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Abstract:  
A theory is presented addressing the fundamental limits of image estimation in a setup that uses two 
photon-correlated beams. These beams have the property that their photon arrivals, as a point 
process, are ideally synchronized in time and space. The true image represents the spatial distribution 
of the optical transmittance (or reflectance) of an object. In this setup, one beam is used to probe the 
image while the other is used as a reference providing additional information on the actual number of 
photons impinging on the object. This additional information is exploited to reduce the effect of 
quantum noise associated with the uncertainty in the number of photons per pixel. A stochastic model 
for the joint statistics of the two observation matrices is developed and used to obtain a local 
maximum-likelihood estimator of the image. The model captures the nonideal nature of the 
correlation between the photons of the beams by means of a simple random translation model. The 
mean-square error of the estimator is evaluated and compared to the corresponding conventional 
techniques. Conditions for the performance advantage of the proposed estimator are examined in 
terms of key system parameters. The theoretical predictions are demonstrated by means of simulation. 

SECTION I. 
Introduction 
In many imaging applications, it is desirable to accurately estimate the spatial distribution of the 
transmittance (or reflectance) of a semitransparent object [1]–[2][3]. From an estimation-theoretic 
viewpoint, this problem is akin to the problem of estimating the underlying mean intensity function of 
point processes [2], [4]–[5][6][7][8][9][10]. The connection is that the unknown function in intensity 
estimation takes the form of a uniform function that is spatially modulated by the object's unknown 
transmittance. Physically, the  

 

 

Fig. 1. Conventional maximum-likelihood image estimation setup using a single beam. 

procedure for high-accuracy transmittance estimation typically involves the transmission of coherent 
light through the object and detecting the transmitted light by means of a detector array (e.g., a focal-
plane array) operating in the photon-counting mode (see Fig. 1). Each detector in the array counts the 
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number of photons that are transmitted through the object and detected within its active area during a 
specified measurement time. A detector element in the array is regarded as a pixel whose value is a 
noisy and spatially quantized (sampled) representation of the object's position-dependent 
transmittance. Under ideal conditions, the pixel value is a random variable (rv) whose mean is 
proportional to the average transmittance in an area covered by the detector. In this paper, we use the 
term “true image” to denote the two-dimensional (2-D) array of these sampled transmittance values. 

Fundamentally, there are two sources of uncertainty that limit the performance of any image 
estimator that depends on optical measurements: 1) quantum noise and 2) photon transmission noise 
[1]. The performance limit governed by these two factors is referred to as the standard quantum limit 
(SQL) in optical measurement. The term quantum noise, or photon noise, is used to represent 
uncertainty resulting from the fact that the number of photons impinging on the object (per 
measurement time) is random (e.g., a Poisson rv if the light is in a coherent state, as the case in laser 
light) [11], [12]. The role of quantum noise becomes very significant in situations where the optical 
energy per pixel is weak (e.g., below 100 photons per pixel per measurement time) as in the case of 
estimating delicate biological specimens or other radiation-sensitive materials [1]. Photon transmission 
noise, on the other hand, is due to the fact that each photon impinging on the object is transmitted 
through the object with a certain probability that is equal to the transmittance of the object at that 
location. The very process of photon transmission through an object is therefore a random-deletion 
process.  



 

 

Fig. 2. Conditional maximum-likelihood image estimation setup using a pair of photon-correlated 
beams. 

In this paper, we investigate the possibility of reducing quantum noise in image estimation by 
considering an alternative estimation setup, called the photon-correlated-beams setup, which uses a 
nonclassical light source consisting of a pair of beams whose photon streams are statistically 
correlated. In particular, the photons of each beam arrive in accordance with a Poisson process but the 
photons of the two beams are, under ideal conditions, perfectly synchronized in time and space. 
Photon-correlated beams can be generated, for example, by spontaneous parametric downconversion 
[13]–[14][15][16][17][18][19]. This type of nonclassical light has been proposed and demonstrated for 
use in a number of other applications including uniform transmittance (single pixel) estimation, optical 
communications, cryptography, and tests of the quantum theory of light [20]–
[21][22][23][24][25][26][27]. For example, it was shown in [21] that a reduction up to 30% below the 
SQL (in the mean-square-error sense) is possible when the photon-correlated setup is used in uniform 
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transmittance estimation. However, single-pixel estimation techniques do not suit image estimation 
since pixel values in the latter case are statistically correlated. 

In the proposed setup, shown in Fig. 2, one of the beams, the signal, is transmitted through the object 
and subsequently detected by a detector array. The other beam, the idler, is not transmitted through 
the object but instead detected directly by another detector array and used as a reference providing 
information on the actual number of signal photons impinging on the object in each pixel. In this setup, 
the number of photons impinging on a certain image pixel and the number of photons impinging on a 
specified detector element in the idler detector array are highly correlated. More precisely, if a photon 
from the idler beam impinges on the (i,j) th pixel of the detector array, its twin signal photon will 
impinge on the (i,j) th pixel of the image with a certain (high) probability but may also undesirably 
impinge on a neighboring pixel instead. The purpose of this paper is to develop a mathematical model 
for this nonclassical setup and use it to obtain a maximum-likelihood (ML) estimate of the true image. 
The performance of such an estimator will be predicted and compared to the ML estimator for a 
conventional single-beam setup. Although the results are presented in the context of light sources 
generated by parametric downconversion, the model and the theory can be applied to other 
estimation setups where “correlated versions” of the underlying probing signal are available. 
Moreover, the theory can also be cast in the context of image fusion where two observed images (one 
image representing the photon spatial distribution prior to transmission through the object and the 
other representing the distribution of transmitted photons) are combined to generate an improved 
estimation of the true image. 

This paper is organized as follows. In Section II, we review the conventional single-beam approach for 
image estimation and state the associated ML estimator. In Section III, we develop a stochastic model 
for the photon-correlated image estimation problem and derive a local ML estimator of the true image. 
In Section IV, we compare the performance of the conventional and the proposed photon-correlated 
estimators by means of computing the associated mean-square errors. The effects of various system 
parameters such as strength of correlation between photons, detector quantum efficiency (i.e., 
photodetection noise), optical energy, and background-noise level are investigated. Simulations of the 
stochastic model are also generated to support the theory. 

SECTION II. 
Image Estimation Using Conventional Light 
For purposes of comparison, we review the theory for image estimation using the conventional single-
beam setup shown in Fig. 1. The unknown transmittance is represented by an n-by-n matrix T={tij}, 
whose entries, tij, are real numbers in the interval [0,1] representing the object transmittance at each 
pixel. For example, the transmittance values 1 and 0 correspond, respectively, to full transparency and 
total opaqueness. The probing beam carries an average photon flux λ (photons per second per pixel), 
which is reduced to an average photon flux of tijλ upon transmission through the (i,j) th pixel of the 
image since each photon is transmitted through the object with a probability equal to the 
transmittance at the pixel. The transmitted light is detected using a detector array with quantum 
efficiency η (i.e., each photon is detected with probability η), operating in the photon counting mode. 
For convenience, background stray light, dark current noise, and other sources of noise (e.g., read-out 



noise [28]) are collectively modeled by a noise photon flux μ (photons per second per pixel). The (i,j) th 
element of the detector array is a measurement of the number of photons, N(i,j), detected during the 
measurement time T. According to the laws of photon optics for coherent light [11], N(i,j) is a Poisson 
rv with mean value ηtijλT+ημT. We assume here that the noise photon statistics are also Poissonian (as 
an approximation) and independent of the probe-beam photons. 

The conventional ML image estimation problem is described as follows. Given the measured random 
matrix N={N(i,j)}, and assuming that the parameters λ, μ, and η are known (from prior accurate 
experimental measurements of the probe beam and the detectors), determine the ML estimate of the 
transmittance matrix T of the object. To obtain this estimate, knowledge of the probability mass 
function (PMF) of the matrix N is required. Since the probe beam intensity is deterministic, the counts 
from different pixels are statistically independent. Hence, the joint PMF PN(k), where k={kij}, can be 
written as the product 

𝑃𝑃𝐍𝐍(𝐤𝐤) ≜ sf P�𝑁𝑁(𝑖𝑖, 𝑗𝑗) = 𝑘𝑘𝑖𝑖𝑖𝑖 , for all 𝑖𝑖, 𝑗𝑗� = ��𝑃𝑃𝑁𝑁(𝑖𝑖,𝑖𝑖)�𝑘𝑘𝑖𝑖𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

(1) 

where PN(i,j)(⋅) is the Poissonian PMF of N(i,j) given by 

𝑃𝑃𝑁𝑁(𝑖𝑖,𝑖𝑖)(𝑘𝑘) = 𝑒𝑒−�𝜂𝜂𝑡𝑡𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆+𝜂𝜂𝜂𝜂𝜆𝜆�
(𝜂𝜂𝑡𝑡𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆 + 𝜂𝜂𝜂𝜂𝜆𝜆)𝑘𝑘

𝑘𝑘! , 𝑘𝑘 ≥ 0. 

(2) 

The ML estimate, T^s, of T is obtained by maximizing (1) over T. Due to the product form of PN(k), this 
maximization can be performed on a pixel-by-pixel basis. A straightforward calculation [21] shows that, 
as a function of the observed pixel value N(i,j), the (i,j) th entry t^s,ij of T^s is given by 

𝑡𝑡
^
𝑠𝑠,𝑖𝑖𝑖𝑖(𝑁𝑁(𝑖𝑖, 𝑗𝑗)) = {

0,  if 
𝑁𝑁(𝑖𝑖, 𝑗𝑗)
𝜂𝜂𝜆𝜆𝜆𝜆 ≤

𝜂𝜂
𝜆𝜆

1,  if 
𝑁𝑁(𝑖𝑖, 𝑗𝑗)
𝜂𝜂𝜆𝜆𝜆𝜆 ≥ 1 +

𝜂𝜂
𝜆𝜆

𝑁𝑁(𝑖𝑖, 𝑗𝑗)
𝜂𝜂𝜆𝜆𝜆𝜆 −

𝜂𝜂
𝜆𝜆 ,  otherwise.

 

(3) 

As a measure of performance, we will use the averaged mean-square error defined by 
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𝜀𝜀𝑠𝑠2 ≜
1
𝑛𝑛2
�� sf E

𝑛𝑛

𝑖𝑖=1

[{𝑡𝑡
^ 

𝑠𝑠,𝑖𝑖𝑖𝑖(𝑁𝑁(𝑖𝑖, 𝑗𝑗)) − 𝑡𝑡𝑖𝑖𝑖𝑖}2]

𝑛𝑛

𝑖𝑖=1

=
1
𝑛𝑛2
���{𝑡𝑡

^ 

𝑠𝑠,𝑖𝑖𝑖𝑖(𝑘𝑘) − 𝑡𝑡𝑖𝑖𝑖𝑖}2𝑃𝑃𝑁𝑁(𝑖𝑖,𝑖𝑖)(𝑘𝑘)
∞

𝑘𝑘=0

𝑛𝑛

𝑖𝑖=1

𝑛𝑛
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(4) 

which can be evaluated numerically for any fixed true image. Note that in the ideal case when μ=0 and 
η=1, ε2s is the error due only to the combined effect of quantum noise and the randomness in the 
process of photon transmission and it collectively represents the SQL in conventional image 
estimation. By using a photon-correlated light source, it is possible to reduce the image estimation 
error below the SQL to almost the random-deletion limit. This latter limit corresponds to the lowest 
theoretical error in image estimation (using direct detection of light) and it is achieved when the 
photon number (per measurement time per pixel) is deterministic. (In quantum optics, light with 
deterministic-photon count characteristics is referred to as maximally number-squeezed light [29].) 

SECTION III. 
Image Estimation Using Photon -Correlated Beams 
We now consider the problem of estimating the image T using the photon-correlated setup shown in 
Fig. 2. The basic estimation problem is stated as follows. Given the observation matrices N and M, 
determine the ML estimate of the image T. Unfortunately, even with the simplest form of spatial 
correlation between the pixels of M and N, the conditional joint PMF of the matrix N, given M, is 
analytically intractable due to the fact that the correlation between the pixels of N propagates and 
spreads over the entire dimension of the matrix, which is typically large. To avoid this difficulty, we 
take a locally optimal estimation approach and consider instead maximizing the scalar conditional PMF 
of the pixel N(i,j) given the knowledge of the immediate neighboring pixels M(i′,j′), for i′=i−1,…,i+1 and 
j′=j−1,…,j+1. We will next develop such a local model and derive an expression for the conditional PMF 
of each pixel of N given M. 

A. A Model for the Observed Matrices 
Let Mc={Mc(i,j)} denote the n-by-n matrix representing the random number of idler-beam photons per 
pixel per measurement time T that are available prior to detection. Moreover, let the matrix 
Nc={Nc(i,j)} represent the number of signal photons that are transmitted through the object and are 
impinging on the signal-channel detector array (see Fig. 2). Each of the matrix entries Mc(i,j) and Nc(i,j) 
is modeled by a Poisson rv with mean values λT and λTtij, respectively, where λ represents the idler 
and signal photon flux (photons per second per pixel). Furthermore, since each beam is assumed to be 
in a coherent state, it follows that for (i′,j′)≠(i,j), Mc(i,j) and Mc(i′,j′) are independent rv's and so are 
Nc(i,j) and Nc(i′,j′). After detection (with detection quantum efficiency ηs), the signal photon matrix Nc 
is reduced to the detected number of signal photons, denoted by Ncd, whose entries are Poisson rvs 



with a mean that is a fraction ηs of the mean of the entries of Nc. The matrix corresponding to the total 
number N of detected counts in the signal channel is given by the sum 

𝐍𝐍 = 𝐍𝐍𝑐𝑐𝑐𝑐 + 𝐕𝐕𝑐𝑐  

(5) 

where Vd is the detected background-noise matrix whose entries are independent and identically-
distributed (iid) Poisson rvs with mean ηsμsT (per pixel per measurement time T). Similarly, the total 
number M of detected idler photons is the sum  

𝐌𝐌 = 𝐌𝐌𝑐𝑐𝑐𝑐 + 𝐖𝐖𝑐𝑐  

where Mcd is the detected idler photon matrix and Wd is the detected background-noise matrix for 
the idler channel. The entries of Wd are iid Poisson rvs with mean ηiμsT and each entry of Mcd is also a 
Poisson rv with mean ηiμsT. Here, ηi is the quantum efficiency of the idler-channel detector array. In 
summary, the entries N(i,j) and M(i,j) of the observed matrices N and M, respectively, are Poisson rv's 
with mean values 𝜂𝜂𝑠𝑠𝜆𝜆(𝑡𝑡𝑖𝑖𝑖𝑖𝜆𝜆 + 𝜂𝜂𝑠𝑠) and 𝜂𝜂𝑖𝑖𝜆𝜆(𝜆𝜆 + 𝜂𝜂𝑖𝑖). 

1. Random-Translation Model Representing Photon Correlation 
According to the physical assumptions on the type correlation between photons which were discussed 
in Section I, for each idler photon in the (i,j) th pixel of Mc, a signal photon impinges on the (i,j) th pixel 
of the image (with transmittance tij) with probability 1−8β, where β is a known parameter, 0≤β≤1/8. 
Hence, the probability that this signal-twin photon is actually present in (i,j) th pixel of Nc is therefore 
(1−8β)tij. (Boundary pixels are treated in a similar way keeping in mind the appropriate neighbors.) 
Similarly, for each idler photon in the immediate neighbors of the (i,j) th pixel of the idler matrix Mc, 
the probability that its signal twin is present in the (i,j) th pixel of the signal matrix Nc is βtij. The 
parameter β represents the probability that the twin signal photon appears in a specific pixel of the 
eight neighboring pixels of the (i,j) th pixel of Nc and it is a measure of deviation from the ideal spatial 
correlation between the signal and idler photon pairs. For example, the case β=0 represent the ideal 
case of perfect spatial correlation. 

B. A Local Conditional Model 
The goal of this section is to derive an expression for the PMF of each entry of the signal observation 
matrix N given knowledge of the idler matrix M. Since the spatial correlation between N and M is solely 
based the correlation between Mc and Nc, we begin by developing a stochastic conditional 
specification of Nc in terms of Mc. For brevity of notation, define the single-pixel neighborhood of a 
pixel (i,j) by  

𝐷𝐷𝑖𝑖𝑖𝑖 = {(𝑖𝑖′, 𝑗𝑗′): |𝑖𝑖 − 𝑖𝑖′| ≤ 1, |𝑗𝑗 − 𝑗𝑗′| ≤ 1}. 

Now if a realization of the random matrix Mc is given by {mc(i,j)}, then according to the single-pixel 
random-translation rule described in Section III-A-I, the (i,j) th pixel of the random matrix Nc is given by  

(6) 

𝑁𝑁𝑐𝑐(𝑖𝑖, 𝑗𝑗) = 𝐵𝐵𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑖𝑖 , 



where Bij represents the number of signal photons whose idler twin photons are in the (i,j) th pixel of 
the idler matrix Mc. On the other hand, Cij is the number of photons whose idler twin photons are in 
any of the the eight neighboring pixels of the (i,j) th pixel of the idler matrix Mc. Note that if β=0, then 
Cij is zero. We now describe the PMF's of Bij and Cij. Recall that for each idler photon in the (i,j) th pixel 
of Mc, its signal twin will be in the (i,j) th pixel of Nc with probability (1−8β)tij. Now conditional on the 
fact that there are mc(i,j) photons in the (i,j) th pixel of Mc, the number of signal photons that are in 
the (i,j) th pixel of Nc is a binomial rv with size mc(i,j) and success probability (1−8β)tij. The conditional 
PMF PBij|Mc(k), defined by P{Bij=k|Mc={mc(i,j)}}, is therefore given by  

𝑃𝑃𝐵𝐵𝑖𝑖𝑖𝑖|𝐌𝐌𝑐𝑐
(𝑘𝑘) = 𝑏𝑏�𝑘𝑘;𝑚𝑚𝑐𝑐(𝑖𝑖, 𝑗𝑗), (1− 8𝛽𝛽)𝑡𝑡𝑖𝑖𝑖𝑖�,𝑘𝑘 ≥ 0, 

(7) 

where for any integer K and 0≤p≤1,  

𝑏𝑏(𝑘𝑘;𝐾𝐾,𝑝𝑝) = {(
𝐾𝐾
𝑘𝑘 )𝑝𝑝𝑘𝑘(1− 𝑝𝑝)𝐾𝐾−𝑘𝑘 , 0 ≤ 𝑘𝑘 ≤ 𝐾𝐾,

0,  otherwise
 

is a binomial PMF with size K and success probability p. As for the PMF of Cij, note that each idler 
photon in a neighboring pixel of (i,j) (in Mc) has a signal twin that may be present in the (i,j) th pixel of 
Nc with probability βtij. Since there is a total of  

(8) 

𝑠𝑠(𝑖𝑖, 𝑗𝑗) = � 𝑚𝑚𝑐𝑐
(𝑖𝑖′,𝑖𝑖′)∈𝐷𝐷𝑖𝑖𝑖𝑖,(𝑖𝑖′,𝑖𝑖′)≠(𝑖𝑖,𝑖𝑖)

(𝑖𝑖′, 𝑗𝑗′) 

of such idler photons in all the eight neighboring pixels of the (i,j) th pixel, the total number of their 
signal twin photons Cij is a binomial rv with size s(i,j) and success probability βtij. Hence, the 
conditional PMF PCij|Mc(k) is given by  

𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖|𝐌𝐌𝑐𝑐
(𝑘𝑘) = 𝑏𝑏�𝑘𝑘, 𝑠𝑠(𝑖𝑖, 𝑗𝑗),𝛽𝛽𝑡𝑡𝑖𝑖𝑖𝑖�. 

(9) 

To obtain the conditional PMF's of Bij and Cij given M (in place of the unobservable matrix Mc), we 
replace Mc(i′,j′) in (7) and (9) by its estimate Mc^(M(i′,j′)) defined as the conditional mean of Mc(i′,j′) 
given the knowledge of M(i′,j′). More precisely, for ℓ≥0,  

(10) 

𝑀𝑀𝑐𝑐
^ 

(ℓ) ≜ sf E[𝑀𝑀𝑐𝑐(𝑖𝑖′, 𝑗𝑗′)|𝑀𝑀(𝑖𝑖′, 𝑗𝑗′) = ℓ]. 

An analytical expression for this conditional expectation can be obtained by exploiting the smoothing 
property of conditional expectations and Bayes' Theorem (see [21], Appendix, second to last equation). 
We omit the details of the calculation and state the final result as 

https://ieeexplore.ieee.org/document/#deqn7
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𝑀𝑀𝑐𝑐
^

(ℓ) = 𝜆𝜆{(1− 𝜂𝜂𝑖𝑖)𝜆𝜆 +
ℓ

𝜆𝜆 + 𝜂𝜂𝑖𝑖
}. 

(11) 

(Note that in the case when ηi=1 and μi=0, the above conditional expectation reduces to ℓ, as 
expected, since in this special case M(i,j)=Mc(i,j).) Hence, given that M(i′,j′)=m(i′,j′) for (i′,j′)∈Dij, we can 
use (11) to write analogs of the conditional PMF's given in (7) and (9) with the conditioning being on 
the knowledge of M instead of Mc. More precisely, we can write estimates of these PMF's as 

(12) 

𝑃𝑃𝐵𝐵𝑖𝑖𝑖𝑖|𝐌𝐌(𝑘𝑘) = 𝑏𝑏 �𝑘𝑘;𝑀𝑀𝑐𝑐
^ 

�𝑚𝑚(𝑖𝑖, 𝑗𝑗)�, (1 − 8𝛽𝛽)𝑡𝑡𝑖𝑖𝑖𝑖� 𝑘𝑘 ≥ 0 

And 

(13) 

𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖|𝐌𝐌(𝑘𝑘) = 𝑏𝑏 �𝑘𝑘; 𝑠𝑠
^ 

(𝑖𝑖, 𝑗𝑗),𝛽𝛽𝑡𝑡𝑖𝑖𝑖𝑖� , 𝑘𝑘 ≥ 0 

Where 

(14) 

𝑠𝑠
^
(𝑖𝑖, 𝑗𝑗) = � 𝑀𝑀𝑐𝑐

^

(𝑖𝑖′,𝑖𝑖′)∈𝐷𝐷𝑖𝑖𝑖𝑖,(𝑖𝑖′,𝑖𝑖′)≠(𝑖𝑖,𝑖𝑖)

(𝑚𝑚(𝑖𝑖′, 𝑗𝑗′)). 

Finally, by exploiting the mutual independence of Bij, Cij and the background-noise matrix Vd, we 
arrive at the expression for the conditional PMF of N(i,j) given that M(i,j)=m(i′,j′) for (i′,j′)∈Dij: 

𝑃𝑃𝑁𝑁(𝑖𝑖,𝑖𝑖)|𝐌𝐌(𝑘𝑘) = 𝑃𝑃𝐵𝐵𝑖𝑖𝑖𝑖|𝐌𝐌(𝑘𝑘) ∗ 𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖|𝐌𝐌(𝑘𝑘) ∗ 𝑃𝑃𝑉𝑉𝑑𝑑(𝑖𝑖,𝑖𝑖)(𝑘𝑘),𝑘𝑘 ≥ 0, 

(15) 

where PVd(i,j)(k) is the PMF of Vd(i,j) given by 

𝑃𝑃𝑉𝑉𝑑𝑑(𝑖𝑖,𝑖𝑖)(𝑘𝑘) =
(𝜂𝜂𝑠𝑠𝜂𝜂𝑠𝑠𝜆𝜆)𝑘𝑘

𝑘𝑘! 𝑒𝑒−𝜂𝜂𝑠𝑠𝜂𝜂𝑠𝑠𝜆𝜆 ,𝑘𝑘 ≥ 0 

(16) 

and ∗ denotes discrete convolution. 

It is important to point out that the local conditional specification of the matrix Nc given Mc is 
consistent with the fact that the entries of Nc are independent Poisson rv's, each with mean ηsλTtij, as 
discussed in Section III-A. In fact, it can be shown using generating functions that averaging the 
conditional joint PMF of Nc given Mc (which involves the conditional pixel PMF's (7) and (9)) against 
the joint PMF of Mc yields the correct joint PMF for Nc. (The key observation in the proof is that 
conditional on Mc, the entries of Nc are independent.) Indeed, the observation that a random-pixel 
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translation operation preserves the Poisson nature of a random matrix resembles the established fact 
that a random translation of a spatial Poisson process yields another Poisson process with a modified 
intensity, as proven by Snyder and Miller in [2]. In addition, as a result of the locality of the random 
translation model, in all the conditional PMF's developed, the conditional knowledge of M (or Mc) is 
equivalent to the conditional knowledge of these matrices in the neighborhood of the pixel. 

1. Local Maximum-Likelihood Estimator 
Suppose that the observed realizations of the signal and idler matrices are given by N={n(i,j)} and 
M={m(i,j)}, respectively. Then by maximizing the expression (15) over the unknown tij, we obtain the 
(i,j) th component, t^c,ij, of the local ML estimate T^c. For convenience, we summarize this procedure.  

1. Calculate s^(i,j) using (14) and the definition of the function Mc^ given in (11). 

2. Compute PBij|M(k) and PCij|M(k) using (12) and (13), respectively, with tij used as a variable. 

3. Carry out the discrete convolution given in (15) to calculate PN(i,j)|M(n(i,j)) with tij used as a 
variable. 

4. Maximize PN(i,j)|M(n(i,j)) over tij in the range [0,1]. The maximizing tij is the local ML estimate 
t^c,ij(n(i,j),{m(i,j)}). 

In this paper, the maximization in the last step was done by exhaustion using a modular C++ program. 
In particular, for each (i,j), the arrays PBij|M(k) and PCij|M(k) were recalculated for each new value of 
tij, as tij was increased from zero in steps of 10−4. To make efficient use of memory, the size of the 
arrays (i.e., the range of k) was selected dynamically for each trial value of tij, and the arrays were 
terminated when negligibly small values were reached. Then, for each trial value of tij, (3) was 
executed and the error PN(i,j)|M(n(i,j)) was calculated and bubble sorted in search of the error-
minimizing t^c,ij. The entire procedure was then repeated for every (i,j). 

As in Section II, we assess the performance of the local ML estimator T^c by means of computing the 
averaged mean-square error 

𝜀𝜀𝑐𝑐2 ≜
1
𝑛𝑛2
� ∑ sf E𝑛𝑛

𝑖𝑖=1 [{𝑡𝑡
^
𝑐𝑐,𝑖𝑖𝑖𝑖(𝑁𝑁(𝑖𝑖, 𝑗𝑗),𝐌𝐌) − 𝑡𝑡𝑖𝑖𝑖𝑖}2]

𝑛𝑛

𝑖𝑖=1

= 1
𝑛𝑛2
� ∑ sf E𝑛𝑛

𝑖𝑖=1 [sf E[{𝑡𝑡
^
𝑐𝑐,𝑖𝑖𝑖𝑖(𝑁𝑁(𝑖𝑖, 𝑗𝑗),𝐌𝐌) − 𝑡𝑡𝑖𝑖𝑖𝑖}2|𝐌𝐌]]

𝑛𝑛

𝑖𝑖=1

= 1
𝑛𝑛2
� [� � � (𝑡𝑡

^
𝑐𝑐,𝑖𝑖𝑖𝑖(𝑘𝑘,𝐪𝐪) − 𝑡𝑡𝑖𝑖𝑖𝑖)2𝑃𝑃𝑁𝑁(𝑖𝑖,𝑖𝑖)|𝐌𝐌(𝑘𝑘)]

∞

𝑘𝑘=0

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1𝐪𝐪

× 𝑃𝑃𝐌𝐌(𝐪𝐪).

  

(17) 

(Note that the joint PMF PM(q) is simply a product of n2 Poissonian PMFs.) Some examples are 
considered in Section IV.  
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Fig. 3. True image to be used in the performance analysis of the conventional and photon-correlated 
estimators. 

SECTION IV. 
Discussion 
In this section, we compare the performance of the proposed local ML estimator for the photon-
correlated setup to the classical single-beam ML estimator T^s. The average mean-square errors ε2s 
and ε2c, respectively given by (4) and (17), are used as measures of performance. For convenience, we 
also define the performance factor ρ=ε2c/ε2s as a relative measure of performance advantage. For 
simplicity, we will assume identical signal- and idler-channel background-noise flux μ, and identical 
quantum efficiency η for the signal and idler detector arrays. The predicted performance advantage is 
shown in terms of certain key parameters including  

• mean number of photons per pixel per measurement time defined by np=λT, which is a 
measure of the optical energy used to generate the measurements; 

• photon correlation parameter β; 

• background-noise mean photon number nb=μT; 

• detection quantum efficiency η. 
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To demonstrate our results, we considered a 128 by 128 eight-bit gray-scale image shown in Fig. 3. The 
pixel values were normalized so that they are in the interval [0,1] (corresponding to transmittance 
values). This normalized image constitutes the transmittance matrix T.  

TABLE I Comparison Between the Performance of the Conventional and the Photon-Correlated 
Estimates in the Absence of Background Noise (nb=0) and Under IdealDetection Conditions (η=1) 

 

 

  
 

β=0  β=0.01 β=0.0375 β=0.075 
np ɛ2

s
 ɛ 2

c ρ ρ ρ ρ 
10 0.0272 0.0237 0.871 0.879 1.018 1.121 
20 0.0137 0.0092 0.672 0.737 0.876 1.949 
30 0.0092 0.0061 0.663 0.728 0.859 0.978 
50 0.0055 0.0037 0.673 0.727 0.855 0.982 
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Fig. 4. ML estimate of the true image using the conventional setup. Ideal conditions of background 
noise (nb=0) and quantum efficiency (η=1) are assumed. The signal parameter np is 50. 
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Fig. 5. Local ML estimate using photon-correlated beams. The photon correlation parameter β is 0.01. 
The remaining parameters are the same as those in Fig. 4. 

In addition to calculating the theoretical errors, we also simulated the stochastic model for the entire 
process of transmission and detection of photons for both the conventional and photon-correlated 
setups and generated the estimated images for each estimator. We will describe the procedure for the 
simulation of photon-correlated setup only, simulation of the conventional setup is straightforward. 
We first generated a realization of a Poisson matrix representing the idler-channel photon count matrix 
Mc. We then created the signal-channel matrix Nc by randomly perturbing Mc according to the one-
step random translation model described in Section III-A-I. To simulate the random deletion of photons 
due to transmission through the object and nonideal detection, each pixel count Nc(i,j) was 
subsequently replaced with a realization of a binomial random variable with size Nc(i,j) and success 
probability tijη. (Recall that the probability that a photon is transmitted through the object and 
detected by the array detector is the product tijη.) This completes the generation of a realization of the 
count matrix Ncd. We then added to Ncd an independently generated Poisson noise matrix to yield the 
observation matrix N. To generate a simulation of the idler observation matrix M, we subjected the 
random matrix Mc through a random deletion process (representing nonideal detection) and added to 

it Poisson noise matrix Wd. The estimate 𝐓𝐓
^
𝑐𝑐 was then computed using the realizations of N and M as 

inputs to the photon-correlated estimators as outlined in Section III-B1. These estimates were 
subsequently re-scaled to form an eight-bit image.  
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Fig. 6. Conventional ML estimate in the presence of background noise under ideal detection conditions 
(η=1). The background-noise parameter nb is five and the signal parameter np is 50. 
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Fig. 7. Local ML estimate using photon-correlated beams in the presence of background noise when 
the photon correlation parameter β is 0.01. The remaining parameters are the same as those in Fig. 6. 
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Fig. 8. Conventional ML estimate in the presence of background noise and under conditions of 
nonideal detection. The background-noise parameter nb and the signal parameter np are 5 and 50, 
respectively. The detector quantum efficiency η is 0.8. 
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Fig. 9. The local ML estimate using photon-correlated beams in the presence of background noise and 
under conditions of nonideal detection. The photon correlation parameter β is 0.01. The remaining 
parameters are the same as those in Fig. 8. 

A. Dependence of the Performance on the Strength of Correlation Between Photons 
Table I summarizes the results for the ideal case for which no background noise is present (μ=0) and 
the detectors are ideal (η=1). This special case serves as a benchmark for the maximum improvement 
possible in image estimation offered by the photon-correlated setup. In the case of perfect photon 
correlation (i.e., when β=0), the estimation of the unknown transmittance matrix given the observed 
and reference images reduces to the case of estimating the transmittance of a pixel given the signal 
and idler pixels. This special case had been previously investigated in [21] and the results there are 
consistent with the results in the “β=0” column of Table I. When β=0, the improvement factor ρ 
becomes approximately 0.7 as np increases, which corresponds to an error reduction of approximately 
1.6 dB. As expected, when the correlation between the reference and signal photon counts becomes 
weaker, the advantage of the photon-correlated scheme becomes less significant. In fact, if the 
correlation parameter is β=0.075, the photon-correlated scheme is at a disadvantage for low values of 
np. The fact that ρ is greater than unity may seem contradictory at first. However, we recall that the 
photon-correlated estimate T^c is a locally optimal estimator and it is not the global ML estimator. 
Moreover, the optimality is in the sense of maximizing the conditional PMF, which does not necessarily 
yield a minimum mean-square-error estimate.  
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TABLE II Comparison Between the Performance of the Conventional and the Photon-Correlated 
Estimates in the Presence of Background Noise (nb=5) and Under Conditions of Ideal Detection (η=1) 

 

 

  
 

β=0  β=0.01 β=0.0375 β=0.075 
np ɛ2

s
 ɛ 2

c ρ ρ ρ ρ 
10 0.0601 0.0707 1.176 1.181 1.119 1.126 
20 0.0244 0.0241 0.989 1.009 1.052 1.135 
30 0.0142 0.0122 0.856 0.901 0.978 1.081 
50 0.0074 0.0058 0.787 0.828 0.940 1.340 

 

TABLE III Comparison Between the Performance of the Conventional and the Photon-Correlated 
Estimates in the Presence of Background Noise (nb=5) and Under Conditions of Nonideal Detection 
(η=0.8) 
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β=0  β=0.01 β=0.0375 β=0.075 
np ɛ2

s
 ɛ 2

c ρ ρ ρ ρ 
10 0.0709 0.0854 1.205 1.174 1.145 1.196 
20 0.03 0.0298 0.993 1.038 1.073 1.13 
30 0.0176 0.0158 0.896 0.917 1.015 1.118 
50 0.0092 0.0078 0.841 0.870 0.961 1.075 

 

In general, the improvement factor ρ decreases as a function of np. This behavior is also consistent 
with the results reported in [21] asserting that the improvement becomes more significant as np 
increases initially but then levels off at a predetermined value that depends on the true transmittance 
values in the image and other system parameters. Figs. 4 and 5 show realizations of the estimates of 
the transmittance matrix T using the conventional and photon-correlated schemes, respectively. The 
reduction in quantum noise in Fig. 5 is evident. 

B. Effect of Photodetection Noise, Transmission Noise, and Background Noise 
The effect of background noise on the performance advantage is seen in Table II. Although the 
presence of background noise reduces the performance advantage of the photon-correlated scheme 
for low signal and idler photon counts (e.g., np below 20), this effect becomes insignificant as the 
signal-to-noise ratio np/nb increases (e.g., when np is beyond 30 photons and nb=5). Figs. 6 and 7 show 
realizations of estimates of the transmittance matrix T using the conventional and photon-correlated 
setups, respectively. Finally, the effect of nonideal photodetection can be seen from Table III where the 
detectors' quantum efficiency is assumed as η=0.8. Although the performance improvement factor can 
be incrementally reduced by increasing np, an eventual performance advantage may not be possible at 
low transmittance values. This result is similar to the limitation that nonideal detection imposes on 
uniform transmittance estimation described in [20] and [21]. When the quantum efficiency of the 
detectors is not sufficiently high (e.g., η<0.5 as described in [20] and [21]), the likelihood of detecting 
both twin photons decreases resulting in a reduced correlation between the number of detected 
photons in the idler and signal beams. Figs. 8 and 9 show realizations of the estimates in this case. A 
moderate improvement is seen in the photon-correlated estimate. 

SECTION V. 
Conclusion 
This paper introduces an image estimator for a class of computed-imaging problems that utilize a form 
of nonclassical light known as photon-correlated beams. The paper investigates the possibility of 
improving the performance of image estimation beyond the classical fundamental limits dictated by 
quantum noise. What makes the light source nonclassical is that the photon arrival times and locations 
of the two beams are, under ideal conditions, perfectly synchronized. One of the beams is used to 
probe the image and the transmitted photons are detected by means of an array detector. The other 
beam is detected directly and used to provide information on the number of photons impinging on 
each pixel of the image. Through this added information, uncertainty in the image estimation due to 
fluctuation in the number of photons can be reduced. 



We have developed a stochastic model that locally characterizes the joint statistics of the two 
observation matrices and derived a local ML estimator for the true image. The theory includes the 
effects of background noise, photodetection noise, and the deviation from the ideal spatial 
synchronization (correlation) between the photons of the two beams. This latter effect is captured by a 
single-pixel random translation mechanism. By computing the mean-square error, it is shown that a 
moderate improvement in the performance is possible relative to the conventional single-beam ML 
estimator. The possibility of performance advantage is shown in terms of key parameters such as the 
mean optical energy per measurement time per pixel, detector quantum efficiency, the strength of 
spatial correlation between the photons of the two beams, and the level of background noise. For 
example, under conditions of perfect photon correlation, ideal photodetection and in the absence of 
background noise, a reduction in the mean-square error up to 30% below that associated with the 
conventional single-beam ML estimate is possible. In general, the relative improvement becomes more 
significant as the optical energy increases and it will eventually plateau at a level which depends on the 
system parameters. However, as the correlation between twin photons becomes weak, the 
performance of the photon-correlated estimator may become inferior to the conventional ML 
estimator. This is intuitively expected since when the correlation between the photons of the two 
beams is weak, the additional information provided by the idler beam on the signal-beam photon 
number becomes unreliable and will in fact obscure our knowledge of the number of photons 
impinging on the object. A similar performance degradation is seen when the quantum efficiency of 
detection is low (i.e., below 0.5). Albeit, under reasonable system parameters such as a signal-to-noise 
ratio of ten, detector quantum efficiency of 0.8, and an average of 50 photons per pixel per detection 
time, an improvement of 13% below the conventional limit is predicted under moderate levels of 
photon correlation. 

The theory can be easily extended to suit situations where the uncertainty in the spatial correlation 
extends to more than one pixel in which case the single-pixel random translation model can be 
extended to multiple pixels. 
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