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ABSTRACT: DGCR8 is the RNA-binding partner of the
nuclease Drosha. Their complex (the “Microprocessor”) is
essential for processing of long, primary microRNAs (pri-
miRNAs) in the nucleus. Binding of heme to DGCR8 is
essential for pri-miRNA processing. On the basis of the split
Soret ultraviolet−visible (UV−vis) spectrum of ferric DGCR8,
bis-thiolate sulfur (cysteinate, Cys−) heme iron coordination of
DGCR8 heme iron was proposed. We have characterized
DGCR8 heme ligation using the Δ276 DGCR8 variant and
combined electron paramagnetic resonance (EPR), magnetic
circular dichroism (MCD), electron nuclear double resonance,
resonance Raman, and electronic absorption spectroscopy.
These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys−/Cys−) axial coordination in
ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8’s
optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV−vis
absorption spectra of the FeII and FeII−CO forms indicate discrete species exhibiting peaks with absorption coefficients
substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron−nuclear
double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate
coordination in this form. UV−vis MCD and near-infrared MCD provide data consistent with this conclusion. UV−vis MCD
data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the
ferrous−CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine
coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

MicroRNAs (miRNAs) make up a large family of short
(∼22-nucleotide) noncoding RNAs with fundamental

roles in the regulation of cellular function in animals and plants
and in certain viruses. Most animal miRNAs base pair
(imperfectly) to sequence regions in the 3′-untranslated region
(UTR) of their target mRNAs.1 In so doing, they cause
inhibition of protein synthesis by either repressing translation
or promoting the deadenylation and degradation of the
mRNA.2−5 The crucial importance of miRNAs in gene
regulation is now well understood, and it is thought that
miRNAs control the activity of more than half of all mammalian
protein-coding genes.1

In the canonical route for their production, miRNAs are
synthesized in a multistage pathway that begins in the nucleus
with transcription of long (often kilobase) primary miRNA
(pri-miRNA) species by RNA polymerase II, usually with both
a 5′ cap and a poly-A tail.6,7 Pri-miRNA has an ∼80-base
hairpin, flanked at both the 3′ and 5′ ends by single-stranded
RNA.8 These pri-miRNA transcripts are cleaved into shorter

(∼65-nucleotide) precursor miRNA (pre-miRNA) hairpins9,10

by the RNase III enzyme Drosha.11 Drosha is incapable of pri-
miRNA cleavage in isolation, instead working as part of the
Microprocessor complex with DGCR8 (DiGeorge critical
region 8 protein).12−15 Drosha contains two RNase III domains
(RIIIDa and RIIIDb) that cleave the 3′ strand and 5′ strand of
the pre-miRNA, respectively, leaving an overhang on the 3′
protruding end for recognition by Exportin 5.10,11 Following
nuclear export by Exportin 5, the pre-miRNA is further cleaved
by the RNase III enzyme Dicer, forming a 22-nucleotide
miRNA:miRNA* duplex.16−18 One strand of the duplex
remains as the mature miRNA, becoming incorporated into
the miRISC (miRNA-induced silencing complex),19,20 where
the miRNA base pairs to target mRNA, usually in the 5′ UTR
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(5′-untranslated region), inducing either translational repres-
sion or mRNA degradation.2−5 The other strand (the
“passenger” miRNA, or miRNA*) is typically released and
degraded but can also be incorporated into the miRISC
complex and function as a bona fide miRNA.21−23 Alternative
routes for miRNA biogenesis that do not rely on one or both of
the Microprocessor or Dicer systems have been discovered.24

For example, in the mirtron pathway, short hairpins are
generated with splice acceptor and donor sites, and a splicing
event replaces the Drosha cleavage step before the pathway
continues as described above. Alternatively, miRNA synthesis
can occur in a Microprocessor-dependent, Dicer-independent
manner in which pre-miRNA is loaded into Argonaute (a
catalytic component of the miRISC complex) and in which a
number of further cleavage steps ultimately result in miRNA
formation.1,24

The processing of long pri-miRNA transcripts into shorter
pre-miRNAs by the Microprocessor complex is a key step in
the canonical pathway of miRNA generation. The Drosha
RNase III is crucial for nuclear miRNA processing and is a key
component of the Microprocessor.11 However, it is incapable of
miRNA cleavage without its DGCR8 partner.12−15 DGCR8 is a
773-amino acid protein that contains two dsRNA-binding
domains at the C-terminus25 and a WW motif13 and also binds
a heme prosthetic group.26 DGCR8 can be truncated into an
active form named NC1 (amino acids 276−751) that contains
both the heme-binding domain (HBD, amino acids 276−498)
and two double-stranded RNA-binding domains (amino acids
499−751) followed by a short tail region.10 A dimerization
domain was also identified within the independently folded
HBD (amino acids 276−353), and its crystal structure was
determined in a dimeric state. These data revealed a key role for
the WW motif region in formation of the domain-swapped
dimer and implicated this region in association with the heme
cofactor in DGCR8.27 The dsRNA-binding domains of
DGCR8 form the binding site for pri-miRNA,8 and the C-
terminal region is responsible for Drosha’s interactions with
DGCR8.28 DGCR8 and Drosha are the minimum requirement
for the processing of pri-miRNA to pre-miRNA.13,15 However,
other proteins, including p53 and nucleolin, bind to the
Microprocessor complex to influence its activity, by either
increasing or decreasing the rate of processing of a subset of
miRNAs.29,30 Heme-bound DGCR8 is essential for the catalytic
function of the Microprocessor complex.31 Quick-Cleveland et
al. showed that the HBD is crucial for the binding and
recognition of pri-miRNA by DGCR8 and that heme is
essential for producing processing-competent DGCR8/pri-
miRNA complexes.32

Early studies proposed that axial coordination of DGCR8
heme b came from a cysteine residue,26 potentially making
DGCR8 a member of the growing class of heme thiolate
proteins. Other notable heme thiolate proteins are the widely
studied cytochrome P450 (P450 or CYP) monooxygenases and
the nitric oxide synthases that catalyze oxidative transformation
of L-arginine to L-citrulline and nitric oxide.33 Numerous
examples of heme thiolate proteins have been discovered with
diverse functions. These include the heme sensors Rev-erbα
and Rev-erbβ, which are nuclear receptors and transcriptional
repressors and bind heme to allow interaction with corepressor
proteins and to regulate transcription in circadian rhythm
pathways.34 Another example is the CO-sensing transcription
factor CooA from Rhodospirillum rubrum, a bacterium that uses
CO as a carbon source under anaerobic conditions. CooA uses

a ligand switching mechanism whereby a cysteine ligand to the
heme iron is displaced by a histidine when the heme iron is
reduced. In the dimeric CooA structure, the other axial ligand
comes from the N-terminal proline of the opposite monomer.
This proline is displaced by CO, and the structural change
induced permits the exposure of DNA-binding domains in
CooA. The transcriptionally competent CooA can then activate
the expression of genes required for oxidation of CO to CO2
and for the reduction of protons to H2.

34,35

Previous studies of DGCR8 reported that Cys352 is involved
in heme binding, although the identity of the axial ligand trans
to the cysteine was not identified.26 Barr et al. then reported
spectroscopic data consistent with bis-cysteine ligation of the
heme iron and suggested that a single heme was coordinated by
Cys352 side chains from both DGCR8 proteins in a dimer. The
ferric heme form was later identified as being crucial for pri-
miRNA processing, with the ferrous heme form being inactive
and exhibiting an increased rate of dissociation of heme from
the protein. In the previous study, the axial coordination state
of the frog DGCR8-bound ferrous heme was not clearly
established, but it was inferred that cysteine ligation was lost
and that the ferrous heme might exist in heterogeneous spin
and coordination states.36 In this study, we report a detailed
analysis of the heme-binding site of DGCR8 using a range of
spectroscopic techniques. The results allow us to assign the
active ferric heme form of the human DGCR8 protein as the
first bis-Cys-ligated protein and to provide data supporting the
retention of cysteine coordination of the heme iron in the
ferrous form of this physiologically important enzyme.

■ EXPERIMENTAL PROCEDURES
DCGR8 Cloning, Overexpression, and Purification.

The DGCR8 gene was obtained as Addgene plasmid 10921
from the Tuschl group.15 A 276-N-terminal amino acid
truncation was generated by polymerase chain reaction
(PCR), with mutagenic oligonucleotides creating an NdeI
restriction enzyme site at the new start codon and a
downstream BglII site in the 3′ oligonucleotide (forward
primer 5′-ggcggagacagcgaccatcatatggatggagagacaagtg-3′ and
reverse primer 5′-ctagatatctcgagatctgccgctcacacgtccacggtgca-
cag-3′, where NdeI and BglII sites are underlined in the
forward and reverse primer, respectively). The PCR product
was then cloned into pET15b, which provides a six-His N-
terminal tag to the truncated DGCR8, and the correct DNA
sequence was verified by complete sequencing of the cloned
gene (Source BioScience, Rochdale, U.K.).
The Δ276 DGCR8 (the 276-N-terminal amino acid

truncated form of DGCR8) was expressed in Escherichia coli
BL21(DE3) cells. Transformant cell cultures were grown while
being shaken at 37 °C until an OD600 of 0.8 was reached. The
incubation temperature was then decreased to 18 °C and
DGCR8 gene expression induced by addition of 0.25 mM
isopropyl β-D-1-thiogalactopyranoside (IPTG), along with δ-
aminolevulinic acid (0.2 mM) to promote heme synthesis and
incorporation. Cultures were harvested by centrifugation
following cell growth for a further 18 h post-IPTG induction.
Bacterial cells were resuspended in 50 mM Tris (pH 8.0) and
200 mM KCl buffer at 4 °C (binding buffer). The cells were
lysed by sonication using a Bandelin Sonopuls sonicator (10
passes at 40% full power), and DGCR8 was purified by affinity
chromatography, using nickel-NTA resin (Generon, Maiden-
head, U.K.) as a first step. The protein was bound to the
column, washed in binding buffer, and then eluted with binding

Biochemistry Article

DOI: 10.1021/acs.biochem.6b00204
Biochemistry 2016, 55, 5073−5083

5074

http://dx.doi.org/10.1021/acs.biochem.6b00204


buffer and 100 mM imidazole. The protein was exchanged into
binding buffer and loaded onto a heparin Sepharose 6 Fast
Flow column (GE Healthcare, Little Chalfont, U.K.), prior to
elution with binding buffer with 500 mM KCl. Pure DGCR8
protein was obtained using a final gel filtration step on a 16/600
S200 gel filtration column (GE Healthcare), with the same
binding buffer. Purity was assessed by sodium dodecyl sulfate−
polyacrylamide gel electrophoresis using a Mini-PROTEAN
TGX Stain-Free 10% gel system (Bio-Rad, Hemel Hempstead,
U.K.) and by ultraviolet−visible (UV−vis) spectroscopic
comparison between total protein absorbance (A280) and the
specific DGCR8 heme absorbance (A450).
Preparation of RNA. The 63-nucleotide pre-miR30a and

151-nucleotide pri-miR30a complementary DNAs were synthe-
sized (Eurofins, Ebersberg, Germany) on the basis of sequences
detailed in the miRBase database37 and as described by Lee et
al.11 for pre- and pri-miR30a, respectively. DNA was cloned
into a plasmid containing a 3′ hepatitis delta virus (HDV)
ribozyme for the generation of transcripts without heteroge-
neous 3′ ends.38 Plasmids were linearized with XbaI, the site for
which is downstream of the HDV ribozyme, and in vitro
transcription was conducted by the method of Gurevich.39

Transcripts were dialyzed to remove salt and free nucleotides,
reconcentrated by ultrafiltration using a 30000 molecular
weight cutoff Vivaspin (Sartorius, Goettingen, Germany), and
purified from the HDV ribozyme by electrophoresis on a 12%
acrylamide, 50% urea gel. The relevant RNA band was
visualized by RNA shadowing, excised from the gel, and then
purified by the crush and soak method.40

UV−Vis Spectroscopy. All UV−vis spectral measurements
were made on a Cary 50 Bio spectrophotometer (Varian) with
a 1 cm path length cuvette. Unless otherwise stated, all spectra
were recorded in 50 mM Tris (pH 8.0) and 500 mM KCl
containing 10% glycerol at 20 °C. The DGCR8 heme content
was quantified using a coefficient ε450 of 70 mM−1 cm−1 for the
oxidized (ferric) hemoprotein. This value was calculated using
the pyridine hemochromagen method.41

Magnetic Circular Dichroism (MCD) Spectroscopy.
MCD spectra were recorded using JASCO J/810 and J/730
spectropolarimeters in the UV−vis and near-IR (NIR) regions,
respectively, at 20 °C. A magnetic field of 6 T was generated
using an Oxford Instruments superconducting solenoid with a
25 mm ambient bore. A 0.1 cm path length quartz cuvette was
used to record near-IR spectra with a 70 μM DGCR8 sample in
50 mM Tris (pH 8.0), 500 mM KCl, and 10% glycerol. UV−vis
spectra were also recorded for a 70 μM sample, but here using
buffer prepared in deuterium oxide (otherwise as described
above) and following extensive dialysis of the sample into the
deuterated buffer. A reduced DGCR8 sample was prepared by
adding sodium dithionite to a 185 μM sample of DGCR8 in an
anaerobic glovebox environment. After incubation for 4 h at 20
°C to ensure extensive reduction of the DGCR8 heme iron,
electronic absorption and MCD spectra were recorded in the
UV−vis region. Minor spectral contributions from residual
amounts of ferric DGCR8 (∼15%) were accounted for by
determining the proportion of ferric DGCR8 (with reference to
the oxidized DGCR8 spectrum) and by subtracting this
component from the obtained ferrous DGCR8 spectrum.
Electron Paramagnetic Resonance (EPR) and Elec-

tron−Nuclear Double Resonance (ENDOR) Spectro-
scopic Analysis of DGCR8. Spectra were recorded at 10 K
and X-band (∼9.5 GHz) using a Bruker ELEXSYS E500/E580
spectrometer equipped with a Bruker ER 4123SHQE resonator

together with an Oxford Instruments ESR900 cryostat for EPR
measurements, and a Bruker EN 4118X-MD-4 resonator
together with an Oxford instruments CF935 cryostat for
ENDOR measurements. DGCR8 spectra of a 225 μM sample
in 50 mM Tris (pH 8.0), 500 mM KCl, and 10% glycerol were
recorded. A sample was also exchanged into deuterated buffer
of the same composition by extensive dialysis, and an ENDOR
spectrum was then recorded at the same protein concentration
used for the nondeuterated sample. EPR experiments were
conducted using a 1 mW microwave power and a 5 G
modulation amplitude at a modulation frequency of 100 kHz.
The ENDOR experiments employed a Davies echo-detected
pulse sequence,42 inversion−T−π/2−τ−π−τ−acquire, with the
9 μs radiofrequency pulse applied during the 10 μs T period.
For 14N spectra, the inversion pulse was 600 ns with a π of 120
ns and a τ of 600 ns. For 1H spectra, the inversion pulse was
400 ns with a π of 200 ns and a τ of 1000 ns. The static field
was 2650 G, g = 2.61. Each spectrum is the sum of 600 scans.
Further EPR spectra (under the same conditions) were
recorded for a 100 μM DGCR8 sample and for a 100 μM
CuSO4 sample to allow independent determination of the
DGCR8 concentration and its absorption coefficient in the
UV−vis spectrum.

Resonance Raman Spectroscopic Analysis of DGCR8.
Sample Preparation. The concentration of the ferric DGCR8
sample used was 85 μM in 50 mM Tris (pH 8.0), 500 mM KCl,
and 10% glycerol. The 50 μL ferric sample was transferred into
an NMR tube for measurements. The ferrous DGCR8,
dissolved in the glycerol-containing buffer, was then generated
by first degassing the DGCR8 sample under O2-free nitrogen
before adding a 20-fold molar excess of sodium dithionite and
the redox mediators methyl viologen (MV) and benzyl
viologen (BV) to final concentrations of 0.3 and 1 μM,
respectively; these additives were dissolved in the same
glycerol-containing buffer. Reduction of the hemoprotein was
monitored by electronic absorption spectrophotometry in the
UV−vis region at 20 °C, noting that full reduction required up
to 1 h. The FeII−CO complex was then prepared by saturation
of a sample of DGCR8 with CO prior to the addition of
dithionite and the BV and MV mediators (as done for the
ferrous, CO-free sample). Complete formation of the DGCR8
FeII−CO complex was ensured by monitoring the electronic
absorption spectrum. A second sample of ferric DGCR8 was
prepared in glycerol-free buffer and studied in an effort to
resolve an apparent conflict with previous reports regarding
spin-state populations (vide inf ra).36 This second sample was
prepared by adding 50 μL of glycerol-free 50 mM Tris (pH
8.0), 500 mM KCl buffer to 50 μL of the sample in the 10%
glycerol-containing buffer contained in a centrifugal filter
cartridge (10K molecular weight cutoff) and by concentrating
the 100 μL resulting solution to ∼50 μL using a micro-
centrifuge at 8000 rpm and 4 °C. This process was repeated
eight times to ensure the buffer was completely exchanged.

Resonance Raman Measurements. The ferric DGCR8
samples were measured with the 441.6 nm excitation line from
a He−Cd laser (IK Series He−Cd laser, Kimmon Koha Co.
Ltd.), while the ferrous DGCR8 sample was measured with the
415 nm line provided by a Kr+ laser (Coherent Innova Sabre
Ion Laser). The spectra of the FeII−CO adducts were also
recorded with the 441.6 nm line. The RR spectra of all samples
were measured using a Spex 1269 spectrometer equipped with
a Spec-10 LN liquid nitrogen-cooled detector (Princeton
Instruments, Princeton, NJ). The slit width was 150 μm, and
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the laser power was adjusted to ∼30 mW at the laser for the
ferric and ferrous samples; a power of ∼1 mW was maintained
for the CO adducts to minimize photodissociation. All samples
were measured in a spinning NMR tube to prevent local
heating and protein degradation. The spectra were recorded
using a 180° backscattering geometry, and the laser power was
focused on the sample with a line image using a cylindrical lens.
Spectra were calibrated with data acquired for fenchone and
processed with Grams/32 AI software (Galactic Industries,
Salem, NH). Data were collected at 4 ± 2 °C by placing the
samples in a homemade quartz Dewar flask filled with cold
water and monitoring during the measurements using a
thermocouple.

■ RESULTS AND DISCUSSION

Expression and Purification of Human DGCR8. The
Δ276 form of DGCR826 was purified to homogeneity as
described in Experimental Procedures. Some nucleotide
contamination (as evidenced by an absorbance feature at 260
nm) was seen in the protein eluted from the nickel affinity
column at a high (500 mM) imidazole concentration, but this
spectral feature was not observed for the portion of DGCR8
protein eluted in 100 mM imidazole. Protein was further
purified by heparin affinity and Sepharose S200 gel filtration
chromatography steps.
UV−Vis Spectroscopic Analysis of DGCR8. In its

oxidized (ferric) state, the purified DGCR8 hemoprotein has
a hyperporphyrin UV−vis absorption spectrum similar to that
described previously,26 with the main Soret peak at 450 nm and
the second feature at 367 nm. In the visible region, the ferric
heme exhibits a broad absorption feature with a peak at ∼557
nm and a shoulder at ∼586 nm (Figure 1A). In previous studies
on the cysteine thiolate-coordinated camphor hydroxylase
P450cam by Sono et al., the P450 was titrated with the sulfur
donor ligand p-chlorothiophenol, generating a ferric bis-Cys
heme-ligated model complex, resulting in the formation of a
hyperporphyrin spectrum with Soret maxima at 380 and 450
nm.43 Further studies of the binding of 1-propanethiol to
P450cam at pH 6.7 revealed three absorbance peaks in the
Soret region at approximately 380, 417, and 465 nm, indicative
of a mixture of axial bis-thiolate (the 380 and 465 nm bands)

and thiolate/thiol coordination (the 417 nm band). Increasing
the pH resulted in the nearly complete conversion of the 1-
propanethiol-bound species to the hyperporphyrin 380 nm/465
nm form at pH 9.1, arising from the deprotonation of the distal
ligand to the thiolate state.43 In studies using porphyrin model
complexes, Ullrich et al. also reported bis-thiolate complexes
with split Soret features and absorption maxima at ∼470 and
380 nm.44 More recent studies with the RDX (1,3,5-
trinitroperhydro-1,3,5-triazine) explosive-degrading P450 XplA
(CYP177A1) showed that titration with dithiothreitol
produced a mixture of bis-thiolate (the main species, with
maxima at ∼374 and 453 nm) and thiol−thiolate (423 nm) six-
coordinated forms. Similar binding studies using β-mercaptoe-
thanol show predominantly the thiol−thiolate form of XplA at
pH 6 (at ∼420 nm). However, under more basic conditions
(pH 8), the hyperporphyrin, bis-thiolate spectrum dominates
with maxima at ∼372 and 453 nm.45 Comparison of the UV−
vis spectrum of ferric DGCR8 with these data suggests that
heme coordination in DGCR8 occurs with cysteines in their
thiolate form providing both the proximal and distal ligands, in
agreement with published data.46 A DGCR8 absorption
coefficient ε450 of 70 mM−1 cm−1 was calculated for its most
intense heme absorbance band using the pyridine hemochro-
magen method.41 An independent determination of the
DGCR8 absorption coefficient (70 ± 2 mM−1 cm−1) was
obtained using X-band EPR with reference to the spectrum of a
CuSO4 standard and the UV−vis absorbance spectrum of the
same protein sample. This coefficient is consistent with an
estimate from Senturia et al. (74 mM−1 cm−1 for the human
NC1 and HBD constructs) and with those of the frog and bat
star (starfish) orthologs that have absorption coefficients of 72
and 70 mM−1 cm−1, respectively.47

DGCR8 Heme Ligation in the Ferrous State. Reduction
of the ferric DGCR8 heme iron to the ferrous state [using the
strong reductant sodium dithionite, E° ∼ −420 mV vs the
normal hydrogen electrode (NHE)] progressed slowly to
completion at 20 °C, although the rate of heme reduction was
enhanced upon addition of the electron transfer mediators
benzyl viologen (BV) and methyl viologen (MV), suggesting
that access of the reductant to the protein-bound heme may be
restricted. In an anaerobic environment in the presence of BV

Figure 1. UV−vis absorption properties of the human Δ276 DGCR8 protein. (A) Oxidized DGCR8 (4.1 μM, red line) with split Soret features and
maxima at 450 and 367 nm. There is a broad, low-intensity feature in the Q-band region stretching from ∼530 to 630 nm. Upon reduction of the
sample with sodium dithionite, a single Soret feature is seen at 427 nm, with asymmetric bands in the visible region at 531 and 559 nm (green line).
The binding of carbon monoxide to the reduced DGCR8 protein produces the FeII−CO complex with its Soret maximum at 421 nm and a partial
merging of visible bands to give peaks at approximately 540 and 570 nm (blue line). (B) Partially reduced DGCR8 sample (6 μM, black line), with a
Soret maximum at 427 nm and visible region bands at 529 and 559 nm. The binding of O2 results in a 5 nm shift to a Soret maximum of 422 nm
with merging of the visible bands (peak at 557 nm, red line). The ferrous−oxy DGCR8 rapidly collapses back to the ferric form, and a shoulder at
450 nm is apparent in the spectrum of the O2-bound form, consistent with a mixture of ferric and ferrous−oxy species. The ferrous−oxy UV−vis
spectrum was recorded by stopped-flow spectroscopy 25 ms after the reduced sample had been mixed with O2-saturated buffer.
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and MV and with excess dithionite, the complete reduction of
the ferric DGCR8 heme iron occurs at 20 °C over a period of
approximately 10 min. In the reduced (ferrous) form, DGCR8
exhibits a Soret maximum at 427 nm with absorbance bands in
the visible region at 531 and 559 nm. There is also an increase
in the absorption coefficient for the ferrous Soret band from 70
mM−1 cm−1 for the oxidized protein (ε450) to 112 mM−1 cm−1

in the reduced state (ε427) (Figure 1A). Dawson’s group
conducted spectroscopic investigations of heme axial coordi-
nation using a mutated myoglobin with no axial heme
coordination from the polypeptide. Using either cyclo-
pentanethiol to mimic bis-cysteine coordination48 or imidazole
to mimic histidine coordination,49 they determined the
spectroscopic properties of these complexes. In both cases,
the addition of the neutral ligand yields a UV−vis spectrum
with properties similar to those of the spectrum of the ferrous
Δ276 DGCR8 protein, suggesting that, in the ferrous state,
DGCR8 is coordinated by neutral axial ligand or ligands,
prospectively through CysH/CysH coordination.
In the ferrous state, the DGCR8 heme iron binds CO,

producing a UV−vis spectrum with a Soret maximum of
substantially increased intensity at 422 nm (ε422 = 168 mM−1

cm−1) (Figure 1A). Once the sample is reduced to the ferrous
state, binding of CO occurs rapidly, forming a complex that
remains stable for several hours in either an aerobic or
anaerobic environment. In cytochrome P450 enzymes (P450s),
the binding of CO to the ferrous heme iron gives a
characteristic Soret band spectral shift to ∼450 nm that results
from cysteine thiolate coordination trans to the CO. However,
in various P450s, the ferrous−CO complex can have a Soret
feature around 420 nm (the P420 state), which is generally
considered to be the species arising from protonation of the
proximal thiolate ligand to the thiol form.48 Favoring this
conclusion are data such as the reversible titration of P450 to
P420 in the pH range from ∼5 to 9 for the Mycobacterium
tuberculosis CYP121A1 enzyme and the rapid conversion of
P450 to P420 in the M. tuberculosis sterol demethylase
CYP51B1, because of the instability of the proximal thiolate
to protonation in the ferrous form of the enzyme.50−52

However, heme-binding proteins with an axial histidine ligand
to their heme iron also have a similar spectrum in their ferrous-
CO bound states (e.g., the hemoglobin FeII−CO complex has a
Soret maximum at 420 nm). Indeed, it has been proposed that
in the P450s the cytochrome P420 form may result from a
proximal ligand switch from cysteine thiolate to a neutral
histidine-coordinated state.53 The absence of a Soret band at
450 nm thus strongly suggests that in its ferrous, CO-bound
state the DGCR8 heme iron is not coordinated to the protein
by a thiolate ligand but instead via a neutral thiol or a histidine.
With reference to the aforementioned studies of P450 enzymes,
the DGCR8 ferrous−CO complex is most likely to have a
cysteine thiol ligand trans to the CO. As described below, the
results from RR studies are also consistent with this conclusion.
The binding of nitric oxide (NO) was also investigated for

both the ferrous and ferric forms of DGCR8 under anaerobic
conditions. In ferric DGCR8, no evidence of binding was seen,
consistent with DGCR8 being hexacoordinate in this oxidation
state (four equatorial ligands from heme pyrrole nitrogens and
two axial ligands from DGCR8 amino acid side chains) and
with NO being unable to displace either axial ligand. In the
ferrous heme iron state, the binding of NO was investigated by
stopped-flow UV−vis spectroscopy at 4 °C. One syringe
contained NO-saturated buffer (∼1.9 mM), while the other

contained ferrous DGCR8. As with ferric DGCR8, no evidence
of a NO-bound form was found, but instead, the collapse of the
DGCR8 ferrous species to the ferric state was observed as a
shift in the Soret maximum from 427 to 450 nm, with an
isosbestic point (442 nm) between the two forms. These data
suggest that a short-lived ferrous−NO species is formed
transiently, but that it is unstable and rapidly decays to form
the ferric DGCR8 state in ∼5 s. The binding of dioxygen (O2)
to the ferrous Δ276 DGCR8 was also explored in the same
manner employed for NO binding. In this case, the formation
of an oxy complex was observed, with a Soret maximum at 423
nm. However, this species was also unstable and converted
rapidly back to the ferric resting state, likely by dissociation of
superoxide from the heme iron (Figure 1B).
In other studies, the UV−vis spectrum of the ferric form of

DGCR8 was examined as a function of temperature in the
range between 20 and −80 °C. However, no significant spectral
shifts were observed for the ferric form. Similarly, the addition
of freshly synthesized microRNA (10 μM pri-miRNA added to
1.3 μM DGCR8) did not induce any perturbation to either the
DGCR8 ferric or the ferrous heme spectrum. This suggests that
while the HBD (along with the dsRNA-binding domains) is
predicted to be crucial for productive interactions with the pri-
miRNAs, the substrate binding mode is not one that perturbs
the heme ligation environment.32

EPR and Electron−Nuclear Double Resonance
(ENDOR) Spectroscopy of DGCR8. Human DGCR8 in the
ferric state gave rise to a rhombic EPR spectrum (Figure 2A) at
10 K with g values of 2.61, 2.27, and 1.83. Such spectra are
typical of low-spin ferric (S = 1/2) hemes, and the g values fall
within the range previously associated with low-spin hemes
having a thiolate proximal axial ligand.54 A similar EPR
spectrum has been reported for DGCR8 from frog (Xenopus
laevis).46

Davies pulsed ENDOR spectra recorded at a static field of
2650 G, g = 2.61, revealed two groups of lines. The lines of one
group are symmetrical about the 1H Larmor frequency at this
field, 11.3 MHz, and arise from hyperfine coupling to 1H nuclei
(protons) (Figure 2B). The central feature of this spectrum
originates from unresolved hyperfine couplings to protons
distant from the heme iron (matrix protons).55 A resolved
hyperfine coupling of 5.1 MHz is also evident. Spectra recorded
using the same experimental parameters, but with a sample
exchanged into D2O solvent, reveal that some of the matrix
protons are exchangeable, with the largest 1H hyperfine
coupling to such an exchangeable proton being 2.4 MHz.
Exchangeable protons attached to atoms directly ligating the
heme in the distal position, such as water or substrate protons,
typically have hyperfine couplings of 8−12 MHz,56 protons of
methylene groups β to the ligating atom have been reported to
exhibit hyperfine couplings of 5−7 MHz.57 The lines of the
second group are found at lower frequencies, are not
symmetrical about the 1H Larmor frequency, and exhibit
distinct differences in intensity. These lines arise from hyperfine
coupling to 14N nuclei58 and are thus also subject to the effects
of the 14N quadrupolar interaction with the frequencies of the
lines, ν±, being described by

ν ν= | ± ± |± A P/2 3 /2N

where νN is the 14N nuclear Larmor frequency, 0.81 MHz, A is
the hyperfine coupling, and 3P is the quadrupole splitting.
Taking lines of the same intensity as coming from the same
spin manifold provides the assignment of those lines shown in
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Figure 2C. Only one hyperfine coupling of 6.3 MHz and one
quadrupolar interaction, with a quadrupolar splitting 3P of 0.95
MHz, are evident. Such values are typical for hyperfine coupling
to the pyrrole nitrogens in low-spin ferric hemes with neutral
distal ligands, because the quadrupolar splitting is sensitive to
the presence of charged ligands, when observed along the
normal to the heme plane.59 The small line widths evident in
Figure 2C support such an orientation for the g axis associated
with the g value of 2.61. However, the detection of only one
hyperfine coupling for all four pyrrole nitrogens is relatively
unusual and suggests very high symmetry around the heme
normal.60 Such symmetry has been observed for P450s with a
thiolate proximal axial ligand and a neutral distal axial ligand,
and in model compounds with two identical axial ligands.61

There is no evidence of hyperfine coupling to a 14N atom from
an axial ligand.
Taken together, these ENDOR data exclude water and

histidine as ligands to the heme iron due to the lack of a large
hyperfine coupling to an exchangeable proton (or protons) and
any 14N hyperfine coupling beyond that to the pyrrole
nitrogens. The 0.95 MHz quadrupole splitting suggests a
neutral proximal ligand, such as a thiol (although ENDOR
cannot distinguish between sulfur and oxygen without isotope

labeling). However, the lack of a hyperfine coupling to an
exchangeable proton large enough be attributed to the -SH
group proton argues against this and suggests a thiolate distal
axial ligand. The observation of a single 14N hyperfine coupling
indicates an unusually high symmetry along the normal to the
heme plane and therefore supports the latter model with two
identical axial ligands. Thus, while the ENDOR data are
equivocal, they provide the strongest support for bis-thiolate
heme ligation in ferric DGCR8.

Resonance Raman Spectroscopy of DGCR8. Ferric
DGCR8. The high-frequency region of the ferric DGCR8
sample is presented in Figure 3A. The region includes the
oxidation-state and spin-state markers. The high-frequency
spectrum of the DGCR8 sample exhibits the oxidation-state
marker mode, ν4, at 1375 cm−1 and the ν3 spin-state marker at
1506 cm−1, confirming the presence of a ferric six-coordinate
low-spin state, in agreement with results from other methods
used in this study. While there are some small differences (3−6
cm−1) in frequencies between our results and those reported in
the earlier published data of Barr et al.,36 they can be attributed
to the one-point spectral calibration method used in their work
compared to the multipoint calibration used in our studies.
Slight differences in relative intensities of bands between the
two studies can be attributed to the fact that two different
excitation lines were used (441.6 nm in this study and 457.9 nm
in the previous study). In the previous study, a weak 1471 cm−1

band was taken as evidence of a five-coordinate high-spin
component. In our study, a band is also observed near this
frequency [1465 cm−1 (Figure 3A)] but is assigned to an
internal mode of glycerol, whose concentration is 10% (v/v) in
our sample. The DGCR8 samples analyzed by Barr et al. also
contained 10% glycerol.36 To verify the assignment of this 1465
cm−1 feature to glycerol, further experiments were conducted
on a DGCR8 sample containing no glycerol. The inset in
Figure 3A shows spectra of the ferric DGCR8 sample
containing 10% glycerol buffer (a), a sample in the same
buffer without glycerol (b), and their difference spectrum (c).
In the difference spectrum, all the heme modes were cleanly
canceled out, revealing only the 1465 cm−1 glycerol band. Thus,
we assigned this band to the 10% glycerol present in the
original protein solution, confirming the interpretation that the
ferric protein samples studied here contain an insignificant
amount of a five-coordinate high-spin (HS) state. The low-
frequency region of the RR spectrum is shown in Figure S1A.

Ferrous DGCR8. In the ferrous state, the high-frequency
region (Figure 3B) exhibited the oxidation-state marker band
(ν4) at 1362 cm−1 and the spin-state marker band (ν3) at 1495
cm−1, indicating a low-spin six-coordinated ferrous heme
protein. Again, the weak broad glycerol band near 1465 cm−1

was observed. In the previous study, a 1470 cm−1 band was
observed and assigned to the ν3 mode of a five-coordinate HS
component, again prompting the conclusion of a mixture of
five- and six-coordinate forms of the ferrous DGCR8, as was
also reported in that work for DGCR8 in the ferric state.36

While that 1470 cm−1 feature is reasonably close to the
expected glycerol band, the frequency observed is slightly
higher than expected. Considering it not to be a miscalibrated
glycerol band, the authors assigned it to the ν3 mode of a HS
component, also assigning a feature at 1579 cm−1 to the ν2
mode of that HS component. However, this frequency is
unusually high for a HS component. Assuming that the 1470
cm−1 feature observed by Barr et al. does provide confirmation
of a HS component, this would suggest that the sample studied

Figure 2. EPR and ENDOR spectroscopy of DGCR8. (A) X-Band
continuous wave EPR spectrum of human DGCR8 recorded at 10 K
with g values marked. (B) X-Band Davies pulsed ENDOR spectra of
human DGCR8 obtained at 10 K showing the region around the 1H
Larmor frequency. A resolved hyperfine coupling of 5.1 MHz is
marked together with the largest exchangeable proton hyperfine
coupling of 2.4 MHz. (C) X-Band Davies pulsed ENDOR spectrum of
human DGCR8 obtained at 10 K showing the low-frequency region.
Analysis indicates a single 14N hyperfine coupling, and quadrupole
splitting is shown.

Biochemistry Article

DOI: 10.1021/acs.biochem.6b00204
Biochemistry 2016, 55, 5073−5083

5078

http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.6b00204/suppl_file/bi6b00204_si_001.pdf
http://dx.doi.org/10.1021/acs.biochem.6b00204
http://pubs.acs.org/action/showImage?doi=10.1021/acs.biochem.6b00204&iName=master.img-003.jpg&w=178&h=318


previously (frog DGCR8, amino acids 278−498) does form a
HS component, while the isoform studied here (human
DGCR8, amino acids 276−773) does not form a HS species
under our conditions. The low-frequency RR spectrum of
ferrous DGCR8 is shown in Figure S1B.
Ferrous−CO Complex of DGCR8. As discussed above, the

appearance of a Soret band near 420 nm for the ferrous CO
adduct of DGCR8 is indicative of a six-coordinate CO-ligated
heme bearing a neutral (e.g., thiol or histidine) trans-axial
ligand. Resonance Raman spectra in the region between 1000
and 1650 cm−1, provided in Figure S1D, reveal the oxidation-
state marker band (ν4) at 1373 cm−1 and the spin-state marker
band (ν3) at 1497 cm−1, consistent with values typically seen
for these low-spin CO adducts of cytochromes P450.62,63 The
regions of the RR spectra of the FeII−CO and FeII−13CO
adducts of DGCR8, wherein the ν(Fe−C) and ν(C−O)
stretching modes occur, are shown in Figure 3C. In the lower-
frequency region, a clean difference pattern emerges from a
ν(Fe−12C) mode appearing at 496 cm−1, with its 13C
counterpart shifting to 490 cm−1. The corresponding ν(C−
O) bands appear at 1963 cm−1 for 12C−O and at 1917 cm−1 for
the 13C analogue. Finally, a clean difference pattern, with
components at 575 and 557 cm−1, reveals the δ(Fe−C−O)
bending mode.
Figure 3D shows the well-established inverse correlation

plots for ν(Fe−C) versus ν(C−O) modes, which are useful for
probing the nature of the distal heme pockets and proximal

ligands.64 Thus, the lowest line in the figure includes data for
the cytochromes P450, which possess a strongly electron
donating thiolate proximal ligand, leading to relatively high
ν(Fe−S) stretching modes occurring near 350−355 cm−1. Just
above this line lies the correlation plot for NOS enzymes;
possessing lower ν(Fe−S) frequencies (337−343 cm−1), these
show correspondingly higher ν(Fe−C) stretching modes. At
the highest point in the figure is the correlation line for
histidine-bound FeII−CO complexes. As discussed above,
protonation of the trans-axial thiolate to form a trans-thiol-
ligated species, as suggested for cytochromes P420,65 would
lead to an even weaker Fe−S bond and higher ν(Fe−C)
stretching frequencies, compared to those seen for NOS
adducts. Indeed, the points acquired for the P420 forms of
iNOS and for CYP101A1 (the camphor hydroxylase
P450cam),66 as well as one for a well-characterized CO adduct
of a heme model compound bearing a trans-axial thiol,67 lie
near the line corresponding to histidine-ligated CO adducts.
The point determined herein for the CO adduct of DGCR8
clearly lies in the neighborhood of those adducts bearing a
trans-axial thiol ligand, a result that is consistent with the
conclusion that the ferrous form of the enzyme possesses a
thiol/thiol coordination environment.

Magnetic Circular Dichroism (MCD) Spectroscopy of
DGCR8. The continuous wave (CW) EPR spectrum of Δ276
DGCR8 contains sharp features with principal g values of 2.61,
2.27, and 1.83, confirming that the ferric heme iron is almost

Figure 3. Resonance Raman spectroscopy of DGCR8. (A) High-frequency RR spectrum of the ferric DGCR8 acquired with a 441.6 nm laser line
[85 μM ferric DGCR8, in 50 mM Tris (pH 8.0) containing 500 mM KCl and 10% glycerol]. The inset shows the region from ∼1390 cm−1 upward
for the ferric DGCR8 in 10% glycerol buffer (a), ferric DGCR8 in the same buffer without glycerol (b), and their difference trace (c). (B) High-
frequency RR spectrum of the ferrous DGCR8 acquired with a 415 nm laser line (85 μM DGCR8 reduced under an inert atmosphere of N2 with a
20-fold molar excess of sodium dithionite in the presence of methyl viologen and benzyl viologen). (C) Low-frequency (left side of each spectrum)
and high-frequency (right side of each spectrum) RR spectral region of the ferrous−CO adducts of DGCR8. The top traces show the RR spectra of
the FeII−12CO adduct, whereas the bottom traces show those of the FeII−13CO adduct. The traces in the central panels show the 12CO minus 13CO
difference plots in the ν(Fe−C) and ν(C−O) regions, respectively. (D) CO backbonding correlation lines of P450cam (L = thiolate), histidine-ligated
enzymes (L = His), and NOS (L = thiolate).78 Data points are associated with a heme−thiol model complex, DGCR8 (this study), and iNOS P420
and iNOS P450 forms.67
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exclusively in the low-spin state. For b-type cytochromes, such a
spectrum is diagnostic of axial ligation by thiolate. To provide
further insights into the nature of the second axial ligand to the
DGCR8 heme iron, we used MCD as a complementary
spectroscopic method.54

Figure 4 shows MCD spectra of ferric DGCR8 in UV−vis
and near-infrared (NIR) regions and for ferrous DGCR8 in the
UV−vis region. Figure 4A shows the UV−vis MCD spectrum
of ferric DGCR8 with a Soret derivative at 451 nm and a Q-
band region derivative at 556 nm. NIR MCD spectroscopy of
low-spin ferric heme affords a direct measurement of the
porphyrin-to-iron LMCT (ligand-to-metal charge transfer)
transition, and this is often sufficient to allow unambiguous
assignment of axial ligation.68 Figure 4B shows the NIR MCD
spectrum of ferric DGCR8. The charge transfer band in the
NIR region is located at 1260 nm, outside the range reported
for heme with Cys−/H2O or Cys−/His as axial ligands (1050−
1200 nm).69−71 This observation, together with the assignment
of Cys− ligation based on the CW EPR, suggests an unusual
trans-axial ligand to the DGCR8 ferric heme iron. On the basis
of conclusions from other spectroscopic analyses reported here,
we would favor cysteine thiolate as the trans-axial ligand.
However, a trans-thiol ligand might also be possible. In favor of
the assignment of bis-thiolate coordination in ferric DGCR8,
the UV−vis MCD spectrum of DGCR8 contains an unusual
negative band at 597 nm, in addition to the derivative features
at 451 and 556 nm typical of ferric heme. A highly similar UV−
vis MCD spectrum is seen for the cysteine thiolate-coordinated,
ferric heme iron form of the Caldariomyces fumago chloroper-
oxidase (CPO) in complex with methanethiol.72 UV−vis
absorbance analysis of the CPO−methanethiol complex
shows a clear hyperporphyrin spectrum, consistent with bis-
thiolate heme ligation.72 Thus, we conclude from these MCD
studies that the heme of DGCR8 is indeed ligated by two
cysteine residues in the ferric state, with both these residues in
their thiolate form.
In contrast to the readily observed NIR MCD bands of low-

spin ferric hemes, the corresponding LMCT transitions for
ferrous hemes are symmetry-forbidden, precluding ligand
assignment for reduced hemes on this basis. However, the
form of the UV−vis MCD in the reduced state can be used to
confirm ligation by cysteinate, as this gives an abnormally low
intensity α,β band with a peak-to-trough intensity of ∼70 M−1

cm−1 T−1.73 UV−vis MCD spectra of reduced DGCR8 were
recorded (Figure 4C). Sodium dithionite reductant was added
to the sample under anaerobic conditions, and UV−vis
absorbance and MCD spectra were recorded after 4 h at 20
°C. Following data collection, it became apparent that a small
proportion of the enzyme had reoxidized (∼15%). To account
for the partial reoxidation, the spectra were corrected by

removal of the small spectral contribution from the ferric
enzyme (with reference to the UV−vis absorption and MCD
spectra of the ferric DGCR8) to produce the ferrous DGCR8
spectra without a significant contribution from the ferric
species. The calculated UV−vis MCD spectrum of reduced
DGCR8 (Figure 4C) has a much greater intensity in this
region, approximately 350 M−1 cm−1 T−1. Furthermore, this
band is located at 556 nm with the maximal Soret intensity at
436 nm, in contrast with the 550 and 416 nm bands,
respectively, observed for SoxAX, an enzyme that couples
disulfide bond formation to cytochrome c reduction in a
widespread microbial sulfur oxidation pathway and has the
more common Cys−/His ligand set.73 Both the intensity and
the position of the UV−vis MCD bands of reduced DGCR8 are
far more similar to those of the reduced form of a model
complex with bis-thiol ligation (α,β intensity of 220 M−1 cm−1

T−1 at 555 nm, Soret band at >430 nm).48 Thus, while the form
of the MCD spectrum does not preclude displacement of Cys−

by a neutral ligand (such as His-imidazole) upon reduction, it is
also consistent with protonation of this residue resulting in a
CysH/CysH-coordinated ferrous heme.

■ CONCLUSIONS

DGCR8 is an unusual hemoprotein with spectroscopic features
distinct from those of other heme b-binding proteins. Binding
of heme to the DGCR8 dimer stabilizes the protein, and the
DGCR8 dimer forms a complex with the RNase Drosha that is
crucial for pri-miRNA processing.46,74,75 Our combined
spectroscopic studies identify axial coordination of DGCR8
by two sulfur-containing amino acids in both its ferric and
ferrous states. Data are consistent with Cys−/Cys− (bis-
thiolate) axial coordination of the ferric DGCR8 heme b, but
indicate that ferrous DGCR8 likely adopts CysH/CysH (bis-
thiol) ligation. Addition of the pri-miRNA substrate to the
(active) ferric DGCR8 form does not perturb its heme
spectrum, suggesting that the pri-miRNA-binding site does
not overlap the heme site, even though recent studies indicate
that portions of the HBD are crucial for interactions with pri-
miRNA.32

The rhombic EPR spectrum of low-spin ferric DGCR8
indicates a single dominant axial ligation mode (Figure 2A).
Cys352 was proposed as an axial ligand to the heme iron, and
modeling suggests that Cys352 thiolates from two monomers
of the HBD act as axial ligands to a hexacoordinated DGCR8
heme iron at the dimer interface.36 Spectroscopic analyses
presented in this paper are consistent with bis-Cys coordination
of DGCR8 heme iron. In particular, our ENDOR data for ferric
DGCR8 confirm a highly symmetrical heme coordination
environment and rule out water or histidine as axial ligands,

Figure 4. UV−vis and near-infrared MCD spectra of DGCR8. (A) UV−vis MCD spectrum of ferric DGCR8 (70 μM), with a derivative at 451 nm
and a strong negative feature at 597 nm. (B) Near-infrared MCD spectrum of ferric DGCR8 (70 μM) with a strong band at 1260 nm reporting on
the coordination state of the heme iron. (C) UV−vis MCD spectrum of the ferrous form of DGCR8 (185 μM), with a feature at 436 nm and a
derivative at 556 nm.
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instead favoring a Cys−/Cys− axial ligand pair. The Δ276
DGCR8 hemoprotein is reduced by dithionite to produce a
species with a Soret band shift to 427 nm, similar to that for the
reduced frog DGCR8 HBD form. However, the absorption
coefficient reported for the ferrous frog HBD (ε424 = 55 mM−1

cm−1) is much lower than that we report here for ferrous
human DGCR8.36 The Soret coefficient is ε450 = 70 mM−1

cm−1 for ferric human DGCR8, while that for the ferrous
DGCR8 is considerably higher (ε427 = 112 mM−1 cm−1). The
DGCR8 ferrous−CO complex has an even more intense Soret
feature (ε421 = 168 mM−1 cm−1) (Figure 1A). The absorption
coefficient for the P420 ferrous−CO (thiol-coordinated) form
of cytochrome P450 enzymes is also larger than that for the
P450 (thiolate-coordinated) form, consistent with the presence
of a cysteine thiol ligand trans to the CO in the DGCR8
complex.76

Barr et al. concluded that the ferrous frog HBD does not
have cysteine thiolate coordination. This is consistent with our
data that indicate ferrous human DGCR8 has CysH/CysH
coordination. However, their conclusion that multiple spin
and/or heme iron coordination states are present is not
supported by our ferrous DGCR8 spectroscopic data. Barr et al.
reported spectra of the human NC1 form of DGCR8 reduced
by 2 mM dithionite at pH 6.0. However, the heme spectrum
appears to be extensively bleached with substantial contribu-
tions from dithionite and is devoid of any clear Soret feature at
∼427 nm.36 These data are in marked contrast to our UV−vis
data for human DGCR8, where well-defined ferrous (and FeII−
CO) spectra are observed. We attempted to determine the
human DGCR8 redox potential using spectroelectrochemistry,
as described previously.52,77 Aggregation of DGCR8 occurred
over the course of the experiment, preventing accurate
estimation of the midpoint potential for the heme FeIII/FeII

couple. However, the data clearly showed that the DGCR8
heme iron potential is lower than −350 mV versus NHE. This
suggests that ferric DGCR8 predominates under cellular
conditions, consistent with ferric DGCR8 being the active
species in pri-miRNA processing.36

Our UV−vis MCD spectrum of ferric human DGCR8
displays features similar to those of the spectrum of frog
DGCR8 HBD but provides sharper resolution of bands,
particularly in the α/β (Q) band and LMCT regions (Figure
4A).46 This permits identification of an unusual negative band
at 597 nm, and its assignment to bis-cysteine thiolate ferric
heme iron coordination by comparison to a highly similar
spectrum of the methanethiol complex of CPO, and with
reference to the nearly complete hyperporphyrin UV−vis
spectrum of the same complex.72 We also present the first
MCD data for a ferric DGCR8 protein in the NIR region and
for ferrous DGCR8 in the UV−vis region. From the ferric NIR
data set, the novel Cys−/Cys− assignment is associated with the
unusual position of the MCD NIR CT band at 1260 nm. The
well-defined ferrous DGCR8 UV−vis MCD spectrum has
intensity much greater than that of the ferric DGCR8 spectrum
and resembles that of a bis-thiol-coordinated model complex.48

This observation, along with RR data for FeII−CO DGCR8, is
consistent with CysH/CysH coordination of ferrous DGCR8,
as opposed to displacement of the axial ligand(s) or their
replacement with undefined ligands, as suggested previously.36

In conclusion, we present detailed analyses of heme binding
in the pre-miRNA processing protein DGCR8. Assignments of
heme coordination are made from spectroscopic studies of
human DGCR8 in both ferric and ferrous states. Contrary to

previous work,36 we assign the axial ligands as Cys−/Cys− in
active, ferric DGCR8 and as CysH/CysH in ferrous DGCR8,
with Cys352 residues from each monomer of a HBD domain
dimer providing the sulfur thiolate or thiol axial ligands.
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