Marquette University

e-Publications@Marquette

School of Dentistry Faculty Research and Publications

Dentistry, School of

12-2012

Intraoral Phaeohyphomycosis

Yeshwant B. Rawal Marquette University, yeshwant.rawal@marquette.edu

John R. Kalmar The Ohio State University

Follow this and additional works at: https://epublications.marquette.edu/dentistry_fac

Part of the Dentistry Commons

Recommended Citation

Rawal, Yeshwant B. and Kalmar, John R., "Intraoral Phaeohyphomycosis" (2012). *School of Dentistry Faculty Research and Publications*. 524. https://epublications.marquette.edu/dentistry_fac/524 **Marquette University**

e-Publications@Marquette

Dentistry Faculty Research and Publications/School of Dentistry

This paper is NOT THE PUBLISHED VERSION.

Access the published version via the link in the citation below.

Head and Neck Pathology, Vol. 6, No. 4 (December 2012): 481-485. <u>DOI</u>. This article is © Springer and permission has been granted for this version to appear in <u>e-Publications@Marquette</u>. Springer does not grant permission for this article to be further copied/distributed or hosted elsewhere without express permission from Springer.

Intraoral Phaeohyphomycosis

Yeshwant B. Rawal

Department of Diagnostic Sciences and Oral Medicine, College of Dentistry, University of Tennessee Health Sciences Center, 875 Union Avenue, Memphis, 38163, TN, USA

John R. Kalmar

The Ohio State University College of Dentistry, Columbus, OH, USA

Abstract

Phaeohyphomycosis is an infection caused by pigment-producing saprophytic fungi. Systemic infections may occur in the immunocompromised patient. Infection in healthy individuals may result in subcutaneous abscess formation. Oral lesions appear to be rare. A case of intraoral phaeohyphomycosis presenting as a well-demarcated, painful nodule of the anterior hard palate in a 12-year-old healthy male is described. The mass was excised and the diagnosis was established following histopathologic examination of the tissue.

Keywords

Oral, Mycosis, Dematiaceous, Cyst, Infection

Introduction

Many species of fungi demonstrate some degree of pigmentation of their cell wall. However, those fungi that are routinely characterized by intense melanin-like pigmentation of their cell walls that is

readily observed in hematoxylin and eosin stained sections are known as phaeoid or dematiaceous fungi [1, 2]. Dematiaceous fungi are ubiquitous saprophytes of the soil, wood and decaying vegetable matter [2]. While considered poorly pathogenic, they may cause skin infection by either traumatic inoculation or by colonization of altered skin [3]. Inhalation of airborne spores is a primary and common route of exposure and accounts for allergic fungal sinusitis by these fungi [1, 2]. Systemic infection is secondary to impaired host resistance [3, 4].

Dematiaceous fungi can produce three different types of infections in humans including phaeohyphomycosis, chromoblastomycosis, and mycetoma. The latter usually presents as a chronic infectious process of the foot [4].

While subcutaneous infections by dematiaceous fungi secondary to traumatic implantation have been described in human subjects, intraoral infection by these microorganisms has been previously reported in at least two cases, one involving the lower labial mucosa [5] and the other infecting a third molar extraction socket [6]. We present a case of oral phaeohyphomycosis within an epithelium-lined cyst of the anterior midline hard palate.

Case Report

A 12-year-old healthy male presented with a painful swelling of the midline of the anterior palate of four days duration. 16 weeks prior to this presentation, the patient had concluded a rapid maxillary expansion appliance therapy and was continuing to receive additional orthodontic treatment. On clinical examination, an oval to fusiform, sessile, midline swelling of the anterior hard palate just posterior to the incisive papilla region, measuring 1.0 cm × 0.5 cm was noted. The mucosa over the swelling was pink in color and had a smooth, uninterrupted surface (Fig. 1). The swelling was soft to palpation and mildly tender to touch. The teeth of the entire maxillary dentition were vital, free from caries and periodontal disease. No other intraoral soft tissue pathology was noted. A maxillary anterior occlusal radiograph showed no intrabony changes (Fig. 2). In the absence of an obvious focus of infection, a provisional diagnosis of an inflammatory condition of unknown etiology was rendered. An excisional biopsy was performed to establish a definitive diagnosis and to plan treatment. The mass appeared brown-black on its deep surface and approximated the content of the posterior most portions of the incisive foramen. During the surgery, a small amount of purulent discharge was noted. Mild saucerization of the underlying bone was observed but there was no evidence of palatal erosion or perforation.

Fig. 1_Oval to fusiform swelling of midline, anterior hard palate

Fig. 2_Maxillary occlusal view X-ray showing no cystic changes

Hematoxylin and eosin stained sections of formalin-fixed tissue revealed an acutely inflamed connective tissue underlying the surface epithelium. Deeper portions of the connective tissue showed a cyst lined by non-keratinized stratified squamous epithelium. The lumen of the cyst was filled with colonies of brownish pigmented fungal forms (Fig. 3 bold arrow). A prominent nerve bundle was observed within the cyst wall (Fig. 3 interrupted arrow). At higher magnification and with Gomori methenamine silver stain (GMS), budding, septated, thick-walled, fungal hyphae were readily identified (Fig. 4a, b). A diagnosis of oral phaeohyphomycosis occurring within a midline soft tissue cyst of the anterior palate was made. The lesion was removed in its entirety and fixed in formalin and therefore a fungal culture was not obtained for species determination.

Fig. 3_Epithelium-lined cystic cavity containing mass of fungal organisms [*bold arrow*]. Wall of cyst showing large nerve bundle [*interrupted arrow*] (H&E, ×100)

Fig. 4_a Naturally pigmented fungal organisms intermixed with neutrophils. (H&E, ×400). b Budding, septated fungal hyphae (GMS, ×400)

Due to the unusual nature of this process, the child was questioned further. He revealed that in response to the sensation of the rapid maxillary expansion appliance therapy, he had resorted to rubbing his palate with a twig and may have injured the mucosal surface. The child was immunocompetent and in very good overall health. Excisional removal of the oral lesion was considered curative. One week post-operative healing was uninterrupted and a six week recall visit showed no signs or symptoms of residual or recurrent infection.

Discussion

Opportunistic fungal pathogens are important causes of morbidity and mortality among bone marrow and solid organ transplant patients, those receiving anticancer chemotherapy, and in those with primary or acquired immunodeficiency states. *Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, Coccidioides immitis* and *Histoplasma capsulatum* are examples of common opportunistic pathogens. The term 'emerging' fungal pathogens has been used to describe uncommon organisms that are increasingly reported due to an enlarging pool of immunocompromised hosts.

Dematiaceous fungi represent a part of these emerging potential pathogens. Invasive and fatal infections due to dematiaceous fungi have also been reported in individuals with an "intact" immune system. The mechanism of disease in immunocompetent individuals is not known [1]. In dematiaceous fungi, melanin localized to the cell wall has been cited as a potential virulence factor, as it is resistant to a variety of agents including free radicals, ionizing radiation, and drying. Melanin may scavenge superoxides, hypochlorite and other free radicals produced by macrophages rendering them ineffective in oxidative digestion. Melanin may also bind to hydrolytic enzymes and antifungal chemotherapeutic agents and suppress their action. Therefore, it is likely that melanin plays a pivotal role in the pathogenesis of disease even in immunocompetent hosts [1, 7].

Dematiaceous fungi can produce three major types of clinical syndromes in humans including chromoblastomycosis, eumycetoma and phaeohyphomycosis. The salient features of these human infections are presented in Table 1. Chromoblastomycosis and eumycetoma are encountered more frequently in the tropics, while clinical syndromes associated with phaeohyphomycosis are universal.

Table 1 Salient features of dematiaceous fungal infections in humans [1, 2, 7]

Disease and common	Clinical syndrome	Histopathology	Treatment
associated fungal			
genus and species			
Chromoblastomycosis	Chronic subcutaneous	Thick walled (sclerotic)	Extends several
Fonsecaea pedrosoi,	mycosis. Preceded by	yeast form with	months–years.
Fonsecaea compacta,	minor trauma. Over	internal septation	Surgery, cryotherapy,
Phialophora verrucosa,	years, nodular lesions	(Medlar bodies or	thermotherapy, laser
Cladophialophora	form large verrucous	"copper pennies"). 5–	therapy all found
carrion, Rhinocladiella	plaques over feet, legs	12 μm in diameter	useful in removal of
aquaspera	and exposed areas of	Cellular division by	local/limited disease.
	the body	internal septation and	Systemic antifungals in
	Dissemination of	not by budding. No	moderate to severe or
	lesions by extension or	hyphal forms in tissue.	widespread disease.
	autoinoculation	Infection is superficial	Itraconazole and
	through scratching.	Dermal granulomas	terbinafine are first
	Development of	Intraepidermal	line drugs.
	squamous cell	abscesses and	Ketoconazole,
	carcinoma in long-	transepithelial	flucytosine and
	standing lesions	elimination of fungal	amphotericin B offer
		bodies	variable cure rates
Eumycetoma	Chronic granulomatous	Grains are clusters of	Requires prolonged
Madurella	infection of skin and	small filamentous	systemic antifungal
mycetomatis,	subcutaneous tissue	hyphae	therapy in addition to
Pyrenochaeta romeroi,	characterized by	Type I reaction: grains	surgery unlike
Leptosphaeria	tumefaction, draining	surrounded by	chromoblastomycosis
senegalensis	sinuses and black	neutrophils.	which may be cured by
Note: The term	grains or sclerotia in	Granulation tissue,	surgical therapy alone.
"Eumycetomas" is	tissue and exudate.	macrophages,	Ketoconazole and
reserved for a true	The organisms are	lymphocytes and	itraconazole show
fungal infection and	present in soil and are	plasma cells lie around	consistent antifungal
must be distinguished	implanted into host	the neutrophils.	activity. Voriconazole
from "mycetomas" that	tissue following	Fibrosis and	and posaconazole
are caused by	trauma. The foot is	perivascular sclerosis	have also been used
filamentous bacteria as	most susceptible.	Type II reaction:	successfully.
in actinomycetomas.	Lesions start as	neutrophils replaced by	Amphotericin B is
Eumycetomas show	painless papules that	macrophages and	ineffective
gram negative septate	enlarge and discharge	multinucleated giant	
hyphae while	an exudate. Lesions	cells that phagocytize	
mycetoma	spread contiguously	the grain material	
(actinomycetoma)	and form multiple	Type III reaction:	
grains have gram	draining sinuses.	characterized by well-	
negative centers with	Grains in the exudate	organized granulomas	
fine radiating gram	may be seen clinically		
positive fringes			

Phaeohyphomycosis	Fungi grow on soil,	3 different patterns: (1)	Tinea nigra confused
can be divided into	wood and decaying	Keratotic plaques and	with nevi, syphilis, or
several groups of	plant material and	nodules show	melanoma. Diagnosis
disease	organic matter. Portals	epidermal hyperplasia	is made by scraping
Superficial and	of entry into the body	and microabscesses.	lesions and culture.
cutaneous disease	include inoculation	Brown yeast-like cells	Simple scraping or
Tinea nigra: <i>Hortaea</i>	into skin and	and hyphae are seen	abrasion may be
werneckii, Stenella	subcutaneous tissue	among epithelioid cells,	curative. Topical
araguata	through trauma,	giant cells and	therapy and systemic
Onychomycosis:	inhalation of fungus	neutrophils. (2)	itraconazole and
Alternaria,	with lung and sinus	Intradermal,	terbinafine are
Scopulariopsis	infection, ingestion of	multiloculated cystic	effective in
Corneal or mycotic	contaminated food	cavities lined by	onychomycosis.
keratitis	followed by	granulomas and	Surgical resection is
Keratitis: <i>Curvularia,</i>	penetration through	neutrophils. Yeast-like	curative in many
Bipolaris, Exserohilum	the gastrointestinal	cells and hyphae	subcutaneous
Subcutaneous disease	tract and via	among the cellular	infections. Fungal
Subcutaneous	contaminated vascular	infiltrate. (3) Well-	keratitis due to
nodules: <i>Alternaria,</i>	catheters and needles.	defined dermal cyst	trauma, prior eye
Exophiala	Superficial and	surrounded by dense	surgery, diabetes or
Allergic disease	subcutaneous	fibrous tissue. Cyst	contact lens abrasion
Allergic fungal	infections are the most	cavity shows necrotic	receives topical agents
sinusitis: <i>Bipolaris,</i>	common and	debris and neutrophils.	like 5 % natamycin in
Curvularia	onychomycosis mostly	Fragments of vegetable	combination with an
Allergic	affects toe nails	matter may be seen	azole. Oral
bronchopulmonary	manifesting as cysts or	inside cyst. Granulomas	ketoconazole is also
mycosis: <i>Bipolaris,</i>	abscesses. Fungal	and pigmented fungi in	used. Diagnosis of
Curvularia	ocular keratitis is most	wall of cyst	allergic disease
Invasive, systemic and	prevalent in the	Fungal walls are yellow	depends on
cerebral disease	tropics. Allergic	to brown and pigment	demonstration of
Bone and joint	sinusitis caused by	is	fungus in mucin.
infection:	dematiaceous fungi is	dihydroxynaphthalene	Management consists
Scedosporium	more common than	melanin. Morphological	of surgical removal of
prolificans, Alternaria	aspergillus sinusitis.	characteristics and	the tenacious mucous,
Peritonitis: <i>Curvularia,</i>	Disseminated disease	colony characteristics	followed by systemic
Exophiala, Alternaria	is seen in	of a list of	steroids and
Pneumonia:	immunocompromised	dematiaceous fungi are	itraconazole.
Ochroconis, Exophiala	patients. More than	documented in	Disseminated
Brain abscess:	half the cases of brain	reference [1], Table 1,	infections are
Cladophialophora	abscess due to	888–890	uncommon and are a
bantiana,	dematiaceous fungi are		management
Rhinocladiella	in patients with no		challenge
mackenziei, Ochroconis Disseminated disease:	immunodeficiency		
Scedosporium			

prolificans, Bipolaris,		
Exophiala		

Traumatic implantation of fungi by a wooden splinter, thorn or other foreign object can result in subcutaneous, localized phaeohyphomycosis. Subcutaneous phaeohyphomycosis in healthy individuals may present as solitary or multiple, firm to fluctuant, painless abscesses over exposed skin surfaces. Lymphangitis and regional lymphadenopathy are unusual and so is progressive dissemination of the infection [2, 4]. Systemic or cerebral phaeohyphomycosis is seen in the immunocompromised or debilitated hosts who have inhaled the airborne conidia into the respiratory system [2].

Oral phaeohyphomycosis is rare. From our case, as well as the presentation in other cases [5, 6], oral involvement appears to have resulted from inoculation by plant/foliage matter. The lesions in our case and of the lower labial mucosa [5] were deeply submucosal, well-delineated, and with an intact surface. Pain and tenderness were variable. Given the non-specific clinical findings, diagnosis was made by microscopic examination of lesional tissue.

Given the clinical setting of the current case, we felt there were at least two plausible explanations for its pathogenesis. First, the lesion could have represented secondary infection of a pre-existing nasopalatine duct cyst or alternatively, a cyst of the incisive papilla [8]. The latter possibility was considered most likely due to the absence of surgical or radiographic evidence of an associated intrabony cavity. Second, the soft tissue cyst could have resulted from traumatic implantation of surface oral epithelium associated with the child's habit of scraping or pressing against his palate with a twig. With either explanation of cyst formation, acquisition of the uncommon fungal infection was likely associated with the child's parafunctional habit.

The diagnosis of phaeohyphomycosis depends upon direct microscopic detection of typical forms in tissue [2]. Demonstration of hyphae in tissue may be the only evidence of disease because growth in cultures may be severely suppressed in individuals receiving antifungal therapy [1].

Rapid direct microscopic examination may be done using the Gram stain or potassium hydroxide (KOH) preparations. Routine hematoxylin and eosin stains demonstrate strongly pigmented forms in tissue sections while the melanin Fontana-Masson stain may be used to demonstrate the presence of lightly pigmented hyphae [1]. The practicality of demonstrating dark hyphae against a green background is offered by the GMS stain but this stain does not differentiate between melanized and non-pigmented fungi [1].

During microscopic examination, the possibility of myospherulosis must be entertained, especially in a clinical setting where a recent surgical procedure has been performed and the surgical site has been packed with an antibiotic in a petrolatum base. Myospherulosis may arise in the paranasal sinuses and associate with pigmented resident fungal organisms [8].

Over 150 species and 70 genera of pigmented fungi have been associated with human disease. Based on the clinical presentation, and with a high degree of suspicion, the lesional tissue needs to be cultured for examination of phenotypic features of the fungal isolates for species or genus

determination [1]. More recently, molecular techniques such as PCR assays have been used in the classification of pigmented fungi rather than in the diagnosis of infections [1, 7].

Itraconazole has been used to treat systemic cases of phaeohyphomycosis [1, 3, 4, 9]. Localized subcutaneous lesions however do not require antibiotics and surgical excision of infected tissue is typically curative. Caution should be exercised during surgery to prevent reimplantation of the fungus [3, 4]. Table 1 describes the treatment for the different clinical syndromes associated with dematiaceous fungal infections in humans.

The clinical presentation as well as prognosis of infections by these and other emerging pathogens depends on the virulence of the microorganism and the level of host resistance. To our knowledge, the current case represents the first report of intraoral phaeohyphomycosis, occurring as an infection of a cyst of the soft tissue of the midline anterior maxilla.

References

- 1. Revankar SG, Sutton DA. Melanized fungi in human disease. Clin Microbiol Rev. 2010;23(4):884–928. doi: 10.1128/CMR.00019-10.
- 2. Kradin RL. Diagnostic pathology of infectious disease. Philadelphia, PA: Saunders Elsevier; 2010.
- 3. Mayser P, Nilles M, Hoog GS. Case report. Cutaneous phaeohyphomycosis due to *Alternaria alternate*. Mycoses. 2002;45:338–340. doi: 10.1046/j.1439-0507.2002.00755.x.
- 4. Koga T, Matsuda T, Matsumoto T, et al. Therapeutic approaches to subcutaneous mycoses. Am J Clin Dermatol. 2003;4(8):537–543. doi: 10.2165/00128071-200304080-00003.
- 5. Cardoso SV, Campolina SS, Guimarães ALS, et al. Oral phaeohyphoycosis. J Clin Pathol. 2007;60:204–205. doi: 10.1136/jcp.2005.035808.
- 6. Koppang HS, Olsen I, Stuge U, Sandven P. Aureobasidium infection of the jaw. Oral Pathol Med. 1991;20(4):191–195. doi: 10.1111/j.1600-0714.1991.tb00920.x.
- 7. Revankar SG. Phaeohyphomycosis. Infect Dis Clin N Am. 2006;20:609–620. doi: 10.1016/j.idc.2006.06.004.
- 8. Neville BW, Damm DD, Allen CM, editors. Oral and maxillofacial pathology. 3. Philadelphia, PA: W.B. Saunders Company; 2008.
- 9. Gerdsen R, Uerlich M, Hoog GS, et al. Sporotrichoid phaeohyphomycosis due to *Alternaria infectoria*. Br J Dermatol. 2001;145:484–486. doi: 10.1046/j.1365-2133.2001.04382.x.