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ABSTRACT 

 

Yuqin Weng 

 

 In this thesis, two discrete-time control systems subject to noise, are modeled, 

analyzed and estimated. These systems are then subjected to attack by false signals such 

as constant and ramp signals. In order to find out how and when the control systems are 

being attacked by the false signals, several detection algorithms are applied to the 

systems. This work focuses on actuator attack detection. 

 To detect the presence of false actuator signals, a bank of Kalman filters is set up 

which uses adaptive estimation and conditional probability density functions for detecting 

the false signals. The individual Kalman filters are each tuned to satisfy a control system: 

one of which is the original system and the other of which is the system with a false 

signal. The use of the bank of Kalman filters to detect actuator attacks is tested in 4 cases; 

first-order system attacked by a constant or ramp signal and then a second-order system 

subject to the same types of attack signals. 

 This work shows the bank of Kalman filters can successfully detect the intrusion 

of false signals for actuator attack by using several different detection algorithms. 

Simulations show that the false signal is found and detected in all cases. 

   

 



 

 

i 

 

ACKNOWLEDGEMENTS 

Yuqin Weng 

 

 It is a great honor for me to have Dr. Edwin Yaz and Dr. Susan Schneider as my 

advisers. I feel so grateful for their help and support in my master academic years. I 

would not have become who I am now without their dedication. 

 I would like to thank my parents, Zhongcheng Weng and Suqin Wang, for their 

love, support and encouragement in all the years. There is nothing can be compared with 

their care and love. 

 Apart from my advisers, it is my fortune to have Dr. Jennifer Bonniwell on my 

committee who gave her precious MATLAB knowledge and suggestions about my thesis 

to me. I also want to say “thank you” to all my friends in the research team: Alia Strandt, 

John Burroughs, Jiayi Su and Abdulelah Alshareef. I wish everyone in the team achieves 

what they want in their career. 

 In the end, I wish I can have a distinguished career either in industry or continuing 

as a PhD student and live a happy life with all my friends and family.  



 

 

ii 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ................................................................................................. i 

LIST OF FIGURES ........................................................................................................... iv 

 

1. INTRODUCTION ...................................................................................................... 1 

1.1 General Background ............................................................................................. 1 

1.2 Problem Statement ............................................................................................... 3 

1.3 Review of Previous Work .................................................................................... 3 

1.3.1 Review of Estimation Theory ....................................................................... 3 

1.3.2 Literature Review.......................................................................................... 5 

1.4 Summary of Main Contributions ......................................................................... 9 

1.5 Thesis Organization............................................................................................ 10 

 

2. ACTUATOR INTRUSION DETECTION USING ESTIMATION THEORY: A 

REVIEW ........................................................................................................................... 11 

2.1 Introduction ........................................................................................................ 11 

2.2 Kalman Filter and Its Applications .................................................................... 11 

2.2.1 Kalman Filter Equation Derivation ............................................................. 12 

2.2.2 Kalman Filter Update Algorithm ................................................................ 16 

2.2.3 Kalman Filter Applications ......................................................................... 18 

2.3 Adaptive Estimation ........................................................................................... 19 

2.3.1 Introduction to Adaptive Estimation ........................................................... 19 

2.3.2 Bank of Kalman Filters Algorithm ............................................................. 19 

2.3.3 Bank of Kalman Filters Application ........................................................... 24 

 

3. MODELS OF ACTUATOR ATTACKS IN CONTROL SYSTEM ........................ 26 

3.1 Introduction to Actuator Attacks in Control System .......................................... 26 

3.2 First-Order System Attack Scenario .................................................................. 28 

3.2.1 Model of First-Order System Attacked by Constant Signal ....................... 28 

3.2.2 Model of First-Order System Attacked by Ramp Signal ............................ 34 

3.3 Second Order System attack scenario ................................................................ 39 

3.3.1 Model of Second Order System Attacked by Constant Signal ................... 39 

3.3.2 Model of Second Order System Attacked by Ramp Signal ........................ 45 



 

 

iii 

 

4. Actuator Intrusion Detection Discussion .................................................................. 49 

4.1 Design of Bank of Kalman Filters...................................................................... 49 

4.2 Detection Discussion on Bank of Kalman Filters .............................................. 51 

4.2.1 Detection of False Signals using Probability Calculation........................... 51 

4.2.2 Detection of False Signals using Innovation Sequence .............................. 55 

4.2.3 Detection of False Signals using Bank of Kalman Filters Estimation ........ 59 

4.3 Noise Effect on Bank of Kalman Filters ............................................................ 64 

4.3.1 Correlation Between Noise and Convergence Time ................................... 65 

4.4 Intrusion Detection by Using Sample Mean Values .......................................... 71 

4.4.1 Intrusion Detection by Using Sample Mean Values with Known State ..... 71 

4.4.2 Intrusion Detection by Using Sample Mean Values with Unknown State . 75 

 

5. Conclusion and Future work ..................................................................................... 78 

5.1 Summary ............................................................................................................ 78 

5.2 Conclusion .......................................................................................................... 78 

5.3 Future Work ....................................................................................................... 79 

 

REFERENCES ................................................................................................................. 81 

 

APPENDIX A: MATLAB CODES .................................................................................. 81 

A1. MATLAB Code for Intrusion Detection by Using a Bank of Kalman Filter for 

First-order System Attacked by Constant Signal .......................................................... 84 

A2. MATLAB Code for Intrusion Detection by Using a Bank of Kalman Filter for 

First-order System Attacked by Ramp Signal .............................................................. 87 

A3. MATLAB Code for Intrusion Detection by Using a Bank of Kalman Filter for 

Second-order System Attacked by Constant Signal ..................................................... 90 

A4. MATLAB Code for Intrusion Detection by Using a Bank of Kalman Filter for 

Second-order System Attacked by Ramp Signal .......................................................... 93 

A5. MATLAB Code for Intrusion Detection by Using Sample Mean Method ............ 96 

 

 

 

 



 

 

iv 

 

LIST OF FIGURES 

Figure 1.1 Bank of Estimators [10]..................................................................................... 7 

 

Figure 2.1: Figure of Kalman filter algorithm [9] [25]. .................................................... 17 

 

Figure 2.2: Block diagram of adaptive estimation technique based on banks of ............. 21 

 

Figure 2.3:Block diagram of adaptive estimation technique for determining the true 

control system. .................................................................................................................. 22 

 

Figure 3.1: Block diagram of a general negative feedback control system with attack 

signals. .............................................................................................................................. 26 

 

Figure 3.2: Original state value in time of first-order system ........................................... 30 

 

Figure 3.3: Original output value in time of first-order system ........................................ 31 

 

Figure 3.4: Compromised state value in time of first-order system in the constant signal 

attack scenario ................................................................................................................... 33 

 

Figure 3.5: Compromised output value in time of first-order system in the constant signal 

attack scenario ................................................................................................................... 34 

 

Figure 3.6: Ramp signal in time with starting value at (1 ,1) and slope equals to 1 ......... 35 

 

Figure 3.7: Compromised state value in time of first-order system in ramp signal attack 

scenario ............................................................................................................................. 37 

 

Figure 3.8: Compromised output value in time of first-order system in ramp signal attack 

scenario ............................................................................................................................. 38 

 

Figure 3.9: Original states value in time of second-order system in the constant signal 

attack scenario ................................................................................................................... 41 

 

Figure 3.10: Original output value in time of second-order system in the constant signal 

attack scenario ................................................................................................................... 42 

 

Figure 3.11: Compromised states value in time of second-order system in the constant 

signal attack scenario ........................................................................................................ 44 

 

Figure 3.12: Compromised output value in time of second-order system in the constant 

signal attack scenario ........................................................................................................ 45 

 

file:///C:/Users/mypc/Desktop/thesis%20writting/Oliver_thesis/Oliver_thesis_SCS-notes-12_7_2018.docx%23_Toc531946855


 

 

v 

 

Figure 3.13: Compromised states value in time of second-order system in ramp signal 

attack scenario ................................................................................................................... 47 

 

Figure 3.14: Compromised output value in time of second-order system in ramp signal 

attack scenario ................................................................................................................... 48 

 

Figure 4.1: Design of a bank of Kalman filters for actuator intrusion detection .............. 50 

 

Figure 4.2: Posterior probabilities of the false signal intrusion hypotheses used in the 

bank of Kalman filters in which the first-order control system is attacked by the constant 

signal ................................................................................................................................. 52 

 

Figure 4.3: Posterior probabilities of the false signal intrusion hypotheses used in the 

bank of Kalman filters in which the first-order control system is attacked by the ramp 

signal ................................................................................................................................. 53 

 

Figure 4.4: Posterior probabilities of the false signal intrusion hypotheses used in the 

bank of Kalman filters in which the second-order control system is attacked by the 

constant signal ................................................................................................................... 54 

 

Figure 4.5: Posterior probabilities of the false signal intrusion hypotheses used in the 

bank of Kalman filters in which the second-order control system is attacked by the ramp 

signal ................................................................................................................................. 55 

 

Figure 4.6: Innovation sequence of the first-order system attacked by the constant signal

........................................................................................................................................... 56 

 

Figure 4.7: Innovation sequence of the first-order system attacked by the ramp signal .. 57 

 

Figure 4.8: Innovation sequence of the second-order system attacked by the constant 

signal ................................................................................................................................. 58 

 

Figure 4.9: Innovation sequence of the second-order system attacked by the ramp signal

........................................................................................................................................... 59 

 

Figure 4.10: First-order system estimated state value when the system is attacked by 

constant signal at time 25 .................................................................................................. 60 

 

Figure 4.11: First-order system estimated state value when the system is attacked by ramp 

signal at time 25 ................................................................................................................ 61 

 

Figure 4.12: Second-order system estimated states value when the system is attacked by 

constant signal at time 25 .................................................................................................. 62 

 

Figure 4.13: Second-order system estimated states value when the system is attacked by 

constant signal at time 25 with longer iterations .............................................................. 63 



 

 

vi 

 

 

Figure 4.14: Second-order system estimated states value when the system is attacked by 

the ramp signal at time 25 ................................................................................................. 64 

 

Figure 4.15: Explanation of convergence1 and convergence 2 ........................................ 65 

 

Figure 4.16: Convergence time on the first-order system attacked by the constant signal

........................................................................................................................................... 67 

 

Figure 4.17: Correlation plot between noise covariance and convergence time for the 

first- order system attacked by constant signal using the Pearson correlation coefficient 69 

 

Figure 4.18: Correlation plot between noise covariance and convergence time for the 

first- order system attacked by constant signal using the Spearman correlation coefficient

........................................................................................................................................... 70 

 

Figure 4.19: System state mean value in time when the system is not attacked by the false 

signal ................................................................................................................................. 73 

 

Figure 4.20: System state mean value in time when the system is attacked by the constant 

signal with known state ..................................................................................................... 74 

 

Figure 4.21: System state mean value in time when the system is attacked by the constant 

signal with known state at time index k=15 ..................................................................... 75 

 

Figure 4.22: System state mean value in time when the system is attacked by the constant 

signal with unknown state ................................................................................................. 76 



1 

 

 

 

1. INTRODUCTION 

 

1.1 General Background 

 

The motivation of this thesis work is to protect control systems from being 

attacked by false actuator signals. Actuators are components in a machine or a system 

that play a key role in moving a mechanism or controlling a system. An actuator usually 

needs a control signal and a power supply, so it can convert the control signal into a real 

action. Basically, an actuator acts as a bridge between the control system and the real 

world. Actuators are commonly used in everyday life, such as using a motor in an 

electro-pump system, starting an engine of a car and controlling a valve for a water 

system. 

 

There are several categories of actuators which can be roughly divided into three 

types from the perspective of how they are powered: by electric signal, hydraulic fluid or 

pneumatic pressure. These three diverse types of actuators are typically used in different 

situations as well; power grid systems use electricity to control the actuator, water 

treatment systems tend to have its actuator powered by fluid, while a turbine system may 

power the actuator by pressure.  

 

As mentioned, actuators are key components in control systems; a malicious 

attacker can modify transmission data sent between actuator components and disrupt the 

system's operations and cause irreversible damage to the control system and people who 
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depend on the control system [1]. As the security of such actuators in the control systems 

has been studied and researched for years, different bad results will show up when 

control systems such as oil refineries, water distribution networks, gas networks and 

power grid system are corrupted [2]. If any of these control systems is attacked, the 

consequences are unthinkable; thus, the safety of the control system is critically 

important. 

 

Let’s take a modern power system for an example; a false data injection attack on 

a power system would lead to both physical and economic impacts to the control system 

[3]. An example of economic attacks is, an attack on the electricity market to gain 

financial profit. A successful delayed attack resulting in line overloading undetected by 

the control center can lead to physical damage to the power system [3]. A damage of 

economic and physical attacks is not negligible for the control systems. In [4], the authors 

discuss how the attacks affect other parts of modern power system: state estimation, 

automatic generation control, energy market and voltage control. For state estimation, 

attackers can intelligently modify the sensor and actuator data at the meter level and then 

start an intrusion at the communication layer. In this case, it is very difficult for engineers 

to detect and protect the system quickly. Therefore, security detection for actuator and 

sensor intrusion is the first and most crucial step for protecting the control system.  
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1.2 Problem Statement   

 

Unauthorized access or hacking is an issue among either control systems or 

computer network systems. Malfunction caused by the introduction of false information 

sometimes can be fatal to control systems; such an invasion can easily go unnoticed. 

Estimation theory is used to analyze the systems for attack detection as well as 

protection. Analyzing the state and output of the control system is an effective way to 

detect false information or intrusions. When the state of the system is unknown, 

estimation techniques, such as Kalman filter or a bank of Kalman filters can be used to 

determine when and how the systems are corrupted, so that there may be enough time for 

engineers to protect and recover the systems once intrusion happens. Shutting down all 

the equipment immediately after the intrusion of false signals is one, and often the best, 

way to protect the control system. 

 

1.3 Review of Previous Work  

 

1.3.1 Review of Estimation Theory 

 

Estimation theory is a branch of statistics and signal processing that deals with 

estimating and observing the values of unknown parameters based on the measured 

empirical data [5] [6] [7]. Finding values for unknown data or states by using an 

estimator together with available measurements is commonly called the process of 

estimation. Three definitions are usually discussed in estimation theory: smoothing, 

filtering and prediction. Smoothing uses available measurement data to estimate 
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historical unknown parameters, filtering uses the measurements to estimate the present 

value of unknown parameters and prediction uses available measurement data to estimate 

the future value of unknown parameters [5]. 

 

There are a lot of fields in which estimation theory is used, for example, 

telecommunication, signal processing and adaptive control. There are also various 

estimators and estimation methods, such as Kalman filters, Extended Kalman filters, a 

Bank of Kalman filters, maximum likelihood estimators, Bayes Estimators, Wiener 

Filters, Maximum a posteriori (MAP)  Particle Filter and Markov Chain Monte Carlo 

(MCMC) [7]. Table 1.1 provides examples of estimation theory used in various fields. 

  

https://en.wikipedia.org/wiki/Maximum_a_posteriori
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Table 1.1: Applications of estimation theory [5][7]. 

 

Applications Examples 

Control Systems Estimation of the position of a cart in a cart-

pendulum system and stabilizing the system by 

using estimators. 

Sonar Estimation of the delay of the received signal 

from each sensor in the presence of noise  

Communications Estimation of the carrier frequency of a signal 

for demodulation to the baseband in the presence 

of degradation noise. 

Signal Processing Estimation of the parameters of the speech 

model in the presence of speech variability and 

environmental noise. 

Biomedical Estimation of the heart rate of a fetus in the 

presence of environmental noise. 

Image Processing Estimation of the position and orientation of an 

object from a camera image in the presence of 

lighting and background noise. 

Radar Communications Estimation of the delay in the received pulse 

echo in the presence of noise. 

Orbit determination Estimation of the trajectory of objects such as 

moons, planets and aircraft. 

 

As mentioned in the section above, this paper will mainly use a Kalman filter and 

a bank of Kalman filters designed for actuator intrusion detection. The filter and how to 

apply its algorithms to estimate states will be discussed in the next chapter. 

 

1.3.2 Literature Review 

 

Actuator and sensor security is a widespread problem [2, 8, 9]. The authors in [8] 

focus on a decoding algorithm so that the states of the system can be recovered correctly; 

at the end of their paper, the performance of the decoder on numerical examples is 

demonstrated as well to show the states are recovered from the simulation. In [2], a 
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control gain 𝐾𝑐 is designed for state-feedback which can increase the resilience of the 

system when attacked. Then the authors try to find if there exists a control law that drives 

the state of the system to the origin even if some of the actuator and sensors are attacked, 

in other words, the authors attempt to stabilize the system despite attacks on some of the 

actuators and sensors. Simulations of the attack are shown at the end of the paper. A 

recent study shows that by using a proper control variable, the system can be recovered to 

the original state from attack [9]; in this paper, the authors have used different control 

variables and the control variables have different positive impact on the system which 

brings the system to the original state after attack. The authors also state that the control 

system could quickly go back to the normal operation mode if proper optimal control 

laws are applied.  

 

R.N. Clark was the first person to discuss a bank of Kalman filters used for 

instrument failure detection (IFD) in 1978 [10]. An example diagram of the system used 

in [10] is shown in Figure1.1. In the abstract of [10], Clark stated, “Observer designs, and 

detection logic are found for which 14 separate instrument faults are detected without 

false alarms. The scheme is shown to be robust with respect to variations in two 

significant physical parameters.”   
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Figure 1.1 Bank of Estimators [10] 

 

Clark used a Boat-Instrument-Autopilot Model to illustrate the idea. The logic for fault 

detection used the subtraction between the real output and estimated output compared 

with a threshold. The alarm sounds if the subtraction exceeds the threshold. In the 

conclusion section, Clark presented that the robustness of the attack detection can only 

tolerate with 10-percent variations in two important physical parameters [10]. However, 

Clark chose a system without random disturbance and the estimators used are Luenberger 

observers. Once noise was added to the system, the bank of Luenberger observers is 

replaced by a bank of Kalman filters since the Kalman filter does a better job dealing 
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with the random disturbance than a Luenberger observer.  Clark also had some later work 

involving bank of estimators using a bank of Kalman filters. 

 

In a recent study [11], the authors tried to apply a bank of Kalman filters for fault 

detection to a wind turbine generator system. Subtraction between the real output and 

estimated output are also used to decide if the system is attacked by the comparison to a 

threshold. At the end of the paper, the authors stated there are no miss detections in all 

their experiments.  

 

 Another paper addresses false data injection attacks (FDIAs) [12]. The authors of 

this paper use a tool, X2- detector, which is a proven-effective exploratory method used 

with Kalman Filter for detecting false signals. The authors applied this technique to 

detect attacks such as denial-of-service (DoS) attacks and then calculate the subtraction 

of the real and estimated output value in time and call it the residual matrix. After finding 

out the covariance matrix of the residual matrix; the authors compute the product of 

residual matrix and its covariance matrix and compare this result with a precomputed 

threshold to identify a failure or an attack [12]. However, the X2- detector does not 

perform well on detecting failure for the system attacked by FDIAs. Thus, the authors 

also analyzed the Euclidean distance method for detecting the failure in which the control 

system is attacked by FDIAs. Although this paper has only implemented the methods on 

sensors, X2- detector and Euclidean distance method can also be utilized for actuator 

failure detection.   
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In 2016, M. S. Ayas and S. M. Djouadi found interesting results for actuator 

attacks in cyber-physical systems [13]. M. S. Ayas and S. M. Djouadi have different 

experiments on both sensor and actuator attacks and they concluded that there will be 

some undetectable attack signals that compromise cyber-physical systems without being 

noticed by engineers. More importantly, system output responses obtained without attack 

are nearly the same for system output responses under undetectable attack. This proves 

that undetectable attack signals have successfully gone into the system without notice. In 

addition, the authors state that the actuator signal attack is optimal in the sense of 

minimal energy attack signal[13], which means the actuator attack is more likely to 

happen in a control system. 

 

References [14]-[18] use similar methods to calculate residuals of real and 

estimated output value for each state and compare the residuals to a threshold value to 

check if the system is corrupted like discussed before. The difference is that the authors 

used different systems to investigate the problem. For examples, [14] used a power grid 

system to investigate fault detection, [16] chose an electro-pump system and [17] 

implemented their method on a wastewater treatment process by using an extended 

Kalman filter.  

 

1.4  Summary of Main Contributions  

 

This thesis proposes to investigate actuator attacks in control systems. Several 

control systems are modeled, analyzed and subsequently attacked by false actuator 
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signals. There are two different cases, first and second order systems are both studied in 

this paper.  

 

To characterize the attack and detection process, the effect of different process 

and measurement noise covariances are investigated in the study. Lastly, a method to 

check the system state mean is also presented as an extension for actuator intrusion 

detection.  

 

1.5 Thesis Organization  

 

This thesis is comprised of five chapters. Chapter 2 discusses a review of 

estimation theory and provide the Kalman filter equations, update algorithms as well as 

implementation and applications. A simple introduction to a bank of Kalman filters and 

Bayesian estimation theory is also included in this chapter. In Chapter 3, the concept of 

state feedback design is introduced and models for the first and second order systems are 

provided with plots that show the original state and output of the systems. The control 

inputs for these systems are replaced by an attack signal of either a constant or ramp 

signal. The states and output are again plotted to show how they are changed by the false 

control signals. Chapter 4 talks about the case study for both systems that are estimated 

by a bank of Kalman filters algorithm. Chapter 5 is a brief summary of this paper and 

discussions for future work. 
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2. ACTUATOR INTRUSION DETECTION USING ESTIMATION THEORY: 

A REVIEW 

2.1 Introduction 

 

As stated in Chapter 1, estimation theory is a branch of statistics. Kalman filters 

and other estimators are commonly used in estimation theory. The Kalman Filter is 

named after R.E. Kalman.  In 1960, R.E. Kalman first used his filter to obtain reliable 

performance for the discrete time linear filtering problem [19]. The Kalman filter has 

now become one of the main estimation tools in statistics and estimation theory.  

 

The Kalman filter estimates the value of unknown states by using past 

measurement data. The Kalman filter can also be applied to estimate the outputs of 

systems [9]. Other estimators like the Luenberger observer, can be used to estimate states 

of systems as well; the Luenberger observer has an estimate of the state and output based 

on the given system and uses it to determine output error [20]. More studies of 

differences between Kalman filter and other observers can be found in [21], where the 

authors summarize the strengths and weaknesses of different estimators. 

 

2.2 Kalman Filter and Its Applications 

 

In this section, the Kalman filter equations and algorithm are presented. 

Furthermore, the applications of Kalman filter and its derivatives are listed in detail. 
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2.2.1  Kalman Filter Equation Derivation 

 

The Kalman filter equations are derived by starting with a simple stochastic 

discrete-time state space model: 

 

𝑥𝑘+1 =  𝐴𝑥𝑘 +  𝐵𝑢𝑘 +  𝐹𝑣𝑘 (2.1) 

  

 

𝑦𝑘 =  𝐶𝑥𝑘 +  𝐷𝑢𝑘 +  𝐺𝑤𝑘 (2.2) 

 

Eq. 2.1 is the state evolution equation and (2.2) is the measurement equation. In 

these equations, index 𝑘, is the sample and takes on value 0, 1, 2… ,  𝐴, 𝐵, 𝐶, 𝐷, 𝐹, 𝐺 are 

time-invarient system matrices of appropriate dimenstions, 𝑥𝑘 ∈ 𝑅𝑛 is the state vector, 

𝑢𝑘 ∈ 𝑅𝑙 is the control input vector, 𝑣𝑘 ∈ 𝑅𝑝 is the process noise vector,  𝑦𝑘 ∈ 𝑅𝑚 is the 

output vector, and 𝑤𝑘 ∈ 𝑅𝑞 is the process noise vector. The state has an initial value 

𝑥0. The covariance of the process noise 𝑣𝑘, is  𝑉, and the covariance of the measurement 

noise 𝑤𝑘, is 𝑊. The cross-covariance of 𝑣𝑘, and 𝑤𝑘, is 𝑆, leading to 

 

Covariance ([
𝑥0
𝑣𝑘

𝑤𝑘

]) =  [
𝑃0 0 0
0 𝑉 𝑆
0 𝑆𝑇 𝑊

] (2.3) 
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where 𝑃0, is the first term of the error covariance. The error covariance 𝑃𝑘, will be 

discussed later. If  𝑣𝑘, and 𝑤𝑘, are not correlated, the cross-covariance term 𝑆 will be the 

zero matrix.  

 

 The next step is to define an error term 𝑒𝑘+1, between the true state value 𝑥𝑘+1, 

and the estimated state value  𝑥̂𝑘+1, 

 

 

𝑒𝑘+1 =  𝑥𝑘+1 −  𝑥̂𝑘+1 (2.4) 

 

The goal of a Kalman filter is to minimize the error covariance  𝑃𝑘+1 , which is 

dependent on  

 

𝑃𝑘+1 = 𝐸{(𝑒𝑘+1)(𝑒𝑘+1)𝑇} (2.5) 

       

At each time 𝑘, we will have the value of estimated state 𝑥̂𝑘, the value of system input 

𝑢𝑘, and the value of system output 𝑦𝑘, [9] [22]. By using these three values, the estimate 

is calculated by 

 

 

𝑥̂𝑘+1 =  𝐴𝑥̂𝑘 +  𝐵𝑢𝑘 +  𝐾𝑘(𝑦𝑘 − 𝑦̂𝑘) (2.6)  
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in which 𝑦̂𝑘, and 𝐾𝑘 represent the estimated system output and Kalman gain. The 

estimated, 𝑦̂𝑘, is given by 

 

𝑦̂𝑘 =  𝐶𝑥̂𝑘 +  𝐷𝑢𝑘 (2.7)  

   

To find the Kalman gain 𝐾𝑘, the error covariance of the Kalman filter given by (2.5) 

needs to be found, 

 

The error at time (𝑘 + 1) needs to be calculated in order to calculate the error 

covariance term  𝑃𝑘+1. By substituting (2.1), (2.2), (2.6), (2.7) into (2.4), 𝑒𝑘+1, is given 

by (2.8), 

 

𝑒𝑘+1 = (𝐴 −  𝐾𝑘𝐶)𝑒𝑘 +  𝐹𝑣𝑘 −  𝐾𝑘𝐺𝑤𝑘 (2.8) 

  

   

Substituting (2.8) into (2.5) yields: 

 

𝑃𝑘+1 =  𝐴𝑃𝑘𝐴𝑇 −  𝐴𝑃𝑘𝐶𝑇𝐾𝑘
𝑇 −  𝐾𝑘𝐶𝑃𝑘𝐴𝑇 +  𝐾𝑘𝐶𝑃𝑘𝐶𝑇𝐾𝑘

𝑇 +  𝐹𝑉𝑘𝐹𝑇

− 𝐾𝑘𝐺𝑆𝑇𝐹𝑇 −  𝐹𝑆𝐺𝑇𝐾𝑘
𝑇 + 𝐾𝑘𝐺𝑊𝐺𝑇𝐾𝑘

𝑇 (2.9)
 

 

Since the error covariance matrix 𝑃𝑘+1, is a symmetric matrix, one property of this matrix 

is that minimizing the error covariance matrix is equivalent to minimizing the trace of 

itself,  𝑇𝑟{𝑃𝑘+1} [9] [23]. By taking the partial derivative of of 𝑇𝑟{𝑃𝑘+1} with the respect 

to 𝐾𝑘, and setting it equal to zero, the equation for the Kalman gain 𝐾𝑘, is obtained, 
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𝐾𝑘 = (𝐴𝑃𝑘𝐶𝑇 +  𝐹𝑆𝐺𝑇)(𝐶𝑃𝑘𝐶𝑇 +  𝐺𝑊𝑘𝐺𝑇)−1 (2.10) 

 

Knowing the value of the Kalman gain 𝐾𝑘, at each time 𝑘, so the error covariance 

equation given in (2.9) can be simplified as 

 

𝑃𝑘+1 =  𝐴𝑃𝑘𝐴𝑇  +  𝐹𝑉𝑘𝐹𝑇 −  (𝐴𝑃𝑘𝐶𝑇 +  𝐹𝑆𝐺𝑇)(𝐶𝑃𝑘𝐶𝑇 +  𝐺𝑊𝑘𝐺𝑇)−1 

(𝐶𝑃𝑘𝐴𝑇 +  𝐺𝑆𝑇𝐹𝑇) (2.11) 

  

 As mentioned before, if the process noise 𝑣𝑘, and the measurement noise 𝑤𝑘, are not 

correlated, the cross-covariance term 𝑆, will be zero. Commonly in control systems 𝑣𝑘, 

and 𝑤𝑘, are zero mean. Thus, the Kalman gain and the error covariance can be further 

simplified, 

 

𝐾𝑘 = 𝐴𝑃𝑘𝐶𝑇  (𝐶𝑃𝑘𝐶𝑇 +  𝐺𝑊𝑘𝐺𝑇)−1 (2.12) 

 

𝑃𝑘+1 =  𝐴𝑃𝑘𝐴𝑇  +  𝐹𝑉𝑘𝐹𝑇 −  𝐴𝑃𝑘𝐶𝑇  (𝐶𝑃𝑘𝐶𝑇 +  𝐺𝑊𝑘𝐺𝑇)−1(𝐶𝑃𝑘𝐴𝑇) (2.13) 

 

By substituting (2.7) into (2.6), the state update equation is given by (2.14),   

 

𝑥̂𝑘+1 =  𝐴𝑥̂𝑘 +  𝐵𝑢𝑘 +  𝐾𝑘(𝑦𝑘 − [𝐶𝑥̂𝑘 +  𝐷𝑢𝑘])  (2.14) 
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The reason why the state update equation is organized in this way is that (2.12), (2.13) 

and (2.14) represent a recursive process to update the state estimation based on the past 

measurement [9]. For each time, the error covariance is minimized by the Kalman gain so 

that the error between the true state value and the estimated state value will also be 

decreased. This is how the Kalman filter works for estimating state variables.  

 

2.2.2 Kalman Filter Update Algorithm 

 

 Updating a Kalman filter is a two-steps update process, a state prediction and a 

measurement update. The Kalman filter update process can be understood as a feedback 

control, the Kalman filter estimates the unknown state and then obtains feedback in the 

form of output measurements with some noise [24]. Thus, it is can be concluded that the 

state update step is to project the current state and error covariance to obtain a new 

estimate for the next time step, and the measurement update is to correct or update the 

new state using the new measured value by a weighted average [9] [24]. 

 

Figure 2.1 shows the update algorithm of the Kalman filter, the Kalman gain is 

calculated in ① at k = 0. With the measurement data and the Kalman gain, we can 

update the state estimate in ②. Then state estimate is used in ③ for updating the error 

covariance. Finally, the error covariance is used to calculate the Kalman gain again at the 

next time step k = 1. The process then continues. 
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①Calculate Kalman gain 

𝐾𝑘 = 𝐴𝑃𝑘𝐶𝑇  (𝐶𝑃𝑘𝐶𝑇

+  𝐺𝑊𝑘𝐺𝑇)−1 

        Update state estimate 

𝑥̂𝑘+1 =  𝐴𝑥̂𝑘 +  𝐵𝑢𝑘 +  𝐾𝑘(𝑦𝑘

− [𝐶𝑥̂𝑘 +  𝐷𝑢𝑘]) 

③Update the error covariance 

𝑃𝑘+1 =  𝐴𝑃𝑘𝐴𝑇  +  𝐹𝑉𝑘𝐹𝑇

−  𝐴𝑃𝑘𝐶𝑇 (𝐶𝑃𝑘𝐶𝑇

+  𝐺𝑊𝑘𝐺𝑇)−1(𝐶𝑃𝑘𝐴𝑇) 

Measureme

nt data, 𝒚𝒌 

 

Initialize the state 

estimate and 

error covariance 

𝑥̂0，𝑃0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Figure of Kalman filter algorithm [9] [25]. 

 

 

 

 

② 
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2.2.3 Kalman Filter Applications 

 

As mentioned above, since R.E. Kalman developed the Kalman filter, the Kalman 

filter has been used in many different applications. As a minimum-variance estimation 

for dynamic systems, the Kalman filter has attracted much attention with the increasing 

demands of target tracking, navigating or imagine processing and so on. The Kalman 

filter has been used in various algorithms that were proposed for deriving optimal state 

estimation in the last thirty years [26]. Table 2.1 shows some of the typical applications 

of Kalman filter and its variations 

 

Table 2.1: Applications of Kalman filter and its variations. 

 

Applications Examples 

Control Systems Estimating the states of control systems. 

Tracking and navigation Filtering out the noise for better performance of 

tracking and navigation. 

Economics Parameter estimation of linear and non-linear 

econometric models [9]. 

Signal Processing The noise of the signal will be filtered, and the 

signal will be estimated as well. 

Image Processing The noise and disturbance in a photo is filtered 

out. 

Forecasting Estimating the parameters of the forecasting 

model using the measured data [9]. 
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2.3 Adaptive Estimation  

  

2.3.1  Introduction to Adaptive Estimation  

 

Adaptive estimation is used for estimating unknown parameters or unknown 

states. One way to do adaptive estimation is by using a set of Kalman filters and parallel 

processing technique. In this work, the concept of a bank of Kalman filters is used to 

estimate and detect the faults in control systems and estimate the system states. 

In 1974, researchers studied how parallel identification works, assuming the 

unknown parameters or state vector 𝑅, is discrete or quantized to a finite number of 

values {  𝑅1,  𝑅2, … ,  𝑅𝑖, … , 𝑅𝑛}, with known or assumed priori probability for each  𝑅𝑖 . 

The conditional estimator includes a bank of n Kalman filters where the 𝑖th Kalman filter 

is the posteriori probability of  𝑅𝑖 , which is updated recursively using the noisy signal 

measurements and the state of  𝑖th Kalman filter [22].  For this research work, assuming 

that attackers would compromise the input of the control system, the state vector 𝜃 

represented by control input 𝑈. Potential false information that attackers insert into the 

control system can be expressed as 𝑈1 , 𝑈2,…, 𝑈𝑖 , … , 𝑈𝑛, each of the inputs is used to 

design one of the Kalman filters in the bank. 

 

2.3.2 Bank of Kalman Filters Algorithm 

 

Figure 2.2 depicts the flow of data through a bank of Kalman filters to find an 

unknown parameter: a set of possible values or hypotheses for the unknown parameter is 

calculated as 𝑅 = {  𝑅1,  𝑅2, … ,  𝑅𝑖, … , 𝑅𝑛} in which  𝑅𝑖, is one of the hypotheses. A 
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Kalman filter is designed for each possible parameter value or hypothesis. The 

conditional probability of each one of the Kalman filters in the bank will be calculated 

according to the current measurements [27]. The filter that shows highest probability 

among all conditional probabilities identifies the most likely parameter value or 

hypothesis. 
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Not only can a bank of Kalman filters track the states and decide which parameter is the 

best to adopt for the system, it can also determine whether the control system has been 

Figure 2.2: Block diagram of adaptive estimation technique based on banks of 
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compromised. In Figure 2.3, when measurements y𝑘, from a system that is not under 

attack goes into the Kalman filters in the bank, the probability of the state estimate being 

from the correct control signal is high. On the other hand, when the measurement y𝑘, 

from a system under attack goes through the filters and the decision block, the probability 

of state estimate being from the correct control signal drops to zero while the probability 

of the measurement is false goes high indicating the control system is being attacked. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3:Block diagram of adaptive estimation technique for determining the true 

control system. 

 

 

The conditional probability of each Kalman filter, is given in (2.15) [27]: 

 

𝑝(𝑅𝑖|𝑌𝑘)  =
𝑝(𝑌𝑘 ,   𝑅𝑖)

∑ 𝑝(𝑌𝑘|𝑅𝑚)𝑁
𝑚=1 𝑝(𝑅𝑚)

(2.15)

Bank of 
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𝑇𝑟𝑢𝑒 

𝑥̂𝑘
𝐹𝑎𝑙𝑠𝑒 

  

𝑃𝑘 

 

𝑃𝑘 
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𝑇𝑟𝑢𝑒 

𝑃𝑘
𝐹𝑎𝑙𝑠𝑒 
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where  𝑝() represents a probability density function. Eq. 2.15 can also be expanded and 

to become (2.16) [27]: 

 

𝑝(𝑅𝑖|𝑌𝑘)  =
𝑝(𝑦𝑘|𝑌𝑘−1, 𝑅𝑖)𝑝(𝑅𝑖|𝑌𝑘−1)

∑ 𝑝(𝑦𝑘|𝑌𝑘−1, 𝑅𝑚)𝑁
𝑚=1 𝑝(𝑅𝑚|𝑌𝑘−1)

(2.16) 

 

In (2.16), 𝑌𝑘−1, denotes all the measurements in the sequence up to and including time, 

𝑘 − 1  and 𝑦𝑘, represents the measurement at each time 𝑘, finally 𝑅𝑖, means one of the 

possible values of the control inputs (the original and false signals) that will be used in 

the Kalman filters in the bank. Since there are only two situations in this work: the true 

and false control input, (2.16) can be rewritten as: 

 

𝑝(𝑅𝑖|𝑌𝑘)  =
𝑝(𝑦𝑘|𝑌𝑘−1, 𝑅𝑖)𝑝(𝑅𝑖|𝑌𝑘−1)

𝑝(𝑦𝑘|𝑌𝑘−1,𝑅1)𝑝(𝑅1|𝑌𝑘−1)+𝑝(𝑦𝑘|𝑌𝑘−1,𝑅2)𝑝(𝑅2|𝑌𝑘−1)
(2.17) 

   

Convergence occurs when the posterior probability of the filter corresponding to the 

hypothesis closest to the current control input of the system approaches one.  

 

 To calculate  𝑝(𝑦𝑘|𝑌𝑘−1, 𝑅𝑖)  , all the measurement and process noises are 

assumed to be Gaussian, which means they have Gaussian conditional probabilities. 

Thus,  𝑝(𝑦𝑘|𝑌𝑘−1, 𝑅𝑖)  becomes (2.18) [27]: 

 

𝑝(𝑦𝑘|𝑌𝑘−1, 𝑅𝑖)  = (2𝜋)−𝑛 2⁄ |Ω𝑘|𝑅𝑖

−1 |
1 2⁄

∗ 𝑒𝑥𝑝 (−
1

2
𝑦̃𝑘|𝑅𝑖

𝑇 Ω𝑘|𝑅𝑖

−1 𝑦̃𝑘|𝑅𝑖
) (2.18) 
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Here 𝑛, represents the dimension of the control system, and 𝑦̃𝑘|𝑅𝑖
, in (2.18) is called 

innovation sequence and is defined as:  

 

𝑦̃𝑘|𝑅𝑖
=  𝑦𝑘 − 𝑦̂𝑘|𝑘−1,𝑅𝑖

(2.19) 

   

The innovation covariance of the Kalman filter is Ω𝑘|𝑅𝑖
, and is calculated by 

 

Ω𝑘|𝑅𝑖
=  𝐶𝑃𝑘|𝑅𝑖

𝐶𝑇 + 𝐺𝑊𝐺𝑇 (2.20) 

   

The conditional probability of the original and the attacked scenarios of the control 

system can be calculated according to the equations above. 

 

2.3.3 Bank of Kalman Filters Application 

 

A bank of Kalman filters is usually used in adaptive estimation and parallel 

identifications. Engineers use this technique to identify the authenticity of the parameters 

or if the control system is compromised. Table 2.2 shows several applications of a bank 

of Kalman filters. 
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Table 2.2: Applications of Bank of Kalman filters. 

 

Applications Examples 

Parameter Identification Testing several unknown parameters to have the 

closest one in a real system. 

Sensor Intrusion 

Detection 

Detecting control system is being compromised 

or not by testing control system states. 

Actuator Intrusion 

Detection 

Detecting control system is being compromised 

or not by testing control system inputs. 
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3. MODELS OF ACTUATOR ATTACKS IN CONTROL SYSTEM  

 

In this chapter, two discrete-time systems to be used for simulations are designed. 

In addition, two distinct types of false signals are created to act as actuator signals. The 

performance of each system being attacked by each false signal is shown. To build a 

discrete- time state space model with feedback and input for discussing actuator attack, a 

control input 𝑢𝑘, needs to be developed therefore, a control variable 𝐾𝑐  is to be 

calculated as well. It is common to refer the state-variable controller (full-state control 

law plus the observer) as a compensator [28], the concept of a compensator and how the 

control variable 𝐾𝑐 is found will be mentioned in the next section. 

 

3.1 Introduction to Actuator Attacks in Control System 

 

As mentioned in chapter 1, the results of actuator attacks could be horrible, here is 

a block diagram of a feedback control system with actuator attacks:  

 

 

 

Figure 3.1: Block diagram of a general negative feedback control system with attack 

signals. 
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For this work, when designing a feedback control, the pole-placement technique may be 

used. Thus, controllability and observability of the control system must be verified before 

pole placement can be implemented [28]. After knowing the poles we want to place, the 

control gain 𝐾𝑐, can be calculated, so that, 𝑢𝑘 = −𝐾𝑐 𝑥𝑘. The goal of the attackers is to 

replace the control input 𝑢𝑘, with a false signal and then the control system is 

compromised by the false information.  

 

It is assumed that the state and the output of the control system are available in 

this chapter. Both the original and attacked state and output values are obtained by 

calculation. By considering the false signal ℎ𝑘 as a state as well when the system is 

attacked, the dimension of the discrete-time state space model of the attacked system is 

increased by adding one new state.  

 

As mentioned before, the control system needs to be completely controllable and 

observable. For a single-input and single-output system, the controllability of the system 

is described by a matrix 𝑃𝑐, (presented as the continuous-time form): 

 

𝑃𝑐 =  [𝐵  𝐴𝐵  𝐴2  …  𝐴𝑛−1𝐵] (3.1) 

 

The system’s controllability relies on the determinant of 𝑃𝑐, being non-zero. The 

observability matrix, 𝑃𝑜, is given by (3.2): 

 



28 

 

 

 

𝑃𝑜 =  [

𝐶
𝐶𝐴

⋮
𝐶𝐴𝑛−1

] (3.2) 

 

The control system is observable when the determinant of the observability matrix 𝑃𝑜, is 

not zero. 

 

3.2 First-Order System Attack Scenario 

  

 In this section attack scenarios on a first order system are presented, the state and 

the output of the first order system will first be shown and the difference between the 

original and attacked systems will be presented as well.   

 

3.2.1 Model of First-Order System Attacked by Constant Signal  

 

Starting with a first-order system attacked by a constant actuator signal which is 

represented by ℎ𝑘. The dynamics of the first-order system are: 𝐴 = 0.9, 𝐵 =1, 𝐶= 1, 𝐷= 1, 

𝐹 = 1, 𝐺 = 1, 𝑉 = 0.01, 𝑊 = 0.05. By substituting these values into (2.1) and (2.2): 

 

𝑥𝑘+1 =  0.9𝑥𝑘 +  𝑢𝑘 + 𝑣𝑘 (3.3)  

 

𝑦𝑘 =  𝑥𝑘 +  𝑢𝑘 + 𝑤𝑘 (3.4) 

   

Checking the controlibility and observability for the system:   



29 

 

 

 

 

𝑃𝑐 =  [𝐵] = [1] 

 

𝑃𝑜 =  [𝐶] = [1] 

 

Since the determinants are not zero, the first-order system is both controllable and 

observable. To reduce response time, the eigenvalue needs to be placed close to the 

origin. In this work, the eigenvalue will be placed at 0.4. Using the appropriate control 

gain to place the pole, (3.3) becomes: 

 

𝑥𝑘+1 =  0.4𝑥𝑘 +  𝑣𝑘 (3.5) 

  

Figures 3.2 and 3.3 show the first-order system state and output value: 
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Figure 3.2: Original state value in time of first-order system 
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Figure 3.3: Original output value in time of first-order system 

 

The two figures above show that when the control system is not attacked the original 

state and output value fluctuate around zero with some noise as expected.  

 

For the control system compromised by a false signal, ℎ𝑘, (ℎ𝑘=2) is used to 

represent the false signal. When the actuator in the control system is compromised, 

control input, 𝑢𝑘, is replaced by false signal, ℎ𝑘. Once the control system is attacked, the 

state and output equations of the first-order system become: 

 

𝑥𝑘+1 =  𝐴𝑥𝑘 +  𝐵ℎ𝑘 +  𝐹𝑣𝑘 (3.6) 
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𝑦𝑘 =  𝐶𝑥𝑘 +  𝐷ℎ𝑘 +  𝐺𝑤𝑘 (3.7) 

 

Now the state is augmented with the false signal ℎ𝑘, yielding 

 

[
𝑥𝑘+1

ℎ𝑘
] = [

𝐴 𝐵
0 𝐼

] [
𝑥𝑘

ℎ𝑘
] + [

𝐹
0

] 𝑣𝑘 (3.8)  

 

𝑦𝑘 = [𝐶 𝐷] [
𝑥𝑘

ℎ𝑘
] + 𝐺𝑤𝑘 (3.9)  

  

Eq. 3.8 and (3.9) can also be written as  

 

𝓍𝑘+1 = 𝒜𝑋𝑘 + ℱ𝑣𝑘 (3.10) 

 

𝓎𝑘 = 𝒞𝑋𝑘 +  𝐺𝑤𝑘 (3.11) 

 

There is a “switch point” which refers to the time at which the control system is attacked. 

In this work, the switch point is set to 25. From this time, the system model of the 

attacked system is:  

 

[
𝑥𝑘+1

ℎ𝑘
] = [

0.9 1
0 1

] [
𝑥𝑘

ℎ𝑘
] + [

1
0

] 𝑣𝑘 (3.12) 

 

𝑦𝑘 = [1 1] [
𝑥𝑘

ℎ𝑘
] + 𝑤𝑘 (3.13)  
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Checking the observability of the attack system where 𝒜 and 𝒞 are used: 

 

𝑃𝑜 =  [
𝒞

𝒞𝒜
] =  [

1 1
0.9 2

] 

 

det |𝑃𝑜| = 1.1 

 

Since the determinant of the observability matrix 𝑃𝑜 is not zero it is observable. Figures 

3.4 and 3.5 are the state and output of the system when the system is compromised. 

 

Figure 3.4: Compromised state value in time of first-order system in the constant 

signal attack scenario 
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Figure 3.5: Compromised output value in time of first-order system in the constant 

signal attack scenario 

 

These figures show that after attack, the state and output approach a constant value. The 

control system functions well before it reaches the switch point and the value of the state 

𝑥𝑘, is around 0. However, after the switch point, (3.10) is used to calculate the value of 

the state 𝑥𝑘.  

 

3.2.2 Model of First-Order System Attacked by Ramp Signal 

 

To study a first-order system being attacked by a ramp signal, a ramp signal needs 

to be introduced in state-space representation: 
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[
𝑑𝑘+1

𝑏𝑘+1
] = [

1 1
0 1

] [
𝑑𝑘

𝑏𝑘
] (3.14) 

 

𝑦𝑘 = [1 0] [
𝑑𝑘

𝑏𝑘
] (3.15) 

   

The starting value of the ramp signal is 𝑑0, and the ramp slope is 𝑏0. Figure 3.6 shows a 

ramp signal with starting value at (1 , 1) and with a slope equal to 1: 

 

Figure 3.6: Ramp signal in time with starting value at (1 ,1) and slope equals to 1 

 

When the attack signal is a ramp signal where the slope of the ramp equals 1, model of 

the system when attacked becomes: 

 



36 

 

 

 

[

𝑥𝑘+1

𝑑𝑘+1

𝑏𝑘+1

] = [
𝐴 𝐵 0
0 1 1
0 0 1

] [

𝑥𝑘

𝑑𝑘

𝑏𝑘

] + [
𝐹
0
0

] 𝑣𝑘 (3.16) 

 

𝑦𝑘 = [𝐶 1 0] [

𝑥𝑘

𝑑𝑘

𝑏𝑘

] + 𝐺𝑤𝑘 (3.17) 

 

Using the same system parameters as before where 𝐴 = 0.9, 𝐵 =1, 𝐶= 1, 𝐷= 1, 𝐹 =

1, 𝐺 = 1, 𝑉 = 0.01, 𝑊 = 0.05. The equations for the attacked systems become: 

 

[

𝑥𝑘+1

𝑑𝑘+1

𝑏𝑘+1

] = [
0.9 1 0
0 1 1
0 0 1

] [

𝑥𝑘

𝑑𝑘+1

𝑏𝑘+1

] + [
1
0
0

] 𝑣𝑘 (3.18) 

 

𝑦𝑘 = [1 1 0] [

𝑥𝑘

𝑑𝑘

𝑏𝑘

] + 𝑤𝑘 (3.19) 

 

Checking the observability for the attack model: 

 

𝑃𝑜 =  [
𝒞

𝒞𝒜
𝒞𝒜2

] =  [
1 1 0

0.9 2 1
0.81 2.9 3

] 

 

det |𝑃𝑜| = 1.21 

 

The determinant of the observability matrix 𝑃𝑜 is not zero which means it is observable. 
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Figure 3.7 and 3.8 show the state and output for the first-order system when the 

actuator signal has been replaced by a ramp signal that starts at time index, 𝑘 =25. 

 

Figure 3.7: Compromised state value in time of first-order system in ramp signal 

attack scenario 
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Figure 3.8: Compromised output value in time of first-order system in ramp signal 

attack scenario 

 

As is shown in the figures, the state and output initially exhibit the behavior of an 

unharmed system which changes when the false actuator signal replaces the original 

actuator signal and approaches a ramp.  

 

Both constant signal and ramp signal attack scenarios show that the first-order 

control system functions well before it reaches the switch point in time. The state and 

output of the control system would either becomes a constant or a ramp signal. By 

replacing the value of control input, the attacker can achieve the goal that compromises 

the system in a way they want. More importantly, the value of the output sometimes can 

go very high which has a bad influence on the control system at most of the time. In the 
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next section, original and attacked second-order system models are developed and 

investigated. 

 

3.3 Second Order System attack scenario 

 

3.3.1 Model of Second Order System Attacked by Constant Signal 

 

Assuming the second-order system is 𝐴 = [
0 0.8

−0.8 −0.8
], 𝐵 = [

1
0

], 𝐶= [1 0],  𝐷= 

1, 𝐹 = [
1 0
0 1

],𝐺 = 1, 𝑉 =0.1, 𝑊 = 0.5. Since there are two states in the second-order 

system, two different process noises will be created as 𝑣𝑘1, and 𝑣𝑘2, for two states, but 

both noise covariances are still 0.1. The numerical form of the second-order system is: 

 

[
𝑥(1)𝑘+1

𝑥(2)𝑘+1
] = [

0 0.8
−0.8 −0.8

] [
𝑥(1)𝑘

𝑥(2)𝑘
] + [

1
0

] 𝑢𝑘 + [
1 0
0 1

] 𝑣𝑘 (3.20) 

   

𝑦𝑘 = [1 0] [
𝑥(1)𝑘

𝑥(2)𝑘
] + 𝑢𝑘 + 𝑤𝑘 (3.21) 

 

Checking the controllability and observability for the second-order system: 

 

𝑃𝑐 =  [𝐵  𝐴𝐵 ] = [
1 0
0 −0.8

] 

 

det |𝑃𝑐| = −0.8 
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𝑃𝑜 =  [
𝐶

𝐶𝐴
] =  [

1 0
0 0.8

] 

 

det |𝑃𝑜| = 0.8 

 

The determinants of matrices 𝑃𝑐, and 𝑃𝑜, are not zero so the control system it is 

controllable and observable. Placing the poles of this second-order system at [0.4 −0.4] 

to reduce response time, (3.20) becomes: 

 

[
𝑥(1)𝑘+1

𝑥(2)𝑘+1
] = [

0.8 0.6
−0.8 −0.8

] [
𝑥(1)𝑘

𝑥(2)𝑘
] + [

1 0
0 1

] 𝑣𝑘 (3.22) 

   

The states and the output of the system are showen in Fgures 3.9 and 3.10: 
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Figure 3.9: Original states value in time of second-order system in the constant 

signal attack scenario 
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Figure 3.10: Original output value in time of second-order system in the constant 

signal attack scenario 

 

Using ℎ𝑘 equals 8 and when the second order system is attacked by a constant signal, the 

attack model of the second-order system becomes: 

 

[

𝑥(1)𝑘+1

𝑥(2)𝑘+1

ℎ𝑘

] = [
𝑎11 𝑎11 𝑏11

𝑎21 𝑎22 𝑏21

0 0 1

] [

𝑥(1)𝑘+1

𝑥(2)𝑘+1

ℎ𝑘

] + [
𝑓11 𝑓12

𝑓21 𝑓22

0 0

] [
𝑣𝑘1

𝑣𝑘2
] (3.23) 

 

𝑦𝑘 = [𝑐11 𝑐12 𝐷] [

𝑥(1)𝑘+1

𝑥(2)𝑘+1

ℎ𝑘

] + 𝐺𝑤𝑘 (3.24) 
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where 𝑎𝑖𝑗 are the elements of 𝐴, 𝑏𝑖𝑗 are the elements of 𝐵, 𝑐𝑖𝑗 are the elements of 𝐶 and 

𝑓𝑖𝑗 are the elements of 𝐹. Recall that we have a second-order as 𝐴 = [
0 0.8

−0.8 −0.8
], 𝐵 = 

[
1
0

], 𝐶= [1 0],  𝐷= 1, 𝐹 = [
1 0
0 1

],𝐺 = 1, 𝑉 =0.1, 𝑊 = 0.5 Substituting the system 

values into the equations above: 

  

[

𝑥(1)𝑘+1

𝑥(2)𝑘+1

ℎ𝑘

] = [
0 0.8 1

−0.8 −0.8 0
0 0 1

] [

𝑥(1)𝑘+1

𝑥(2)𝑘+1

ℎ𝑘

] + [
1 0
0 1
0 0

] [
𝑣𝑘1

𝑣𝑘2
] (3.25) 

 

 𝑦𝑘 = [1 0 1] [

𝑥(1)𝑘+1

𝑥(2)𝑘+1

ℎ𝑘

] + 𝑤𝑘  (3.26) 

 

Checking the observability for the attack model: 

 

𝑃𝑜 =  [
𝒞

𝒞𝒜
𝒞𝒜2

] =  [
1 0 1
0 0.8 2

−0.64 −0.64 2
] 

 

det |𝑃𝑜| = 3.392 

 

The determinant of the observability matrix 𝑃𝑜 is not zero so it is observable. Figure 3.11 

and 3.12 show what the states and output become when the system is compromised at 25: 
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Figure 3.11: Compromised states value in time of second-order system in the 

constant signal attack scenario 
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Figure 3.12: Compromised output value in time of second-order system in the 

constant signal attack scenario 

 

Obviously, the second-order system shows the same kind of result as the first order 

system attack model does, in other words, the states and output of the control system 

behave well before the switch point. However, after the system is corrupted, we clearly 

see the states and the output fluctuate around a final non-zero constant value. 

 

3.3.2 Model of Second Order System Attacked by Ramp Signal 

 

The attack model of second order system attacked by ramp signal is: 
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[

𝑥(1)𝑘+1

𝑥(2)𝑘+1

𝑑𝑘+1

𝑏𝑘+1

] = [

𝑎11 𝑎12

𝑎21 𝑎22

𝑏11 0
𝑏21 0

0        0
0        0

1 1
0 1

] [

𝑥(1)𝑘+1

𝑥(2)𝑘+1

𝑑𝑘+1

𝑏𝑘+1

] + [

𝑓11 𝑓12

𝑓21

0
0

𝑓22

0
0

] [
𝑣𝑘1

𝑣𝑘2
] (3.27) 

 

𝑦𝑘 = [𝑐11 𝑐21 1 0] [

𝑥(1)𝑘+1

𝑥(2)𝑘+1

𝑑𝑘+1

𝑏𝑘+1

] + 𝐺𝑤𝑘 (3.28) 

   

where 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗 and 𝑓𝑖𝑗 are the same elements stated before. Recall that for a second-

order system 𝐴 = [
0 0.8

−0.8 −0.8
], 𝐵 = [

1
0

], 𝐶= [1 0],  𝐷= 0, 𝐹 = [
1 0
0 1

],𝐺 = 1, 𝑉 =0.1, 

𝑊 = 0.5. Thus: 

 

[

𝑥(1)𝑘+1

𝑥(2)𝑘+1

𝑑𝑘+1

𝑏𝑘+1

] = [

0 0.8
−0.8 −0.8

1 0
0 0

0        0
0        0

1 1
0 1

] [

𝑥(1)𝑘+1

𝑥(2)𝑘+1

𝑑𝑘+1

𝑏𝑘+1

] + [

1 0
0
0
0

1
0
0

] [
𝑣𝑘1

𝑣𝑘2
] (3.29) 

 

𝑦𝑘 = [1 0 1 0] [

𝑥(1)𝑘+1

𝑥(2)𝑘+1

𝑑𝑘+1

𝑏𝑘+1

] + 𝑤𝑘 (3.30)  

 

Checking the observability for the attack model: 

 

𝑃𝑜 =  [

𝒞
𝒞𝒜

𝒞𝒜2

𝒞𝒜3

] =  [

1 0
0 0.8

1 0
2 1

−0.64 −0.64
0.512 0

2 3
1.36 5

] 
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det |𝑃𝑜| = 14.38 

 

The determinant of the observability matrix 𝑃𝑜 is not zero so it is observable. The 

compromised states and output are shown in Figures 3.13 and 3.14: 

 

Figure 3.13: Compromised states value in time of second-order system in ramp 

signal attack scenario 
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Figure 3.14: Compromised output value in time of second-order system in ramp 

signal attack scenario 

 

Similar to the first-order system, after switch point, the states and output of the system 

continue as a ramp signal which once again satisfies our goal.  

 

 All four situations show that once the control system is corrupted by the false 

information, the states and output of the system would go as the attackers set up. In 

chapter 4, the states and output values cannot be obtained directly from the system will be 

discussed, a bank of Kalman filters is used to estimate the system and decide if the 

system is attacked or not by three main aspects. 
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4. Actuator Intrusion Detection Discussion 

 

 In this chapter the primary results of this work, the ability of a bank of Kalman 

filters to detect of the actuator intrusions of the control system, are presented by using the 

system dynamics and attack signals described in chapter three. First, how to design a 

bank of Kalman filters for detecting the false signals is presented in this work, then the 

detection of false signals using probability calculation is shown, the detection of false 

signals using innovation sequence and the detection of false signals using bank of 

Kalman filters estimation are discussed as well. By studying of the relationship between 

the process and measurement noise covariances, some suggestions are made for 

shortening the convergence times. There is an additional method to detect the false 

signal, called the sampled mean value method, it will be presented at the end of this 

chapter. 

 

4.1 Design of Bank of Kalman Filters 

 

 The figure below shows how a bank of Kalman filters is designed specifically for 

actuator intrusion in this work. The unknown parameter needs to be estimated is the false 

actuator signal, 𝑥̂1𝑘, and 𝑥̂2𝑘, are the corresponding state estimates at time index 𝑘, for 

each Kalman filter in the bank, 𝑥̂𝑘, is the combined state estimate at time index 𝑘. 

Probability 𝑝1𝑘, and 𝑝2𝑘, are the corresponding conditional probability estimates at time 

index 𝑘, for each state estimate. 
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Figure 4.1: Design of a bank of Kalman filters for actuator intrusion detection 

 

As seen in Figure 4.1, two Kalman filters are designed, one for each of the two systems, 

one of which is the original system and the other one is the control system with the false 

signal. After given control input (or false signal) and system output, the two Kalman 

filters will have two different state estimates. By using (2.17), the probability of each 

state estimate being treated as the true one by the bank is known and the combined state 

estimate is obtained by using 𝑥̂𝑘 = 𝑝1𝑘𝑥̂1𝑘 + 𝑝2𝑘𝑥̂2𝑘 . If the output comes from a system 

under attack, which results 𝑝2𝑘 > 𝑝1𝑘, when we have 𝑥̂𝑘 ≅ 𝑥̂2𝑘 and conversely.  
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4.2 Detection Discussion on Bank of Kalman Filters 

 

4.2.1 Detection of False Signals using Probability Calculation 

 

As was discussed in chapter 2 for calculating the probability of original and 

attacked system, both the conditional probability of the two Kalman filters in a bank 

should sum to one. The probability of the Kalman filter estimating the original system 

with true control input goes to one which means that the control system is not 

compromised by the false information. But after the false signal is injected, the 

probability of the Kalman filter estimating the attacked system would go to one and the 

probability of the other Kalman filter goes to zero. Figures 4.2 through 4.5 each show the 

detection of attack using probability detection. The blue line represents the control 

system without intruded by the false information and the red line means the original 

system is being attacked by the false signal. As expected, blue line first goes to 1 before 

time 25 but the red line quickly goes up to 1 after switch point, which tells the engineers 

that the control system is being attacked. 
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Figure 4.2: Posterior probabilities of the false signal intrusion hypotheses used in 

the bank of Kalman filters in which the first-order control system is attacked by the 

constant signal 
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Figure 4.3: Posterior probabilities of the false signal intrusion hypotheses used in 

the bank of Kalman filters in which the first-order control system is attacked by the 

ramp signal 
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Figure 4.4: Posterior probabilities of the false signal intrusion hypotheses used in 

the bank of Kalman filters in which the second-order control system is attacked by 

the constant signal 
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Figure 4.5: Posterior probabilities of the false signal intrusion hypotheses used in 

the bank of Kalman filters in which the second-order control system is attacked by 

the ramp signal 

 

There is always some delay at the switch point, especially in the situation the second-

order system attacked by ramp signal. It is interesting to find out if there are any 

relationships for the noise covariances and the convergence times. This topic is 

investigated in section 4.3. 

 

4.2.2 Detection of False Signals using Innovation Sequence 

 

Using the subtraction between the estimation value and the true value of the 

system output to decide whether the system is attacked by the false information is also an 
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excellent choice. This difference is used when calculating the innovation sequence in 

(2.19). The innovation sequence should be zero when the control system is not attacked 

since the estimation value of the output is close to the real value of the output. Once the 

control system is intruded by the false information, the true value of the control system 

will change instantly, and the innovation sequence is then no longer close to zero. Figures 

4.6, 4.7, 4.8 and 4.9 show that the innovation sequence of the first and second order 

system attacked by constant and ramp signal at time index 25, we can see clearly how 

innovation sequence deviates from zero to another value after time index 25: 

 

Figure 4.6: Innovation sequence of the first-order system attacked by the constant 

signal 
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Figure 4.7: Innovation sequence of the first-order system attacked by the ramp 

signal 
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Figure 4.8: Innovation sequence of the second-order system attacked by the constant 

signal 
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Figure 4.9: Innovation sequence of the second-order system attacked by the ramp 

signal 

 

All the figures above show that before the switch point, the innovation sequence 

fluctuates at around 0 with some noise but changes to a constant signal away from 0 or a 

ramp signal after being intruded, demonstrating the control system is successfully 

intruded by the false signal.  

 

4.2.3 Detection of False Signals using Bank of Kalman Filters Estimation 

 

In addition to using the probability calculation and innovation sequence to detect 

the actuator intrusion, the combined state estimate 𝑥̂ = 𝑝1𝑥̂1 + 𝑝2𝑥̂2 produced by bank of 

Kalman filters can be used for intrusion detections as well. The next two figures are the 
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estimated state value of the first-order system which is compromised by constant and 

ramp signals at time index 25: 

 

Figure 4.10: First-order system estimated state value when the system is attacked by 

constant signal at time 25 
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Figure 4.11: First-order system estimated state value when the system is attacked by 

ramp signal at time 25 

 

Figures 4.10 and 4.11 prove that by using the combined estimate state by bank of Kalman 

filters the false information detected when the false information is injected into the 

control system. Like presented before, the detection is successful since the estimation 

value after time index 25 is away from 0 and goes to the signal the attacker wants.  

 

Figure 4.12 presents estimated states for the second-order system when the 

second-order system is attacked by a constant signal at time 25, from the estimated value 

we know that the system is corrupted by the false signals because the two states of the 

system go up or down to a constant value and away from 0 after attacked. The 

compromised states in Figure 4.12 may not show the constant signals obviously enough, 
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however, when increasing the total iterations to a larger number we can see the attacked 

states eventually go up or down to a constant value which once again proves that bank of 

Kalman filters detect the intrusion successfully. 

 

Figure 4.12: Second-order system estimated states value when the system is attacked 

by constant signal at time 25 
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Figure 4.13: Second-order system estimated states value when the system is attacked 

by constant signal at time 25 with longer iterations 

 

Figure 4.14 presents the bank of Kalman filter estimation of second-order system being 

attacked by a ramp signal. The compromised states either go up or go down to a ramp 

signal provide an evidence that the bank of Kalman filter estimation also can be used to 

detect attacks. 
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Figure 4.14: Second-order system estimated states value when the system is attacked 

by the ramp signal at time 25 

 

 

4.3 Noise Effect on Bank of Kalman Filters 

 

This section will focus on how the process and measurement noise affect 

detection time. There are two convergence times, the first one measures how the bank of 

Kalman filters recognize the true system. The second convergence time is how long it 

takes the bank of Kalman filters to detect when the control system is corrupted by the 

false information. Both detections are significant, but the second one is the key to 

detecting false signals which is also the prime priority of this thesis work. The figure 

below explains what two convergence times are and how they are calculated. 
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 Figure 4.15: Explanation of convergence1 and convergence 2 

 

The figure above shows that how both convergence times are defined: setting up a 

threshold at 0.99, when the time blue line in the probability figure which stands for the 

true system exceeds the threshold, this time period is called convergence 1 and when the 

time red line which stands for the attacked system exceeds the threshold, it is then called 

convergence 2. 

 

4.3.1 Correlation Between Noise and Convergence Time 

 

 In order to find out the potential relationship between convergence time and the 

noise covariance, simulations between convergence times and the noise covariances are 

investigated.  

Conv1 

Conv2 

Probability 

Time Index k 

0.5 

1 
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 This thesis will use the first-order system which attacked by a constant signal 

discussed before for demonstrating the correlations and use several different noise 

covariance to do the simulations. Table 4.1 shows the covariance values chosen: 

 

Table 4.1: Noise covariance values chosen for convergence analysis for first order 

system attacked by the constant signal 

𝑉 W 

0.01 0.01 

0.02 0.02 

0.05 0.05 

0.1 0.1 

0.2 0.2 

0.5 0.5 

 

Selecting 𝑉, and 𝑊, for 6 values: 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5, thus there are 36 

combinations of simulations to discuss. By testing each one of the simulations 200 times, 

there is an average value for each case. The algorithm for probability calculation works 

well for each time of the simulation with the noise covariances. This proves that the 

algorithm is robust for detecting false information with a decent noise covariance.  

 

After running simulations, there are 36 data points of each convergence time. 

Figure 4.16 shows the result of simulations; this figure shows some simple relationship 

between the noise covariances and the convergence times. 
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Figure 4.16: Convergence time on the first-order system attacked by the constant signal 
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In this table, the x axis is the value of the noise covariances we choose, the y axis is the 

value for time, the blue dots are the values for convergence 1 and the red dots are the 

values for convergence 2. The blue line and the red line show that the trend of both 

convergence times in the sequence of both noise covariances from small to large values. 

For an example, when 𝑉 =0.05, and 𝑊=0.5, convergence 1 equals to 6.22, convergence 

2 equals to 6.315.  

 

From the tendency of the convergence time in the table, a simple conclusion is 

obvious: both the noise covariance  𝑉, and 𝑊, has a positive relation with the 

convergence time. But for validating this conclusion about the correlations between the 

noise covariances and the convergence times, the correlation plot between the noise 

covariances and the convergence times is needed. There are two correlation coefficients 

used in this work, the Pearson and the Spearman correlation coefficients. The Pearson 

correlation evaluates the linear relationship between two continuous variables and the 

Spearman correlation evaluates the monotonic relationship between two continuous or 

ordinal variables [29].  
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Figure 4.17: Correlation plot between noise covariance and convergence time for the 

first- order system attacked by constant signal using the Pearson correlation 

coefficient 
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Figure 4.18: Correlation plot between noise covariance and convergence time for the 

first- order system attacked by constant signal using the Spearman correlation 

coefficient 

 

 

Since the correlation plots are symmetric, only the cells on either the upper or 

lower part of the plot need to be considered. Each cell in the figures is the scatter plot of 

corresponding element on the x and y axis, the plot diagonal is the histogram of the 

element itself. The correlations between 𝑉, W and the convergence times are shown in the 

red circled parts of Figures 4.17 and 4.18. The red numbers in each cell are the 

correlation values of the elements the x, and y, axes; the larger the number is, the more 

correlated the elements are. Both plots suggest that the convergence times have a positive 

relationship with the noise covariance 𝑉, W. In addition, the convergence times are more 

related to process noise 𝑉 than measurement noise W in a positive way. This means the 
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intrusion detection will be affected more by the value of process noise than the value of 

measurement noise. Although the noise covariance of a control system generally cannot 

be changed while operating the system, this simulation result of the relationship tells the 

engineers if the Kalman filter is to distinguish the true system and detect the false system 

in as short in time as possible, a small noise covariance is helpful. 

 

In conclusion: both correlation plots show that the relationship between the noise 

covariances and the convergence times is a positive relation.  

 

4.4 Intrusion Detection by Using Sample Mean Values 

 

4.4.1 Intrusion Detection by Using Sample Mean Values with Known State 

 

Apart from the methods used above, there is one more method used for detecting 

the false information in the control system; that is comparing the state sample mean value 

for the original and attacked systems.  This work will continue to use a first-order system 

attacked by a constant signal as an example to illustrate this method. It is assumed that 

the state of the system is available, and by setting the initial sample mean value of the 

state to one, the difference between unharmed and harmed states is shown in the 

simulation. The models used are (2.1) and (3.2): 

 

𝑥𝑘+1 =  𝐴𝑥𝑘 +  𝐵𝑢𝑘 +  𝐹𝑣𝑘 (2.1) 
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𝑥𝑘+1 =  𝐴𝑥𝑘 +  𝐵ℎ𝑘 +  𝐹𝑣𝑘 (3.2) 

  

in which ℎ𝑘, is a constant signal that replaces the control input 𝑢𝑘 = −𝐾𝑐𝑥. The state 𝑥𝑘, 

is: 

 

𝑥̅𝑘 = (𝐴 +  𝐵𝐾𝑐)𝑘𝑥̅0 (4.1) 

 

Eq (3.2), can also be written as: 

 

𝑥𝑘 =  𝐴𝑘𝑥0 + ∑ 𝐴𝑘−𝑖−1𝑘−1
𝑖=0  (𝐵ℎ + 𝑣𝑖) (4.2)  

  

Thus, the mean value of the attacked system state is 

 

𝑥̅𝑘 =  𝐴𝑘𝑥̅0 + ∑ 𝐴𝑘−𝑖−1

𝑘−1

𝑖=0

 𝐵ℎ (4.3) 

 

The summation in (4.3) can be simplified to (𝐴𝑘 − 𝐼)(𝐴 − 𝐼)−1, therefore (4.3) becomes: 

 

𝑥̅𝑘 =  𝐴𝑘𝑥̅0 + (𝐴𝑘 − 𝐼)(𝐴 − 𝐼)−1 𝐵ℎ (4.4) 

 

From (4.1) and (4.4), the mean value of the system state for both original and attacked 

systems are obtained. If the simulations of the two equations are different, it can prove 

that the sample mean value of the original and attacked system are not the same. It also 
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means the sample mean value of the system state will change once the system is attacked 

by a false signal. So this method is another that can be used for detecting whether the 

control system is attacked or not. 

 

Figure 4.19: System state mean value in time when the system is not attacked by the 

false signal 
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Figure 4.20: System state mean value in time when the system is attacked by the 

constant signal with known state 

 

In Figure 4.19, the state mean value for the original system goes to zero. On the other 

hand, the mean value of the state for the system attacked with a constant actuator signal 

converges on a finite non-zero value. 

 

Figure 4.21 is an example of the control system is being attack by a constant 

signal at time index k=15: 
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Figure 4.21: System state mean value in time when the system is attacked by the 

constant signal with known state at time index k=15 

 

Figure 4.21 shows similar result of what we investigate in chapter 4, the sample mean 

value of the state goes to zero before time index k=15 and after this point, it goes to a 

non-zero constant value. 

 

4.4.2 Intrusion Detection by Using Sample Mean Values with Unknown State 

 

 When the state of the system is unknown, a Kalman filter can be used to estimate 

the state, recall (2.6): 

 

𝑥̂𝑘+1 =  𝐴𝑥̂𝑘 +  𝐵𝑢𝑘 +  𝐾𝑘(𝑦𝑘 − [𝐶𝑥̂𝑘 +  𝐷𝑢𝑘]) (2.6) 
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With the help of (2.6), the estimated value of state of the control system is known and 

there will not be a large deviation when comparing the estimated state value to the 

sample mean value of the state. It can be seen from Figure 4.22 that the estimated state 

value is very close to the sample mean value of the state. However, once the estimated 

state value deviates too much from sample mean value of the state, it can be considered 

as hacked. By setting up a threshold for the deviation, when the deviation exceeds the 

threshold, the system is then under attack. The result for the system without knowledge of 

the state is very similar to what is found by using the combined state estimate in a bank of 

Kalman filters. 

 

Figure 4.22: System state mean value in time when the system is attacked by the 

constant signal with unknown state 
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Thus, checking the mean value of the state for the control system is also a good 

method for detecting whether the system is attacked or not with or without knowledge of 

the state. 
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5. Conclusion and Future work 

 

5.1 Summary 

 

 In this thesis, the use of a bank of Kalman filter to detect an attack on a control 

system by the injection of false actuator signals is investigated. To document this 

investigation, an overview of the effects of  “hacking” on control systems to motivate this 

work is presented. The design process for Kalman filter and a bank of Kalman filters is 

summarized in chapter 2. In chapter 3, the first and second order system models used in 

this work together with the constant and ramp false actuator signals are discussed. By 

simulating the systems, states and outputs for both the unharmed and attacked situations 

are obtained. In chapter 4, intrusion detection using the probability calculation, the 

innovation sequence, and the bank of Kalman filters estimation as well as sample mean 

method are presented. 

 

5.2 Conclusion  

 

 The algorithm for detecting the false information in the control system works as 

expected. First and second order system are studied and intruded with constant and ramp 

signals. The algorithm of using a bank of Kalman filters to detect the false information is 

very robust. 
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 In chapter 4, the positive relationship between the noise covariances and both 

convergence times are discussed and shown. The analysis shows that the convergence 

times are more related to process noise 𝑉, than measurement noise W, in a positive way. 

 Finally, another method for detecting the false information is shown as well. 

Checking the sample mean value of the system state for the system is most suitable for 

the situations that we can easily calculate the mean value of the system state, since in this 

way engineers do not need a bank of Kalman filter to detect the false signal. 

 

5.3 Future Work 

 

 First, a model could be applied to this detection technique of an actual physical or 

electrical system. Since this work only used a mathematical model for the state space 

equation, engineers can design a real-life state space model which is observable to test it 

and this detection method is only used for a first and second order system, it can be 

expanded actual physical systems. 

 

 Second, the false signal used in this thesis are the constant and ramp signal, 

control system engineers can test this detection algorithm with some other false 

information such as sin wave or exponential signal.  

 

 The relationship between the noise covariance and convergence time can be 

investigated further, the concepts of needed shorten the delay time of detecting the false 

signal can be informed by simulations. 
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Last but not least, the last method, which is comparing the sample mean value of 

the original and attacked state in the control system can be applied to a real-life system as 

well. When the state of the control system is known, this method would be more efficient 

compared to a bank of Kalman filter detection. 
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APPENDIX A: MATLAB CODES 

A1. MATLAB Code for Intrusion Detection by Using a Bank of Kalman Filter 

for First-order System Attacked by Constant Signal 

 

%Cleaning 
clear all  
close all   
clc; 

  
% count=0; 
% counter=200 ; 
% store=NaN(counter,2); 
% mean_store=NaN(1,2); 
% for j=1:counter 

  
%Set time index 
tstop=100; 
t=1:tstop; 
%Load the noise for the system 
load('Vk.mat') 
load('Wk.mat') 
%Define noise covariances 
V=0.01;W=0.05;  

  
%Original First-order System matrices 
A=0.9;B=1;C=1;D=1;F=1;G=1; 
%Define the size of state and output of the original system 
x=NaN(2,tstop); 
y=NaN(1,tstop); 

  
%Initialize state for the original system 
x(1,1)=1; 
%Define new pole for the original system 
pole=0.4; 
%Calculate control gain 
Kc=-place(A,B,pole);    

  
%Attacked First-order System matrices 
A2=[A,B;0 1];C2=[C 1];F2=[F;0]; 
%Define switch point 
SwitchPoint=25;  
%Define constant signal value 
h=2; 
%Initialize state before and on switch point for the attacked system 
x(2,1:SwitchPoint-1)=0; 
x(2,SwitchPoint)=h; 

  
%A bank of Kalman filter settings 
%Define the size of error covariance, Kalman gain and estimated state 

of the attacked system 
p=NaN(1,tstop); 
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Kk=NaN(1,tstop); 
xhat1=NaN(1,tstop); 
%Initialize error covariance and estimated state for the original 

system 
p(1)=50; 
xhat1(1)=1; 

  
%Define the size of error covariance, Kalman gain and estimated state 

of the attacked system 
p2=NaN(2,2,tstop); 
Kk2=NaN(2,tstop); 
xhat2=NaN(2,tstop); 
%Initialize error covariance and estimated state for the attacked 

system 
p2(:,:,1)=50*eye(2); 
xhat2(:,1)=[1;0]; 

  
%Define the size of combined estimated state 
xhat=NaN(1,tstop); 
%Define the size of control input 
U=NaN(1,tstop); 
%Initialize conbined estimated state 
xhat(1)=0.5*xhat1(1)+0.5*xhat2(1,1); 
%Initialize control input  
U(1)=Kc*xhat(1); 
%Initialize and define the size of conditional probability 
pThetaY1=[0.5 NaN(1,length(t)-1)]; 
pThetaY2=[0.5 NaN(1,length(t)-1)]; 
%Define the size of innovation sequence 
y_tilde(1:2,1:length(t)) = NaN; 
%Initialize innovation sequence 
y_tilde(:,1)=0; 

  
%A bank of Kalman filter simulation in time 
for k=1:tstop 
    if k<SwitchPoint 
        %Original system before switch point 
        x(1,k+1)=A*x(1,k)+B*U(k)+Vk(k); 
        y(k)=C*x(1,k)+D*U(k)+G*Wk(k); 
    else 
        %Attacked system after switch point 
        x(:,k+1)=A2*x(:,k)+F2*Vk(k); 
        y(k)=C2*x(:,k) +G*Wk(k); 
    end 
    %Error covariance update equation of the original system       
    p(k+1)=A*p(k)*A'-(A*p(k)*C'*C*p(k)*A')/(C*p(k)*C'+W)+F*V*F'; 
    %Kalman gain update equation of the original system       
    Kk(k)=(A*p(k)*C')/(C*p(k)*C'+G*W*G'); 
    %Estimated state update equation of the original system   
    xhat1(k+1)=A*xhat1(k)+B*U(k)+Kk(k)*(y(k)-C*xhat1(k)); 

%Error covariance update equation of the attacked system  
p2(:,:,k+1)=A2*p2(:,:,k)*A2'-

(A2*p2(:,:,k)*C2'*C2*p2(:,:,k)*A2')/...                                        

   (C2*p2(:,:,k)*C2'+W)+F2*V*F2'; 
    %Kalman gain update equation of the attacked system  
    Kk2(:,k)=(A2*p2(:,:,k)*C2')/(C2*p2(:,:,k)*C2'+G*W*G'); 
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    %Estimated state update equation of the attacked system  
    xhat2(:,k+1)=A2*xhat2(:,k)+Kk2(:,k)*(y(k)-C2*xhat2(:,k)); 
    %Innovation squence update equation 
    y_tilde(:,k)=[y(k);y(k)]-[C*xhat1(k);C2*xhat2(:,k)]; 
    %Innovation covariance of the original system 
    y_covar_tilde1=C*p(k)*C'+G*W*G'; 
    %Innovation covariance of the attacked system 
    y_covar_tilde2=C2*p2(:,:,k)*C2'+G*W*G';  
    %Liklihood function of the original system 
    pYTheta1=(2*pi)^(-1/2)*sqrt(1/det(y_covar_tilde1))... 
        *exp(-0.5*y_tilde(1,k)'*eye/y_covar_tilde1*y_tilde(1,k)); 
    %Liklihood function of the attacked system 
    pYTheta2=(2*pi)^(-2/2)*sqrt(1/det(y_covar_tilde2))... 
        *exp(-0.5*y_tilde(2,k)'*eye/y_covar_tilde2*y_tilde(2,k)); 
    %Calculate condination probability 
    den=pYTheta1*pThetaY1(k)+pYTheta2*pThetaY2(k); 
    pThetaY1(k+1)=pYTheta1*pThetaY1(k)/den; 
    pThetaY2(k+1)=pYTheta2*pThetaY2(k)/den; 
    %Combined estimated state 
    xhat(k+1)=pThetaY1(k)*xhat1(k)+pThetaY2(k)*xhat2(1,k);  
    %Feedback control for calculating control input 
    U(k+1)=Kc*xhat(k+1); 
end 

  
%Plot combined Estimated state 
plot(t,xhat(1:end-1)); 
ylabel('Estimated state xhat') 
xlabel('Time Index k') 
%Plot innovation sequence  
figure 
plot(t,y_tilde(1,:)) 
ylabel('y tilde for constant input') 
xlabel('Time Index k') 
%Plot conditional probability 
figure 
plot(t,pThetaY1(1:end-1),'b',t,pThetaY2(1:end-1),'r') 
legend('first order system with true control input','first order system 

with constant input') 
ylabel('Conditional probability') 
xlabel('Time Index k') 
%Set a threshold 
thresh = 0.99; 
%Define convergence time one and two 
convergenceIndex = [find(pThetaY1 > thresh,1);find(pThetaY2 > 

thresh,1);]; 
%Display convergence time one and two 
disp('Convergence time:') 
t(convergenceIndex) 
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A2. MATLAB Code for Intrusion Detection by Using a Bank of Kalman Filter 

for First-order System Attacked by Ramp Signal 

 

%Cleaning 
clear all  
close all   
clc; 

  
%Set time index 
tstop=100; 
t=1:tstop; 
%Load the noise for the system 
load('Vk.mat') 
load('Wk.mat') 
%Define noise covariances 
V=0.01;W=0.05;  

  
%Original first-order System matrices 
A=0.9;B=1;C=1;D=1;F=1;G=1; 
%Define the size of state and output of the original system 
x=NaN(3,tstop); 
y=NaN(1,tstop); 
%Initialize state for the original system 
x(1,1)=1; 
%Define new pole for the original system 
pole=0.4; 
%Calculate control gain 
Kc=-place(A,B,pole);   

  
%Attacked first-order System matrices 
hA=[1,1;0 1]; 
A2=[A, B, zeros(1,1); 
    zeros(2,1),hA]; 
C2=[C,1,0];F2=[F;0;0]; 
%Define switch point 
SwitchPoint=25;  
%Initialize state before and on switch point for the attacked system 
x(2:end,1:SwitchPoint-1)=0; 
x(2:end,SwitchPoint)=[1;0.02]; 

  
%A bank of Kalman filter settings 
%Define the size of error covariance, Kalman gain and estimated state 

of the attacked system 
p=NaN(1,tstop); 
Kk=NaN(1,tstop); 
xhat1 = NaN(1,tstop); 
%Initialize error covariance and estimated state for the original 

system 
p(1)=50; 
xhat1(1)=1; 

  
%Define the size of error covariance, Kalman gain and estimated state 

of the attacked system 
p2=NaN(3,3,tstop); 
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Kk2=NaN(3,tstop); 
xhat2= NaN(3,tstop); 
%Initialize error covariance and estimated state for the attacked 

system 
p2(:,:,1)=50*eye(3); 
xhat2(:,1)=[1;0;0]; 

  
%Define the size of combined estimated state 
xhat=NaN(1,tstop); 
%Define the size of control input 
U=NaN(1,tstop); 
%Initialize conbined estimated state 
xhat(1)= 0.5 * xhat1(1) + 0.5 * xhat2(1,1); 
%Initialize control input 
U(1)=Kc*xhat(1); 
%Initialize and define the size of conditional probability 
pThetaY1=[0.5 NaN(1,length(t)-1)];  
pThetaY2=[0.5 NaN(1,length(t)-1)];  
%Define the size of innovation sequence 
y_tilde(1:2,1:length(t))=NaN; 
%Initialize innovation sequence 
y_tilde(:,1)=0; 

  
%A bank of Kalman filter simulation in time 
for k=1:tstop 
    if k<SwitchPoint 
        %Original system before switch point 
        x(1,k+1)=A*x(1,k)+B*U(k)+Vk(k); 
        y(k)=C*x(1,k)+D*U(k)+G*Wk(k); 
    else 
        %Attacked system after switch point 
        x(:,k+1)=A2*x(:,k) + F2*Vk(k);       
        y(k)=C2*x(:,k) + G*Wk(k); 

         
    end 
    %Error covariance update equation of the original system  
    p(k+1)=A*p(k)*A'-(A*p(k)*C'*C*p(k)*A')/(C*p(k)*C'+W)+F*V*F'; 
    %Kalman gain update equation of the original system   
    Kk(k)=(A*p(k)*C')/(C*p(k)*C'+G*W*G'); 
    %Estimated state update equation of the original system  
    xhat1(k+1)=A*xhat1(k)+B*U(k)+Kk(k)*(y(k)-C*xhat1(k)); 
    %Error covariance update equation of the attacked system 

p2(:,:,k+1)=A2*p2(:,:,k)*A2'(A2*p2(:,:,k)*C2'*C2*p2(:,:,k)*A2')/... 

    (C2*p2(:,:,k)*C2'+W)+F2*V*F2'; 

    %Kalman gain update equation of the attacked system 
    Kk2(:,k)=(A2*p2(:,:,k)*C2')/(C2*p2(:,:,k)*C2'+G*W*G'); 
    %Estimated state update equation of the attacked system  
    xhat2(:,k+1)=A2*xhat2(:,k)+Kk2(:,k)*(y(k)-C2*xhat2(:,k)); 
    %Innovation squence update equation 
    y_tilde(:,k)=[y(k);y(k)]-[C*xhat1(k);C2*xhat2(:,k)]; 
    %Innovation covariance of the original system 
    y_covar_tilde1=C*p(k)*C'+G*W*G'; 
    %Innovation covariance of the attacked system 
    y_covar_tilde2=C2*p2(:,:,k)*C2'+G*W*G'; 
    %Liklihood function of the original system 
    pYTheta1=(2*pi)^(-1/2)*sqrt(1/det(y_covar_tilde1))... 
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        *exp(-0.5*y_tilde(1,k)'*eye/y_covar_tilde1*y_tilde(1,k)); 
    %Liklihood function of the attacked system 
    pYTheta2=(2*pi)^(-3/2)*sqrt(1/det(y_covar_tilde2))... 
        *exp(-0.5*y_tilde(2,k)'*eye/y_covar_tilde2*y_tilde(2,k)); 
    %Calculate condination probability 
    den=pYTheta1*pThetaY1(k)+pYTheta2*pThetaY2(k); 
    pThetaY1(k+1)=pYTheta1*pThetaY1(k)/den; 
    pThetaY2(k+1)=pYTheta2*pThetaY2(k)/den; 
    %Combined estimated state 
    xhat(k+1)=pThetaY1(k)*xhat1(k)+pThetaY2(k)*xhat2(1,k);  
    %Feedback control for calculating control input 
    U(k+1)=Kc*xhat(k+1); 
end 

  
%Plot combined Estimated state 
plot(t,xhat(1:end-1)); 
ylabel('Estimated state xhat') 
xlabel('Time Index k') 
%Plot innovation sequence  
figure 
plot(t,y_tilde(1,:)) 
ylabel('y tilde for ramp input') 
xlabel('Time Index k') 
%Plot conditional probability 
figure 
plot(t,pThetaY1(1:end-1),'b',t,pThetaY2(1:end-1),'r') 
legend('first order system with true control input','first order system 

with ramp input') 
ylabel('Conditional probability') 
xlabel('Time Index k') 
%Set a threshold 
thresh = 0.99; 
%Define convergence time one and two 
convergenceIndex = [find(pThetaY1 > thresh,1);find(pThetaY2 > 

thresh,1);]; 
%Display convergence time one and two 
disp('Convergence time:') 
t(convergenceIndex) 
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A3. MATLAB Code for Intrusion Detection by Using a Bank of Kalman Filter 

for Second-order System Attacked by Constant Signal 

 

%Cleaning 
clear all 
close all 
clc; 

  
%Set time index 
tstop=100; 
t=1:tstop; 
%Load the noise for the system 
load('Vk1.mat') 
load('Vk2.mat') 
load('Wk.mat') 
%Define noise covariances 
V=0.1;W=0.5;  

  
%Original second-order System matrices 
A=[0,0.8;-0.8,-0.8];B=[1;0];C=[1,0];D=1;F=eye(2);G=1; 
%Define the size of state and output of the original system 
x=NaN(3,tstop); 
y=NaN(1,tstop); 
%Initialize state for the original system 
x(1:2,1)=[1,1]; 
%Define new pole for the original system 
pole=[0.4,-0.4]; 
%Calculate control gain 
Kc=-place(A,B,pole); 

  
%Attacked second-order System matrices 
A2=[A, B;0,0,1];C2=[C,1];F2=[F;zeros(1,2)]; 
%Define switch point 
SwitchPoint=25; 
%Define constant signal value 
h=8; 
%Initialize state before and on switch point for the attacked system 
x(3,1:SwitchPoint-1)=0; 
x(3,SwitchPoint)=h; 

  
%A bank of Kalman filter settings 
%Define the size of estimated state, error covariance and Kalman gain 

of the original system 
xhat1 = NaN(2,tstop); 
p=NaN(2,2,tstop); 
Kk=NaN(2,tstop); 
%Initialize error covariance and estimated state for the original 

system 
p(:,:,1)=eye(2)*50; 
xhat1(:,1)=[1;1]; 

  
%Define the size of error covariance, Kalman gain and estimated state 

of the attacked system 
p2=NaN(3,3,tstop); 
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Kk2=NaN(3,tstop); 
xhat2= NaN(3,tstop); 
%Initialize error covariance and estimated state for the attacked 

system 
p2(:,:,1)=50*eye(3); 
xhat2(:,1)=[1;1;0]; 

  
%Define the size of combined estimated state 
xhat=NaN(2,tstop); 
%Define the size of control input 
U=NaN(1,tstop); 
%Initialize conbined estimated state 
xhat(:,1)=0.5*xhat1(:,1)+0.5*xhat2(1:2,1); 
%Initialize control input  
U(1)=Kc*xhat(:,1); 
%Initialize and define the size of conditional probability 
pThetaY1 = [0.5 NaN(1,length(t)-1)];  
pThetaY2 = [0.5 NaN(1,length(t)-1)];  
%Define the size of innovation sequence 
y_tilde(1:2,1:length(t)) = NaN; 
%Initialize innovation sequence 
y_tilde(:,1)=0; 

  
%A bank of Kalman filter simulation in time 
for k=1:tstop 
    if k<SwitchPoint 
        %Original system before switch point 
        x(1:2,k+1)=A*x(1:2,k)+B*U(k)+F*[Vk1(:,k);Vk2(:,k)]; 
        y(k)=C*x(1:2,k)+D*U(k)+G*Wk(k); 
    else 
        %Attacked system after switch point 
        x(:,k+1)=A2*x(:,k)+F2*[Vk1(:,k);Vk2(:,k)]; 
        y(k)=C2*x(:,k)+G*Wk(k); 
    end 
    %Error covariance update equation of the original system  

p(:,:,k+1)=A*p(:,:,k)*A'-(A*p(:,:,k)*C'*C*p(:,:,k)*A')/... 

    (C*p(:,:,k)*C'+W)+F*[V,0;0,V]*F'; 
    %Kalman gain update equation of the original system   
    Kk(:,k)=(A*p(:,:,k)*C')/(C*p(:,:,k)*C'+G*W*G'); 
    %Estimated state update equation of the original system   
    xhat1(:,k+1)=A*xhat1(:,k)+B*U(k)+Kk(:,k)*(y(k)-C*xhat1(:,k)); 
    %Error covariance update equation of the attacked system 

p2(:,:,k+1)=A2*p2(:,:,k)*A2'(A2*p2(:,:,k)*C2'*C2*p2(:,:,k)*A2')/... 

    (C2*p2(:,:,k)*C2'+W)+F2*[V,0;0,V]*F2'; 
    %Kalman gain update equation of the attacked system  
    Kk2(:,k)=(A2*p2(:,:,k)*C2')/(C2*p2(:,:,k)*C2'+G*W*G'); 
    %Estimated state update equation of the attacked system  
    xhat2(:,k+1)=A2*xhat2(:,k)+Kk2(:,k)*(y(k)-C2*xhat2(:,k)); 
    %Innovation squence update equation 
    y_tilde(:,k)= [y(k);y(k)]-[C*xhat1(:,k);C2*xhat2(:,k)];  
    %Innovation covariance of the original system 
    y_covar_tilde1=C*p(:,:,k)*C'+G*W*G'; 
    %Innovation covariance of the attacked system 
    y_covar_tilde2=C2*p2(:,:,k)*C2'+G*W*G'; 
    %Liklihood function of the original system 
    pYTheta1= (2*pi)^(-2/2)*sqrt(1/det(y_covar_tilde1))... 
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        *exp(-0.5*y_tilde(1,k)'*eye/y_covar_tilde1*y_tilde(1,k)); 
    %Liklihood function of the attacked system 
    pYTheta2= (2*pi)^(-3/2)*sqrt(1/det(y_covar_tilde2))... 
        *exp(-0.5*y_tilde(2,k)'*eye/y_covar_tilde2*y_tilde(2,k)); 
    %Calculate condination probability 
    den = pYTheta1*pThetaY1(k) + pYTheta2*pThetaY2(k); 
    pThetaY1(k+1) = pYTheta1*pThetaY1(k)/den; 
    pThetaY2(k+1) = pYTheta2*pThetaY2(k)/den; 
    %Combined estimated state 
    xhat(:,k+1) = pThetaY1(k)*xhat1(:,k)+pThetaY2(k)*xhat2(1:2,k); 
    %Feedback control for calculating control input 
    U(k+1)=Kc*xhat(:,k+1); 

     
end 

  
%Plot combined Estimated state 
plot(t,xhat(:,1:end-1)); 
ylabel('Estimated state xhat') 
xlabel('Time Index k') 
legend('Estimated state 1 ','Estimated state 2','location','best') 
%Plot innovation sequence  
figure 
plot(t,y_tilde(1,:)) 
ylabel('y tilde for constant input') 
xlabel('Time Index k') 
%Plot conditional probability 
figure 
plot(t,pThetaY1(1:end-1),'b',t,pThetaY2(1:end-1),'r') 
legend('second order system with true control input','second order 

system with constant input') 
ylabel('Conditional probability') 
xlabel('Time Index k') 
%Set a threshold 
thresh = 0.99; 
%Define convergence time one and two 
convergenceIndex = [find(pThetaY1 > thresh,1);find(pThetaY2 > 

thresh,1);]; 
%Display convergence time one and two 
disp('Convergence time:') 
t(convergenceIndex) 
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A4. MATLAB Code for Intrusion Detection by Using a Bank of Kalman Filter 

for Second-order System Attacked by Ramp Signal 

 

%Cleaning 
clear all 
close all 
clc; 

  
%Set time index 
tstop=100; 
t=1:tstop; 
%Load the noise for the system 
load('Vk1.mat'); 
load('Vk2.mat'); 
load('Wk.mat'); 
%Define noise covariances 
V=0.1;W=0.5; 

  
%Original second-order System matrices 
A=[0,0.8;-0.8,-0.8];B=[1;0];C=[1,0];D=1;F=eye(2);G=1; 
%Define the size of state and output of the original system 
x=NaN(4,tstop); 
y=NaN(1,tstop); 
%Initialize state for the original system 
x(1:2,1)=[1,1]; 
%Define new pole for the original system 
pole=[0.4,-0.4]; 
%Calculate control gain 
Kc=-place(A,B,pole); 

  
%Attacked second-order System matrices 
hA=[1,1;0 1]; 
A2=[A, B, zeros(2,1); 
    zeros(2,2),hA]; 
C2=[C,1,0];F2=[F;zeros(2)]; 
%Define switch point 
SwitchPoint=25; 
%Initialize state before and on switch point for the attacked system 
x(3:end,1:SwitchPoint-1)=0; 
x(3:end,SwitchPoint)=[1;0.2]; 

  
%A bank of Kalman filter settings 
%Define the size of error covariance, Kalman gain and estimated state 

of the attacked system 
p=NaN(2,2,tstop); 
Kk=NaN(2,tstop); 
xhat1 = NaN(2,tstop); 
p(:,:,1)=eye(2)*50; 
xhat1(:,1)=[1;1]; 

  
%Define the size of error covariance, Kalman gain and estimated state 

of the attacked system 
p2=NaN(4,4,tstop); 
Kk2=NaN(4,tstop); 
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xhat2= NaN(4,tstop); 
%Initialize error covariance and estimated state for the attacked 

system 
p2(:,:,1)=50*eye(4); 
xhat2(:,1)=[1;1;0;0]; 

  
%Define the size of combined estimated state 
xhat=NaN(2,tstop); 
%Define the size of control input 
U=NaN(1,tstop); 
%Initialize conbined estimated state 
xhat(:,1)=0.5*xhat1(:,1)+0.5*xhat2(1:2,1); 
%Initialize control input 
U(1)=Kc*xhat(:,1); 
%Initialize and define the size of conditional probability 
pThetaY1=[0.5 NaN(1,length(t)-1)];  
pThetaY2=[0.5 NaN(1,length(t)-1)];  
%Define the size of innovation sequence 
y_tilde(1:2,1:length(t))=NaN; 
%Initialize innovation sequence 
y_tilde(:,1)=0; 

  
%A bank of Kalman filter simulation in time 
for k=1:tstop 
    if k<SwitchPoint 
        %Original system before switch point 
        x(1:2,k+1)=A*x(1:2,k)+B*U(k)+F*[Vk1(:,k);Vk2(:,k)]; 
        y(k)=C*x(1:2,k)+D*U(k)+G*Wk(k); 
    else 
        %Attacked system after switch point 
        x(:,k+1)=A2*x(:,k) + F2*[Vk1(:,k);Vk2(:,k)]; 
        y(k)=C2*x(:,k) + G*Wk(k); 
    end 
    %Error covariance update equation of the original system  

p(:,:,k+1)=A*p(:,:,k)*A'-(A*p(:,:,k)*C'*C*p(:,:,k)*A')/... 

    (C*p(:,:,k)*C'+W)+F*[V,0;0,V]*F'; 
    %Kalman gain update equation of the original system  
    Kk(:,k)=(A*p(:,:,k)*C')/(C*p(:,:,k)*C'+G*W*G'); 
    %Estimated state update equation of the original system  
    xhat1(:,k+1)=A*xhat1(:,k)+B*U(k)+Kk(:,k)*(y(k)-C*xhat1(:,k)); 
    %Error covariance update equation of the attacked system 

p2(:,:,k+1)=A2*p2(:,:,k)*A2'(A2*p2(:,:,k)*C2'*C2*p2(:,:,k)*A2')/... 

    (C2*p2(:,:,k)*C2'+W)+F2*[V,0;0,V]*F2'; 
    %Kalman gain update equation of the attacked system 
    Kk2(:,k)=(A2*p2(:,:,k)*C2')/(C2*p2(:,:,k)*C2'+G*W*G'); 
    %Estimated state update equation of the attacked system 
    xhat2(:,k+1)=A2*xhat2(:,k)+zeros(4,1)+Kk2(:,k)*(y(k)- ... 

  C2*xhat2(:,k)); 
    %Innovation squence update equation 
    y_tilde(:,k)= [y(k);y(k)]-[C*xhat1(:,k);C2*xhat2(:,k)]; 
    %Innovation covariance of the original system 
    y_covar_tilde1=C*p(:,:,k)*C'+G*W*G'; 
    %Innovation covariance of the attacked system 
    y_covar_tilde2=C2*p2(:,:,k)*C2'+G*W*G'; 
    %Liklihood function of the original system 
    pYTheta1= (2*pi)^(-2/2)*sqrt(1/det(y_covar_tilde1))... 
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        *exp(-0.5*y_tilde(1,k)'*eye/y_covar_tilde1*y_tilde(1,k)); 
    %Liklihood function of the attacked system 
    pYTheta2= (2*pi)^(-4/2)*sqrt(1/det(y_covar_tilde2))... 
        *exp(-0.5*y_tilde(2,k)'*eye/y_covar_tilde2*y_tilde(2,k)); 
    %Calculate condination probability 
    den = pYTheta1*pThetaY1(k) + pYTheta2*pThetaY2(k); 
    pThetaY1(k+1) = pYTheta1*pThetaY1(k)/den; 
    pThetaY2(k+1) = pYTheta2*pThetaY2(k)/den; 
    %Combined estimated state 
    xhat(:,k+1) = pThetaY1(k)*xhat1(:,k)+pThetaY2(k)*xhat2(1:2,k); 
    %Feedback control for calculating control input 
    U(k+1)=Kc*xhat(:,k+1); 
end 

  
%Estimated states 
plot(t,xhat(:,1:end-1)); 
ylabel('Estimated state xhat') 
xlabel('Time Index k') 
legend('Estimated state 1 ','Estimated state 2','location','best') 
%Plot innovation sequence  
figure 
plot(t,y_tilde(1,:)) 
ylabel('y tilde for ramp input') 
xlabel('Time Index k') 
%Plot conditional probability 
figure 
plot(t,pThetaY1(1:end-1),'b',t,pThetaY2(1:end-1),'r') 
legend('second order system with true control input','second order 

system with ramp signal') 
ylabel('Conditional probability') 
xlabel('Time Index k') 
%Set a threshold 
thresh = 0.99; 
%Define convergence time one and two 
convergenceIndex = [find(pThetaY1 > thresh,1);find(pThetaY2 > 

thresh,1);]; 
%Display convergence time one and two 
disp('Convergence time:') 
t(convergenceIndex) 

  



96 

 

 

 

A5. MATLAB Code for Intrusion Detection by Using Sample Mean Method 

 

%Cleaning 
clear all 
close all 
clc; 

  
%Set time index 
tstop=100; 
t=1:tstop; 
%Load the noise for the system 
load('Vk.mat') 
load('Wk.mat') 
%Define noise covariances 
V=0.01;W=0.05;  

  
%Original First-order System matrices 
h=2;A=0.9;B=1;C=1;D=1;F=1;G=1; 
%Define the size of sample mean value of state  
x_mean=NaN(1,tstop); 
%Initialize sample mean value of state 
x_mean(1)=1; 
%Define switch point 
switchpoint=15; 
%Define new pole for the original system 
pole=0.4; 
%Calculate control gain 
Kc=-place(A,B,pole);    

  
%Sample mean value of state simulation in time 
for k=1:tstop 
    if k<switchpoint; 
        %Original system before switch point 
        x_mean(k+1)=(A+B*Kc)^k*x_mean(1); 
    else 
        %Attacked system before switch point 
        x_mean(k)=(A^k)*x_mean(1)+((A^k)-1)*((A-1)^-1)*B*h; 
    end 
end 

  
%Plot sample mean value of the state 
figure 
plot(t,x_mean) 
xlabel('Time Index k') 
ylabel('Sample Mean Value of State') 
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