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Forecasting Design Day Demand Using Extremal 
Quantile Regression 

David J. Kaftan, Jarrett L. Smalley, George F. Corliss, 
Ronald H. Brown, and Richard J. Povinelli 

GasDay Project, Marquette University, Milwaukee, WI 

Abstract 

Extreme events occur rarely, making them difficult to predict. Ex-
treme cold events strain natural gas systems to their limits. Natural gas 
distribution companies need to be prepared to satisfy demand on any given 
day that is at or warmer than an extreme cold threshold. The hypothet-
ical day with temperature at this threshold is called the Design Day. To 
guarantee Design Day demand is satisfied, distribution companies need to 
determine the demand that is unlikely to be exceeded on the Design Day. 

We approach determining this demand as an extremal quantile regres-
sion problem. We review current methods for extremal quantile regres-
sion. We implement a quantile forecast to estimate the demand that has 
a minimal chance of being exceeded on the design day. We show extremal 
quantile regression to be more reliable than direct quantile estimation. 
We discuss the difficult task of evaluating a probabilistic forecast on rare 
events. 

Probabilistic forecasting is a quickly growing research topic in the 
field of energy forecasting. Our paper contributes to this field in three 
ways. First, we forecast quantiles during extreme cold events where data 
is sparse. Second, we forecast extremely high quantiles that have a very 
low probability of being exceeded. Finally, we provide a real world sce-
nario on which to apply these techniques. 

Index terms: Energy demand, natural gas demand, extremal quan-
tile regression 

Introduction 

Natural gas Local Distribution Companies (LDCs) need to provide steady flow 
to their customers. It is important for these LDCs to be able to forecast future 
demand, as to be able to reserve and send out an appropriate amount of natural 
gas. With a large portion of natural gas usage being for spatial heating, natural 
gas Demand is highly weather dependent [1]. Extreme cold events stress the 
limits of the distribution system, as this is often when natural gas demand is at 
its maximum. The Design Day is the hypothetical day when temperatures break 
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a given extreme cold threshold. The Design Day condition is the temperature 
of an extreme event that only occurs once in n years. The Design Day demand 
is the natural gas demand that is forecasted to occur on a day with the Design 
Day condition. This is the demand that the LDC should be able to supply up 
to. 

Probabilistic forecasting methods offer an appropriate model to forecast ex-
treme events, since they are characterized as only happening once in n years. 
Probabilistic forecasts of extreme events are advantageous as they reflect the in-
herent uncertainty of extreme event forecasting, while giving forecast end users 
the information needed to make system-wide decisions [2]. 

2 Background 

Quantile regression is a method for predicting the cumulative density function 
of a response variable conditional on a predictor variable [3]. For example, 
quantile regression can answer the question: what is the demand that has 10 
percent chance of being exceeded if the temperature is 20 oF? The relationship 
between the response variable and the predictor variable for a given quantile 
(i.e., 10 percent chance of being exceeded) can be found by minimizing the 
pinball loss function - typically through linear programming methods. 

Problems arise when we choose an extremely high (or low) quantile. Con-
sider the situation where we want to predict the demand that will be exceeded 
0.01 percent of the time for a given temperature. Perhaps we only have 100 
data points on which to fit this relationship. That means we are fitting a line 
above every data point in our data set. In this case, using traditional quantile 
regression will not give us reasonable results. Extremal Quantile Regression 
extends the concept of quantile regression to the extreme tails of a distribution 
[4]. One particularly useful method is introduced by Wang [5]. The conditional 
relationship is assumed to be the same across higher quantiles. For example, 
the conditional relationship between demand and temperature is the same for 
the 90th and 99th quantiles. The only difference between these two quantiles 
is constant with temperature (i.e., a bias term). The bias term is determined 
using extreme value theory. 

3 Methods 

We estimate the 99.38th quantile of flow, given temperature. This quantile is 
requested by our customers and corresponds to 2.5 standard deviations above 
the mean of a normal distribution. We start with a quantile regression model 
of demand and temperature, making the following four adjustments. First, 
we address the non-linear relationship between temperature and flow. Second, 
we account for our desire for performance during extreme cold days. Third, 
we address the challenge of modeling an extremely high quantile. Fourth, we 
account for the long term out of sample uncertainty. 
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Figure 1: Demand is non-linear with temperature. However, when temperature 
is less than 65 oF, demand is approximately linear. 

3.1 Non-Linear relationship between Temperature and Flow 

As seen in Figure 1, there is a non-linear relationship between temperature and 
flow. Typically, this relationship is accounted for by transforming temperature 
into heating degree days (HDD), based on a reference temperature, 

HDD = max(0, TReference − TCurrent) . (1) 

Heating degree days allow us to assume temperature independence from flow 
at warm temperatures and linear temperature dependence at colder tempera-
tures. However, it does not account for the bias shift in uncertainty around 65 
degrees F. Rather than using an indicator variable to represent temperatures 
colder than 65 degrees F, we ignore all temperatures warmer than 50 degrees F. 
Conveniently, in our analysis of design day conditions, we are only concerned 
about the coldest temperatures, so removing the warm temperatures inquires 
no loss. 

3.2 Performing Well on Cold Days 

After removing the warm days, we have significantly less data. We would like 
to model the demand on the coldest days, but we lack enough data to do so. 
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Figure 2: Weighting of pinball loss optimization 

We assume the remaining data can give us information about demand on the 
coldest days, but we know that our coldest data is best. We therefore weigh 
the pinball loss by temperature in the quantile regression optimization. This 
is done by sorting the pinball loss vector by temperature (the first index is the 
warmest temperature) and adjusting each element i in the vector of length N 
accordingly: 

i 
AdustedP inballi = SortedP inballi × (1 + ). (2) 

N 
The adjusted pinball loss on the coldest day is now weighted twice as heavy 

as the warmest day. When minimizing the adjusted pinball loss, a quantile will 
be fit better to the coldest days. These weights are visualized in Figure 2. 

3.3 Estimating Extreme High Quantiles 

When estimating in the extreme quantiles, results can be very unexpected and 
even unindicative of the underlying distribution. At high enough quantiles with 
little data, quantile regression will fit a line through the two most extreme out-
liers (given a 2 parameter model). We have already begun to mitigate this 
by weighting the optimization of the coldest points rather than removing non-
extreme cold data. We further account for this by using composite quantile 
regression (also known as weighted quantile regression, or Hogg’s method [6]). 
Consider a two parameter linear model relating the 99.38th, 91.88th, and 84.38th 

quantiles of flow to heating degree days and a bias term. Composite quantile 
regression allows us to estimate the temperature parameter using all three quan-
tiles, leaving only the bias parameter to be determined for the extreme high 
quantile. The resulting estimates for the three quantiles are the parallel lines 
shown in Figure 3. 
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Figure 3: Result of using composite quantile regression using simulated data 

3.4 Long Term Out Of Sample Uncertainty 

It is well known that errors are often greater for out-of-sample testing than for 
in-sample testing. Since we are forecasting the quantile for the following year, 
we need to adjust based on out-of-sample uncertainty [7]. We start with the 
same 2 parameter (HDD and bias terms) linear model for the 99.38th quantile. 
We first train (detrend data [8] and perform quantile regression) our model on 
a single year of data. We then validate on a single year of data and re-fit the 
bias term based on the residuals. We record the change in the bias term from 
the training data to the validation data. This process is repeated using the first 
two years as a training set and the third as a validation set, then again until the 
last year of training data is used as the validation set. We determine the mean 
absolute change of the bias term. Finally, we fit a model to all of the training 
data. We add the mean absolute change to the bias term in order to account 
for the out-of-sample uncertainty. 

Results 

The experiment is run on the 100 most temperature-sensitive datasets GasDay 
forecasts. The experiment is run in two folds. First, we hold out the 2017 
heating season for testing, and we train on all previous years. Second, we hold 
out the 2016 heating season for testing and train on all previous years. 
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Figure 4: Anonymized fit of the 99.38th and 0.62th quantiles on the coldest days 

Our experiment reflects our goal; we need to estimate the quantile repre-
senting demand that is exceeded 0.62% (100% - 99.38%) of days in a heating 
season. We therefore count the number of exceedances of the quantile in the 
test set. In particular, we want to perform well during the coldest days in win-
ter. We therefore limit our analysis to the 10% coldest days of the test set, as 
seen in Figure 4. Across the two test folds, we expect 44.70 exceedances. In 
total, our method incurs 38 exceedances: 85.0% of the expected exceedances. 
For the sake of evaluating the strategy for dealing with long-term out of sample 
uncertainty described in Section 3.4, we evaluated our experiment absent of said 
strategy. The result showed our bounds unreasonably tight with over 200% of 
the expected exceedances. 

Conclusion 

This work introduces an interesting problem to the forecasting community: fore-
casting the Design Day demand. Using methods common in forecasting liter-
ature - along with novel extensions - we are able to successfully predict the 
demand that is extremely unlikely to be exceeded during the Design Day. 
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