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do not have much of an effect on the conductivi ty increase (specially in isotropic phase); the 
interaction between the gold nanoparticle and electric field plays the vital role [93]. Further 
investigations may be required to confirm this reasoning. 
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Figure 17. (a) The conductivity of a 1% GNP in HA T6 as a function of temperature; (b) the I-V sweep 

of a thin film of 5% GNP in HAT6 in the isotropic phase at 105 °C [93]. 

Although in an isotropic phase, LC molecules do not have any effect in the self-assembly of 
GNPs, a nanosphere can be organized by a liquid crystal matrix in the nematic phase. For example, 
Basu et. al demonstrated the self-assembly of CdS nanocrystals (quantum dots, QDs) in a 5CB liquid 
crystal matrix [97]. Even though Quantum dots (nan osphere) do not have anisotropy in electro-optic 
properties, their introduction may disrupt the un iform nematic alignment of the composite; thus, 
interns change its properties. It has been shown that the micrometer size spherical nanoparticle tends 
to be organized into a cylindrical chain directed to the global nematic director [98]. However, whether 
it is also applicable to a nanometer-sized particle was unknown. Basu et al. dispersed 1.0 wt.% of CdS 
nanocrystals (diameter of 2.3 nm) in 5CB. By dielectric measurement, they found that the nanocrystal 
organized into a highly anisotropic structure alon g the LC director. The one-dimensional chain of 
QDs follows a global LC director orientation upon applying electric fields as shown in Figure 18. 
Moreover, there is no evidence of large-scale agglomerations of QD at any temperature. 

 

Figure 18. The self-assembly and reorientation of quantum dots (QD) in a nematic LC matrix by 

electric field. (The LC molecules are colored blue, and the CdS QDs are sphere with purple color.) 

The discussion above indicates the possibility of field-induced conductivity modulation in the 
nematic phase by incorporating metal nanoparticles in liquid crystal. Hadjichristov et al. 
demonstrated field-induced conductivity modulation  in a silver NP-doped liquid crystal composite 
[99]. They doped a 5CB crystal with 0.5 wt.% of Ag nanosphere with a mean diameter of 10nm. The 
equilibrium conductivity (no applie d electric field or other stimuli)  of the composite enhanced after 
the incorporation of nanoparticles was also found of GNPs [49,100], as metal nanoparticle acts as 
ionic additives. By applying an AC voltage in the range of 1–20 V, they observed about an increase 
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field. (The LC molecules are colored blue, and the CdS QDs are sphere with purple color.)

The discussion above indicates the possibility of field-induced conductivity modulation in the
nematic phase by incorporating metal nanoparticles in liquid crystal. Hadjichristov et al. demonstrated
field-induced conductivity modulation in a silver NP-doped liquid crystal composite [99]. They doped
a 5CB crystal with 0.5 wt.% of Ag nanosphere with a mean diameter of 10nm. The equilibrium
conductivity (no applied electric field or other stimuli) of the composite enhanced after the
incorporation of nanoparticles was also found of GNPs [49,100], as metal nanoparticle acts as ionic
additives. By applying an AC voltage in the range of 1–20 V, they observed about an increase of
two orders of magnitude in the conductivity at a lower frequency region. They also confirmed their
observation by DC measurement. All the measurements are done under ambient temperature. Instead
of spherical QDs, metal nanoroad can also be used to enhance the conductivity of liquid crystal.
Sridevi et. al shows about two orders of magnitude of enhancement in the electrical conductivity
by incorporating 2 wt.% of AuNRs (Gold nanorods, also abbreviated as GNRs) in an 8CB liquid
crystal [11]. Besides this increase, the conductivity anisotropy of the LC/AuNRs composite is also
stabilized (in contrast to the GNP/LC composite) [49]. An electric-field-driven mechanical rotation
of the LC molecules can further enhance the LC/AuNRs composite conductivity, but the increase is
insignificant (only 20%). With a proper design and material selection, conductivity switching can be
increased further for this system.

5. Performance Comparison among Different Composite Systems

In this section, we compared various composite systems reviewed in this article. It is difficult to
make a comparison between various published works on field-induced conductivity modulation due
to the lack of standardization. There are lots of parameters that can affect the conductivity behavior
such as dimensions and types of nanoparticles, doping concentrations, cell or electrodes structures,
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frequency of applied field, operational temperature, purity liquid crystal host materials, etc. Different
research group choose different combinations of these parameters in their experiments. Considering
this difficulty, we tried to make a comparison among various reported works as summarized in Table 1.

Table 1. A switching performance comparison among various composite systems.

Composite Concentration
of NPs

Operating
Temperature/Phase

Resistivity
Ratio

Mechanism of
Conductivity Modulation Reference

E7/CNT 0.05 wt.% Near RT, Nematic
phase 103 to 104 Elastic interaction,

reorientation
Jayalakshmi et

al. [20]

5CB/CNT 0.005 wt.% 40 ◦C, Isotropic
phase 5 × 103 π–π staking, PND

reorientation Basu et al. [57]

PCPBB/CNT 0.00036 vol% 42 ◦C Nematic
phase 170 Dual frequency switching Prasad et al.

[84]

HAT6/GNP 1.0 wt.% 105 ◦C
Isotropic phase 103 to 104 Electrophoresis of GNPs Holt et al. [93]

5CB/Ag NPs 0.5 wt.% Room temperature >102 Self-assembly,
reorientation

Hadjichristov
et al. [99]

As discussed in Section 3.1, the concentration of CNTs has a strong effect of the conductivity of
LC composites. After a threshold concentration, the conductivity increases rapidly (Figure 4) [31].
However, we cannot increase the CNT concentration indefinitely, as the CNT aggregation (in a large
bundle) rate increases with doping concentrations. Moreover, after a certain threshold, the CNT
concentration also changes the phase transition behavior [44]. As shown in Figure 8, in the range of
0.1–0.2 wt.% of CNTs, TNI increases significantly for an E7/MWCNT composite. A similar scenario is
also expected for LC/SWCNT composites. Fortunately, in all the reported works in this article, the
CNT doping concentrations are well below this critical range (Table 1). Although an LC/MWCNT
composite shows a better field-induced conductivity modulation than LC/SWCNT as demonstrated
by Dierking et al. for E7 host material [15], the problem with MWCNT is that they aggregate in large
bundles as compared to SWCNT. If the length of the CNTs or CNT bundles are larger than the electrode
spacing, then a single CNT can create a high current path. In this case, the conductivity might be very
large but local heating is very prominent, which leads the system to an isotropic phase rapidly [53].
Local heating can also occur even if the CNT length is much smaller than the electrode spacing [20],
but in this case, it may be less severe, as a loosely connected network has a higher resistance that
a single CNT bundle. For the E7/CNT composite, the ON/OFF conductivity ratio is nearly four
orders of magnitude, which is pretty good, but this cannot operate in the isotropic phase (in case
local heating derives the system in the isotropic phase) [20]. For a 5CB/CNT composite, Basu et
al. demonstrated a 5 × 103 order of magnitudes conductivity switching in an isotropic phase [57].
Although both of the systems had a comparable performance, the additional benefits of 5CB was
that it had a room temperature nematic phase (in temperature range 21–34.5 ◦C) and it showed a
field-induced switching both in the nematic and isotropic phases [53,57]. Dual frequency switching
has an excellent performance in terms of switching speed, but the ON/OFF ratio demonstrated is only
170, which is much lower than that of the 5CB/CNT composite [84]. HAT6/GNP shows a similar
ON/OFF ratio to that of the E7/CNT composite, but the operational temperature (105 ◦C) is much
higher than room temperature [93]. Moreover, this field-induced switching is completely irreversible.
The 5CB/Ag NP composite shows two orders of magnitude switching at room temperature, but this is
much lower than the LC/CNT composites reported here.

According to the discussion above, we found that the 5CB/CNT composite is best-suited for a
switching application. As 5CB/CNT shows a near-room-temperature operation (both in the nematic
and isotropic phases) with more than three orders of magnitude switching. For these reason, 5CB/CNT
is a good candidate for switching application. We choose this material of our RF simulations.
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6. Design and Simulation of LC-CNT-Based RF Devices

Radio frequency switches are very important for an RF module in telecommunications and other
technologies. Day by day. the demand for a high bit rate is increasing. Beside this, we need devices
that can operate in a wide frequency range for multiband operations. 5G technology is on the way, so
the demand of re-configurability is also increasing. For a good RF switch, we need a material which
shows a large and sharp change in the resistivity for applied external stimuli (voltage, current, lights,
etc.) like the phase change material, transitional metal oxide, etc. [101–105]. For a good RF device, a
low ON resistance (Ωs), a low OFF capacitance (fF), a low power consumption (µW–mW range), and a
flat broad band response is required (up to 50 GHz).

In this work, we designed and simulated an LC composite-based SPST (Single pole single
through)-RF as a proof of concept. The configuration for our device is a series-type coplanar waveguide
(CPW). In this kind of device, the switching material is inserted in the middle of the signal line. Usually,
when the device is in the OFF state, the switching material is in an insulating state and no signal will
pass through. When the switching material switches to a conducting state, the signal can go through.
In the present case, the switching material is the 5CB-CNT composite. Considering the fabrication
process, we proposed two kinds of devices. In one fabrication process, at first, the gold line will be
deposited using evaporation and the liftoff method (Figure 19). Then, these lines will be thickened to
10 µm using electroplating. Finally, SU8 will be deposited in between the gold lines as a dielectric. In
the second process, Deep reactive-ion etching (DRIE) can be used to make a trench on a SiO2/Si wafer
(Figure 19). Then Au metal will be deposited to create the signal and ground lines.

Technologies 2019, 6, x 19 of 28 

 

(in case local heating derives the system in the isotropic phase) [20]. For a 5CB/CNT composite, Basu 
et al. demonstrated a 5 × 103 order of magnitudes conductivity switching in an isotropic phase [57]. 
Although both of the systems had a comparable performance, the additional benefits of 5CB was that 
it had a room temperature nematic phase (in temperature range 21–34.5 °C) and it showed a field-
induced switching both in the nematic and isotropic phases [53,57]. Dual frequency switching has an 
excellent performance in terms of switching speed, but the ON/OFF ratio demonstrated is only 170, 
which is much lower than that of the 5CB/CNT composite [84]. HAT6/GNP shows a similar ON/OFF 
ratio to that of the E7/CNT composite, but the operational temperature (105 °C) is much higher than 
room temperature [93]. Moreover, this field-induced switching is completely irreversible. The 
5CB/Ag NP composite shows two orders of magnitude switching at room temperature, but this is 
much lower than the LC/CNT composites reported here.  

According to the discussion above, we found that the 5CB/CNT composite is best-suited for a 
switching application. As 5CB/CNT shows a near-room-temperature operation (both in the nematic 
and isotropic phases) with more than three orders of magnitude switching. For these reason, 
5CB/CNT is a good candidate for switching application. We choose this material of our RF 
simulations.  

6. Design and Simulation of LC-CNT-Based RF Devices 

Radio frequency switches are very important for an RF module in telecommunications and other 
technologies. Day by day. the demand for a high bit rate is increasing. Beside this, we need devices 
that can operate in a wide frequency range for multiband operations. 5G technology is on the way, 
so the demand of re-configurability is also increasing. For a good RF switch, we need a material which 
shows a large and sharp change in the resistivity for applied external stimuli (voltage, current, lights, 
etc.) like the phase change material, transitional metal oxide, etc. [101–105]. For a good RF device, a 
low ON resistance (Ωs), a low OFF capacitance (fF), a low power consumption (μW–mW range), and 
a flat broad band response is required (up to 50 GHz). 

In this work, we designed and simulated an LC composite-based SPST (Single pole single 
through)-RF as a proof of concept. The configuration for our device is a series-type coplanar 
waveguide (CPW). In this kind of device, the switching material is inserted in the middle of the signal 
line. Usually, when the device is in the OFF state, the switching material is in an insulating state and 
no signal will pass through. When the switching material switches to a conducting state, the signal 
can go through. In the present case, the switching material is the 5CB-CNT composite. Considering 
the fabrication process, we proposed two kinds of devices. In one fabrication process, at first, the gold 
line will be deposited using evaporation and the liftoff method (Figure 19). Then, these lines will be 
thickened to 10 μm using electroplating. Finally, SU8 will be deposited in between the gold lines as 
a dielectric. In the second process, Deep reactive-ion etching (DRIE) can be used to make a trench on 
a SiO2/Si wafer (Figure 19). Then Au metal will be deposited to create the signal and ground lines. 

 

Figure 19. A schematic of two device structures of a coplanar waveguide (CPW) RF device. 

For simulation, we proposed a simple model of the device ignoring the parasitic. Here, the LC 
composite is modeled as a capacitor in parallel with a variable resistor as shown in Figure 20b. We 
also assumed that the capacitance does not vary much between the ON and OFF states. Basu et al. 

Figure 19. A schematic of two device structures of a coplanar waveguide (CPW) RF device.

For simulation, we proposed a simple model of the device ignoring the parasitic. Here, the LC
composite is modeled as a capacitor in parallel with a variable resistor as shown in Figure 20b. We
also assumed that the capacitance does not vary much between the ON and OFF states. Basu et
al. demonstrated that, for a 3.3-µm-thick cell with an area of approximately 50 mm2, the OFF-state
resistance is 1 MΩ and the ON state resistance is 187 Ω [57]. By optimizing the geometry, doping
concentration, and host material, the ON-state resistance might be reduced to a few Ωs. The typical
value of the OFF state dielectric constant is around 5–10, with a cell spacing of 2–20 µm and an area of
25–100 mm2 [20,57,106]. Considering these values, we optimized the capacitance using the formula C
= εεo A

d . We found that, the OFF capacitance can be optimized to less than 0.05 pF (Figure 20a).
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RF device model ignoring the parasitic effects.

Using the above values of resistance and capacitance, we simulated the RF device using the
NI-multisim software. Figures 21 and 22 show the RF performance of the proposed devices. Figure 21
shows transmission characteristics with two different pairs of resistance and capacitance values. In both
cases, the insertion loss shows flat characteristics. The insertion loss for Ron = 5 Ω and Coff = 0.05
pF is 0.95 dB over a frequency range of up to 10 GHz, whereas the isolation is greater than 30 dB up
to 10 GHz. On the other hand, the return loss for Ron = 50 Ω and Coff = 0.5 pF shows a decreasing
response with frequency. As the Ron and Coff values decreases, the response became flatter as shown
in Figure 22b. For Ron = 5 Ω and Coff = 0.05 pF, the return loss is 60 dB up to 10 GHz. This means that
signal reflection is much less in the ON state.
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Table 2 summarizes the RF performance parameters of the device for different values of Ron and
Coff. For acceptable transmission characteristics, Ron should be less than 5 Ω and Coff should be less
than 0.05 pF.

Table 2. The RF performance parameters of the device.

RON (Ω) COFF (pF) Insertion loss at 10
GHz (dB)

Isolation at 10
GHz (dB)

Return loss at 10
GHz (dB)

50 0.5 5.7 6 31
20 0.5 3 No data 38.6
5 0.5 0.96 No data 60.9
5 0.05 0.95 30 61

7. Discussion

In this paper, we reviewed the effect of NP doping (focusing on CNT doping) on an LC composite’s
electrical conductivity. We focused on electric-field-induced conductivity modulation, considering
possible applications of the composite for DC and RF switching. We also described issues associated
with field-induced conductivity modulation. Some of these issues need to be overcome to realize
an efficient DC and RF switching device. After a brief discussion on liquid crystals, we discussed
electric-field-driven conductivity modulation in pure liquid crystals. It is reported that the conductivity
change of pure LC materials is very low, which is unacceptable in DC and RF switching application.
To enhance the conductivity, one possible way is to dope the LC with a small amount of CNTs. At first,
we reviewed the seminal work of Dierking et al. [15,19], which described how the field-induced
reorientation of LC molecules modulate the conductivity of the LC-CNT composites through elastic
interactions. Then, we discussed how the doping concentration and temperature alters the conductivity
and switching behavior. There is a solubility limit for CNT doping in LC matrices. CNT tends to
aggerate into large bundles in LC media as concentration increases. In addition to that, in a small
window of CNT doping concentrations, the nematic to isotropic transition temperature (TNI) change a
lot. During field-induced switching, Joule heating in the conductive state can drive the system to an
isotropic phase from the nematic phase [20]. Besides in the nematic phase, conductivity modulation
can also be achieved in the isotropic phase for some LC composites. In this case, LC molecules anchor
on the CNT wall and form a pseudonematic domain; these PNDs interact with an external electric field.
One of the major issues with switching is irreversibility, also described as memory effect. The memory
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effect increases upon doping with CNTs and other nanoparticles. Although out-of-plane devices are
prominent, there are works on in-plane switching with a very simple microfabrication technique.
An in-plane cross-electrode configuration could be a viable solution for reversible switching [70].
For device application, switching speed is a very important performance parameter. Most of the NLC
devices suffer from a longer switching time. A faster switching is achievable through dual frequency
nematic liquid crystal materials [84]. After the discussion of LC-CNTs’ conductivity behavior, we
also discussed field-controlled conductivity modulation in an LC/metal-nanoparticle composite to
compare their performances with LC-CNT composites.

Finally, we proposed a simple model for an RF switching device using LC composite materials.
With this simple analytical model, we simulated and analyzed some RF performance parameters.
Although the application of LC composites in the field of RF switching fields are not explored yet, our
simulation suggests that LC-based devices could open a new avenue. However, to make an efficient
microswitch, some issues or challenges need to be considered, which are summarized below.

(a) Microfabrication and alignment: Most of the reported work on field-induced switching is done on
conventional LC-sandwiched cells made of ITO-coated glass. These are macroscale devices and
are easy to fabricate. According to our simulation results, to meet the RF switching requirement,
devices need to be scaled down to microscale. However, in microscale, electrode deposition and
making an alignment layer is a challenge. However, there are some works on the microfabrication
of LC-based devices. For example, Garbovskiy et al. demonstrated an LC phase shifter using
inverted microstrip line configuration [107]. Lai et al. described a fabrication technique for an
in-plane LC-CNT-based device made of interdigitated electrodes for gas sensing application [108].
Varanytsia et al. used photolithography-patterned graphene electrodes instead of ITO for a better
optical transmission characteristic of LC devices. Besides fabrication complexity in microscale,
making alignment layers could be challenging. However, some groups demonstrated alignment
LC in microscale. Varghese et al. described a micro-rubbing technique for LC alignment [109].
Nano-imprint lithography could be used for patterned alignments in microscale [110–112].
Photo-induced alignment is another option for patterned alignments in microscale. Along
with these, a few other micro-patterning techniques are also reported [113,114].

(b) CNT has a tendency to aggregate in an LC solution. This is responsible for the poor CNT solubility
in LC solutions. The dispersion quality degrades with time. A very common way to make a
homogeneous dispersion is a magnetic string followed by sonication [115,116].

(c) Reversible switching will be a challenge as LC-CNT composites show the memory effect.
Considering this issue, DFNLC is a good option, but in this case, the switching ratio is only 170 as
reported by Prasad et al [84]. An in-plane cross-electrode configuration [70] is a viable solution,
but this will bring additional fabrication complexity. In addition to this, repeatable measurement
behavior is also desired.

(d) In most of the reported works, an AC electric field is applied for switching to avoid ion migration
during switching. For DC switching, the materials need to be ion-free.

(e) During conductivity switching, Joule heating may occur, which drives the system from a nematic
to isotropic phase [20,53]. If the sample is subjected to heating for a long time, chemical
degradation may occur. To prevent this, the system should be operated in constant current mode.
Another way to prevent the phase changing is to keep the system in a constant temperature using
a feedback system.

(f) To design an efficient switch, dynamical and transient behaviors need to be studied. However.
there are few reports on the dynamical switching behavior. From the work of D. Volpati et
al., it seems the switching can take place within a few seconds [70]. Shah et al. observed the
field-induced isotropic bubble formation around the CNT bundles within a second [53]. Heilmeier
et al. demonstrated that switching occurs within 1–5 ms [24].
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According to the discussion above, we found that a 5CB/CNT composite might be best-suited for
switching applications. As 5CB/CNT shows a near room-temperature operation (both in the nematic
and isotropic phase) with more than three orders of magnitude switching. We chose this material for
our RF simulations. We did an RF simulation as a proof of concept.

8. Conclusions

According to the reported works in this article, a small percent of NP doping changes the LC
composite’s intrinsic conductivity significantly. In addition to that, 2–4 orders of magnitude of
electric field-induced conductivity switching is demonstrated by several groups. We reviewed the
field-induced electrical switching behavior and related issues for LC-NP composites (focusing on
LC-CNT composites) which are important in device perspectives. By comparing several technological
aspects, we found that the 5CB/CNT system could be a good choice in terms of DC and RF switching
application. This composite shows more than three orders of magnitude switching near room
temperature (both in the nematic and isotropic phase). The synthesis and processing of LC materials
is well-established and, thus, makes it an attractive option for switching applications. In addition,
optoelectronic devices and switches made from LC materials consume less power than comparable
opto-mechanical technologies. Also, our simulations and analyses suggest that RF switching with an
acceptable performance is possible. Based on this, LC switching appears to be an excellent, low-cost
option for DC, as well as RF switching applications.
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