed back to control the system.  

 

The state equation of the system when the actuator is attacked is 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵ℎ + 𝑣𝑘 

(4.10) 

 

The theoretical sample mean of the state when the actuator is not attacked is  

 

�̅�𝑘+1  = (𝐴 − 𝐵𝐾)�̅�𝑘 

(4.11) 

 

By solving equation (4.11) the following equation can be obtained, 

 

�̅�𝑘 = (𝐴 − 𝐵𝐾)
𝑘 �̅�0  
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(4.12) 

 

so, lim
𝑘→∞

�̅�𝑘 = 0 if the closed loop system is asymptotically stable. 

On the other hand, when the actuator is attacked, the sample mean of the state is given by: 

 

�̅�𝑘+1 = 𝐴�̅�𝑘 + 𝐵ℎ 

(4.13) 

 

By solving equation (4.13), the following equation can be obtained,  

 

�̅�𝑘 = 𝐴𝑘  �̅�𝑘=0 + ∑ 𝐴𝑘−𝑖−1

𝑘−1

𝑖=0

𝐵ℎ 

(4.14) 

 

By simplification of equation (4.14), the following equation can be obtained,  

 

                      ∑ 𝐴𝑘−𝑖−1

𝑘−1

𝑖=0

= 𝐴𝑘−1 + 𝐴𝑘−2 + 𝐴𝑘−3 + ⋯+ 𝐴2 + 𝐴 + 𝐼 

 ∑ 𝐴𝑘−𝑖−1

𝑘−1

𝑖=0

= (𝐴𝑘−1 + 𝐴𝑘−2 + 𝐴𝑘−3 + ⋯+ 𝐴2 + 𝐴 + 𝐼) (𝐴 − 𝐼)(𝐴 − 𝐼)−1 

∑ 𝐴𝑘−𝑖−1

𝑘−1

𝑖=0

= (𝐴𝑘 + 𝐴𝑘−1 + 𝐴𝑘−2 + ⋯+ 𝐴3 + 𝐴2 + 𝐴 − 𝐴𝑘−1 + 𝐴𝑘−2

+ 𝐴𝑘−3 + ⋯+ 𝐴2 + 𝐴 + 𝐼)(𝐴 − 𝐼)−1 
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∑ 𝐴𝑘−𝑖−1

𝑘−1

𝑖=0

= (𝐴𝑘 − 𝐼)(𝐴 − 𝐼)−1 

(4.15) 

 

By substituting equation (4.15) into equation (4.14), we get 

 

�̅�𝑘 = 𝐴𝑘  �̅�0 + (𝐴𝑘 − 𝐼)(𝐴 − 𝐼)−1𝐵ℎ 

(4.16) 

 

and  lim
𝑘→∞

�̅�𝑘 = (𝐼 − 𝐴)−1𝐵ℎ for |𝐴| < 1 

 

From equation (4.12), when the actuator is not attacked, it can be conclude that the 

theoretical sample mean of the state goes to zero when 𝑘 approaches to infinity which is 

shown in Figure 4.4. On the other hand, from equation (4.16), if the original system is 

asymptotically stable, the theoretical sample mean of the state goes to a constant value 

when the actuator is attacked as shown Figure 4.5. The theoretical sample mean of the state 

goes to infinity, when magnitude value of 𝐴 is greater than one which is shown in Figure 

4.6. Figure 4.7 shows the sample mean algorithm.  
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Figure 4.4: The theoretical sample mean of the state when the actuator is not attacked 

 

 

 

 

Figure 4.5: The theoretical sample mean of the state when the actuator is attacked, |𝑨𝒌| < 𝟏 
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Figure 4.6: The theoretical sample mean of the state when the actuator is attacked, |𝑨𝒌| > 𝟏 
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Figure 4.7: The sample mean algorithm when the actuator is attacked  
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By setting up the system which is presented in equations (4.9) and (4.10), when  A=

0.9 , and the actuator is attacked via the intrusion signal when 𝑘 = 30. Figure 4.8 shows 

us that before 𝑘 = 100, the actual value of the state goes to zero. Then, it starts to increase 

until it reaches a constant value. It is noticed that the actuator is attacked via the intrusion 

signal.  

 

In addition, we reset the system coefficient to 𝐴 = 1.2, and the actuator is attacked via 

the intrusion signal when 𝑘 = 30. From Figure 4.9, the value of the state approaches to 

infinity which indicates that the actuator is attacked. 

 

In conclusion, based on the results obtained, the sample mean method is seen to be 

effective in detecting the intrusion signal when attacks occur to the system through either 

the sensor or the actuator.   
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Figure 4.8: The state of the system when the actuator is attacked at k = 100, |𝑨𝒌| < 𝟏  

 

 

 

Figure 4.9 : The state of the system when the actuator is attacked at k = 100, |𝑨𝒌| > 𝟏  
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4.2 Kalman Filter Method 

 

After we showed how to detect the intrusion signal via the sample mean method, we 

will now show how to detect the intrusion signal using a Kalman filter method in this 

section. In the Kalman filter method, a bank of Kalman filters is used to detect the intrusion 

signal. In this section, we will again present two cases when the sensor is attacked and 

when the actuator is attacked.   

 

 Case 1: Sensor is attacked 

Consider a linear discrete-time system that is presented in equation (4.17). 

 

𝑥𝑘+1 =  𝐴 𝑥𝑘 + 𝐹 𝑣𝑘 

(4.17a) 

 

𝑦𝑘 =  𝐶 𝑥𝑘 +   𝐺 𝑤𝑘 

(4.17b) 

 

where 𝐴 = 0.9, 𝐵 = 1, 𝐶 =  𝐹 =  𝐺 =  1  , 𝑣𝑘  ~ 𝑁 (0,0.1)  , 𝑤𝑘 ~ 𝑁 (0,0.1). The equation 

(4.17b) is used to present the sensor when is not attacked; however, when the sensor is 

attacked, equation (4.18) is presented the measurement of system. 

 

𝑦𝑘 =  𝐶 ℎ𝑘 +   𝐺𝑤𝑘 

(4.18) 
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In the re-modeling of the system including the attack, the state is presented by following: 

 

[
𝑥𝑘+1

ℎ𝑘+1
] =  [

0.9 0
0 1

] [
𝑥𝑘

ℎ𝑘
] + [

1
0
] 𝑣𝑘 

(4.19a) 

 

𝑦𝑘 = [𝜀 1] [
𝑥𝑘

ℎ𝑘
] + 𝑤𝑘 

(4.19b) 

 

where  𝐴 = [
0.9 0
0 1

] , 𝐹 =  [
1
0
] , 𝐶 =  [1 0] , 𝐺 = 1 , 𝑣𝑘 ~ 𝑁 (0,0.01)  , 

𝑤𝑘 ~ 𝑁 (0,0.01). 𝜀 =  0.001  

 

By using a bank of Kalman filters, we compute the conditional probability for each 

state of the model when the measurement is obtained. Two Kalman filters are used in the 

bank. The first one (K.F1) is used to estimate the state of model that is presented in equation 

(4.17). The second Kalman filter (K.F2) is used to estimate the states of model that is 

presented in equation (4.19). After estimation of the states for each model, we compute the 

conditional probabilities by using equations (2.37)-(2.40) (Note: The equations were 

discussed in the section 2.1.3). 

  

The initial values for K.F1 were set as 

 

�̂�0 = 4,  𝑃0 = 100 
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For K.F2, initial values were set as  

 

[
�̂�0

ℎ̂0
] =  [

4
7
] ,  𝑃0 = [

100 0
0 100

] 

 

Figure 4.10 shows the Kalman filter algorithm. When the sensor is not attacked, the 

conditional probability that is computed using estimated state value for the first model 

aproaches to 1 and the other the conditional probability aproaches to zero. On the other 

hand, the conditional probability that is computed by using estimated state value for second 

model aproaches to 1 when the sensor is attacked and the probability for the first filter 

aproaches to zero.    

 

 

 

Figure 4.11 shows us the conditional probability for a possible situation when the 

sensor is attacked via the intrusion signal at 𝑘 =  30. 

 

Based on these results, it can be concluded that the Kalman filter method has the ability 

to detect the intrusion signal when noise statistics are known. 
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time system 
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K.F.  

  
Comparing 

between the 

probabilities  

Figure 4.10: Kalman filter method algorithm when the sensor is attacked 
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Figure 4.11: The probability of each Kalman filter when sensor attacked at k=30 

 

 

 Case 2: Actuator is attacked 

Consider a linear discrete time system that is presented below: 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣𝑘 

(4.20a) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑤𝑘 

(4.20b) 

where the state is available for feedback  𝑢𝑘 = −𝐾𝑥𝑘 , 𝐾 = 0.1, 𝐴 = 0.85, 𝐵 = 𝐶 = 𝐹 =

𝐺 = 1, 𝑥𝑘=0 =  1, 𝑣𝑘  ~ 𝑁 (0,0.1), 𝑤𝑘 ~ 𝑁 (0,0.1). 
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By rewriting equation (4.20c),   

 

𝑥𝑘+1
1 = (𝐴 − 𝐾𝐵)𝑥𝑘

1 + 𝑣𝑘 

(4.20c) 

 

𝑦𝑘 = 𝐶𝑥𝑘
1 + 𝑤𝑘 

(4.20d) 

Equation (4.20) represents the actuator when it is not attacked. However, when the actuator 

is attacked, the state of the system is presented as below: 

 

𝑥𝑘+1
2 = 𝐴𝑥𝑘

2 + 𝐵ℎ + 𝑣𝑘 

(4.21) 

 

The equation below represents a model of system when the actuator is attacked: 

 

[
𝑥𝑘+1

2

ℎ𝑘+1
] =  [

0.85 1
0 1

] [
𝑥𝑘

2

ℎ𝑘
] + [

1
0
] 𝑣𝑘 

(4.22a) 

 

𝑦𝑘 = [1 0] [
𝑥𝑘

2

ℎ𝑘
] + 𝑤𝑘 

(4.22b) 

 

where  𝐴 = [
0.85 1
0 1

] , 𝐹 =  [
1
0
] , 𝐶 =  [1 0] , 𝐺 = 1 , 𝑣𝑘 ~ 𝑁 (0,0.1), 𝑤𝑘 ~ 𝑁 (0,0.1).   
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The bank of Kalman filters in this case also needs two Kalman filters. The first one 

(K.F.1) is used to estimate the state for the model that is presented in equation (4.19). Then, 

by using the estimated value of the state and error covariance, the conditional probability 

for not attacking situation is computed by (2.37)-(2.40).  

 

However, the second Kalman filter is used to estimate the states for the model that is 

presented by equation (4.22). The conditional probability for the attack situation is 

computed using the estimated values of the states and error covariance, by equation (2.37)-

(2.40). 

 

The initial estimates of K.F1 was set to  

 

�̂�0 = 1 ,  𝑃0 = 100 

 

For K.F2, the initial values were set to  

 

[
�̂�0

ℎ̂0
] =  [

1
1
],   𝑃0 = [

100 0
0 100

] 

 

On the other hand, the  control input is presented by equation when the actuator is either 

not attacked or attacked:  

𝑢𝑘 = −𝐾(𝑥𝑘
1𝑝1 + 𝑥𝑘

2𝑝2) 

 

(4.23a) 

 

𝑢𝑘 = ℎ 
 

(4.23b) 
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Figure 4.12: Kalman filter algorithm when the actuator is attacked 
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Figure 4.13: The probability of each Kalman filter when the actuator is attacked k=30 

 

Figure 4.11 shows us Kalman filter algorithm when the actuator is attacked. We assume 

that the initial value of conditional probability for each situation is 50%. Figure 4.12 shows 

us the probability for each Kalman filter when the sensor is attacked via the intrusion signal 

at 𝑘 = 30.  

 

Therefore, based on the attainable result, Kalman filter method is viewed to be capable 

of detecting the attack on the actuator. 

 

4.3 Stochastic Parameter Estimation Method   

 

In this section, we will present stochastic parameter estimation method to detect the 

intrusion signal, which is presented in equation (4.1). The assumption of this method is that 
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there is a probability of attack on the sensor of a system, which is (1 − 𝛽). Consider the 

system and measurement equations below: 

 

𝑥𝑘+1
1 =  𝐴 𝑥𝑘

1 + 𝐹𝑣𝑘 

(4.24a) 

 

The measurement of the system when it is not attacked is:  

 

𝑦𝑘 =  𝐶 𝑥𝑘
1 + 𝐺 𝑤𝑘 

(4.24b) 

 

Equation (4.25) represent the measurement of the system when it is attacked is:  

 

𝑦𝑘 = 𝐶ℎ + 𝐺 𝑤𝑘 

(4.25) 

 

where 𝐴 = 0.9 , 𝐵 = 𝐶 = 𝐹 = 𝐺 = 1, 𝑣𝑘 ~ 𝑁 (0,0.1)  , 𝑤𝑘 ~ 𝑁 (0,0.1). 

 

By remodeling the system, we have 

 

[
𝑥𝑘+1

1

ℎ𝑘+1
] =  [

𝐴 0
0 𝐼

] [
𝑥𝑘

1

ℎ𝑘
] + [

𝑣𝑘

0
] 

(4.26) 

 

Equation (4.26) can be rewritten as,   
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𝑥𝑘+1 =  𝒜 𝑥𝑘 + + [
𝑣𝑘

0
]  

 

The measurement of the system is  

 

𝑦𝑘 = ℂ𝑘𝑥𝑘 +  𝐺𝑘𝑤𝑘 

(4.27) 

where 𝒜  = [
𝐴 0
0 𝐼

] , 𝑥𝑘 = [
𝑥𝑘

1

ℎ𝑘
]. ℂ𝑘 is a random matrix and it is based on the probability 

for the sensor not attacked, 𝛽. 

 

ℂ𝑘 = [ 𝐶𝑘 , 0] 

 

However, the probability for sensor attacked is (1 − 𝛽). 

 

ℂ𝑘 = [ 0 , 𝐼] 

 

By computing the expected value and the second moment of  ℂ𝑘, we can estimate the state 

of the system. The expected value of ℂ𝑘 is computed by equation 

 

ℂ̅𝑘 = 𝐸{ ℂ𝑘} = [ 𝛽 𝐶𝑘 , (1 − 𝛽)] 

(4.28) 

 

When the sensor is not attacked, ℂ̃𝑘
1  is  
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ℂ̃𝑘
1 = [ 𝐶𝑘 , 0 ] −  𝐸{ ℂ𝑘} = [ (1 − 𝛽)𝐶𝑘, (𝛽 − 1)𝐼]  

(4.29) 

However, when the sensor is attacked, ℂ̃𝑘
2 is  

 

ℂ̃𝑘
2 = [ 0 , 𝐼 ] −  𝐸{ ℂ𝑘} = [ −𝛽 𝐶𝑘 , 𝛽 𝐼 ]   

(4.30) 

 

The covariance of  ℂ𝑘 is  

𝐸 {ℂ𝑘Χ𝑘 ℂ𝑘
𝑇}  =  𝛽(ℂ̃𝑘

1Χ𝑘ℂ̃𝑘
1𝑇

) + (1 − 𝛽) (ℂ̃𝑘
2Χ𝑘ℂ̃𝑘

2𝑇
) 

=  (𝛽 [ (1 − 𝛽)𝐶𝑘, (𝛽 − 1)𝐼]Χ𝑘[ (1 − 𝛽)𝐶𝑘, (𝛽 − 1)𝐼]𝑇 )

+ ((1 − 𝛽)[ −𝛽 𝐶𝑘 , 𝛽 𝐼 ] Χ𝑘 [ −𝛽 𝐶𝑘 , 𝛽 𝐼 ]𝑇 ) 

(4.31) 

 

where the covariance of the state in (4.26) is given by  

 

Χ𝑘+1 =  𝒜 Χ𝑘𝒜𝑇 + [
𝑉 0
0 0

] 

(4.32) 

 

For this method, the equations for the Kalman filter are modified as follows: 

The estimated state is:  

�̂�𝑘+1 =  𝒜 �̂�𝑘 + 𝐾𝑘 (𝑦𝑘 − ℂ̅𝑘�̂�𝑘 ) 

(4.33) 

 

The gain of Kalman filter is: 
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𝐾𝑘 =  𝒜 𝑃𝑘ℂ̅𝑘
𝑇(ℂ̅𝑘𝑃𝑘ℂ̅𝑘

𝑇 + 𝑊 +  𝐸 {ℂ̃𝑘Χ𝑘ℂ̃𝑘
𝑇})

−1
 

(4.34) 

The error covariance is: 

 

𝑃𝑘+1 =  𝒜 𝑃𝑘𝒜
𝑇 −  𝒜 𝑃𝑘ℂ̅𝑘

𝑇(ℂ̅𝑘𝑃𝑘ℂ̅𝑘
𝑇 + 𝑊 +  𝐸 {ℂ̃𝑘Χ𝑘ℂ̃𝑘

𝑇})
−1

ℂ̅𝑘
𝑇𝑃𝑘𝒜 + [

𝑉 0
0 0

] 

(4.35) 

 

The initial values for K.F was set as follows: [
�̂�0

ℎ̂0
] =  [

3
6
], the initial error covariance, 

𝑃0 = [
100 0
0 100

], and state covariance, Χ0 = [
2 1
1 2

]. The probability for sensor not 

attacked is 90%, 𝛽 = 90%. Figure 4.13 shows the estimated values for the state of the 

system and the intrusion signal before and after the sensor is attacked at  𝑘 = 100. 

 

From Figure 4.14 shows that although the estimation quality of this technique is poor, 

it still indicates very quickly that is there is a change in the sensor signal, there by detection 

the intrusion. 
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Figure 4.14: The actual and estimate values for the state and the intrusion signal when the sensor is 

attacked at 𝒌 = 𝟏𝟎𝟎 
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5 Conclusion and Future Work 

 

For estimation of a state of the system, Kalman filter is the optimal filter to use if the 

model is linear, noises are additive and Gaussian with known first two moment. When the 

system is nonlinear, the system can be linearized about the current estimate and the 

Extended Kalman filter can be used to estimate the states. However, Extended Kalman 

filter is not an optimal filter. 

 

For the case where the noise statistics are uncertain but the energy of noise is finite, H-

infinity filters can be used. In this case, H-infinity may serve as the optimal filter to estimate 

the state of the linear system with minimization of the maximum estimation error. In 

addition, nonlinear H-infinity filter, which is discussed in section 2.2.2, can be used to 

estimate the state of nonlinear systems when the noise statistics are uncertain and the 

energy of noise is finite. 

 

For parameter identification, Kalman and H-infinity filters are used in this thesis to 

estimate coefficients in the transfer functions after some manipulations. In addition, 

Extended Kalman and nonlinear H-infinity filters gave us good results when they were 

used to estimate the parameters of the state-space models. Moreover, when actual value of 

a parameter is unknown but its range is known, a bank of Kalman filters is used to estimate 

the parameter of the systems. 

 

For detection of an intrusion signal that is of constant type acting on a sensor or 

actuator, both sample mean and Kalman filter methods are shown to be able to detect the 
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intrusion signals. Stochastic parameter estimation method could also detect the intrusion 

signal for the sensor intrusion case, although it resulted in large estimation error.   

 

Future work would focus on generalizing these estimation applications to systems of 

higher order, with time-varying parameters, with certain types of nonlinear terms and when 

intrusion signals are of higher order polynomial or sinusoidal types. 
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Computer Code  

% Chapter 2 
% 2.1 Linear filter 
% Kalman filter 
% First order system, To estimate a state of a system 
%.....................................................................

..... 

  
% This code for estimation the state for first order system 
% the system is x_k+1 = 0.9 x_k + u_k + v_k 
%               y_k   = x_k + w_k 
% v_k ~ N (0,V)  ,  w_k ~ N (0,W)  

  
clear  ;  
close all;  
clc ; 
kmax = 500; % the maximum value of time 
N =25  ;   % number for iterations of program 
error_n = NaN (1,N); %  %  error percent for each iteration 

  
for n = 1 : 1 : N 

     
    % To identify the parameters 
    A = 0.9 ; 
    B = 0.09; 
    F = 1 ; 
    C = 1 ;  
    G = 1 ; 
    V = 0.1 ; 
    W = 0.1; 
    v = 0+sqrt(V) * randn (1,100000); 
    w = 0+sqrt(W) * randn (1,100000); 
    x = NaN (1,kmax); 
    y = NaN (1,kmax); 
    x(1) = 10 ;  
    u = 1 + zeros(1,kmax); 
        xhat = NaN(1,kmax); % The estimation state 
    Kk   = NaN(1,kmax); % The gain of Kalman Filter 
    P    = NaN(1,kmax); % Covariance of estimation error 
    error_y = NaN(1,kmax); 
    xhat(1) = 12 ;  
    P(1) = 100 ;  

     
   for k = 1 : 1 : kmax  

          
    % Simulation of the system 

     
        if k < kmax 
            x(k+1) = A*x(k) + B*u(k)+v(k) ;  
        end 
        y(k) = C*x(k)+G*w(k); 

     
 

%.....................................................................

...%    
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    % Kalman Filter to estimat the state of the system  

        
       Kk(k)= (A*P(k)*C')/(C*P(k)*C'+ G*W*G'); 
       if k < kmax  
           xhat(k+1)= A*xhat(k)+B*u(k)+Kk(k)*(y(k)-C*xhat(k)); 
           P(k+1)   = A*P(k)*A'-(Kk(k)*C*P(k)*A')+F*V*F';      
       end 
       % Calculate the error  
       yhat(k) = C*xhat(k); 
       error_y(k) = (y(k) - yhat(k));  
   end 

   
   error_n(n) = ((error_y*error_y') /(y*y')) *100 ; 
end  

  
Net_error = (1/N) * (sum(error_n)); 

  
% Plot  
k = 0 : 1 : kmax -1 ; 
figure (1) 
hold on  
p1 = plot(k,x,'r:') ;  
set(p1,'Linewidth',2); 
p2 = plot(k,xhat,'b--'); 
set(p2,'Linewidth',2); 
%title('The estimation the stat of first order system by Kalman 

filter'); 
legend('x ','xhat '); 
xlabel('k'); 
ylabel(' x(k) & xhat(k)'); 
hold off 

  
figure (2) 
hold on  
p1 = plot(k,y,'r:') ;  
set(p1,'Linewidth',2); 
p2 = plot(k,yhat,'b--'); 
set(p2,'Linewidth',2); 
%title('The estimation the stat of first order system by Kalman 

filter'); 
legend('y  ','yhat '); 
xlabel('k'); 
ylabel(' y(k), yhat(k)'); 
hold off 

  
figure (3) 
hold on  
plot(k,error_y,'b') ;  
%title('The estimation error for first order system by Kalman 

filter'); 
legend('Estimation Error ') ; 
xlabel('k'); 
ylabel('error of measurement'); 
hold off 
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% Chapter 2 
% 2.1 Linear filter 
% Kalman filter 
% Second order system, To estimate  states of a system 
%.....................................................................

..... 

  
% This code for estimation the state for Second order system 
% the system is x_k+1 = A x_k + B u_k + F v_k 
%               y_k   = C x_k + G w_k 
% v_k ~ N (0,V)  ,  w_k ~ N (0,W)  

  
clear  ;  
close all;  
clc ; 
kmax= 500; % the maximum value of time 
N = 100 ;   % number for iterations of program 
error_n = NaN(1,N); %   error percent for each iteration 

  

  

  
for n = 1 : 1 : N 

     
    % To identify the parameters 

     
    summ = 0 ; %  the summation of ratio between squer of error by 

squer of state x(K) 
    A = [1,0.1;-1,0]; 
    B = [0.1;0];  
    F = [1,0;0,1] ; 
    C = [1,0] ;  
    G = 1 ; 
    V1 = 0.01 ; 
    V2 = 0.01; 
    V  = [V1,0;0,V2]; 
    W = 0.01; 
    v1 = sqrt(V1) * randn (1,100000); 
    v2 = sqrt(V2) * randn (1,100000); 
    v = [v1 ; v2]; 
    w = sqrt(W) * randn (1,100000); 
    x = NaN (2,kmax); 
    y = NaN (1,kmax); 
    x(:,1) = [10;1] ;  
    u = 1 + zeros(1,kmax); 

     
    % Simulation of the system 

     
    for k = 1 : 1 : kmax  
        if k < kmax 
            x(:,k+1) = A*x(:,k) + B*u(k)+F*v(:,k) ;  
        end 
        y(k) = C*x(:,k)+G*w(k); 
    end  

     
    % Kalman Filter to estimat the state of the system  

     
    xhat = NaN(2,kmax); % The estimation state 
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    Kk   = NaN(2,kmax); % The gain of Kalman Filter 
    P    = NaN(2,2,kmax); % Covariance of estimation error 
   error_y = NaN(1,kmax); % the error = y(k) -(C xhat(k)) 
   summ  = NaN(1,kmax); 

     
   xhat(:,1) = [12,1.2] ;  
   P(:,:,1)       = [100,0;0,100] ;  

    
   for k = 1 : kmax 

        
       Kk(:,k)= (A*P(:,:,k)*C')/(C*P(:,:,k)*C'+ G*W*G'); 
       if k < kmax  
           xhat(:,k+1)= A*xhat(:,k)+B*u(k)+Kk(:,k)*(y(k)-C*xhat(:,k)); 
           P(:,:,k+1)= A*P(:,:,k)*A'-(Kk(:,k)*C*P(:,:,k)*A')+F*V*F';      
       end 
       % Calculate the error  
       yhat(k) = C*xhat(:,k); 
       error_y(k) = y(k)- yhat(k); 

        
   end  
  error_n(n) = ((error_y*error_y')/((y*y')))*100 ; 
end  

  
Net_error = (1/N) * (sum(error_n)); 

  

  
% Plot part  
k = 0 : 1 : kmax -1 ; 

  
figure (1) 
hold on 
p1 = plot(k,x(1,:),'r:') ;  
set(p1,'Linewidth',2); 
p2 = plot(k,xhat(1,:),'b--'); 
set(p2,'Linewidth',2); 
%title('The estimation the state of x1 by Kalman filter'); 
legend('x1 ','xhat1'); 
xlabel('k'); 
ylabel(' x1(k) & xhat1(k)'); 
hold off 

  
figure(2) 
hold on 
p1 = plot(k,x(2,:),'r:') ;  
set(p1,'Linewidth',2); 
p2 = plot(k,xhat(2,:),'b--'); 
set(p2,'Linewidth',2); 
%title('The estimation the state of x2 by Kalman filter'); 
legend('x2 ','xhat2'); 
xlabel('k'); 
ylabel(' x2(k) & xhat2(k)'); 
hold off 

  
figure (3) 
hold on  
p1 = plot(k,y,'r:') ;  
set(p1,'Linewidth',2); 
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p2 =plot(k,yhat,'b--'); 
set(p2,'Linewidth',2); 
%title('The estimation the stat of first order system by Kalman 

filter'); 
legend('y  ','yhat '); 
xlabel('k'); 
ylabel(' y(k), yhat(k)'); 
hold off 

  
figure (4) 
hold on  
plot(k,error_y,'r') ;  
%title('The estimation error for second order system by Kalman 

filter'); 
legend('Estimation Error') ; 
xlabel('k'); 
ylabel('error'); 
hold off 

 

 

 
% Chapter 2 
% 2.1 Linear filter 
% H-infinity filter 
% First order system, To estimate a state of a system 
%.....................................................................

..... 

  
% This code for estimation the state for first order system by using 
% H-infinty filter 
% the system is x_k+1 = 0.9 x_k + u_k +(5*exp(-k)) 
%               y_k   = x_k + (3 * exp(-2*k)); 
%   
clear  ;  
close all;  
clc ; 
kmax = 101; % the maximum value of time 
N = 25 ;   % number for iterations of program 
error_n = NaN ( 1, N) ; 

  

  
for n = 1 : 1 : N 

     
    % To identify the parameters 

     
    A = 0.9 ; 
    B = 0.09; 
    F = 1 ; 
    C = 1 ;  
    G = 1 ; 
    Cz = 1; 
    gamma = 6; 
    w1 = NaN (1,kmax); % the process noise 
    w2 = NaN (1,kmax); % the measurement noise 
    x = NaN (1,kmax); % the state of the system 
    y = NaN (1,kmax);% the output of the system 
    x(1) = 10 ; % initial value of state of the system 
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    u = 1 + zeros(1,kmax); % the input of the system 
    xhat = NaN(1,kmax); % The estimation state 
    K   = NaN(1,kmax); % The gain of of H-nfinty 
    P    = NaN(1,kmax); %  
    error_y = NaN(1,kmax);% Difference between y - ( C * xhat) 
    squer_d= NaN(1,kmax) ;% Divide error square to y square  
    xhat(1) = 12 ; % initial value of x estimation 
    P(1) = 100 ; % initial value of P  

     

     
    for k = 1 : 1 : kmax  

         
        % Simulation of the system 
%.....................................................................

....% 
        w1(k)= 5*exp(-k); 
        w2(k) = 3* exp(-k) ; 
        if k < kmax 
            x(k+1) = A*x(k) + B*u(k)+ F* w1(k); 

             
        end 
            y(k) = C*x(k)+G*w2(k); 

         

    
%.....................................................................

...% 

    
    % Kalman Filter to estimat the state of the system  
%.....................................................................

....% 

     

  

        
       K(k)= ((A*(P(k)^-1 - Cz'*Cz)^-1*C')+ gamma^-1*F*G')*(C*(P(k)^-1 

- ... 
           Cz'*Cz)*C'+gamma^-1*G*G'); 
       if k < kmax  
           xhat(k+1)= A*xhat(k)+B*u(k)+K(k)*(y(k)-C*xhat(k)); 

            
           P(k+1)   = A*(P(k)^-1 - Cz'*Cz)*A'+gamma^-1*F*F'-(A*(P(k)^-

1-... 
           Cz'*Cz)*C'+gamma^-1*F*G')*(C*(P(k)^-1 - Cz'*Cz)*A'+... 
               gamma^-1*G*F')*(C*(P(k)^-1 - Cz'*Cz)*C'+gamma^-1*G*G');      
       end 

        
       yhat(k) = C*xhat(k); 
       error_x(k) = x(k) - xhat(k) ; 
       z(k) = Cz * error_x(k); 
       e_p(k)= z(k) * z(k)';% energy of the performance output 
       e_n(k) = (w1(k)*w1(k)')+(w2(k)*w2(k)') ; % energy of the noise  
       error_y(k) = y(k) - ( C*xhat(k)); 

        

     
    end 

     
    error_n(n) = ((error_y*error_y')) / ((y*y')) ; 
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    ration = sum(e_p)/sum(e_n); 
end  

  
Net_error = (1/N) * (sum(error_n))*100; 

  

  
%.....................................................................

....% 
% Plot  
k = 0 : 1 : kmax -1 ; 
figure (1) 
hold on  
p1 = plot(k,x,'r:') ;  
set(p1,'Linewidth',2); 
p2 = plot(k,xhat,'b--'); 
set(p2,'Linewidth',2); 
%title('The estimation the stat of first order system by Kalman 

filter'); 
legend('x ','xhat '); 
xlabel('k'); 
ylabel(' x(k) & xhat(k)'); 
hold off 

  
figure (2) 
hold on  
p1 = plot(k,y,'r:') ;  
set(p1,'Linewidth',2); 
p2 = plot(k,yhat,'b--'); 
set(p2,'Linewidth',2); 
%title('The estimation the stat of first order system by Kalman 

filter'); 
legend('y  ','yhat '); 
xlabel('k'); 
ylabel(' y(k), yhat(k)'); 
hold off 

  
figure (3) 
hold on  
plot(k,error_y,'b') ;  
%title('The estimation error for first order system by Kalman 

filter'); 
legend('Estimation Error ') ; 
xlabel('k'); 
ylabel('error of measurement'); 
hold off 
% Chapter 2 
% 2.2 Linear filter 
% Exteneded Kalman filter 
% First order system, To estimate a state of a system 
%.....................................................................

..... 
% Extended Kalman Filter to estimate the state of x(k+1) = - sin(k) + 

v(k) 
clear ;  
close all ;  
clc ;  
N = 25; 
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for n = 1 : 1 : N 
%..................................................%  
kmax = 101 ;   
V = 0.01 ; 
W = 0.01; 
v = 0+sqrt(V) * randn (1,100000); 
w = 0+sqrt(W) * randn (1,100000); 
x = NaN(1,kmax);  
x(1) = 0.9 ;   
y = NaN(1,kmax);  
xhat = NaN(1,kmax);  
xhat(1) = 1.1 ;  
P = NaN(1,kmax);  
P(1) = 1000 ;   
K = NaN(1,kmax); 
%..................................................%  

  
for k = 1 : 1 :kmax  

     
    % Simulation of the system 
    if k < kmax  

  
        x(k+1) = - sin(x(k)) + v(k) ;   
    end  
     y(k) =  x(k) + w(k);   

      
    % Extended Kalman Filter to estimat the state of the system 
    A = -cos(xhat(k)); 
    C = 1 ;  
    F = 1 ;  
    G = 1 ; 

     
    K(k)= (A*P(k)*C')/(C*P(k)*C'+ G*W*G'); 
    if k < kmax 
    xhat(k+1) = - sin(xhat(k)) + K(k) * ( y(k) - xhat(k));  
    P(k+1)   = A*P(k)*A'-(K(k)*C*P(k)*A')+F*V*F'; 
    end 
    error_y(k)  = y(k)  -  xhat(k); 

     
end 
     norm_error(k) = ((error_y*error_y') /(y*y') ) * 100; 
end 

  
net_norm_error = (sum(norm_error))/N ;   

  
t = 0 : 1 : kmax-1   ;  

  
figure (1) 
subplot(3,1,1) 
hold on   
plot(t,x,'b');  
legend('x'); 
xlabel('k'); 
ylabel('x'); 
subplot(3,1,2) 
hold on   
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plot(t,xhat,'r');  
legend('xhat'); 
xlabel('k'); 
ylabel('xhat'); 
subplot(3,1,3) 
hold on   
plot(t,x,'b');  
plot(t,xhat,'r');  
legend('x','xhat');  
xlabel('k'); 
ylabel('x and xhat'); 
hold off  

  
figure (2) 
hold on   
plot(t,error_y,'b');  
legend('error'); 
xlabel('k'); 
ylabel('error'); 
hold off 
% Chapter 2 
% 2.2 Linear filter 
% Exteneded Kalman filter 
% First order system, To estimate a state of a system 
%.....................................................................

..... 
% Extended Kalman Filter to estimate the state of x(k+1) = - x^2 + 

v(k) 
clear ;  
close all ;  
clc ;  
N = 25; 

  
for n = 1 : 1 : N 
%..................................................%  
kmax = 101 ;   
V = 0.01 ; 
W = 0.01; 
v = 0+sqrt(V) * randn (1,100000); 
w = 0+sqrt(W) * randn (1,100000); 
x = NaN(1,kmax);  
x(1) = 0.9 ;   
y = NaN(1,kmax);  
xhat = NaN(1,kmax);  
xhat(1) = 1.1 ;  
P = NaN(1,kmax);  
P(1) = 1000 ;   
K = NaN(1,kmax); 
%..................................................%  

  
for k = 1 : 1 :kmax  

     
    % Simulation of the system 
    if k < kmax  

  
        x(k+1) = - x(k)^2 + v(k) ;   
    end  
     y(k) =  x(k) + w(k);   
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    % Extended Kalman Filter to estimat the state of the system 
    A = -2*xhat(k); 
    C = 1 ;  
    F = 1 ;  
    G = 1 ; 

     
    K(k)= (A*P(k)*C')/(C*P(k)*C'+ G*W*G'); 
    if k < kmax 
    xhat(k+1) =  - xhat(k)^2  + K(k) * ( y(k) - xhat(k));  
    P(k+1)   = A*P(k)*A'-(K(k)*C*P(k)*A')+F*V*F'; 
    end 
    error_y(k)  = y(k)  -  xhat(k); 

     
end 
     norm_error(k) = ((error_y*error_y') /(y*y')) * 100; 
end 

  
net_norm_error = (sum(norm_error))/N ;   

  
t = 0 : 1 : kmax-1   ;  

  
figure (1) 
subplot(3,1,1) 
hold on   
p1 = plot(t,x,'b:');  
set(p1,'Linewidth',2); 
legend('x'); 
xlabel('k'); 
ylabel('x'); 
subplot(3,1,2) 
hold on   
p1 =plot(t,xhat,'r--'); 
set(p1,'Linewidth',2); 
legend('xhat'); 
xlabel('k'); 
ylabel('xhat'); 
subplot(3,1,3) 
hold on   
p1 = plot(t,x,'b:');  
set(p1,'Linewidth',2); 
p2= plot(t,xhat,'r--');  
set(p2,'Linewidth',2); 
legend('x','xhat');  
xlabel('k'); 
ylabel('x and xhat'); 
hold off  

  
figure (2) 
hold on   
plot(t,error_y,'b');  
legend('error'); 
xlabel('k'); 
ylabel('error'); 
hold off 

  

% Chapter 2 
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% 2.2 Linear filter 
% Exteneded Kalman filter 
% First order system, To estimate a state of a system 
%.....................................................................

..... 

  
% Extended Kalman Filter to estimate the state of x(k+1) = - x^2 + 

v(k) 
clear ;  
close all ;  
clc ;  
N = 25; 

  
for n = 1 : 1 : N 
%..................................................%  
kmax = 101 ;   
V = 0.01 ; 
W = 0.01; 
v = 0+sqrt(V) * randn (1,100000); 
w = 0+sqrt(W) * randn (1,100000); 
x = NaN(1,kmax);  
x(1) = 0.9 ;   
y = NaN(1,kmax);  
xhat = NaN(1,kmax);  
xhat(1) = 1.1 ;  
P = NaN(1,kmax);  
P(1) = 1000 ;   
K = NaN(1,kmax); 
%..................................................%  

  
for k = 1 : 1 :kmax  

     
    % Simulation of the system 
    if k < kmax  

  
        x(k+1) = - x(k)^3 + v(k) ;   
    end  
     y(k) =  x(k) + w(k);   

      
    % Extended Kalman Filter to estimat the state of the system 
    A = -3*xhat(k)^2; 
    C = 1 ;  
    F = 1 ;  
    G = 1 ; 

     
    K(k)= (A*P(k)*C')/(C*P(k)*C'+ G*W*G'); 
    if k < kmax 
    xhat(k+1) =  - xhat(k)^3  + K(k) * ( y(k) - xhat(k));  
    P(k+1)   = A*P(k)*A'-(K(k)*C*P(k)*A')+F*V*F'; 
    end 
    error_y(k)  = y(k)  -  xhat(k); 

     
end 
     norm_error(k) = ((error_y*error_y') /(y*y') ) * 100; 
end 

  
net_norm_error = (sum(norm_error))/N ;   
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t = 0 : 1 : kmax-1   ;  

  
figure (1) 
subplot(3,1,1) 
hold on   
p1 = plot(t,x,'b:');  
set(p1,'Linewidth',2); 
legend('x'); 
xlabel('k'); 
ylabel('x'); 
subplot(3,1,2) 
hold on   
p1 =plot(t,xhat,'r--'); 
set(p1,'Linewidth',2); 
legend('xhat'); 
xlabel('k'); 
ylabel('xhat'); 
subplot(3,1,3) 
hold on   
p1 = plot(t,x,'b:');  
set(p1,'Linewidth',2); 
p2= plot(t,xhat,'r--');  
set(p2,'Linewidth',2); 
legend('x','xhat');  
xlabel('k'); 
ylabel('x and xhat'); 
hold off  

  
figure (2) 
hold on   
plot(t,error_y,'b');  
legend('error'); 
xlabel('k'); 
ylabel('error'); 
hold off 
% Chapter 2 
% 2.2 Linear filter 
% H-infinity filter 
% First order system, To estimate a state of a nonlier system 
% Code for thesis of a master degree of Electrical and Computer 

Engineering 
%.....................................................................

..... 

  
% This code for estimation the state for nonlinear system by using 
% H-infinty filter 
% the system is x(k+1) = - sin(x(k)) + [1,0] * [exp(-k); -3 * exp(-

2*k)] 
%               y(k)   = x(k) +[0,1]*[exp(-k); -3 * exp(-2*k)] 
%    
clear ;  
close all ;  
clc ;  

  
%..................................................%  
N = 25;  
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error_n = NaN (1,N); 

   
for n=1:1:N  

     
    kmax = 100 ;   
    F = [1,0];  
    G = [0,1];  
    Cz = 0.5 ;  
    C  = 1 ;   
    g = 2 ;  
    x = NaN(1,kmax);  
    x(1) = 1 ;   
    y = NaN(1,kmax);  
    w = NaN(1,kmax);  
    z = NaN(1,kmax);  
    xhat = NaN(1,kmax);  
    xhat(1) = 1.2 ;  
    P = NaN(1,kmax);  
    P(1) = 100 ;   
    K = NaN(1,kmax); 
    error_y = NaN(1,kmax); 
    squer_d = NaN(1,kmax) ; 
    for k = 1 : 1 :kmax 
         % Simulation of the system 
%.....................................................................

....% 
        if k < kmax  
        x(k+1) = - sin(x(k)) + F * [exp(-k); -3 * exp(-2*k)] ;   
        end 
        y(k) = C * x(k) + G * [exp(-k); -3 * exp(-2*k)]; 
%.....................................................................

....% 

       
       % H-infinity Filter to estimat the state of the system  
%.....................................................................

....% 
        A = - cos(xhat(k));  
        C = 1 ;   
        M = ( P(k)^-1 - Cz'*Cz) ;   
        K(k) = (A*M*C'+ g^-1*F*G')/(C*M*C'+g^-1*G*G');  
        if k < kmax  
            xhat(k+1) = -sin(xhat(k)) + K(k) * ( y(k) - C*xhat(k));  
            P(k+1) = (A*M*A'+g^-1*F*F')-(A*M*C'+g^-1*F*G')*(C*M*C'+g^-

1*... 
                G*G')^-1*(C*M*A'+g^-1*G*F'); 
        end 
        z(k) = (Cz * ( x(k)-xhat(k))); 
        w(k) = exp(-2*k)+0.25*exp(-4*k); 
        error_y(k) = y(k) - (C*xhat(k)); 
        squer_d(k) = (error_y(k))^2 / y(k)^2 ; 
    end 
     error_n(n) = (1/kmax) * ( sum(squer_d)) ; 
end 

  
Net_error = (1/N) * ( sum(error_n)) * 100 ;  

   
Z = z.*z ;  
a = sum (Z) /sum( w );  
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t = 0 : 1 : 100-1   ;  

  

   

  
t = 0 : 1 : kmax-1   ;  

  
figure (1) 
subplot(3,1,1) 
hold on   
p1 = plot(t,x,'b');  
set(p1,'Linewidth',2); 
legend('x'); 
xlabel('k'); 
ylabel('x'); 
subplot(3,1,2) 
hold on   
p1 =plot(t,xhat,'r'); 
set(p1,'Linewidth',2); 
legend('xhat'); 
xlabel('k'); 
ylabel('xhat'); 
subplot(3,1,3) 
hold on   
p1 = plot(t,x,'b');  
set(p1,'Linewidth',2); 
p2= plot(t,xhat,'r');  
set(p2,'Linewidth',2); 
legend('x','xhat');  
xlabel('k'); 
ylabel('x and xhat'); 
hold off  

  
figure (2) 
hold on   
plot(t,error_y,'b');  
legend('error'); 
xlabel('k'); 
ylabel('error'); 
axis([0,15,-1.5 , 2]) 
hold off 
% Chapter 2 
% 2.2 Linear filter 
% H-infinity filter 
% First order system, To estimate a state of a nonlier system 
% Code for thesis of a master degree of Electrical and Computer 

Engineering 
%.....................................................................

..... 

  
% This code for estimation the state for nonlinear system by using 
% H-infinty filter 
% the system is x(k+1) = - x(k)^2 + [1,0] * [0.3 exp(-k); -0.2 * exp(-

2*k)] 
%               y(k)   = x(k) +[0,1]*[exp(-k); -3 * exp(-2*k)] 
%    
clear ;  
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close all ;  
clc ;  

  
%..................................................%  
kmax = 100 ;   

  
F = [1,0];  

  
G = [0,1];  

  
Cz = 0.5 ;  
c  = 1 ;   
g = 2 ;  
x = NaN(1,kmax);  
x(1) = 0.5 ;   
y = NaN(1,kmax);  
w = NaN(1,kmax);  
z = NaN(1,kmax);  

 
%..................................................%  

 
for k = 1 : 1 :kmax   
    if k < kmax  
        x(k+1) = - x(k)^2 + F * [0.3*exp(-k); -0.2 * exp(-2*k)] ;   
    end  
     y(k) = C * x(k) + G * [0.3*exp(-k); -0.2 * exp(-2*k)];   
end  
%....................................................%  

 
xhat = NaN(1,kmax);  

  
xhat(1) = 0.4 ;  

  
P = NaN(1,kmax);  

  
P(1) = 100 ;   

  
K = NaN(1,kmax);  

  
for k =1 : 1 : kmax   
    A = -2*xhat(k);  
    C = 1 ;   
    M = ( P(k)^-1 - Cz'*Cz) ;   
    K(k) = (A*M*C'+ g^-1*F*G')/(C*M*C'+g^-1*G*G'); 
    if k < kmax  

  
        xhat(k+1) = -xhat(k)^2 + K(k) * ( y(k) - C*xhat(k));  
        P(k+1) = (A*M*A'+g^-1*F*F')-(A*M*C'+g^-1*F*G')*(C*M*C'+g^-

1*G*G')^-1*(C*M*A'+g^-1*G*F'); 
    end 

     
    error_y(k)  = y(k) - xhat(k) ;  
    z(k) = (Cz * ( x(k)-xhat(k))); 

      
    w(k) = exp(-2*k)+0.25*exp(-4*k); 
end   
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Net_error = ((error_y*error_y')/(y*y'))* 100 ;   
Z = z.*z ;  
W = w.*w; 
r = sum (Z) /sum(w );  

   
t = 0 : 1 : kmax-1   ;  

  
figure (1) 
subplot(3,1,1) 
hold on   
p1 = plot(t,x,'b:');  
set(p1,'Linewidth',2); 
legend('x'); 
xlabel('k'); 
ylabel('x'); 
subplot(3,1,2) 
hold on   
p1 =plot(t,xhat,'r--'); 
set(p1,'Linewidth',2); 
legend('xhat'); 
xlabel('k'); 
ylabel('xhat'); 
subplot(3,1,3) 
hold on   
p1 = plot(t,x,'b:');  
set(p1,'Linewidth',2); 
p2= plot(t,xhat,'r--');  
set(p2,'Linewidth',2); 
legend('x','xhat');  
xlabel('k'); 
ylabel('x and xhat'); 
hold off  

  
figure (2) 
hold on   
plot(t,error_y,'b');  
legend('error'); 
xlabel('k'); 
ylabel('error'); 
axis([0,10,-0.2 , 0.2]); 
hold off 

Chapter 3  

Section 3.1 
% Chapter 3 
% Estimation of Coefficients in Transfer Functions  
% Case 1  

  
%.....................................................................

..... 

  
clear ;  
close all;  
clc ;  
%.....................................................................

....% 
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% This is  to estimat parameters of first order system by using Kalamn 
% filter  
%.....................................................................

....% 
N = 25 ;  
x_s = zeros(2,101); 

  
for n = 1 : 1 : N 
% simulation of the system  

  
kmax  = 102 ; %The number of iteration 
t = 0 : 1 : kmax-1; 
W = 0.1; % the covariance of noise 
w = 0 + sqrt(W) * randn(1,10000); 
y=zeros(1,kmax); 
u=1+zeros(1,kmax); 
y(1)=10; 
a = 0.9 ;  
b = 1; 

  

  
for k = 2 : 1 : kmax  

     
     y(k) = [-y(k-1),u(k)]*[a,b]'+ w(k);  

     
end 
%.....................................................................

....% 

  
%  Estimated Parameters by Kalman Filter 

  
xhat = NaN(2,kmax); 
xhat(:,2) = [0.85,1.5]; 
P    = NaN(2,2,kmax); 
P(:,:,2) = 1000*[1,0;0,1]; 
K    = NaN(2,kmax); 

  
  for k = 2 : 1 : kmax  

     
    C = [ -y(k-1),u(k) ] ; 

     
    K(:,k) = P(:,:,k)*C' * (C*P(:,:,k)*C'+W)^-1 ;  
    if k < kmax 
        xhat(:,k+1)= xhat(:,k)+ K(:,k)*(y(k)-C*xhat(:,k)); 
        P(:,:,k+1) =P(:,:,k)-

(P(:,:,k)*C'*C*P(:,:,k))*(C*P(:,:,k)*C'+W)^-1; 
    end 
  end 
  % To delete a first column 
  xhat(:,1) = []; 
  x_s = x_s + xhat ;  

   
end 

  

  
xhat = (1/N) * x_s ;  
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% simulation of the system with Estimared Parameters 
ahat = xhat(1,kmax-1); % Estimated value of a  
bhat = xhat(2,kmax-1); % Estimated value of b 
yhat(1)=10; 
for k = 2 : 1 : kmax  

     
     yhat(k) = [-yhat(k-1),u(k)]*[ahat,bhat]'+ w(k);  

      
end 

  
error = y - yhat; 
% Plot 
k = 0 : 1  : kmax -2 ; 
a = 0.9+zeros(1,kmax-1); 
b = 1 + zeros(1,kmax-1); 
%h1 = stairs(k,Theta(1,:),'r'); 
%set(h1,'linewidth',2); 
figure (1) 
subplot(2,1,1) 
hold on 
p1 = plot(k,xhat(1,:),'r:'); 
p2 = plot(k,a,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
legend ('ahat','a'); 
xlabel('k'); 
ylabel('ahat , a') 
hold off 
subplot(2,1,2) 
hold on 
p3 = plot(k,xhat(2,:),'r:'); 
p4 = plot(k,b,'b--'); 
set(p3,'Linewidth',2); 
set(p4,'Linewidth',2); 
legend ('bhat','b'); 
xlabel('k'); 
ylabel('bhat , b') 
hold off 
k = 0 : 1  : kmax -1 ; 
figure (2) 
subplot(2,1,1) 
hold on 
p1 = plot(k,y,'r:'); 
p2 = plot(k,yhat,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
xlabel('k'); 
ylabel('y & yhat'); 
legend('yhat' , 'y') 
axis([0,kmax-1,-10,11]) 
hold off 
subplot(2,1,2) 
hold on 
p1 =plot(k,error,'b'); 
set(p1,'Linewidth',2); 
xlabel('k'); 
ylabel('error'); 
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axis([0,kmax-1,-0.5,0.5]) 
hold off 
% Chapter 3 
% Estimation of Coefficients in Transfer Functions  
% Case 2  

  
%.....................................................................

..... 

  
clear ;  
close all;  
clc ;  
%.....................................................................

....% 
% This is  to estimat parameters of first order system by using H-

infinity 
% filter 
%.....................................................................

....% 
N = 25 ;  
x_s = zeros(2,101); 

  
for n = 1 : 1 : N 
% simulation of the system  

  
kmax  = 102 ; %The number of iteration 
t = 0 : 1 : kmax-1; 
y=zeros(1,kmax); 
u=1+zeros(1,kmax); 
w=zeros(1,kmax); 
y(1)=10; 
a = 0.9 ;  
b = 1; 

  

  
for k = 2 : 1 : kmax  
     w(k) = 5*exp(-k); 
     y(k) = [-y(k-1),u(k)]*[a,b]'+ w(k);  

     
end 
%.....................................................................

....% 

  
%  Estimated Parameters by H-infinity 

  
A = [1,0;0,1]; 
Cz = [0.1 , 0.1 ] ;  
G = 1 ;  
gamma = 10;  
xhat=NaN(2,kmax); 
xhat(:,1)=[0;0]; 
xhat(:,2)=[0.75;1.2]; 

  
K = NaN(2,kmax);  

  
P = NaN(2,2,kmax); 
P(:,:,2)=[1000,0;0,1000]; 
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  for k=2:1:kmax 
    C = [-y(k-1),u(k)]; 
    M = (P(:,:,k)^-1-Cz'*Cz)^-1; 
    K(:,k)=(A*M*C')*(C*M*C'+gamma^-1*G*G')^-1; 
    if k < kmax 
        xhat(:,k+1) = A*xhat(:,k)+K(:,k)*(y(k)-C*xhat(:,k)); 
        P(:,:,k+1)=A*M*A'-(A*M*C')*(C*M*C'+gamma^-1*G*G')^-1*(C*M*A'); 
    end 
   end 
  % To delete a first column 
  xhat(:,1) = []; 
  x_s = x_s + xhat ;  

   
end 

  
xhat = (1/N) * x_s ;  

  
% simulation of the system with Estimared Parameters 
ahat = xhat(1,kmax-1); % Estimated value of a  
bhat = xhat(2,kmax-1); % Estimated value of b 
yhat(1)=10; 
for k = 2 : 1 : kmax  

     
     yhat(k) = [-yhat(k-1),u(k)]*[ahat,bhat]'+ w(k);  

      
end 

  

  
error = y - yhat; 
% Plot 
k = 0 : 1  : kmax -2 ; 
a = 0.9+zeros(1,kmax-1); 
b = 1 + zeros(1,kmax-1); 

  
figure (1) 
subplot(2,1,1) 
hold on 
p1 = plot(k,xhat(1,:),'r:'); 
p2 = plot(k,a,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
axis([0 100 0 1.2]) 
xlabel('k'); 
ylabel('a & ahat'); 
legend('ahat' ,'a') 
hold off 
subplot(2,1,2) 
hold on 
p1 =plot(k,xhat(2,:),'r:'); 
p2 =plot(k,b,'b--'); 
p1 = set(p1,'Linewidth',2); 
p2 = set(p2,'Linewidth',2); 
axis([0 100 0 2]) 
xlabel('k'); 
ylabel('b & bhat'); 
legend('bhat' , 'b') 
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hold off 
k = 0 : 1  : kmax -1 ; 
figure (2) 
subplot(2,1,1) 
hold on 
p1 = plot(k,y,'r:'); 
p2 = plot(k,yhat,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
xlabel('k'); 
ylabel('y & yhat'); 
legend('yhat' , 'y') 
axis([0 102 -11 11]) 
hold off 
subplot(2,1,2) 
hold on 
p1 =plot(k,error,'b'); 
set(p1,'Linewidth',2); 
xlabel('k'); 
ylabel('error'); 
axis([0 kmax -1 1]) 
hold off 

 
% Chapter 3 
% Estimation of Coefficients in Transfer Functions  
% Case 3  

  
%.....................................................................

..... 

  
clear ;  
close all;  
clc ;  
%.....................................................................

....% 
% This is  to estimat parameters of first order system by using H-

infinity 
% filter 
%.....................................................................

....% 
N = 100 ;  
x_s = zeros(2,101); 

  
for n = 1 : 1 : N 
% simulation of the system  

  
kmax  = 102 ; %The number of iteration 
t = 0 : 1 : kmax-1; 
y=zeros(1,kmax); 
u=1+zeros(1,kmax); 
W = 0.1; % the covariance of noise 
w = 0 + sqrt(W) * randn(1,10000); 
y(1)=10; 
a = 0.9 ;  
b = 1; 

  

  



128 

 

 

 

for k = 2 : 1 : kmax  

      
     y(k) = [-y(k-1),u(k)]*[a,b]'+ w(k);  

     
end 
%.....................................................................

....% 

  
%  Estimated Parameters by H-infinity 

  
A = [1,0;0,1]; 
Cz = [0.1 , 0.1 ] ;  
G = 1 ;  
gamma =10;  
xhat=NaN(2,kmax); 
xhat(:,1)=[0;0]; 
xhat(:,2)=[0.75;1.5]; 

  
K = NaN(2,kmax);  

  
P = NaN(2,2,kmax); 
P(:,:,2)=[1000,0;0,1000]; 

  
  for k=2:1:kmax 
    C = [-y(k-1),u(k)]; 
    M = (P(:,:,k)^-1-Cz'*Cz)^-1; 
    K(:,k)=(A*M*C')*(C*M*C'+gamma^-1*G*G')^-1; 
    if k < kmax 
        xhat(:,k+1) = A*xhat(:,k)+K(:,k)*(y(k)-C*xhat(:,k)); 
        P(:,:,k+1)=A*M*A'-(A*M*C')*(C*M*C'+gamma^-1*G*G')^-1*(C*M*A'); 
    end 
   end 
  % To delete a first column 
  xhat(:,1) = []; 
  x_s = x_s + xhat ;  

   
end 

  

  
xhat = (1/N) * x_s ;  

  
% simulation of the system with Estimared Parameters 
ahat = xhat(1,kmax-1); % Estimated value of a  
bhat = xhat(2,kmax-1); % Estimated value of b 
yhat(1)=10; 
for k = 2 : 1 : kmax  

     
     yhat(k) = [-yhat(k-1),u(k)]*[ahat,bhat]'+ w(k);  

      
end 

  

  
error = y - yhat; 
% Plot 
k = 0 : 1  : kmax -2 ; 
a = 0.9+zeros(1,kmax-1); 
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b = 1 + zeros(1,kmax-1); 

  
figure (1) 
subplot(2,1,1) 
hold on 
p1 = plot(k,xhat(1,:),'r:'); 
p2 = plot(k,a,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
%axis([0 100 0 1.2]) 
xlabel('k'); 
ylabel('a & ahat'); 
legend('ahat' ,'a') 
hold off 
subplot(2,1,2) 
hold on 
p1 =plot(k,xhat(2,:),'r:'); 
p2 =plot(k,b,'b--'); 
p1 = set(p1,'Linewidth',2); 
p2 = set(p2,'Linewidth',2); 
%axis([0 100 0 2]) 
xlabel('k'); 
ylabel('b & bhat'); 
legend('bhat' , 'b') 
hold off 

  
k = 0 : 1  : kmax -1 ; 
figure (2) 
subplot(2,1,1) 
hold on 
p1 = plot(k,y,'r:'); 
p2 = plot(k,yhat,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
xlabel('k'); 
ylabel('y & yhat'); 
legend('yhat' , 'y') 
axis([0 102 -11 11]) 
hold off 
subplot(2,1,2) 
hold on 
p1 =plot(k,error,'b'); 
set(p1,'Linewidth',2); 
xlabel('k'); 
ylabel('error'); 
axis([0 kmax -1 1]) 
hold off 

Section 3.2 
% Chapter 3 
% 3.2   Simultaneous Parameter / State Estimation   
% Case 1  

  
%.....................................................................

..... 

  
clear ;  
close all ;  
clc ; 
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clear ;  
m = 25;  
kmax = 101 ; % number of samples 
s = zeros(2,kmax); 

  
for i = 1 : 1 : m 

  
kmax = 101 ; % number of samples 

  
% Constant_Parametor_Identification 

  
% x(k+1) = a x(k)+ f v(k)   
% y(k) = c x(k)+ g w(k) 

  
a1 = 0.9 ;  
f = 1 ;  
c = 1 ;  
g = 1 ; 

  

  
% Generation the noise which is normal distribution with zero mean 

  
v = 0 + sqrt(0.1)*randn(1,10000); % mean + squeroot(covariance of 

noise)* randn(1,k) 
w = 0 + sqrt(0.1)*randn(1,10000); % mean + squeroot(covariance of 

noise)* randn(1,k) 
V = 0.1 ; % covariance of the process noise  
W = 0.1 ; % covariance of the measurement noise 

  
%.....................................................................

..... 
% Simulation the system 

  
x = NaN(1,kmax); 
x(1) = 5 ; % initial value of x 
y = NaN(1,kmax); 

  
for k = 1 : 1 : kmax  

     
    if k<kmax 
        x(k+1) = a1*x(k)+f*v(k); 
    end 
    y(k) = c*x(k)+g*w(k); 
end 

  
%  Model system whihc will use in extended Kalman filter to estimate a 
%  constant prameter that is unkwon. we consider linear system  
% x(k+1) = a x(k)+ f v(k) 
% y(k) = c x(k)+ g w(k) 
% 'a' is unkown. we want to estimat its  
% a(k+1) = a(k) . we rewrite the state of the system: 
% [ x(k+1); a(k+1) ] = [a(k)*x(k) ; a(k)] + [1;0] v(k)  
% y(k+1) = [c,0]*[x(k);a(k)]+w(k) 

  
xhat = NaN(2,kmax) ; % It is estimation value of [x(k);a(k)] 
xhat(:,1) = [7;0.8]; 
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P = NaN(2,2,kmax) ; % Process convariance matrix 
P(:,:,1) = [1000,0;0,1000] ;  
K_k = NaN (2,kmax); % Gain of Kalman Filter 

  
%erorr = NaN(1,N) ; 
A = NaN(2,2,kmax); 
C = [c , 0 ]; 
G = 1 ; 
F =[1,0;0,0]; 

  

  
% Extended Kalman Filter  
for k=1 : 1 : kmax 
    x_hat = xhat(1,k); 
    a_hat = xhat(2,k); 
    A(:,:,k)= [ a_hat , x_hat ; 0 , 1 ] ;  

     
    K_k(:,k) = A(:,:,k)*P(:,:,k)*C'*(C*P(:,:,k)*C'+G*W*G')^-1 ;  
    if k < kmax 
        %xhat(:,k+1) = A(:,:,k)*xhat(:,k)+K_k(:,k)*(y(k)-C*xhat(:,k)) 

;  
        xhat(1,k+1) = a_hat * x_hat +K_k(1,k)*(y(k)-x_hat); 
        xhat(2,k+1) = a_hat+K_k(2,k)*(y(k)-x_hat); 

         
        P(:,:,k+1) = A(:,:,k)*P(:,:,k)*A(:,:,k)'-

K_k(:,k)*C*P(:,:,k)*A(:,:,k)'+F*V*F'; 
    end   
end 

  
s = s + xhat; 

   
end  

  
xhat = s / m ; 

  
xhat_mean =  sum(xhat,2)/kmax; 
ahat = 0.898 ; 

  
% The estimated measurement  
for k = 1 : 1 : kmax  

     
    if k<kmax 
        x(k+1) = ahat*x(k)+f*v(k); 
    end 
    yhat(k) = c*x(k)+g*w(k); 
end 
error = y - yhat; 

  
t = 0 : 1 : kmax-1 ; 
a = 0.9 + zeros(1,kmax); 
figure (1) 
hold on  
p1 = plot(t,xhat(2,:),'r:'); 
p2 = plot(t,a,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
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xlabel('k'); 
ylabel(' a & ahat'); 
legend(' ahat ' , ' a'); 
axis([0,100,-1.2,1.2]); 
hold off 
axis([0 100, 0.6 1.1]); 
hold off 

  
k = 0 : 1  : kmax -1 ; 
figure (2) 
subplot(2,1,1) 
hold on 
p1 = plot(k,y,'r:'); 
p2 = plot(k,yhat,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
xlabel('k'); 
ylabel('y & yhat'); 
legend('yhat' , 'y') 
axis([0,kmax-1,-10,11]) 
hold off 
subplot(2,1,2) 
hold on 
p1 =plot(k,error,'b:'); 
set(p1,'Linewidth',2); 
xlabel('k'); 
ylabel('error'); 
axis([0,kmax-1,-0.5,0.5]) 
hold off 
% Chapter 3 
% 3.2   Simultaneous Parameter / State Estimation   
% Case 2  
%.....................................................................

..... 

  
clear ;  
close all ;  
clc; 

     
kmax =101 ;  
x = NaN (1,kmax); 
x(:,1) = 10 ; 
y = NaN (1,kmax); 

  
a = 0.9 ; 
c = 1 ; 
Cz = [1,1]; 
gamma = 25; 

  
for k=1:1:kmax 
    w1(k) = 3*exp(-k); 
    w2(k) = 5*exp(-2*k); 
    if k < kmax  
        x(:,k+1) = a*x(k)+w1(k) ;  
    end 
    y(k) = c*x(k) +w2(k) ; 
end 
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K = NaN (2,kmax); 
P = NaN (2,2,kmax); 
A = NaN (2,2,kmax); 
xhat=NaN (2,kmax); 
xhat(:,1) = [9,0.8] ; 
P(:,:,1) =10000*[1,0;0,1]; 
g = gamma^-1; 

  
for k=1:1:kmax 

     
    x_hat = xhat(1,k); 
    a_hat = xhat(2,k); 

  
    A = [a_hat , x_hat ; 0 ,1 ]; 
    C = [c,0]; 
    F = [1,0;0,0]; 
    G = [0,1]; 
    M = (P(:,:,k)^-1 - Cz'*Cz)^-1 ; 
    K(:,k)= M*C'*(C*M*C'+g*G*G')^-1; 

     
    if k< kmax 
        xhat(1,k+1) = a_hat*x_hat+K(1,k)*(y(k)-x_hat); 
        xhat(2,k+1) = a_hat+K(2,k)*(y(k)-x_hat); 

        
       P(:,:,k+1)   = (A*M*A'+g*F*F')-(A*M*C')*(C*M*A')*... 
           (C*M*C'+g*G*G')^-1;   
    end 
end 

  
ahat = sum(xhat(2,:))/kmax ;  
% The estimated measurement  
for k = 1 : 1 : kmax  

     
    if k<kmax 
        x(k+1) = ahat*x(k)+ w1(k); 
    end 

    
    yhat(k) = c*x(k)+w2(k); 
end 
error = y - yhat; 

  
t = 0 : 1 : kmax-1 ; 
a = 0.9 + zeros(1,kmax); 

  
figure (1) 
hold on  
p1 = plot(t,xhat(2,:),'r:'); 
p2 = plot(t,a,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
xlabel('k'); 
ylabel(' a & ahat'); 
legend(' ahat ' , ' a'); 
%axis([0,100,-1.2,1.2]); 
hold off 
%axis([0 100, 0.6 1.1]); 
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hold off 
figure (2) 
subplot(2,1,1) 
hold on 
p1 = plot(t,y,'r:'); 
p2 = plot(t,yhat,'b--'); 
set(p1,'Linewidth',2); 
set(p2,'Linewidth',2); 
xlabel('k'); 
ylabel('y & yhat'); 
legend('yhat' , 'y') 
%axis([0,kmax-1,-10,11]) 
hold off 
subplot(2,1,2) 
hold on 
p1 =plot(t,error,'b:'); 
set(p1,'Linewidth',2); 
xlabel('k'); 
ylabel('error'); 
%axis([0,kmax-1,-0.5,0.5]) 
hold off 

Section 3.3 
% Chapter 3 
% 3.3   Estimating Parameters by a Bank of Kalman Filters 
% Case 1  
%.....................................................................

..... 

  
clear ;  
clc ;  
close all ;  
% %  Estimation a parameter of first order system by using Bank of 

Kalman Filter which 
% its characteristics of noise is known wk ~ N(0, W^2) 

  
%simulation of the system 
N = 100 ;  
t = 0 : 1 : N-1; 
A = 0.9 ;  
B = 1 ;  
C = 1 ;  
F = 1  ; 
G = 1 ;  

  
u = 1+zeros(1,N); 
x = NaN(1,N); 
x(:,1) = 5 ;  
y = NaN(1,N);  

  
% Generation the noise which is normal distribution with zero mean 

  
v = 0 + sqrt(0.01)*randn(1,N); % mean + squeroot(covariance of noise)* 

randn(1,k) 
w = 0 + sqrt(0.01)*randn(1,N); % mean + squeroot(covariance of noise)* 

randn(1,k) 
V = 0.1 ; % covariance of the process noise  
W = 0.1 ; % covariance of the measurement noise 
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for k = 1 : 1 : N  

     
    if k<N 
        x(k+1) = A*x(k)+B*u(k)+F*v(k); 
    end 
    y(k) = C*x(k)+G*w(k); 
end 

  
% Bank of Kalman Filter  
a = [ 0.7, 0.8 ,0.9 , 1 ,1.1]; 

  
K = NaN(1,N,5); % Gain of Kalman FIlter  
P = NaN(1,N,5); % Process Convariance Matrix  
xhat=NaN(1,N,5);% Estimation of state  
yhat=NaN(5,N);% yhat = C xhat(k)  
y_t =NaN(5,N);% y_t = y(k) - yhat  

  
% initial value  of P and xhat  
for i = 1 : 5 
P(:,:,i)=100; 
xhat(:,:,i)= 6 ; 
end 
p_hat_a1 = [1/length(a) NaN(1,length(N)-1)];  
p_hat_a2 = [1/length(a) NaN(1,length(N)-1)];  
p_hat_a3 = [1/length(a) NaN(1,length(N)-1)];  
p_hat_a4 = [1/length(a) NaN(1,length(N)-1)];  
p_hat_a5 = [1/length(a) NaN(1,length(N)-1)]; 

  
for k = 2 : 1 : N  
    for i = 1 : 1 : 5  
        A = a(i);  
        K(1,k,i) = A*P(1,k,i)*C'*(C*P(1,k,i)*C'+G*W*G')^-1 ;  
         if k < N 
             xhat(1,k+1,i)= A*xhat(1,k,i)+B*u(k)+K(1,k,i)*(y(k)-

C*xhat(1,k,i));  
             P(1,k+1,i)= A*P(1,k,i)*A'-K(1,k,i)*C*P(k)*A'+F*V*F'; 
         end 
         yhat(i,k) = C * xhat(1,k,i) ; 
    end 
    y_t(:,k)= [y(k);y(k);y(k);y(k);y(k)] - yhat(:,k); 

     
    % Design Covariance for Kalman Filter  

     
    dc1=C*P(1,k,1)*C+G*W*G'; 
    dc2=C*P(1,k,2)*C+G*W*G';  
    dc3=C*P(1,k,3)*C+G*W*G'; 
    dc4=C*P(1,k,4)*C+G*W*G';  
    dc5=C*P(1,k,5)*C+G*W*G'; 

     
    % Gaussian Conditional Probabilities  
    p_y_Y1= (2*pi)^(-1/2)*sqrt(1/det(dc1))*exp(-

0.5*y_t(1,k)'*eye/dc1*y_t(1,k)); 
    p_y_Y2= (2*pi)^(-1/2)*sqrt(1/det(dc2))*exp(-

0.5*y_t(2,k)'*eye/dc2*y_t(2,k)); 
    p_y_Y3= (2*pi)^(-1/2)*sqrt(1/det(dc3))*exp(-

0.5*y_t(3,k)'*eye/dc3*y_t(3,k)); 
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    p_y_Y4= (2*pi)^(-1/2)*sqrt(1/det(dc4))*exp(-

0.5*y_t(4,k)'*eye/dc4*y_t(4,k)); 
    p_y_Y5= (2*pi)^(-1/2)*sqrt(1/det(dc5))*exp(-

0.5*y_t(5,k)'*eye/dc5*y_t(5,k)); 

     
    S =(p_y_Y1*p_hat_a1(k-1))+(p_y_Y2*p_hat_a2(k-

1))+(p_y_Y3*p_hat_a3(k-1))... 
        +(p_y_Y4*p_hat_a4(k-1))+(p_y_Y5*p_hat_a5(k-1)); 

     
    p_hat_a1(k) = p_y_Y1*p_hat_a1(k-1)/S; 
    p_hat_a2(k) = p_y_Y2*p_hat_a2(k-1)/S; 
    p_hat_a3(k) = p_y_Y3*p_hat_a3(k-1)/S; 
    p_hat_a4(k) = p_y_Y4*p_hat_a4(k-1)/S; 
    p_hat_a5(k) = p_y_Y5*p_hat_a5(k-1)/S; 
end  

  

  

  
figure() 
plot(t,p_hat_a1,'b',t,p_hat_a2,'y',t,p_hat_a3,'r',t,p_hat_a4,'g',t,p_h

at_a5,'k'); 
axis([0 100 0 1.2]); 
legend(['p(a_1|Y_k), a_1 = ' num2str(a(1)) ],['p(a_2|Y_k), a_2 = ' 

num2str(a(2)) ],['p(a_3|Y_k), a_3 = ' num2str(a(3)) ],['p(a_4|Y_k), 

a_4 = ' num2str(a(4)) ],['p(a_5|Y_k), a_5 =' num2str(a(5))]); 
%title('A Posteriori Probabilities for each KF '); 
xlabel('k'); 
ylabel('p(a_i|Y_i)'); 
grid; 

 

% Chapter 3 
% 3.3   Estimating Parameters by a Bank of Kalman Filters 
% Case 2  
%.....................................................................

..... 

  
clear ;  
clc ;  
close all ;  
% %  Estimation a parameter of first order system by using Bank of 

Kalman Filter which 
% its characteristics of noise is known wk ~ N(0, W^2) 

  
%simulation of the system 
N = 500 ;  
t = 0 : 1 : N-1; 
A = 0.9 ;  
B = 1 ;  
C = 1 ;  
F = 1  ; 
G = 1 ;  

  
u = 1+zeros(1,N); 
x = NaN(1,N); 
x(:,1) = 5 ;  
y = NaN(1,N);  
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% Generation the noise which is normal distribution with zero mean 

  
v = 0 + sqrt(0.01)*randn(1,N); % mean + squeroot(covariance of noise)* 

randn(1,k) 
w = 0 + sqrt(0.01)*randn(1,N); % mean + squeroot(covariance of noise)* 

randn(1,k) 
V = 0.1 ; % covariance of the process noise  
W = 0.1 ; % covariance of the measurement noise 

  
for k = 1 : 1 : N  

     
    if k<N 
        x(k+1) = A*x(k)+B*u(k)+F*v(k); 
    end 
    y(k) = C*x(k)+G*w(k); 
end 

  
% Bank of Kalman Filter  
a = [0.8,0.9,1]; 
b = [0.9,1,1.1]; 

  
K = NaN(1,N,9); % Gain of Kalman FIlter  
P = NaN(1,N,9); % Process Convariance Matrix  
xhat=NaN(1,N,9);% Estimation of state  
yhat=NaN(9,N);% yhat = C xhat(k)  
y_t =NaN(9,N);% y_t = y(k) - yhat  

  
% initial value  of P and xhat  
for i = 1 : 9 
P(:,:,i)=100; 
xhat(:,:,i)= 10 ; 
end 
p_hat_a1 = [1/length(a) NaN(1,length(N)-1)];  
p_hat_a2 = [1/length(a) NaN(1,length(N)-1)];  
p_hat_a3 = [1/length(a) NaN(1,length(N)-1)];  
p_hat_a4 = [1/length(a) NaN(1,length(N)-1)];  
p_hat_a5 = [1/length(a) NaN(1,length(N)-1)]; 
p_hat_a6 = [1/length(a) NaN(1,length(N)-1)]; 
p_hat_a7 = [1/length(a) NaN(1,length(N)-1)]; 
p_hat_a8 = [1/length(a) NaN(1,length(N)-1)]; 
p_hat_a9 = [1/length(a) NaN(1,length(N)-1)]; 

  
for k = 2 : 1 : N  
    i = 0 ;  
    for j = 1 : 1 : 3 
        A = a(j); 
        for l=1 : 1 : 3 
        B = b(l);  
        i = i+1  ; 
        K(1,k,i) = A*P(1,k,i)*C'*(C*P(1,k,i)*C'+G*W*G')^-1 ;  
         if k < N 
             xhat(1,k+1,i)= A*xhat(1,k,i)+B*u(k)+K(1,k,i)*(y(k)-

C*xhat(1,k,i));  
             P(1,k+1,i)= A*P(1,k,i)*A'-K(1,k,i)*C*P(k)*A'+F*V*F'; 
         end 
         yhat(i,k) = C * xhat(1,k,i) ; 
        end 
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    end  
    y_t(:,k)= [y(k);y(k);y(k);y(k);y(k);y(k);y(k);y(k);y(k)] - 

yhat(:,k); 

     
    % Design Covariance for Kalman Filter  

     
    dc1=C*P(1,k,1)*C+G*W*G'; 
    dc2=C*P(1,k,2)*C+G*W*G';  
    dc3=C*P(1,k,3)*C+G*W*G'; 
    dc4=C*P(1,k,4)*C+G*W*G';  
    dc5=C*P(1,k,5)*C+G*W*G'; 
    dc6=C*P(1,k,6)*C+G*W*G'; 
    dc7=C*P(1,k,5)*C+G*W*G'; 
    dc8=C*P(1,k,8)*C+G*W*G'; 
    dc9=C*P(1,k,9)*C+G*W*G'; 
    % Gaussian Conditional Probabilities  
    p_y_Y1= (2*pi)^(-1/2)*sqrt(1/det(dc1))*exp(-

0.5*y_t(1,k)'*eye/dc1*y_t(1,k)); 
    p_y_Y2= (2*pi)^(-1/2)*sqrt(1/det(dc2))*exp(-

0.5*y_t(2,k)'*eye/dc2*y_t(2,k)); 
    p_y_Y3= (2*pi)^(-1/2)*sqrt(1/det(dc3))*exp(-

0.5*y_t(3,k)'*eye/dc3*y_t(3,k)); 
    p_y_Y4= (2*pi)^(-1/2)*sqrt(1/det(dc4))*exp(-

0.5*y_t(4,k)'*eye/dc4*y_t(4,k)); 
    p_y_Y5= (2*pi)^(-1/2)*sqrt(1/det(dc5))*exp(-

0.5*y_t(5,k)'*eye/dc5*y_t(5,k)); 
    p_y_Y6= (2*pi)^(-1/2)*sqrt(1/det(dc6))*exp(-

0.5*y_t(6,k)'*eye/dc6*y_t(6,k)); 
    p_y_Y7= (2*pi)^(-1/2)*sqrt(1/det(dc7))*exp(-

0.5*y_t(7,k)'*eye/dc7*y_t(7,k)); 
    p_y_Y8= (2*pi)^(-1/2)*sqrt(1/det(dc8))*exp(-

0.5*y_t(8,k)'*eye/dc8*y_t(8,k)); 
    p_y_Y9= (2*pi)^(-1/2)*sqrt(1/det(dc9))*exp(-

0.5*y_t(9,k)'*eye/dc9*y_t(9,k)); 

     
    S =(p_y_Y1*p_hat_a1(k-1))+(p_y_Y2*p_hat_a2(k-

1))+(p_y_Y3*p_hat_a3(k-1))... 
        +(p_y_Y4*p_hat_a4(k-1))+(p_y_Y5*p_hat_a5(k-1))+ ... 
        (p_y_Y6*p_hat_a6(k-1))+(p_y_Y7*p_hat_a7(k-1))+... 
        (p_y_Y8*p_hat_a8(k-1))+(p_y_Y9*p_hat_a9(k-1)); 

     
    p_hat_a1(k) = p_y_Y1*p_hat_a1(k-1)/S; 
    p_hat_a2(k) = p_y_Y2*p_hat_a2(k-1)/S; 
    p_hat_a3(k) = p_y_Y3*p_hat_a3(k-1)/S; 
    p_hat_a4(k) = p_y_Y4*p_hat_a4(k-1)/S; 
    p_hat_a5(k) = p_y_Y5*p_hat_a5(k-1)/S; 
    p_hat_a6(k) = p_y_Y6*p_hat_a6(k-1)/S; 
    p_hat_a7(k) = p_y_Y7*p_hat_a7(k-1)/S; 
    p_hat_a8(k) = p_y_Y8*p_hat_a8(k-1)/S; 
    p_hat_a9(k) = p_y_Y9*p_hat_a9(k-1)/S; 
end  

  

  

  
figure() 
hold on 
plot(t,p_hat_a1); 
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plot(t,p_hat_a2); 
plot(t,p_hat_a3); 
plot(t,p_hat_a4); 
plot(t,p_hat_a5); 
plot(t,p_hat_a6); 
plot(t,p_hat_a7); 
plot(t,p_hat_a8); 
plot(t,p_hat_a9); 

  
legend(['p(a_1,b_1|Y_k),a_1=',num2str(a(1)),',b_1=',num2str(b(1))],... 
    ['p(a_1,b_2|Y_k),a_1=',num2str(a(1)),',b_2=',num2str(b(2))],... 
    ['p(a_1,b_3|Y_k),a_1=',num2str(a(1)),',b_3=',num2str(b(3))],... 
    ['p(a_2,b_1|Y_k),a_2=',num2str(a(2)),',b_1=',num2str(b(1))],... 
    ['p(a_2,b_2|Y_k),a_2=',num2str(a(2)),',b_2=',num2str(b(2))],... 
    ['p(a_2,b_3|Y_k),a_2=',num2str(a(2)),',b_3=',num2str(b(3))],... 
    ['p(a_3,b_1|Y_k),a_3=',num2str(a(3)),',b_1=',num2str(b(1))],... 
    ['p(a_3,b_2|Y_k),a_3=',num2str(a(3)),',b_2=',num2str(b(2))],... 
    ['p(a_3,b_2|Y_k),a_3=',num2str(a(3)),',b_3=',num2str(b(3))]); 
xlabel('k'); 
ylabel('p(a_i,b_i|Y_i)'); 
axis([0 500 0 1.2]); 

  
hold off  

Chapter 4  

Section 4.1 
% Chapter 4 
% 4.1 The sample mean method 
% Case 1 
%.....................................................................

..... 

  
clear ;  
clc ;  
close all ; 
% A sample mean method to detect a fault signal 
% Sensor Hacking  

  

  
a = 0.85;  
b = 2 ; 
c = 3;  
h  = 10 ;  
s_t = 100 ;  
kmax =301 ; % number of simple 

  
v = 0 + sqrt(0.1) * randn(1,100000); 
w = 0 + sqrt(0.1) * randn(1,100000); 
u = 1 + zeros(1,kmax); 
x = NaN (1,kmax); 
y = NaN (1,kmax); 
y_dash = NaN (1,kmax); 

  
x(1) = 3; 

  
% x(k+1) = a x(k) + v(k)  
%  
for k = 1 : 1 : kmax  
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    % Simolation the system  

     
    if k < kmax  
        x(k+1) = a*x(k)+b*u(k)+v(k); 
    end 

     
    if k < s_t  
           y(k) = c * x(k) + w(k) ; 
    else  
        y(k) =  h + w(k) ; 
    end  

      
    %-------------------------------------------- 

     
    % TO Compute a sample mean  

     
       %x_mean(k)  = (x(k) + s_m ) / k  ; 
       %y_dash(k)  = (y(k) + s_m ) / k  ;  
       %  s_m  = y_dash(k) ;  

         

  
    % ----------------------------------------------------- 

     

     
end  

  
% A sample mean of the measurement 

  
[n,d]=ss2tf(a,b,c,0); 
y_mean = filter(n,d,u); 
y_tilde = y - y_mean ;  
t  =  0 : kmax-1 ; 

  
figure (1) 
hold on  
plot(t,x); 
plot( t,y ); 
legend('x_k','y_k '); 
xlabel('k'); 
ylabel('x_k ,y_k'); 
hold off 
figure (2) 
hold on 
plot ( t, y_mean); 
legend('Sample mean of y'); 
xlabel('k'); 
ylabel('Sample Mean of y') 
axis([0 300 -1 43]); 
hold off 

  
figure (3) 
hold on 
plot(t,y_tilde); 
legend('y-tilde = y - y-mean'); 
xlabel('k'); 
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ylabel('y-tilde') 
hold off 
% Chapter 4 
% 4.1 The sample mean method 
% Case 2 
%.....................................................................

..... 

  

  
clear ;  
clc ;  
close all ; 

  
% The Sample mean method to detect a hacked when it happen at actuator 
%  x(k+1) = (a+Kb) x(k) + v(k) 
%  y(k)   = c x(k) + w(k) 
a = 1.2;  
b = 1 ; 
c = 2 ;  
K = 1.1 ;  % the feedbake  
h  = 10 ;  
s_t = 100 ;  
kmax =101 ; % number of simple 

  
v = 0 + sqrt(0.1) * randn(1,kmax); 
w = 0 + sqrt(0.1) * randn(1,kmax); 

  
x = NaN (1,kmax); 
y = NaN (1,kmax); 
x_dash = NaN (1,kmax); 
s_m = 0 ;  
x(1) = 10  ; 

  

  

  
for k = 1 : 1 : kmax  

   

     
    % sample mean when the actuator is not attacked 

     
    x_m(k) = (a-b*K)^k * x(1) ; 

     
    % sample mean when the actuator is attacked 

  
    x_mh(k) = a^k * x(1) + (a^k - 1)*(a-1)^-1 * b *h; 

  

     

        
end  

  
for k = 1 : 1 : kmax  

     
    % Simolation the system  

     
    if k < kmax  
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        x(k+1) = (a-b*K)*x(k)+ v(k); 

         
        if k > s_t  
            x(k+1) = a*x(k)+ b *h + v(k); 
        end  
    end 
    y(k) = c * x(k) + w(k) ;      
end  
t  =  0 : kmax-1 ; 
figure (1) 
hold on  
plot(t,x); 
legend('The sample mean with attacked'); 
xlabel('k'); 
ylabel('The theoretical sample mean  '); 
%axis ([0 100 10 55]) 
hold off 

Section 4.2  
% Chapter 4 
% 4.2 Kalman filter method 
% Case 1 
%.....................................................................

..... 
% Sensor Hacking  
% x(k+1) = a x(k) + F v(k)  
% y(k) = c x(k) + G w(k) 
% y(k) = h(k) + Gw(k)  
clear ;  
close all ;  
clc ;  

  
kmax = 100 ;  
t = 0 : 1 : kmax-1 ;  

  
a = 0.9;  
F = 1 ;  
c = 1 ;  
G = 1 ;  
V = 0.01; 
W = 0.01;  
v= sqrt(V)*randn(1,10000); % the noise of  the state 
w = sqrt(W)*randn(1,10000); % the noise of the measurement 

  
% simulation for system  
x = zeros(1,kmax); 
h = 10+zeros(1,kmax); 
y = zeros(1,kmax); 
x(1,1) = 1;  
t_s = 30; % The time which the system changes from normal situation to 

hacking situation 

  
for k = 1 : 1 : kmax  

     
        if k < kmax  
            x(k+1) = a * x(k) + F * v(k) ; 
        end 
        if k < t_s 
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        y(k) = c * x(k) + G * w(k) ;  
        else 

       
        y(k) = c * h(k)+ G * w(k)  ;  
        end  
end 

  
% Kalman Filter for Model one and two  
xhat1 = NaN(1,kmax);  
xhat1(1,1) = 0.8 ;  
xhat2 = NaN(2,kmax); 
xhat2(:,1) = [0.8 ; 4 ] ; 
Kk1 = NaN(1,kmax); 
Kk2 = NaN(2,kmax); 
P1 = NaN(1,kmax); 
P1(1,1) = 10000 ;  
P2 = NaN(2,2,kmax); 
P2(:,:,1) = [10000,0;0,10000]; 

  
ydilt1 = NaN(1,kmax); 
ydilt2 = NaN(1,kmax); 
Omega1  = NaN(1,kmax); 
Omega2  = NaN(1,kmax); 
pThetaZk1 = NaN(1,kmax); 
pThetaZk2 = NaN(1,kmax); 
pThetaZk1(1,1) = 0.5; 
pThetaZk2(1,1) = 0.5; 
A = [ a , 0 ; 0 ,1] ; 
C = [0.001,1] ;  
V1 = [V,0;0,0]; 
Ff = [ F,0 ; 0,0 ] ; 

  
for k = 1 : 1 : kmax  

     

      
     Kk1(k) = a * P1(k) * c' * (c*P1(k)*c'+ G*W*G')^(-1) ;  % The Gain 

for first model  

      
     Kk2(:,k) = A * P2(:,:,k) * C' * ( C*P2(:,:,k)*C'+G*W*G')^-1 ;  % 

The Gain for Second model  

     
    if k < kmax 
      xhat1(k+1) = a * xhat1(k) + Kk1(1,k) * (y(k) - c * xhat1(k)); 
      xhat2(:,k+1) = A * xhat2(:,k) + Kk2(:,k) * (y(k) - C * 

xhat2(:,k)); 

       
      P1(k+1) = a * P1(k) * a' - Kk1(k) * c*P1(k)*a' + F*V*F' ;  
      P2(:,:,k+1) = A * P2(:,:,k) * A' - 

Kk2(k)*C*P2(:,:,k)*A'+Ff*V1*Ff'; 
    end 

     
    ydilt1(k) = y(k) - c * xhat1(k);  
    ydilt2(k) = y(k) - C * xhat2(:,k); 

     
    Omega1(k) = c * P1(k) * c' + W; 
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    Omega2(k) = C* P2(:,:,k) * C' + W; 

     
    pzkTheta1(k)= ((2*pi)^(-1/2))*sqrt(1/abs( Omega1(k)))*exp(-

0.5*ydilt1(k)'*(Omega1(k)^-1)*ydilt1(k)); 

     
    pzkTheta2(k)= ((2*pi)^(-2/2))*sqrt(1/abs( Omega2(k)))*exp(-

0.5*ydilt2(k)'*(Omega2(k)^-1)*ydilt2(k)); 

     
    den(k) = pzkTheta1(k)*pThetaZk1(k) + pzkTheta2(k)*pThetaZk2(k); 

     
    if k < kmax 
        pThetaZk1(k+1) = (pzkTheta1(k)*pThetaZk1(k))/den(k); 
        pThetaZk2(k+1) = (pzkTheta2(k)*pThetaZk2(k))/den(k); 
    end  

          
end 

  
figure (1)  
hold on  
plot(t,pThetaZk1,'r') ;  
plot(t,pThetaZk2,'b'); 
%title('A Posteriori Probabilities for each KF '); 
legend('P without unattacked','P with attacked'); 
xlabel('k'); 
ylabel('Probabilities for each KF'); 
hold off 

 

 

% Chapter 4 
% 4.2 Kalman filter method 
% Case 2 
%..................................................................... 
% Actuator Hacking  
clear; 
clc; 
close all; 

  
% The system which we will simulate 
%[x(k+1);h(k+1)]=[A,0;0,I]*[x(k);h(k)]+[Kc,0;0,0]*[xhat(k);hhat(k)]+[F

;0]*v(k) 
% y(k) =  [C,I]*[x(k);h(k)]+ G w(k) 

  
A = 0.85;  
B = 1 ;  
F = 1;  
C = 1; 
G = 1 ; 
I = 1 ; 
Kc = 0.1; 
kmax = 100; % it is the high value of  time 
t = 0 : 1 : kmax-1; 
s_t = 30; % The time when switching to hacking situation 

  

  
x = NaN(1,kmax); 
x (1,1) = 1; 
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h = NaN(1,kmax); 
y= NaN(1,kmax); 
v= sqrt(0.1)*randn(1,10000); % the noise of  the state 
w = sqrt(0.1)*randn(1,10000); % the noise of the measurement 
V = 0.1; 
W = 0.1; 

  
A2 = [A , B ; 0 , 1]; 
F2 = [F;0]; 
C2 = [C , 0]; 
Xhat1 = NaN (1,kmax); 
Xhat2 = NaN (2,kmax); 
Kk1   = NaN (1,kmax); 
Kk2   = NaN (2,kmax); 
P1    = NaN (1,kmax); 
P2    = NaN (2,2,kmax); 
ydilt1= NaN (1 , kmax); 
ydilt2= NaN (1 , kmax); 
Omega1= NaN (1,kmax); 
Omega2= NaN (1,kmax); 
pThetaZk1 = [0.5 NaN(1,length(t)-1)]; %weight 
pThetaZk2 = [0.5 NaN(1,length(t)-1)]; %weight 

  
x(:,1) = 1; 
Xhat1(1,1)= 1; 
Xhat2(:,1)= [1,1]; 
u = NaN ( 1 , kmax); 
u(1,1) = 1; 
P1(1,1) = 100 ; 
P2(:,:,1)   = [100,0;0,100]; 

  

  

  
for k = 1 : 1 : kmax  
     % System  
   if k < s_t 

        
       if k < kmax 
       x(1,k+1) = A * x(k) - B*Kc*u(k)+ F*v(1,k); 
       end 
       y(1,k) = C * x(1,k) + G*w(1,k); 
       h(1,k) = 0 ;  

         
    else 

         
        if k < kmax  
        h(k) = 10; 
        x(1,k+1) = A * x(1,k)+ B * h(1,k) + F*v(1,k); 
        u(k) = h(1,k); 
        end 
        y(1,k) = C * x(1,k) + G*w(1,k); 

         
   end 

     

     
    % Kalman Filter  
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    Kk1(k) = A* P1(k) * C' * (C*P1(k)*C' + G*W*G')^-1; 
    Kk2(:,k) = A2* P2(:,:,k) * C2' * (C2*P2(:,:,k)*C2' + G*W*G')^-1; 

     
    if k < kmax 
        Xhat1(k+1) = A * Xhat1(k) - Kc * B * u(k) + Kk1(k)*(y(k)-

C*Xhat1(k)); 

        
        Xhat2(:,k+1) = A2 * Xhat2(:,k)+ Kk2(:,k)*(y(k)-C2*Xhat2(:,k)); 

         
        P1(k+1)  = A * P1(k) * A - C * P1(k) *C' * ( C ... 
            *  P1(k) *C' + G*W*G')^-1 * C* P1(k)*A' + F*V*F'; 

         

         
        P2(:,:,k+1)  = A2 * P2(:,:,k) * A2 - C2* P2(:,:,k) *C2' * ( C2 

... 
            * P2(:,:,k) *C2' + G*W*G')^-1 * C2*P2(:,:,k)*A2' + 

F2*V*F2'; 

   

         
    end 

     

     
    ydilt1(k) = y(k) - C * Xhat1(1,k); 
    ydilt2(k) = y(k) - C2 * Xhat2 (:,k); 

     
     Omega1(k) = C* P1(k) * C' + W; 
     Omega2(k) = C2* P2(:,:,k) * C2' + W; 

   

     

     
    pzkTheta1= ((2*pi)^(-1/2))*sqrt(1/abs( Omega1(k)))*exp(-

0.5*ydilt1(k)'*(Omega1(k)^-1)*ydilt1(k)); 
    pzkTheta2= ((2*pi)^(-1/2))*sqrt(1/abs( Omega2(k)))*exp(-

0.5*ydilt2(k)'*(Omega2(k)^-1)*ydilt2(k)); 

    

     
    den = pzkTheta1*pThetaZk1(k) + pzkTheta2*pThetaZk2(k); 

     
    if k < kmax 
        pThetaZk1(k+1) = (pzkTheta1*pThetaZk1(k))/den; 
        pThetaZk2(k+1) = (pzkTheta2*pThetaZk2(k))/den; 
    end 
   u(k+1) = pThetaZk1(k)*Xhat1(k) + pThetaZk2(k)*Xhat2(1,k); 
end 

  

  

  
figure (1) 
hold on  
plot(t, pThetaZk1,'r'); 
plot(t, pThetaZk2,'b'); 
%title('A Posteriori Probabilities for each KF '); 
legend('P without attacking','P with attacking '); 
hold off 
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Section 4.3 
% Chapter 4 
% 4.3 Stochastic Parameter Estimation Method 
%  
%.....................................................................

..... 

  
clear ;  
close all ;  
clc ;  
% State Estimate of System with Stochastic  

  
% The system in Unhacking case   
% x(k+1) = a x(k) + v(k) , v ~ N(0,0.1) 
% y(k) = Ck x(k) + w(k)   , w ~ N(0,0.1) 
% The system in Hacking case  
% x(k+1) = [ A , 0 ; 0 , I ] * x(k) + [ v(k) ; 0 ] 
% y(k) = Ck x(k) + w(k)  
clear ;  
close all ;  
clc  ; 

  
kmax = 301 ;  
t = 0 : 1 : kmax-1; 
%s_t = randi ([20,kmax-25]); % The time when switching to hacking 

situation 
s_t  = 100 ; 
a = 0.8 ;  
c = 1 ;  
pu = 0.9 ; % Probability for Unhacking case 
ph = 1- pu ; % Probability for Hacking case 
v  = 0 + 0.1 * randn(1,kmax); 
V  = 0.1; 
w  = 0 + 0.1 * randn(1,kmax); 
W = 0.1; 

  
A = [a,0;0,1] ;  

  
% Ck = [ c , 0 ] when probability is pu 
% Ck = [ 0 , 1 ] when probability is ph 
Ckm = [ pu*c , ph * 1] ; % Ckm is E{Ck} (mean of Ck)  

  
% Ck_dilta = [ c , 0 ] - [ pu*c , ph * 1] when probability is pu 
% Ck_dilta = [ 0 , 1 ] - [ pu*c , ph * 1] when probability is ph 
X = NaN (2,2,kmax); 
X(:,:,1) = [ 2 , 1 ; 1, 2 ];  

  

  
x = NaN  (1,kmax); 
x(:,1) =2; 
h = 10 + zeros(1,kmax); 
y = NaN  (1,kmax); 

  
Kk = NaN(2,kmax); 
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P  = NaN(2,2,kmax); 
P(:,:,1) = 1000 * [1,0;0,1]; 

  
xhat=NaN(2,kmax); 
xhat(:,1) = [3;6]; 

  

  

  

  
for k=1:1:kmax 

  
  % Simulation the system  
  if k < kmax 

      
      if k < s_t 
      x(k+1) = a*x(k)+ v(k); 
      h(k) = 0;  
      y(k) = x(k) + w(k); 
      else 
      x(k+1) = a*x(k)+ v(k); 
      h(k+1)= h(k); 
      y(k) = h(k) + w(k); 
      end 
  end 

   

   

   
  X(:,:,k+1) = A * X(:,:,k)* A' + [V,0;0,0]; 

   
  Ck_diltam = pu*([c,0]-[pu*c,ph*1])*X(:,:,k)*([c,0]-[ pu*c , ph * 

1])'... 
+ ph*([0,1] - [ pu*c,ph*1]) * X(:,:,k) *([0,1]-[ pu*c,ph*1])'; % This 

is E{Ck_dilta * X * Ck_dilta'} 

  

    
  % Kalman Filter  

   

    

    
    Kk(:,k) = A*P(:,:,k)*Ckm'*(Ckm*P(:,:,k)*Ckm'+W+Ck_diltam)^-1; 

     
        if k < kmax 

  
            xhat(:,k+1) = A*xhat(:,k)+Kk(:,k)*(y(k)-Ckm*xhat(:,k)); 

             
            P(:,:,k+1)= A*P(:,:,k)*A'-

A*P(:,:,k)*Ckm'*(Ckm*P(:,:,k)*Ckm'... 
               +W+Ck_diltam)^-1*Ckm*P(:,:,k)*A'+[V,0;0,0]; 
        end 

         

        

         
end 
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figure (1) 
subplot(2,1,1) 
hold on  
plot(t,x,'b'); 
plot(t, xhat(1,:),'r'); 
title(''); 
legend('x','xhat'); 
xlabel('k'); 
ylabel('x & xhat') 
hold off 
subplot(2,1,2) 
hold on  
plot(t,h,'b'); 
plot(t, xhat(2,:),'r'); 
title(''); 
legend('h','hhat'); 
xlabel('k'); 
ylabel('h & hhat') 
hold off 
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