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ABSTRACT 

IMPROVED RELIABILITY OF STORMWATER DETENTION BASIN 
PERFORMANCE THROUGH WATER QUALITY DATA-INFORMED REAL-TIME 

CONTROL 

 

 

Sazzad Sharior 

Marquette University, 2019 

 

 

 

The objective of stormwater detention basins is to capture stormwater runoff to reduce 
and delay peak flow and to improve the water quality. These objectives can be improved 
upon by actively controlling the outflow of the basins rather than traditional passive 
outflow structures. There are studies demonstrating the performance of the active controls 
that respond in real-time to basin hydraulics, detention time, and rainfall forecasts. We 
hypothesize that the performance of these active controls can be improved upon by 
incorporating real-time water quality data streams into the control algorithm. 
Furthermore, we hypothesize that performance of these active controls also depends on 
hydrologic variability, perturbing the highly dynamic rainfall-runoff process. Here, these 
hypotheses are tested using a numerical modeling framework evaluating the systems-
level reliability of passive and active control of stormwater basin outflow using a Monte 
Carlo method. The numerical modeling is performed in EPA-SWMM urban hydrologic 
model driven by stochastic rainfall time-series generated from the Modified Bartlett-
Lewis Rectangular Pulses Model. Water quality-informed real-time active control 
algorithms are developed, tested, and demonstrated to result in a clear improvement over 
the traditional passive (no control) systems and other storage-based active controls for 
water and suspended sediment capture. Duration curve analysis showed that both water 
level- and water quality- informed control performance varied for different storm return 
periods and this variability could partly be attributed to the fraction of time the valve is 
closed. In addition, control performance was sensitive to rainfall variability, generally 
decreasing as storms become less frequent and more intense. Therefore, control system 
performance may depend on seasonal and longer time-scale variability in climate and 
rainfall-runoff processes. We anticipate this study to be a starting point to incorporate 
theories of reliability to assess detention basin and conveyance network performance 
under more complex real-time control algorithms and failure modes.
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1. Introduction and Literature Review 

 

 

Urbanization and climate change are creating new challenges to stormwater 

management and the protection of urban stream ecosystems. Urbanization affects the 

natural hydrology of a catchment by changing its landuse (Leopold, 1968). This change 

in landuse significantly alters the water balance of a catchment. Urbanization increases 

impervious cover, resulting in a decrease in bare soil and vegetation. This decrease 

results in a decline of subsurface infiltration. Furthermore, evapotranspiration and 

interception partition of the water balance also declines (Leopold and Dunne, 1978). 

Collectively this shifts the water balance to produce more runoff after a storm event. As 

runoff volume of a storm event increases, the risk of flooding also increases. But the 

decrease in subsurface infiltration also decreases groundwater recharge and low flows 

(Paul and Meyer, 2001). Thus, altered landuse increases flood peaks during storm events 

and decreases intra storm low flows (Leopold, 1968). Urban impervious surfaces are 

flatter and yield less resistance to flow than natural surfaces. This results in flashier 

hydrograph with faster ascending and descending limbs. This type of flow is likely to 

cause more downstream erosion and hydraulic stress (Hammer, 1972).  

 

Landuse change also affects the quality of stormwater and receiving waterbodies. 

Although a change from agricultural to urban landscape can decrease pollutants like 

fertilizer and farm animal excretion, but this also result in build-up of widely scattered 

pollutants like suspended sediments, oil and gasoline products, nutrients, fecal coliform, 

chloride, and heavy metals in the urban catchment (Leopold, 1968; Tsihrintzis and 



2 
 

Hamid, 1997). These pollutants get washed off easily by the flashier runoff and alters the 

ecosystem of urban streams (Meyer et al., 2005) – the characteristics of the “urban stream 

syndrome” (Walsh et al., 2005). 

 

Since the 1980’s, retention basins have been ubiquitously used as a stormwater 

management system in the United States. Until recently, these basins were exclusively 

designed to provide short time storage for capturing peak flood. But now, ponds are 

designed for long term storage intended to reduce hydraulic alteration to streams and 

provide some removal of pollutants (Roy et al., 2008). This is generally achieved through 

an outflow device like a weir or an orifice. These devices maintain a defined storage 

discharge relationship. This storage discharge relationship provides a fixed detention time 

for incoming runoff events. During this time pollutants in the runoff like suspended solids 

settles down, providing some water quality benefits.   

 

Recent and forthcoming changes in rainfall frequency and intensity (Alexander et 

al., 2006; Kunkel et al., 2013) are anticipated to impact stormwater runoff and water 

quality (Miller and Hutchins, 2017). Studies already demonstrated that detention pond 

designed based on current climate and landuse are likely to result in peak flows of greater 

magnitude with subsequent higher damages due to elevated flooding and erosion for 

future storm events of the same frequency (Semadeni-Davies et al., 2008; Moglen and 

Rios Vidal, 2014). Especially in the Midwest United States urban stormwater system 

adaptation to increased frequency and intensity of severe rainfall is anticipated to cost 

more than $500 million per year (Angel. et al., 2018). Detention pond with fixed outflow 
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is a, “stationary solution to this highly dynamic rainfall-runoff problem” (Mullapudi et 

al., 2017). Consequently, this traditional detention/retention basin practices are static and 

poorly equipped to adapt to the continuously changing climate and land use (Mullapudi et 

al., 2017). As a result, adaptive stormwater management strategies are required for 

resilient and robust of urban stormwater infrastructure. And one strategy to adapt 

stormwater infrastructure to changing climate and landuse, can be real-time, active 

control of stormwater detention basin outflows. 

 

The idea of real-time active control of detention pond is controlling a retrofitted 

valve at the detention pond outlet for hydraulic and water quality benefits. The rules for 

controlling the valve are generally developed on pond hydraulics (e.g. pond water level, 

flow) or other hydrologic variables (e.g. rainfall). Sensors are deployed in the pond site or 

in the catchment to collect these variables real-time and the valve is connected with these 

sensors. The valve reacts real-time to the sensor readings and designated control rules by 

regulating its opening. Real-time control has been used extensively in waste water 

treatment plants (WWTP) (Katebi et al., 2012). In recent times, real-time control of urban 

detention pond is gaining momentum. Particularly towards manifesting the future vision 

of smart water systems for urban areas (Kerkez et al., 2016).  

 

The first example of real-time controlled detention pond system was proposed in a 

patent by McCarthy (1994). Despite being the oldest, it is the most sophisticated example 

of real-time control algorithms. The control rules depend on the pond hydraulics i.e., 

pond water level, inflow and outflow. In this control strategy, the outlet valve is closed at 
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the initial condition. Different warning threshold are set for the pond water level. After an 

event if the pond water level reaches the first warning threshold level, the pond outflow is 

adjusted to a design discharge rate. After reaching the second warning threshold level, the 

outflow rate is increased. But outflow rate is kept lower than the inflow so that the pond 

doesn’t mimic the post development outflow. The valve remains closed for a specific 

detention time if no warning arises. Moreover, additional control loops have been 

proposed to adjust the threshold warning levels for maximum retention. McCarthy (1994) 

also proposed control strategy to manage several detention ponds in a way that their 

combined discharge doesn’t pose any detrimental effect to downstream waterbody. 

 

Jacopin et al. (2001) proposed on/off control rules based on pond inflow and 

water level. In this control threshold is set based on pond inflow. When the pond inflow 

exceeds the threshold, the outlet gate is closed. The pond is then filled to a predefined 

water level. This predefined water level is calculated based on the pond volume. This 

water level is maintained throughout the inflow event by completely open or close the 

valve. The valve is kept closed for a predefined detention time for ensuring some 

suspended solids settlement. The authors implemented the control rules for two sites in 

Danish Hydraulics Institute hydraulic model MOUSE. This control was able achieve 47-

57% annual suspended solids removal. 

 

Middleton and Barrett, (2008) demonstrated a simple detention time control strategy. In 

this control, an event sensor senses the start and end of a storm event. The valve closes at 

the start of an event and opens 12 hours later until the pond is completely empty. This 
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strategy was implemented and monitored in a test site for almost a year. During this study 

period a TSS removal of 91% was seen. 

 

Muschalla et al., (2014) demonstrated rules based control depending on the 

raining intensity and detention pond water level. The rules somewhat are similar to 

control proposed by McCarthy, (1994). As soon as a runoff event occurs, the valve is 

closed. Two warning threshold levels are also set for pond water level. If the pond water 

level exceeds the first warning water level threshold, the valve is partially opened 

maintaining a predefined outflow rate, and the pond is discharged until the pond water 

level reaches that warning level. If the pond water level exceeds the second warning level 

threshold, the outflow rate is increased by completely opening the valve. Water is 

detained up till the first warning level threshold for 4 days and then slowly discharged 

downstream. The control rules were implemented in SWMM5. This control rules 

increased the TSS removal efficiency from 41.4%-59.9% to 70.6%-89.3% from 

uncontrolled to real-time controlled. 

 

Gaborit et al., (2013) and Gaborit et al., (2016) built up on the real-time control 

strategies proposed by Muschalla et al., (2014). On top of the control rules developed by 

Muschalla et al., (2014) the authors added additional rules based on rainfall forecasts to 

reduce the flooding risk. They also modified some of the original rules by adding more 

intermediate warning water level thresholds. These thresholds ensured a smoother 

outflow from the pond. These rules resulted in a TSS removal efficiency of 70% to 90% 

with no overflow events.  
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Gilpin and Barrett, (2014) demonstrated the performance of real-time controlled 

pilot site. In this control, the stormflow is detained for 24 hours. After the detention time, 

the stormflow was released, and different pollutant load of the effluent was measured. 

For 10 storm events the authors managed 88% removal of E. Coli, 94% removal of 

nitrate/nitrite and 98% removal of TSS. Although the authors managed a very high 

reduction of pollutants, they didn’t include the risk of flooding for 24 hours detention.  

 

There are studies that demonstrate the improved hydraulic and hydrological 

performance of an urban watershed by actively controlling a series of detention ponds. 

Wong and Kerkez, (2018) reduced the engineered watershed storage volume up to 50% 

by actively controlling 4 detention ponds depending on their hydraulics. Mullapudi et al., 

(2017) showed three ponds and a treatment wetland can be controlled simultaneously to 

reduce downstream flood risk also getting 46.48% nitrate load reduction.   

 

Although these studies provide strong indication that the water quantity and 

quality benefits can be achieved through active real-time control for a small number of 

storm events, real-time control performance has yet to be analyzed for the full range of 

rainfall variability over long term record (e.g., 10-30 years). A major challenge to 

stormwater management is to achieve desired performance throughout extended timeline 

of stormwater infrastructure because of the large uncertainty that drives the variability in 

hydrologic processes. While detention ponds, are typically designed to manage volume 

and peak flow for a small number of design storms, they operate under a wide range of 



7 
 

inflow runoff conditions which is determined by the physics and dynamics of rainfall-

runoff. Stormwater infrastructure performance can be evaluated for a large number of 

inflow runoff conditions by combining a stochastic description of the rainfall variability 

with catchment water and pollutant mass balance models (Chen and Adams, 2006; Daly 

et al., 2012; Parolari et al., 2018; Wang and Guo, 2019). These stochastic-dynamic 

modeling approaches can be further utilized to construct the flow and load duration 

curves. These curves are useful for understanding stormwater infrastructure performance 

for the whole range of storm events. This stochastic dynamic modeling approach was 

used in Parolari et al., (2018) where the hydraulic performance of a pond equipped with 

water level driven on/off control was evaluated. The authors demonstrated that the 

performance of this kind of system was largely dependent on the rainfall variability. It 

was also shown that, a simple real-time control can be adjusted over time to adapt to the 

altered watershed rainfall-runoff dynamics due to climate change (Parolari et al., 2018). 

Thus, the influence of rainfall variability on active control performance is an important 

consideration. 

 

Water level provides a direct observation of the current basin hydraulic condition. 

Rainfall forecasts can predict the need for increased storage. For basin water quaity, 

detention time following a runoff event usually used as a surrogate indicatior. But 

detention time only provides an indirect measurement of water quality and there are 

uncertainty associated with this surragote relationship (Guo et al., 2000). Hence, the 

performance of current actively controlled stormwater infrastructure may be improved 

uopn by incorporating real-time water quality measurements into control algorithms. 
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Advancement in water quality monitoring technology (Rode et al., 2016) have made it 

possible to measure high frequency stormwater runoff water quality in real time. Water 

quality-informed real-time control has been successfully used in wastewater treatment 

plants and are shown to reduce pollutant loads to downstream receiving waters by 10-

40% (Lacour et al., 2011; Lacour and Schütze, 2011; Hoppe et al., 2011; Tik et al., 2015). 

However, water quality-informed real-time controls have yet to be analyzed or developed 

for stormwater detention ponds, which are subject to relatively large hydrologic 

variability.  

 

In this study, the two research gaps stated above are addressed by evaluating 

novel real-time controls of stormwater detention ponds informed by water quality 

measurements using a stochastic Monte Carlo method. Building on the previous control 

algorithms based on pond hydraulic data, control rules are developed based on 

continuous water quality measurements. The control algorithms are implemented in the 

EPA-SWMM model developed for an urban watershed that drains to an actively 

controlled detention pond in Milwaukee, Wisconsin. The system reliability with respect 

to water quantity and quality criteria is compared across a range of control strategies and 

hydrologic variability. The major portion of this thesis work has already been published 

and adapted from Sharior et al., 2019. This thesis is an elaborate and extended version of 

Sharior et al., 2019 with additional results.
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2. Case Study 

 

 

2.1. Study Area 

 

 

The study area is the City of Milwaukee Department of Public Works Tow Lot 

located along West Lincoln Ave, Milwaukee, Wisconsin. The drainage area is 

approximately 48 acres. A detention basin is located at the south-eastern end of the site.  

 

 

Figure 2.1: Pictures and maps of the study area. (a) Location of Tow Lot site. (b) Design 
of the detention pond. (c) Pond drainage network (Source: City of Milwaukee). (d) 
Controlled gate at the outfall of the detention Pond   

 

(a) (b) 

(d) (c) 
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This pond captures stormwater runoff from the site and discharges it to the 

Kinnikinic River through a creek. The area of the pond is approximately 5800 sq. m. and 

the maximum depth of the pond is 6.16 m. The pond is divided into two parts by a 

concrete forebay. The details of the pond are shown in Figure 2.1. 

 

The permanent pool water level of the pond is 5.01 m. So, the pond does not 

discharge below this elevation.  Previously there was a v-notch weir at the outlet structure 

of the pond. This weir is bolted and sealed with a ¼” SS plate. A flanged pipe with 

butterfly valve was installed in the structure. This butterfly valve is controllable. The 

whole setup is shown in Figure 2.2. The design discharge coefficient of the orifice is 0.6. 

 

 

 

 

 

 

(a) (b) (c) 

Figure 2.2: Outlet structure with installed flanged pipe. The v-notch weir is sealed with SS 
plate. (b), (c) Installation pictures of controlled valve system in the outlet structure at the site 
(Source: City of Milwaukee). 
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2.2. Data Collection 

 

 

2.2.1. Pond Water Level 

 

 

Pond water level data was collected from September 1, 2017 to September 28, 

2018. Keller Level Gauge Pressure Transducer was used to measure this data. The sensor 

was installed within a settling well made of slotted PVC screen with the sensor at ground 

level. The data was measure at an inconsistent interval between 1 and 3 min. The part of 

collected water level data is shown in SWMM model calibration section (Section 4.3) 

 

 

2.2.2. Pond Turbidity 

 

 

Pond turbidity data was measured from August 22 to October 31, 2018 by YSI 

EXO2 Sonde. The sensor was installed at an elevation of approximately 2 m below the 

permanent pool elevation near the water level sensor. This data was measure at 10 

minutes interval. Pond turbidity measurement is shown in Figure 2.3. 

 

 This data was used to calibrate the pollutant balance model. We have water level 

data till September 28 (blue box in Figure 2.3.). So, initially turbidity data from August 

22 to September 28 was detected to use for the model. The turbidity data had some 

unusual diurnal variability from September 5 to September 12. We didn’t represent this 

variability in the model. So, the turbidity data from September 16 to September 28 was 

used for calibration (red box in Figure 2.3). 
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Figure 2.3: Pond turbidity measurement from August 22 to October 31, 2018.   

 

 

2.2.3. Grab Water Samples 

 

 

Grab water samples were collected from the pond to measure the TSS 

concentration. This TSS concentrations were then related to the pond turbidity 

measurements. The locations of the collected water samples are shown in Figure 2.4. 

These samples were collected on 31 October 2018 and 6 November 2018. Three 1-liter 

samples were collected from each of the locations. These samples were refrigerated until 

the lab test were performed. The lab test result is shown in Section 4.1 and Table 4.1 
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Figure 2.4: Grab water sample collection locations (Source: Source: Source: Esri, 
DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 
AeroGRID, IGN, and the GIS User Community) 

 

 

2.2.4. Rainfall Data Collection 

 

 

Precipitation data were collected from the NOAA Local Climatological Data 

(https://www.ncdc.noaa.gov/cdo-web/datatools/lcd). The nearest available gage was 

General Mitchell Airport which is approximately 2 miles away from the site. Thirty years 

of hourly rainfall data (1983–2013) were downloaded. 

Pond Inlet 

Pond South 
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3. Methods 

 

 

3.1. TSS Lab Testing 

 

 

The collected grab water samples were lab tested to calculate the TSS 

concertation. This lab test was performed by following standard methods 2540D (Rice et 

al., 2012). The details of this testing method can be found in Rice et al., 2012. This lab 

result was used to develop a regression model with collected turbidity data (see Section 

2.2). 

 

 

3.2. Modeling Methodology 

 

 

The methodology of this study is study divided into four parts. Firstly, a 

probabilistic rainfall model was used to generate hourly rainfall timeseries (Section 

3.2.1). This rainfall timeseries was then used to force a catchment system model. The 

setup of the catchment system model is the second part of the modeling methods (Section 

3.2.2). This catchment system model represents the underlying physics of the watershed 

and detention pond system. Thirdly, a control model was set up at the outlet of the pond 

and different control algorithms were developed (Section 3.2.3). This control model 

manipulates the output from the detention pond of the catchment system model and feeds 

back to the model as an input. At the fourth part the system reliabilities of these 

manipulated outputs due to different control algorithms were analyzed and duration 
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curves were developed (Section 3.2.4). The whole methodology is summarized in Figure 

3.1 and described in detail from Section 3.2.1 through 3.2.4. 

 

 

Figure 3.1: Modeling Methodology 

 

 

3.2.1. Probabilistic Rainfall Description 

 

 

Rainfall-sensitive hydrologic phenomena can be investigated by using stochastic 

rainfall models. These models can be used to generate synthetic rainfall time series in 

different temporal scale. Most commonly, rainfall is modeled at daily scale as a marked 
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Poisson arrival with exponentially distributed mean depths (Laio et al., 2001; Bartlett et 

al., 2015).Though this simplified assumption is particularly useful for the analytical 

tractability of complex hydrological problems, this model often fails to represent the 

extreme events. As in this study the failures of a system are being analyzed, 

considerations for the extreme events are highly necessary. Cluster based models like 

Neyman-Scott Rectangular Pulses Model (NSRPM) and Bartlett-Lewis Rectangular 

Pulses Model (BLRPM) can generate rainfall in a range of temporal scales preserving the 

extreme event statistics (Khaliq and Cunnane, 1996). Rodriguez-Iturbe et al., 1987 

derived the theoretical descriptions of the model parameters and applied it to Denver 

rainfall data. In Rodriguez-Iturbe et al., 1988, a modified BLRPM was proposed which 

was able to produce the proportional dry periods. For this study the Modified BLRPM is 

used to derive the stochastic nature of rainfall. 

 

 

3.2.1.1. Modified Bartlett-Lewis Rectangular Pulses Model 

 

 

The modified BLRPM is a six parameters cluster point process model, illustrated 

in Figure 3.2 and described in Islam et al., 1990; Khaliq and Cunnane, 1996; Smithers et 

al., 2002. Storm starts with an origin and this origin arrive as a Poisson process with rate 

parameter �. In each storm event, the origin is followed by a Poisson arrival of cell 

origins at a rate �. This cell arrival process starts with one cell at the storm origin. The 

cell arrival process terminates after a time with rate parameter �. Each cell in a storm 

event is a rectangular pulse. These rectangular pulses have exponentially distributed 

depth and width of �� and �, respectively. Each storm also has 	 number of cells which 
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is geometrically distributed with a mean, �� = 1 + � ⁄ �. Here, � and � are 

dimensionless parameters with � =  �/� and � =  �/�. The rectangular cell width 

parameter � is modeled as a random variable. This variable is described by a two-

parameter gamma distribution, with shape parameter,  and scale parameter, �. 

 

 

Figure 3.2: MBLRPM schematic. The storm arrival rate, � and storm termination rate, � 
are represented by the two black circles. The rainfall cells are represented by the blue 

rectangles. The width and depth of rainfall cells are given by the cell width parameter, �, 

and cell depth parameter, ��. Cells arrive at an origin rate, �, and each storm has a 	 
number of cells. 

 

 

3.2.1.2. MBLRPM Parameter Estimation and Sampling 

 

 

The six parameters, ��, ��, , �, � and �) of the MBLRPM were estimated using 

the method of moments. The second order properties of modified BLRPM for rainfall,   

of any hours of aggregation over the time interval, ! are (Rodriguez-Iturbe et al., 1987), 
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E# $%& = ����� ' ()*+,          

(3.1) 

Var/ $%0 = − + 2 3�+�! + �45*6 − �7�7��! + �45*68
� − 24� − 34   

(3.2) 

Cov/ $% ,  $=>% 0 = �+?#!�@ − 14 + �&5*6 + #!�@ + 14 + �&5*6 − 2�!@ + �45*6A� − 24� − 34
+ �7?2��!@ + �45*6 − #�!�@ + 14 + �&5*6 − #�!�@ − 14 + �&5*6A�7� − 24� − 34  

           (3.3) 

P#R�04& = exp
HI
J−�!

− 3 ���� − 148 K1 + ��� + �4 − ��� + �4�� + 4�44  

+ ��� + �4�4�7 + 27�� + 72�7472 N + �� 31 − � − � + 32 �� + �7 + �72 8
� − 14�� + �4

+ �� 3 �� + �� + �4!86*+ �� 31 − � − � + 32 �� + �7 + �72 8
� − 14�� + �4 OP

Q
 

           (3.4) 

Where, 

�+ = K2���7�� + �����7����7 − 14 N # �6
 − 1& 

(3.5) 
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�7 = ����7���6
��7 − 14� − 14 

           (3.6)  

Here, E# $%& is the mean rainfall, Var# $%& is the variance of rainfall, 

Cov# $% ,  $=>% & is the autocorrelation for lag time of @, and P#R�04& is the probability of 

zero rainfall.  

 

1-hour mean, 1-hour and 24-hour variance, lag-1 autocorrelation, and 1-hour and 

24-hour probability of zero rainfall statistics (Rodriguez-Iturbe et al., 1987; Khaliq and 

Cunnane, 1996) were calculated from NOAA 30 years hourly rainfall data. Then, the 

Statistics calculated from historical observations are equated with their theoretical 

expressions (equations 4.1 through 4.4). The resulting equations are solved using an 

unconstrained nonlinear minimization scheme (Islam et al., 1990). 

 

In this study, we focus on the spring and summer months (May, June, July, and 

August) because these months experience the most intense rainfall in Milwaukee. Using 

the calibrated Modified BLRPM, 30-year rainfall realizations were sampled for each of 

the four months. The generated rainfall timeseries were used to force the catchment 

system model.  
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3.2.2. Catchment System Model 

 

 

An urban catchment that discharges into a stormwater detention pond can be 

conceptualized as a four-dimensional dynamical system. This system accounts for the 

coupling between the catchment water balance, catchment pollutant storage, pond water 

balance, and pond pollutant storage. Mass balance equations for each of these 

components are defined below and the system is illustrated in Figure 3.3.  

 

 

Figure 3.3: Catchment system conceptual model with traditional and proposed real-time 
active system controls.  

 

 

The catchment water balance can be written as  

 
R@�S4RS =  �S4 − T!#@�S4& − U#@�S4& − VWX#@�S4& (3.7) 
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where @ is the depression storage,   is rainfall, T! is evapotranspiration, U is infiltration, 

and VWX is catchment runoff. Similarly, a water balance equation for the pond can be 

written as, 

 
Rℎ�S4RS = VWX#@�S4& − VXYZ#ℎ�S4; S& − VX#ℎ�S4& − \#ℎ�S4& (3.8) 

which is driven by the catchment rainfall-runoff process through VWX. In equation 

(4.8), ℎ is the pond water level, VXYZ#ℎ�S4; S& is the state and time dependent pond 

outflow, VXis the emergency overflow, and \ is seepage to groundwater. 

 

The catchment pollutant storage can be conceptualized as the mass balance 

between buildup and washoff processes (Alley, 1981). The catchment pollutant mass 

balance equation can be written as, 

 
R]�S4RS = ^ − _#VWX#@�S4&, ]�S4& (3.9) 

where ]�S4 is the mobile pollutant mass stored on catchment surfaces, ^ is the constant 

pollutant buildup rate, and _�VWX#@�S4&4  is the pollutant washoff rate.  

 

Finally, the mass balance for the pollutant mass stored within the pond can be 

written as, 

 
R#ℎ�S4	�S4&RS = _#VWX#@�S4&, ]�S4& − VXYZ#ℎ�S4; S&	�S4 − `a#ℎ�S4, 	�S4& (3.10)

where 	�S4 is the pollutant concentration in the pond water and `a#ℎ�S4, 	�S4& is the 

pollutant removal rate.  
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3.2.2.1. Catchment System Model Parameterization: EPA SWMM 

 

 

U.S. EPA Stormwater Management Model (EPA-SWMM) version 5.1 was used 

to parameterize the catchment system model described from Equations 3.7 through 3.10 

(Rossman, 2015, https://www.epa.gov/water-research/storm-water-management-model-

swmm). The catchment water balance is modeled as a nonlinear reservoir. This 

representation has a maximum depression storage. Green-Ampt infiltration was used to 

model the catchment infiltration. The catchment storage capacity and catchment 

infiltration must be exceeded before runoff is initiated. Evapotranspiration is assumed to 

be negligible relative to the other water fluxes because this is an urbanized catchment 

with a high impervious surface cover. The water balance is forced with hourly rainfall 

generated by MBLRPM (Section 3.2.1). The generated runoff was routed to the pond 

through a conduit using the dynamic wave approximation of St. Venant equation. The 

pond water balance is modeled according to Equation 3.8, with an orifice open (passive) 

or valve controlled orifice (active) outflow. Pond groundwater seepage is also modeled 

using the Green-Ampt method.  

 

For the pollutant balance model, catchment pollutant buildup, ^, is assumed 

constant and washoff is parameterized using the exponential washoff model (Sartor et al., 

1974; Rossman, 2017). Total suspended solids (TSS) is selected as the pollutant of 

interest. The detention pond is assumed as a continuously stirred tank reactor (CSTR). 

The removal mechanism for TSS is modeled as first-order decay depending on the 

settling velocity of the suspended solids.  
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3.2.2.2. EPA SWMM Model Setup and Parameters 

 

 

The model includes a single subcatchment, S1, encompassing the whole area of 

the Tow Lot. The precipitation runs off from the subcatchment and washes off the 

pollutant built up in the subcatchment. This runoff is transported by a conduit, C1, which 

is connected to the detention pond, ST1, via a junction, J1. The pond is connected to an 

outflow, Out1 via an outlet structure. The outlet structure is an orifice, O1, houses a 

butterfly valve to control pond discharge. The model schematic is shown in Figure 3.4. 

 

To determine the area of the subcatchment, satellite image in ArcGIS was used. 

The satellite map was prepared and exported in SWMM interface. This map was 

georeferenced in the interface and the subcatchment was drawn according to the parking 

lot boundary. The area was automatically determined by SWMM. Overland flow width is 

termed subcatchment width in SWMM. As no pipe network data for the site was found, 

the longest flow path was calculated as the furthest point in the catchment to outlet. The 

area of the subcatchment was divided by this longest flow path to determine the 

subcatchment width. The area % impervious value of 91 is chosen, based on aerial 

photographs. The initial Manning’s n values for pervious and impervious surface were 

also used from the manual then those were calibrated. The impervious surface is assumed 

“Rough Impervious Surface” and pervious surface “Rough Bare Packed Soil”. % Zero-

Imperv means the percent of impervious area which does not have any depression storage 

for immediate runoff. For the infiltration method, Modified Green Ampt has been used. 
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Groundwater flow is not considered in this model. The subcatchment parameters are 

summarized in table 3.1. 

 

 

Figure 3.4: Developed EPA SWMM model 

 

 

The conduit and pond dimensions were set using the design schematics obtained 

from the City of Milwaukee. A surface area vs height curve was added to model the pond 

behavior which is shown in Figure 3.5. The invert elevation of the normal pond water 

level is 17.37m. The pond does not discharge below this elevation. So, it is assumed that 

the pond in the model starts from 17.37m invert.  Previously there was a v-notch weir at 

the outlet structure of the pond. This weir is bolted and sealed with a ¼” SS plate. A 

Subcatchment, S1 

Junction, J1 

Conduit, C1 

Pond, ST1 

Orifice, O1 

Outfall, Out1 
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flanged pipe with butterfly valve was installed in the structure. This butterfly valve is 

controllable. This valve is represented as an orifice in the model. The discharge 

coefficient of the orifice was set as 0.6 from design. 

 

Table 3.1: Subcatchment Parameterization 

Parameter Values 

Subcatchment Area 48.38 ac 

Subcatchment Width 339m 

% Slope 0.65 

% Imperviousness 91 

N - Impervious 0.011 

N - Pervious 0.1 

Dstore-Imperv 1.02mm 

Dstore-Perv 25.4mm 

% Zero-Imperv 26 

 

 

Figure 3.5: Designed pond storage curve 
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3.2.2.3. EPA SWMM Control 

 

 

EPA SWMM has a control module. In this module, real-time controls can be set 

up for orifice, pump, weir, node, links, and conduits. For the orifice, the attributes that 

can be controlled are, fraction valve opening setting or time valve open/closed. These 

attributes can be controlled by pond state variables like depth, head, volume or inflow. 

But real-time control based water quality information for orifice or any other device 

(weirs, pumps, etc.) is not possible in the current version of EPA SWMM. To solve this 

issue, a different software called PySWMM was used.  

 

 

3.2.3. Control: PySWMM 

 

 

PySWMM was used to evaluate the control rules in this study. PySWMM is a 

python software package which acts as a wrapper around the EPA SWMM computational 

engine. In PySWMM, control algorithms can be developed in python and the hydraulic 

behavior can be analyzed for different control actions. Similar to EPA SWMM, control 

rules based on water quality information also cannot be setup in PySWMM. But due to 

the open source nature of PySWMM and the python environment makes modifying the 

source code much easier. The source code modification for adding water quality based 

control is described in Section 3.2.3.1 in detail. 
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3.2.3.1. Source Code Modifications 

 

 

PySWMM communicates with EPA SWMM computational engine which is a 

Windows DLL or Linux shared object library file (SOL). This communication is 

established through the SWMM toolkitAPI and PySWMM object modules. As the pond 

in SWMM is represented as a node object, the modifications were made in the node 

section SWMM toolkitAPI and PySWMM node object and toolkitAPI as well. In 

SWMM toolkitAPI, new variable was created in the node result section. This variable 

fetch and stores the node water quality information for every time step. This variable was 

also added to the SWMM toolkitAPI header file as well.  

 

In the PySWMM node object module and toolkitAPI, water quality variable was 

added to communicate and get the water quality results from the modified SWMM 

toolkitAPI. Now the node water quality information is available in the PySWMM 

interface to develop the control algorithms on. The modified code is attached in the 

appendix and also can be downloaded from https://github.com/sazzad-sharior. 

 

 

3.2.3.2. Control Rules 

 

 

The control rules evaluated in this study are, no control, detention time control, 

on/off (bang-bang) control, and TSS control. The no control (baseline) scenario is defined 

as passive control with the butterfly valve always open. The detention time controller 

closes the valve to store the storm runoff in the pond for a specified detention time, Sa, 
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following an inflow event (Gilpin and Barrett, 2014; Middleton and Barrett, 2008). The 

on/off controller maintains the outflow valve in the closed position until the pond water 

level reaches a critical threshold water level of ℎ� , at which point the pond is fully 

discharged (Jacopin et al., 2001, Gaborit et al., 2013, Muschalla et al., 2014; Gaborit et 

al., 2016; Parolari et al., 2018). These two controls correspond to the traditional water 

level-driven control shown in Figure 3.3. For the TSS controller, the valve is closed when 

the TSS concentration of the pond exceeds a threshold value, 	�, and otherwise the valve 

is open. This control corresponds to the proposed water quality-driven control in Figure 

3.3. The control schemes are summarized in Table 1 and example pond water level and 

pollutant concentration trajectories for each are illustrated in Figure 3.6. The python 

codes for the four control scenario are attached in the appendix. 

 

Table 3.2: Control rules implemented in this study 

Type Description 

Passive Control  Valve always open 

Detention Control If an event occurs, valve opening = 0%  

After the event, valve opening = 0% for Sa 

Else, valve opening = 100% 

On/off Control If ℎ < ℎ�, valve opening = 0% 

If ℎ ≥ ℎ�, valve opening = 100%  

TSS Control If 	 ≥ 	�, valve opening = 0% 

If 	 < 	�, valve opening = 100%. 
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Figure 3.6: Water level and TSS concentration dynamics of the pond for (a) passive 
control, (b) detention control, (c) on/off control and, (d) TSS control. 

 

 

3.2.4. Reliability and Duration Curves Analysis 

 

 

3.2.4.1. Reliability Analysis 

 

 

The theories of reliability can be a useful tool to evaluate the performance of a 

system especially when it is controlled. When a control scheme fails to meet a given 

objective, it can be termed as a failure. This failure criteria can be formulated 

mathematically, and failure probabilities can be computed numerically to compare the 

performance of different control scenarios.  
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Reliability theories are commonly used in structural and earthquake engineering. 

The calculate the reliability of a structure, component like loading, material, or other 

parameters are assumed to be random variables. Eventually the response of the structure 

like stresses, strains or displacements also becomes probabilistic (Dolinski, 1982). 

Reliability theories calculate the probabilities of keeping these responses at a safe limit. 

Although the return period method was most express seismic risk, as design winds or 

floods (Blume et al., 1961; Gzovsky, 1962; Housner, 1952; Newmark, 1967; Yen, 1988), 

the modern methods and framework of calculating these reliabilities were first proposed 

by Cornell, 1968. Following this framework, methods line FORM (First Order Reliability 

Methods), SORM (Second Order Reliability Methods) and Monte Carlo methods were 

developed (Ditlevsen and Bjerager, 1986; Hasofer and Lind, 1974; Thoft-Christensen and 

Baker, 1982). 

 

The methods of reliabilities stated above have been used in hydrology and 

hydraulic design, operation, and modeling. The return period method is most widely used 

in water resources systems design and analysis. This method considers the natural 

uncertainty of flow or rainfall and assumes these processes are stationary and the 

hydrologic system is static (Yen, 1988). This method considers the natural uncertainty of 

flow or rainfall and assumes static hydrologic system. Although this method is simple 

and easy to use, it only considers the natural hydrologic risk. Also, this lumped method 

cannot capture the change in climate change pattern. 
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 Methods like mean Direct integration, FORM, SORM, had been used in 

evaluating the reliability of water resources systems, operational decision making of 

water supply-reservoirs management and hydrological models (Vogel, 1987; Kindler and 

Tyszewski, 1989; Wurbs, 2005; Melching et al., 1990; Han et al., 2001; Maier et al., 

2001; Mailhot and Villeneuve, 2003; Winsemius et al., 2006). But for using these 

methods, systems are needed to be solved analytically before computing the reliabilities. 

This works for simple linear systems but for a complex nonlinear two dimensional 

system, solving the analytical density function of the variables is very hard and often 

requires linearization. To capture the proper physics of the system, we used the Monte 

Carlo Method to assess the reliability of the system. The proper physics of the system 

retained by generating long data points for the variables through EPA SWMM model. 

Also, different climate change projections can be generated, and their failure probabilities 

can be computed. 

 

 

3.2.4.2. System reliability by Monte Carlo methods 

 

 

This section discusses the limit state functions for defining control failure and 

reliability analysis by Monte Carlo Method. Two failure modes assessed here for the 

detention pond are, exceedance of either the pond overflow level or a maximum TSS 

concentration. Failure due to pond overflow depends on the available storage in the pond 

and the failure probability decreases with increasing available storage. Given a maximum 

pond water level, ℎd)�, the limit state function due to overflow is,  
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 ef#ℎ�S4& = ℎd)� − ℎ�S4 (3.11)

 

TSS failure occurs when the outflow TSS concentration exceeds the maximum 

threshold TSS criterion, 	d)�. Thus, this limit state function is,  

 eg#	�S4& = 	d)� − 	�S4 (3.12)

   

The probability of failure due to either overflow or TSS failure can be computed 

by integrating the probability density functions (PDFs) of the state variables over the 

failure zone (Shinozuka, 1983; Schuëller and Stix, 1987). The probabilities of overflow 

and TSS failure can be written as,  

 

�h,f = i �f�ℎ4Rℎ
jk�f4lm

�h,g = i �g�	4
jn�g4lm

R	 (3.13)

where �h,f and �h,g are the overflow and TSS probabilities of failure, �f�ℎ4 is the 

marginal PDF of pond water level, ℎ, and �g�	4 is the marginal PDF of pond outflow 

TSS concentration, 	.  
 

For this two-component series system, we consider a system failure to occur when 

either component fails (i.e., water level or concentration). Therefore, the system failure 

domain is the union of the component failure domains, 
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 e�ℎ, 	4 ≤ 0 = p#e$�ℎ, 	4 ≤ 0&q
$r+

 (3.14)

and the total system failure probability is then given by, 

 �h = i �f,g�ℎ, 	4Rℎ
j�f,g4lm

R	 (3.15)

where, st,u�t, u4 is the joint PDF of water level and pollutant concentration. Time 

trajectories and PDFs of the pond state variables t and u were generated using the EPA-

SWMM model, forced with stochastically generated rainfall, and the failure probabilities 

of equations (3.13) and (3.15) were calculated from these model results. 

 

 

3.2.4.3. Duration Curve Analysis 

 

 

Duration curves can be a useful tool to plan, evaluate and summarize the 

performance of a water resources system. The duration curve is a cumulative probability 

curve that shows the percent of time during which specified hydrologic variable were 

equaled or exceeded in a given period (Searcy, 1959). In this study daily peak water 

level, flow, sediment load and TSS concentration duration curve were plotted to compare 

the performance of all four controls. 

 

The peak daily duration curves were constructed from the model simulation 

result. Peak water level, flow, sediment load and TSS concentration values were 
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calculated from a 24 hours window. These peak values were ranked in descending order 

and their exceedance probabilities were calculated.  
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4. Results 

 

 

4.1. TSS vs Turbidity  

 

 

The collected water samples from the pond of the study site were Tested for TSS 

concentration. The lab test results are summarized in Table 4.1. Samples collected from 

the south side of the pond on 31st October show some variability in TSS concentrations. 

TSS concentration of each of the locations were averaged and used to relate to the 

turbidity measurements.  

 

 

Figure 4.1: Developed linear regression between TSS and Turbidity 
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A linear regression relation was developed to relate the average TSS 

concentration and the on-site turbidity measurements. The linear regression is shown in 

Figure 4.1. The regression resulted in a line going through the origin (Bertrand-

Krajewski, 2004; Lewis, 1996). The coefficient of determination is 0.88 which implies a 

strong linear relation. The developed regression equation is !`` = 2.681 ∗  !yz{|R|S}. 

This regression equation was finally used to calculate the TSS concentrations. 

 

Table 4.1: TSS Lab Result and Turbidity measurements 

Date Location Sample No. TSS Conc. (mg/L) Turbidity (FNU) 

10/31/2018 ~���S 1 1.71 3.78 
  2 3.94  
  3 8.4  
 `�ySℎ 1 37.14 35.74 
  2 66.67  
  3 220.00  

11/06/2018 ~���S 1 30.00 18.27 
  2 33.00  
  3 35.33  
 `�ySℎ 1 19.33 11.57 
  2 18.57  
  3 25.00  
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4.2. Modified BLRPM Model Results 

 

 

4.2.1. Rainfall Data and Modified BLRPM calibration 

 

 

Details about estimating the 6 MBLRPM parameters is given at Section 3.2.1.2. 

These 6 estimated parameters were entered into equation 3.1 through 3.4 to calculate the 

model rainfall statistics for different level of aggregation mentioned in the same section. 

These statistics were also calculated from the 30 years observed rainfall data. A 

comparison of the observed and modeled rainfall statistics is shown in Figure 4.2. There 

was good agreement between observed and modeled rainfall statistics (Figure 4.2a; 4.2b; 

4.2d; 4.2e; 4.2f). The variance of the 24-hour aggregated rainfall showed the largest 

deviation (Figure 4.2c), with the model underpredicting the historical data by 28.7%, 

28.8%, and 17.7% in June, July and August, respectively.  
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Figure 4.2: Observed and modeled rainfall statistics using the Modified Barlett-Lewis 
Rectangular Pulses Model. (a) 1-hour rainfall mean, (b) 1-hour rainfall variance, (c) 24-
hour rainfall variance (d) 1-hour lag-1 autocorrelation (e) 1-hour probability of zero 
rainfall, (f) 24-hour probability of zero rainfall. 

 

 

4.2.2. Modified BLRPM Parameters 

 

 

The Modified BLRPM parameters for each month are shown in Figure 4.3. In 

general, the mean storm arrival frequency decreased, and the mean cell depth increased 

throughout the summer, from May to August (Figure 4.3a; 4.3b).  
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Figure 4.3: Modified BLRPM parameters. (a) storm arrival rate, � (hr-1), (b) mean cell 

depth, ��, (mm hr-1), (c-d) Gamma distribution parameters for the cell width, �, � (hr-1) 

and , (e), mean storm cell number, �� = 1 + �/�. 

 

 

Mean cell width is modeled as a gamma distribution with parameters �, � (values 

are shown in Figure 4.3c; 4.3d). Figure 4.4 shows the gamma distributions with these two 

parameters for the simulation months. May had the lowest and July had the greatest mean 

cell width, while June and August had similar intermediate values (Figure 4.4).  
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Figure 4.4: Cell width, �, gamma distributions for the parameters, � (hr-1) and , for the 
simulation months. 

 

 

Finally, in general, the mean number of cells increased throughout the summer, 

from May to August (Figure 4.3e). Therefore, there was a strong contrast in rainfall 

statistical properties between months at this site. Early-season rainfall was characterized 

by frequent storms with low cell frequency, width, and depth. On the other hand, mid- to 

late-season rainfall was characterized by infrequent storms with high cell frequency, 

width, and depth. The influence of these rainfall characteristics on active control 

performance will be addressed below.  

 

 

4.3. SWMM Model Calibration 

 

 

SWMM runoff model calibration results are shown in Figure 4.5. The runoff 

model was calibrated by adjusting the impervious surface Manning’s � and depression 

storage. The calibration resulted in a coefficient of determination of 0.86 between the 
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observed and modeled time series. The RMSE was 0.0343 and Nash-Sutcliffe efficiency 

coefficient was 0.8. Figure 4.5a shows the comparison of modeled and observed pond 

water level and Figure 4.5b shows the liner regression between observed and model 

results for the runoff model. 

 

 

Figure 4.5: (a) Runoff model calibrated from August 22, 2018 to September 28, 2018. 
(b) Observed vs. model water level liner fit. 

 

 

The pollutant model was calibrated by adjusting the buildup rate constant, 

washoff exponent, and washoff coefficient. The calibration resulted in a coefficient of 

determination of 0.42 between the observed and modeled time series. The RMSE was 

3.26 and Nash-Sutcliffe efficiency coefficient was -0.76. Therefore, there was a 

substantial amount of variability in the measured TSS that the model was unable to 

capture. However, Figure 4.6a shows that the model captures well the shape of the 

pollutograph. Figure 4.6b show the linear regression fit between observed and model 

output for the pollutant model. 
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Figure 4.6: (a) Pollutant model calibrated from September 17, 2018 to September 28, 
2018. (b) Observed vs. model TSS concentration liner fit. 

 

 

4.4. Reliability Analysis  

 

 

Bivariate histograms of the simulated pond outflow TSS concentration and water 

level for June are shown in Figure 4.7. The red horizontal line indicates the TSS limit 

state function and the red vertical line indicates the overflow limit state function. Events 

that exceed these limit states individually, or together, indicate system failures. For June, 

passive control had the greatest number of points above the TSS concentration threshold 

(Figure 4.7a) and, therefore, the TSS failure probability, �h,g, was the largest for June. 

This trend is carried out through the other simulation months as well (Figure 4.8b). For 

detention and on/off control, the TSS concentration threshold was exceeded less 

frequently (Figure 4.7b; 4.7c) than the passive control and, therefore, �h,g was lower in 

June than the passive control (Figure 4.8b). Finally, for the TSS control, the TSS 

concentration never exceeded the threshold (Figure 4.7d). The TSS control was designed 
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to limit the TSS concentration to below the threshold, resulting in zero �h,g for June and 

rest of the simulation months (Figure 4.8b). 

 

 

Figure 4.7: Bivariate histogram plot of pond outflow TSS vs. water level for the month 
of June from EPA SWMM simulation. (a) Passive control, (b) detention control, (c) 
on/off control, (d) TSS control. The red line perpendicular to the y-axis is the limit state 
function for TSS failure and the red line perpendicular to x-axis is the limit state function 
for overflow failure. 

 

 

The water level and TSS concentration failure probabilities, �h,f and �h,g, 

respectively, for each month are summarized in Figure 4.8. The passive control had the 

lowest �h,f and the on/off control had slightly larger, but similar �h,f (Figure 4.8a). In 

contrast, the detention and TSS controls had the highest �h,f, with the largest �h,f 

simulated for detention control in July. The on/off control had the lowest �h,f of the three 
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active controls. The passive control had the largest �h,g, whereas the on/off and detention 

controls had similar, lower �h,g  (Figure 4.8b). For May and June, detention control 

�h,g  was larger than on/off control �h,g. In July and August, the �h,g  was similar for 

detention and on/off control. Finally, the TSS control �h,g was zero. 

 

 

Figure 4.8: Simulated failure probabilities for different controls for different simulation 
months: (a) water level failure; (b) TSS concentration failure; and (c) total system failure. 

 

 

With respect to �h, the relative performance of the four control scenarios did not 

depend on the month of analysis. The TSS control had the lowest and the passive control 

had the largest �h for all months (Figure 4.8c). The detention control had the second 

largest and the on/off control had the second lowest �h. Across a gradient of increasing 

storm intensity and decreasing storm frequency (i.e., from May to August), �h increased 

for the TSS and on/off controls, while �h showed a maximum for the passive and 

detention controls. The performance of the passive and active controls therefore 

depended on the rainfall statistics for each month.  
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Table 4.2 shows the percent decrease in �h for each active control compared to 

the passive control. Detention control had the largest �h of all the active controls. The 

�h decreased by 59.6%, 61.4%, 48.2% and, 57.8% compared to the passive control for 

May, June, July and, August, respectively. For on/off control, the �h decreased by 93%, 

75.8%, 66.5%, and 68.7% compared to the passive control for each month, respectively. 

For the TSS control, the �h decreased by 99.5%, 96.7%, 91.1%, and 92.3% for each 

month, respectively. Therefore, the detention control consistently performed worse than 

the TSS and on/off controls and the TSS control showed similar high performance across 

all months. 

 

Table 4.2: Percent decrease (%) in �h for active controls compared to passive control 

Month Detention On/off TSS 

May 59.6 93 99.5 
June 61.4 75.8 96.7 
July 48.2 66.5 91.1 
August 57.8 68.7 92.3 

 

 

4.5. Duration Curve Analysis 

 

 

Duration curves for daily peak water level, daily peak flow, daily sediment load, 

and daily peak TSS concentration are plotted in Figure 4.9 for the month of June. The 

passive control resulted in the lowest water level duration curve (Figure 4.9a). The 
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detention and TSS controls increased the water level duration curve across all exceedance 

probabilities compared to passive control. The on/off control resulted in the largest daily 

peak water levels for low water levels with exceedance probabilities greater than 5%. 

However, the TSS and detention control water level was greater than the on/off control 

water level for high water levels with exceedance probabilities less than 5%.  

 

Daily peak flow duration curves were similar across all four control scenarios 

(Figure 4.9b). One exception to this result is that for the on/off control, the valve was 

closed approximately 80% of the time, and for the detention control, the valve was closed 

approximately 60% of the time. This was reflected in the corresponding flow duration 

curves. 

 

Daily sediment load duration curves are plotted in Figure 4.9c. The passive 

control resulted in the largest sediment load duration curve across all exceedance 

probabilities. The TSS control and detention control resulted in very similar daily 

sediment load duration curves. For high sediment loads with exceedance probabilities 

greater than 30%, the TSS control decreased the daily sediment load relative to the 

detention control. The on/off control performed similar to the passive control for high 

sediment loads with exceedance probabilities less than 10% and decreased sediment 

loads with exceedance probabilities greater than 10%.  
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Figure 4.9: Simulated duration curves for (a) daily peak water level, (b) daily peak flow, 
(c) daily peak sediment load, (d) daily peak concentration. 

 
 
Daily peak TSS concentration duration curves are plotted in Figure 4.9d. All 

active controls decreased the daily peak TSS concentration for all exceedance 

probabilities relative to the passive control. The TSS control resulted in the lowest TSS 

concentration when the valve was open. The on/off control resulted in lower TSS 

concentration than detention and passive control when the valve was open and released 

zero TSS when the valve was closed 85% of the time. The detention control resulted in 

higher TSS concentration than the other active controls and had a similar valve open time 

to the TSS control.  

 



48 
 

4.6. Sensitivity of Active Control Performance to Rainfall Statistics 

 

 

The sensitivity of active control performance to the Modified BLRPM parameters 

is plotted in Figure 4.10. The mean storm arrival frequency, �, and the mean cell depth, 

��, were varied such that the mean expected value of daily rainfall remained constant, 

����� �6*+ (Islam et al., 1990). The �h,f decreased with � for passive, on/off, and 

detention controls (Figure 4.10a). For TSS control, the �h,f shows a peak around � =
0.025 hr-1. The �h,g increased with � for the passive, on/off, and detention controls, 

whereas �h,g for the TSS control was equal to zero for all values of � (Figure 4.10b). The 

�h increases with � for passive, on/off, and detention controls, while it showed a peak for 

TSS control. This is because the �h for the TSS control was dominated by the �h,f which 

shows peak around � value of 0.025 hr-1, whereas the �h for the other controls was 

dominated by the �h,g.  

 

 

Figure 4.10: (a) �h,f, (b) �h,g, (c) �h for passive, detention, on/off, and TSS control for 

different storm arrival rates. On the x-axis, the storm arrival rate, �, is varied, while the 
average daily rainfall is maintained constant. 
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4.7. Sensitivity of Active Control Performance to Catchment Characteristics 

 

 

The sensitivity of active control performance to catchment percent impervious 

cover is plotted in Figure 4.11. The �h,f increased with percent imperviousness for all the 

active and passive control (Figure 4.11a). But This increase is more pronounced for the 

detention and TSS control. The �h,g increased with percent imperviousness for the 

passive, on/off, and detention controls. However, �h,g for the TSS control was equal to 

zero for all values of percent imperviousness (Figure 4.11b). The �h increases with 

percent imperviousness for all the controls (Figure 4.11c). Nevertheless, the �h is lowest 

for the TSS control. This is because TSS control was dominated by �h,f and the 

magnitude of �h,f is much lower than �h,g. The other controls were dominated by �h,g 

which result is higher �h . 
 

 

Figure 4.11: (a) �h,f, (b) �h,g, (c) �h for passive, detention, on/off, and TSS control for 

different percent imperviousness.  
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The sensitivity of active control performance to catchment buildup rate constant is 

plotted in Figure 4.12. The �h,f increased with buildup rate constant for the TSS control 

only. The �h,f remained constant for all other controls (Figure 4.12a). The �h,g increased 

with buildup rate constant for the passive, on/off, and detention controls. But, �h,g for the 

TSS control was equal to zero for all values of buildup rate constants (Figure 4.12b). The 

�h increases with buildup rate constant for all the controls. Yet, the �h is lowest for the 

TSS control (Figure 4.12c). This is also because TSS control was dominated by �h,f and 

the magnitude of �h,f is much lower than �h,g. Additionally, the other controls were also 

dominated by �h,g which result is higher �h . 
 

 

Figure 4.12: (a) �h,f, (b) �h,g, (c) �h for passive, detention, on/off, and TSS control for 

different buildup rate constant. 

 

 

The sensitivity of active control performance to washoff exponent, �� of the 

exponential washoff model, _ = ��VWX��] (see Section 3.2.2.1 for more details) is 

plotted in Figure 4.13. The active control performance shows a similar trend to the 

increasing buildup rate constant. The �h,f increased with washoff exponent for the TSS 
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control only but then again, the �h,f remained constant for all other controls (Figure 

4.13a). The �h,g also increases with washoff exponent for all the controls other than the 

TSS control (Figure 4.13b). The �h increases with washoff exponent for all the controls 

but this increase is lowest for the TSS control (Figure 4.12c). 

 

 

Figure 4.13: (a) �h,f, (b) �h,g, (c) �h for passive, detention, on/off, and TSS control for 

different washoff exponent. 
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5. Discussion 

 

 

In this study, the performance of several real-time active controls of stormwater 

detention basin outflows were assessed by the means of continuous Monte Carlo 

simulation approach. These active controls were based on pond state variables like water 

level, TSS concentration and detention time. The active controls were also compared with 

the passive (no outflow control) condition. The controls were assed in a modeling 

framework that represents the coupled hydrologic-pollutant dynamics in an urbanized 

catchment and hydraulics of a detention pond. This study provided the insights to 

compare the sensitivity of coupled rainfall-runoff and buildup-washoff dynamics to 

active controls and attributes of smart stormwater systems (Mullapudi et al., 2017; 

Parolari et al., 2018) 

 

Experimental studies demonstrated TSS removal efficiencies ranging from 60-

70% for detention pond with passive or no control (Chen and Adams, 2006; Lampe, 

2005; Shammaa et al., 2002). From the continuous simulation results presented here, the 

average TSS removal efficiency was 64% for passive control. For active controls based 

on pond water level, detention time and rainfall forecasts, experimental and modeling 

studies demonstrated a TSS removal efficiency ranging from 70 to 91% (Gaborit et al., 

2016, 2013; Gilpin and Barrett, 2014; Middleton and Barrett, 2008; Muschalla et al., 

2014) which surpasses the performance of passive control. From the simulation results, 

the TSS removal efficiency for on/off and detention controls were on an average 77% and 

87% respectively. These findings comply with the existing literature of hydraulic based 
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control. But the TSS control demonstrated a TSS removal efficiency of 95% which is the 

largest of all other active controls. 

 

There were major differences in how the three active controls performed in 

specific days. Though the detention and TSS control behaved similarly in the exceedance 

probability of less than 40% for water level or daily peak flow, the TSS control decreased 

the peak sediment load and concentration more than the detention control in the same 

exceedance probability zone. This result demonstrates that the TSS control is more 

capable of reducing sediment load for highly probable rainfall, low sediment load events. 

However, at lower exceedance probabilities (less than 2%), the behavior of the TSS and 

detention control is almost similar. Also, the on/off control resulted in more sediment 

load for exceedance probabilities greater than 10% than any other active controls. 

Consequently, there are variability in sediment load resulted from different active control 

strategies. These variabilities might have important geomorphological implications of 

receiving water bodies (Poff et al., 1997). 

 

TSS concentration is also an important indicator of the health aquatic ecosystem. 

Suspended sediments directly impact the light availability in aquatic environment. 

Suspended sediments also absorb and transport nutrients, metals, and other pollutants 

which has a detrimental effect on aquatic ecosystem (Bilotta and Brazier, 2008). As a 

result, stormwater management systems may also be designed to limit TSS 

concentrations in downstream receiving waterbodies in addition to TSS load reduction. 

Of all the active controls evaluated here, the TSS control limits the outflow TSS 
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concentration. Subsequently, this control result in the lowest TSS concentration in the 

outflow.  Additionally, the TSS control resulted in the lowest suspended sediment 

concentration followed by on/off, detention, and passive control throughout the entire 

range of exceedance probabilities. But all the active controls generally resulted in lower 

TSS concertation than the passive control.  

 

The active controls generally increased the average water level in the pond. This 

increase in average water level resulted in increased �h,f. Though the valve operation 

increases �h,f, it cannot be attributed directly to the percent of the time valve was closed 

for each of the active controls. The valve was closed for, 90%, 80%, and 40% for on/off, 

detention, and TSS control, respectively. Despite keeping the valve closed for the longer 

amount of time than the detention or the TSS control., the on/off control results in lower 

�h,f. This result shows that �h,f depends more on the control algorithm itself rather than 

percent valve closed.  

 

The simulation results also demonstrated that the detention time is not a very 

good measure of TSS removal efficiency of detention ponds. The detention control and 

on/off control provided an average detention time of 24 and 74 hours respectively. But 

these two active controls were able to achieve 87% and 77% TSS removal efficiency. 

Whereas, the TSS control was able to demonstrate a removal efficiency of 95% for an 

average of detention time of 8.2 hours. Therefore, the TSS control provides the largest 

removal efficiency with the shortest detention time. Therefore, a longer detention time 
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doesn’t always lead to increased pollutant removal efficiency which complies with the 

finding from Guo et al., 2000. 

 

Rainfall characteristics played a critical role in of both passive and active control 

performances. In the case of passive, detention and, on-off control, �h increased with the 

mean storm arrival frequency, �. For all these cases, �h,f decreased with the increase of � 

but �h,g increased and �h was dominated by �h,g. This likely resulted from the coupled 

interaction between the catchment hydrologic and pollutant buildup-washoff processes. 

With the increase of mean storm arrival frequency, �, the frequency of washoff events 

increases. This increase of washoff events might be the reason of increased �h,g and 

ultimately �h for all these cases.  

 

Active control performance was most sensitive to rainfall characteristics. �h,f and 

�h,g  increased for months characterized by high intensity, infrequent storms (i.e., June, 

July, and August). When the total rainfall was held constant, �h,g also increased for 

frequent, low intensity events for the detention and on/off control. Whereas for the TSS 

control, �h,f decreased or showed a maximum with �. Therefore, the overall performance 

these real-time controlled stormwater systems depend on the variability in climate forcing 

and internal mechanics of the catchment components. 

 

Catchment characteristics also were a critical determinant of the efficiencies of 

these controls. Up till 30% imperviousness, both the active and passive controls result in 

similar �h,f. Then, the only contributor of �h is �h,g. The result shows that there is a 
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tradeoff between �h,f and �h,g for different level of imperviousness. As the 

imperviousness increases, �h,f increases the most for the TSS control and least for on/off 

control. This result shows that different control strategies can be used for different land 

use and control can be combined to better optimize the performance of different 

catchments.  

 

Catchment buildup and washoff impacted the �h,f for TSS control only. Because 

by increase of catchment buildup and washoff, increases the TSS concentration of the 

pond. As the TSS control operates on pond TSS concentration, increase in these 

parameters resulted in increased valve close time thus increased �h,f. However the 

relative system failure probabilities across the different controls do not change with the 

buildup and washoff. This is an interesting result that is consistent with our deduction 

that there is a tradeoff �h,f and �h,g  across different active controls.  

 

In this study, changes in other climate parameters (i.e. wind speed or temperature) 

were not considered. The generated rainfall scenarios correspond to possible variability in 

rainfall intensity and frequency due to climate change (Kunkel et al., 2013). Across the 

generated rainfall scenarios, the TSS control resulted in zero �h,g  and the lowest and least 

variable system failure. Due to climate change, increased TSS load is expected (He et al., 

2010; Wilson and Weng, 2011; Sharma et al., 2016). The simulation results indicate that 

the TSS control may is more adaptive to this kind of climate change by considering the 

coupled impact of changes in catchment hydrologic and pollutant buildup-washoff 

processes on stormwater runoff water quality. 
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Though the TSS control demonstrated greatest TSS reduction than any other 

active control, the collected TSS data shows that there is still uncertainty associated with 

it. How this uncertainty carries out through the control performances can be computed by 

calibrating the model by different ensemble TSS dataset and find the overall range of �h. 

This future work can ensure a more robust TSS controller under TSS data uncertainty. 

 

The current version of SWMM and PySWMM source code modification can only 

work with one pollutant group. So, here the pond TSS settlement model was setup for 

TSS of median settling velocity. Muschalla et al., 2014 demonstrated the active control 

performance for the whole range of particle size distribution of TSS thus different settling 

velocities. Therefore, the overall TSS removal was also dependent on the settling 

velocities of different particle sizes. To evaluate the TSS control for different particle 

sizes, the source code is needed to be modified so that the model can handle multiple 

pollutants. This modification and evaluation are also listed as a future work.
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6. Conclusion 

 

 

The main results of this study can be summarized below: 

• Active controls driven by water quality information or detention time show 

promise to improve the water quality of stormwater basin outflows beyond 

traditional controls based on water level alone. 

• The TSS control reduces the system failure probability on an average by 18.7% 

and 38.7% relative to the on/off and detention controls, respectively.  

• The TSS and detention controls settle 18.9% and 11.4% more suspended solids 

relative to the on/off control. This is because the water quality and the detention 

controls provide a more direct measure of pond water quality as compared to 

water level measurements.  

• There is still high cost or measurement uncertainty associated with implementing 

real-time water quality control. A detention time method can be implemented to 

achieve similar TSS load reduction benefits. However, the performance of the 

detention time control was strongly influenced by the rainfall characteristics. 

Therefore, detention time control may not be effective in some cases when 

compared to TSS control.   
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Appendices 

 

 

A1. Grab Water Samples Lab Test Result 

 

 

CUP 

LABEL 

SAMPLE 

SITE 

CUP+ 

FILTER (g) 

CUP+FILTER+ 

SAMPLE (g) 

SAMPLE (mg) WATER 

VOL. (mL) 

CONC.  

(mg/L) 

C5 Inlet 1 1.4458 1.4464 0.6 350 1.71 

B2 Inlet 2 1.4385 1.4398 1.3 330 3.94 

Z6 Inlet 3 1.4458 1.4479 2.1 250 8.4 

A6 South 1 1.4257 1.4322 6.5 175 37.14 

A5 South 2 1.4209 1.4289 8 120 66.67 

C6 South 3 1.4373 1.4571 19.8 90 220 

B5 South 1 1.4301 1.4352 5.1 170 30 

A7 South 2 1.4408 1.4474 6.6 200 33 

Z9  South 3 1.4506 1.4559 5.3 150 35.33 
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B4 Inlet 1 1.4038 1.4096 5.8 300 19.33333333 

C3 Inlet 2 1.4415 1.4454 3.9 210 18.57142857 

B1 Inlet 3 1.4416 1.4466 5 200 25 
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A2. MBLRPM MATLAB Codes 

 

 

Historical Rainfall Statistics Calculation 

 

 

% This script calculates the mean, variance, probability of zero rain 

and 
% lag-1 auto correlations for rainfall files for given level of 
% aggregations. The rainfall files are created from NOAA hourly 
% precipitation dataset.  

 

  
clear all; close all; clc 

  

  
% Data load for desired level of aggregation 
for k = 1:4 
    if k == 1  
        load 1_hr_rain.mat 
        [M, V, Z, L1, L2, L3] = RainStat(rdays, time_scale); 
        One_hr_results = [M; V; L1; Z; L2; L3]; 
        clear rdays time_scale M V Z L1 L2 L3 
    end 
    if k == 2 
        load 6_hr_rain.mat 
        [M, V, Z, L1, L2, L3] = RainStat(rdays, time_scale); 
        Six_hr_results = [M; V; L1; Z; L2; L3]; 
        clear rdays time_scale M V Z L1 L2 L3 
    end 
    if k == 3 
        load 12_hr_rain.mat 
        [M, V, Z, L1, L2, L3] = RainStat(rdays, time_scale); 
        Twelve_hr_results = [M; V; L1; Z; L2; L3]; 
        clear rdays time_scale M V Z L1 L2 L3 
    end 
    if k == 4 
        load 24_hr_rain.mat 
        [M, V, Z, L1, L2, L3] = RainStat(rdays, time_scale); 
        Twentyfour_hr_results = [M; V; L1; Z; L2; L3]; 
        clear rdays time_scale M V Z L1 L2 L3 
    end 
end 

  
save ('aggregated_rainfall_statistics.mat', 'One_hr_results', ... 
    'Six_hr_results', 'Twelve_hr_results', 'Twentyfour_hr_results') 

  

  
function [Mean_rainfall, Variance_rainfall, Zero_rainfall, 

Lag_1_AutoCorr, ... 
    Lag_2_AutoCorr, Lag_3_AutoCorr] = RainStat(X, Y) 
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    MonthNum = month(Y)'; 
    ts_1_hr(:,1) = X.*25.4;     %converting from in to mm 
    ts_1_hr(:,2) = MonthNum; 

  
    %Creating empty array for each month 
    Jan = []; Feb = []; Mar = []; Apr = []; 
    May = []; Jun = []; Jly = []; Aug = [];  
    Sep = []; Oct = []; Nov = []; Dec = []; 

  
    %Sorting rainfall accorting to month  
    for i = 1:length(X) 
        if ts_1_hr(i,2)==1 
            Jan = [Jan, ts_1_hr(i,1)]; 
        elseif ts_1_hr(i,2)==2 
            Feb = [Feb, ts_1_hr(i,1)]; 
        elseif ts_1_hr(i,2)==3 
            Mar = [Mar, ts_1_hr(i,1)]; 
        elseif ts_1_hr(i,2)==4 
            Apr = [Apr, ts_1_hr(i,1)]; 
        elseif ts_1_hr(i,2)==5 
            May = [May, ts_1_hr(i,1)];         
        elseif ts_1_hr(i,2)==6 
            Jun = [Jun, ts_1_hr(i,1)];  
        elseif ts_1_hr(i,2)==7 
            Jly = [Jly, ts_1_hr(i,1)];                 
        elseif ts_1_hr(i,2)==8 
            Aug = [Aug, ts_1_hr(i,1)]; 
        elseif ts_1_hr(i,2)==9 
            Sep = [Sep, ts_1_hr(i,1)];                
        elseif ts_1_hr(i,2)==10 
            Oct = [Oct, ts_1_hr(i,1)];         
        elseif ts_1_hr(i,2)==11 
            Nov = [Nov, ts_1_hr(i,1)];         
        elseif ts_1_hr(i,2)==12 
            Dec = [Dec, ts_1_hr(i,1)];               

        
        end 
    end 

  
    %Rainfall statistics 

  
    Mean_rainfall = [mean(Jan) mean(Feb) mean(Mar) mean(Apr) mean(May) 

... 
        mean(Jun) mean(Jly) mean(Aug) mean(Sep) mean(Oct) mean(Nov) 

mean(Dec)]; %mm 

  
    Variance_rainfall = [var(Jan) var(Feb) var(Mar) var(Apr) var(May) 

... 
        var(Jun) var(Jly) var(Aug) var(Sep) var(Oct) var(Nov) 

var(Dec)]; %mnm2 

  
    Zero_rainfall = [(length(Jan)-nnz(Jan))/length(Jan) (length(Feb)-

nnz(Feb))/length(Feb) ... 
        (length(Mar)-nnz(Mar))/length(Mar) (length(Apr)-

nnz(Apr))/length(Apr) (length(May)-nnz(May))/length(May) ... 



69 
 

        (length(Jun)-nnz(Jun))/length(Jun) (length(Jly)-

nnz(Jly))/length(Jly) (length(Aug)-nnz(Aug))/length(Aug) ... 
        (length(Sep)-nnz(Sep))/length(Sep) (length(Oct)-

nnz(Oct))/length(Oct) (length(Nov)-nnz(Nov))/length(Nov) ... 
        (length(Dec)-nnz(Dec))/length(Dec)]; 

  

  
    AutoCorr = [autocorr(Jan); autocorr(Feb); autocorr(Mar); 

autocorr(Apr); autocorr(May); ... 
        autocorr(Jun); autocorr(Jly); autocorr(Aug); autocorr(Sep); 

autocorr(Oct); autocorr(Nov); autocorr(Dec);]; 

  

  
    Lag_1_AutoCorr = [AutoCorr(1,2) AutoCorr(2,2) AutoCorr(3,2) 

AutoCorr(4,2) AutoCorr(5,2) AutoCorr(6,2) ... 
        AutoCorr(7,2) AutoCorr(8,2) AutoCorr(9,2) AutoCorr(10,2) 

AutoCorr(11,2) AutoCorr(12,2)]; 
    Lag_2_AutoCorr = [AutoCorr(1,3) AutoCorr(2,3) AutoCorr(3,3) 

AutoCorr(4,3) AutoCorr(5,3) AutoCorr(6,3) ... 
        AutoCorr(7,3) AutoCorr(8,3) AutoCorr(9,3) AutoCorr(10,3) 

AutoCorr(11,3) AutoCorr(12,3)]; 
    Lag_3_AutoCorr = [AutoCorr(1,4) AutoCorr(2,4) AutoCorr(3,4) 

AutoCorr(4,4) AutoCorr(5,4) AutoCorr(6,4) ... 
        AutoCorr(7,4) AutoCorr(8,4) AutoCorr(9,4) AutoCorr(10,4) 

AutoCorr(11,4) AutoCorr(12,4)]; 

  

  

  
end 
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MBLRPM Parameter Estimation Code 

 

 

% This script estimates the MLBRPM parameters by by non linear 
% unconstrained minimization technique. 
 

clear all; close all; clc 
load aggregated_rainfall_statistics.mat  

 

% The aggregated rainfall statistics were calculated from historical 

rainfall data. 

 

%SET B from Khaliq et. al. 1996 

%SET B: Mean = 1, Variance = 1,24 Lag-1 = 1 P(zero) rain = 1,24 

 
j = 7;                   %For the month the parameters are estimated 
 

theta_B = [One_hr_results(1,j) One_hr_results(2,j) 

Twentyfour_hr_results(2,j) ... 
    One_hr_results(3,j) One_hr_results(4,j) 

Twentyfour_hr_results(4,j)]'; 

 

fun = @(x)((EYfun(x(1),x(2),x(3),x(4),x(5),x(6),1)/theta_B(1,1)-1)^2 

... 
    + (VarYfun(x(1),x(2),x(3),x(4),x(5),x(6),1)/theta_B(2,1)-1)^2 ... 
    + (VarYfun(x(1),x(2),x(3),x(4),x(5),x(6),24)/theta_B(3,1)-1)^2 ... 
    + (CovYfun(x(1),x(2),x(3),x(4),x(5),x(6),1,1)/theta_B(4,1)-1)^2 ... 
    + (Prob0fun(x(1),x(3),x(4),x(5),x(6),1)/theta_B(5,1)-1)^2 ... 
    + (Prob0fun(x(1),x(3),x(4),x(5),x(6),24)/theta_B(6,1)-1)^2); 

 

ms = MultiStart; 
problem = createOptimProblem('fminunc','x0',[X_1 X_2 X_3 X_4 X_5 

X_6],... 
    'objective',fun) 
options = optimoptions(@fminunc,'MaxIterations', 1e10,... 
    'MaxFunctionEvaluations', 1e10,'OptimalityTolerance', ... 
    1e-1000,'StepTolerance', 1e-8, 'FunctionTolerance', 1e-8); 
[xmin,fval,flag,outpt,allmins] = run(ms,problem,30) 

 

%[X_1 X_2 X_3 X_4 X_5 X_6] are initial guesses for the parameters. Here 

the 
%guesses are [0.02 2 0.8 4 0.05 0.3] 

 

function EY = EYfun(L, Mx, v, A, P, k, h) 
         Mc = (1 + (k/P)); 
         EY = (L*h*v*Mx*Mc)/(A-1); 
end 
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function VarY = VarYfun(L, Mx, v, A, P, k, h) 
         Mc = 1 + (k/P); 
         A1 = ((L*Mc*v^A)/((A-1)*(A-2)*(A-3)))*(2*Mx^2+(k*P*Mx^2)/(P^2-

1)); 
         A2 = (L*Mc*k*(Mx^2)*(v^A))/((P^2)*(P^2-1)*(A-1)*(A-2)*(A-3)); 
         VarY = 2*A1*((A-3)*h*v^(2-A)-v^(3-A)+(v+h)^(3-A))... 
             -2*A2*(P*(A-3)*h*v^(2-A)-v^(3-A)+(v+P*h)^(3-A)); 

              
end 

          

  
function CovY = CovYfun(L, Mx, v, A, P, k, h, s) 
         Mc = 1 + (k/P); 
         A1 = ((L*Mc*v^A)/((A-1)*(A-2)*(A-3)))*(2*Mx^2+(k*P*Mx^2)/(P^2-

1)); 
         A2 = (L*Mc*k*(Mx^2)*(v^A))/((P^2)*(P^2-1)*(A-1)*(A-2)*(A-3)); 
         CovY = A1*(((v+(s+1)*h)^(3-A))-2*((v+s*h)^(3-A))... 
             +((v+(s-1)*h)^(3-A)))-A2*(((v+(s+1)*P*h)^(3-A))... 
             -2*((v+s*P*h)^(3-A))+((v+(s-1)*P*h)^(3-A))); 
end 

  

  
function Prob0 = Prob0fun(L, v, A, P, k, h) 
         Mt = (v/(P*(A-1)))*(1+P*(k+P)-0.25*P*(k+P)*(k+4*P)... 
             +(1/72)*P*(k+P)*(4*k^2+27*k*P+72*P^2)); 
         Gp = (v/(P*(A-1)))*(1-k-P+1.5*k*P+P^2+0.5*k^2); 
         Prob0 = exp(-L*h-L*Mt+L*Gp*((P+k*(v/(v+(k+P)*h))^(A-  

1))/(P+k))); 
end 

 

 

 

 

 

 

 

 

 



72 
 

Estimated MBLRPM Parameters 

 

 
 � �� � � � � 

Jan 0 0.7579 0.8111 3.9963 0 0.3296 
Feb 0.0047 1.3133 2.6808 2.944 0.0116 0.0644 
Mar 0.0182 1.6904 2.1783 3.3905 0.3133 0.4775 
Apr 0.0201 2.4938 2.2484 3.0772 0.1698 0.201 
May 0.0211 3.3954 1.5433 4.1695 0.7916 1.7411 
Jun 0.0195 5.9809 0.641 4.3463 0.6956 3.2364 
Jul 0.0171 9.3498 0.3834 4.829 0.4338 2.5267 
Aug 0.013 8.0432 0.7103 4.7001 0.0744 0.4262 
Sep 0.0142 2.7785 1.6262 3.8751 0.4199 1.4507 
Oct 0.0199 2.6728 3.4393 3.6744 0.2784 0.042 
Nov 0.0145 3.0487 2.8795 3.4262 0.0313 0.0168 
Dec 0 1.1377 0.9828 3.9357 0 0.4148 

 

 

 

 

 

 

 



73 
 

Rainfall Realization Generation 

 

 

load Param_fminunc.mat                  %parameters estimated using 

fminunc 

 

  

  

  
M = 6;                                  %select month of simulation 

 

  
lambda = Param_fminunc(M,1);            %rate of storm arrival 
Ex = Param_fminunc(M,2);                %mean rainfall 
v = Param_fminunc(M,3);                 %associated with mean of the 

geometric distribution of no of cells 
alpha = Param_fminunc(M,4);             %associated with shape 

parameter of the geometric distribution of no of cells 
phi = Param_fminunc(M,5);               %changed it for the purpose of 

generating sotrm, associated with storm duration 
k = Param_fminunc(M,6);                 %associated with cell arrival 
mu_c = 1+(k/phi);                       %mean calculation of the 

geometric distribution 
p_factor = 1/(mu_c+1);                  %probability factor for 

geometric distribution 

  

  

  

  

  

  
%initialization of model 
hourly_aggregated_rainfall = 1; 
storm_events = 1;  
int = 0; 
Rainfall_timeseries = []; 

  
D = 100;        %no of days of simulation 

  
while int < D*24 
    %Storm specific parameters 
    storm_origin = exprnd(1/lambda);                                              
    eta = gamrnd(alpha,v); 
    beta = eta*k; 
    gamma = eta*phi; 
    storm_duration = exprnd(1/gamma);  

  
    cell_no = geornd(p_factor); 
    if cell_no == 0 
        cell_no = 1; 
    end 



74 
 

     
    if cell_no == 1 
            cell_arrival = exprnd(1/beta); 
            cell_depth = exprnd(Ex); 
            cell_width = exprnd(1/eta);            
            cell_start_point = int + storm_origin + cell_arrival; 
            cell_end_point = cell_start_point + cell_width;        

             
            %Calculating cumulative rainfall in each hour stamp 
            round_cell_start = lower_round(cell_start_point); 
            round_cell_end = lower_round(cell_end_point); 

             
            if round_cell_end - round_cell_start == 0 
                cumulative_rain(:,1) = cell_start_point; 
                cumulative_rain(:,2) = cell_width*cell_depth; 
            elseif round_cell_end - round_cell_start == 1  
                    cumulative_rain(1,1) = cell_start_point; 
                    cumulative_rain(1,2) = (round_cell_end - 

cell_start_point)... 
                    *cell_depth; 
                    cumulative_rain(2,1) = cell_end_point; 
                    cumulative_rain(2,2) = (cell_end_point - 

round_cell_end)... 
                    *cell_depth; 
            else 
                ln = round_cell_end - round_cell_start + 1; 
                    for p = 1:ln 
                        if p == 1 
                            cumulative_rain(p,1) = cell_start_point;  
                            cumulative_rain(p,2) = (round_cell_start + 

1 - cell_start_point)... 
                                *cell_depth; 
                        elseif p == ln 
                            cumulative_rain(p,1) = cell_end_point; 
                            cumulative_rain(p,2) = (cell_end_point - 

round_cell_end)... 
                                *cell_depth; 
                        elseif p > 1 && p < ln  
                            cumulative_rain(p,1) = round_cell_start + p 

-1; 
                            cumulative_rain(p,2) = cell_depth; 
                        end 
                    end  
            end 

             
            Rainfall_timeseries = [Rainfall_timeseries; 

cumulative_rain]; 
            cumulative_rain = []; 
            int = Rainfall_timeseries(end,1); 
            storm_events = storm_events + 1;        
    else 
        for i = 1:cell_no 
             cell_arrival = exprnd(1/beta); 
             cell_depth = exprnd(Ex); 
             cell_width = exprnd(1/eta); 
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             if i == 1 
                 cell_start_point = int + storm_origin + cell_arrival; 
                 storm_start_point = cell_start_point - cell_arrival; 
             else 
                 cell_start_point = int + cell_arrival; 
             end 
             cell_end_point = cell_start_point + cell_width; 

              
             if (cell_end_point - storm_start_point) > storm_duration 
                 break 
             end 

              

              
             round_cell_start = lower_round(cell_start_point); 
             round_cell_end = lower_round(cell_end_point); 

              
            if round_cell_end - round_cell_start == 0 
                cumulative_rain(:,1) = cell_start_point; 
                cumulative_rain(:,2) = cell_width*cell_depth; 
            elseif round_cell_end - round_cell_start == 1  
                    cumulative_rain(1,1) = cell_start_point; 
                    cumulative_rain(1,2) = (round_cell_end - 

cell_start_point)... 
                    *cell_depth; 
                    cumulative_rain(2,1) = cell_end_point; 
                    cumulative_rain(2,2) = (cell_end_point - 

round_cell_end)... 
                    *cell_depth; 
            else 
                ln = round_cell_end - round_cell_start + 1; 
                    for p = 1:ln 
                        if p == 1 
                            cumulative_rain(p,1) = cell_start_point;  
                            cumulative_rain(p,2) = (round_cell_start + 

1 - cell_start_point)... 
                                *cell_depth; 
                        elseif p == ln 
                            cumulative_rain(p,1) = cell_end_point; 
                            cumulative_rain(p,2) = (cell_end_point - 

round_cell_end)... 
                                *cell_depth; 
                        elseif p > 1 && p < ln  
                            cumulative_rain(p,1) = round_cell_start + p 

-1; 
                            cumulative_rain(p,2) = cell_depth; 
                        end 
                    end  
            end 

             

             
            Rainfall_timeseries = [Rainfall_timeseries; 

cumulative_rain]; 
            cumulative_rain = []; 
            int = Rainfall_timeseries(end,1) - cell_width; 
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        end 

          
        storm_events = storm_events + 1;  
    end 

  
end 

  

  

  
Rainfall_timeseries(:,2) = Rainfall_timeseries(:,2)./25.4;           

%coverting to in  

  

  
hour = round(Rainfall_timeseries(:,1)); 
hour_scale = (1:hour(end))';                 
rain = Rainfall_timeseries(:,2); 

  
for ii = 1:length(hour_scale) 
      hourly_aggregated_rainfall(ii) = sum(rain(hour == 

hour_scale(ii))); 
end 

  
hourly_aggregated_rainfall = (hourly_aggregated_rainfall)';           

%coverting to in 
time = (1:length(hourly_aggregated_rainfall))./24; 

 

function l_rnd = lower_round(X) 

  
    Y = round(X); 
    if Y - X > 0 
        l_rnd = Y - 1; 
    else 
        l_rnd = Y; 
    end 
end 
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A3. SWMM Model Input File 

 

 

[OPTIONS] 

;;Option             Value 

FLOW_UNITS           CFS 

INFILTRATION         MODIFIED_GREEN_AMPT 

FLOW_ROUTING         DYNWAVE 

LINK_OFFSETS         ELEVATION 

MIN_SLOPE            0 

ALLOW_PONDING        NO 

SKIP_STEADY_STATE    NO 

 

START_DATE           01/01/1970 

START_TIME           00:00:00 

REPORT_START_DATE    01/01/1970 

REPORT_START_TIME    00:00:00 

END_DATE             12/30/2000 

END_TIME             23:59:00 

SWEEP_START          01/01 

SWEEP_END            12/31 

DRY_DAYS             5 

REPORT_STEP          01:00:00 

WET_STEP             00:05:00 
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DRY_STEP             01:00:00 

ROUTING_STEP         0:00:01   

 

INERTIAL_DAMPING     PARTIAL 

NORMAL_FLOW_LIMITED  BOTH 

FORCE_MAIN_EQUATION  H-W 

VARIABLE_STEP        0.75 

LENGTHENING_STEP     0 

MIN_SURFAREA         12.566 

MAX_TRIALS           8 

HEAD_TOLERANCE       0.005 

SYS_FLOW_TOL         5 

LAT_FLOW_TOL         5 

MINIMUM_STEP         0.5 

THREADS              1 

 

[EVAPORATION] 

;;Data Source    Parameters 

;;-------------- ---------------- 

CONSTANT         0.0 

DRY_ONLY         NO 

 

[RAINGAGES] 
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;;Name           Format    Interval SCF      Source     

;;-------------- --------- ------ ------ ---------- 

Gage1            INTENSITY 1:00     1.0      TIMESERIES Aug        

 

[SUBCATCHMENTS] 

;;Name           Rain Gage        Outlet           Area     %Imperv  Width    %Slope   

CurbLen  SnowPack         

;;-------------- ---------------- ---------------- -------- -------- -------- -------- -------- -----

----------- 

;The whole Towlot s lumped into a single sub-catchment 

S1               Gage1            J1               34.74    91       1237     0.65     0                         

 

[SUBAREAS] 

;;Subcatchment   N-Imperv   N-Perv     S-Imperv   S-Perv     PctZero    RouteTo    

PctRouted  

;;-------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- 

S1               0.01       0.1        25         1          26         OUTLET     

 

[INFILTRATION] 

;;Subcatchment   Suction    Ksat       IMD        

;;-------------- ---------- ---------- ---------- 

S1               3.5        0.5        0.25       
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[JUNCTIONS] 

;;Name           Elevation  MaxDepth   InitDepth  SurDepth   Aponded    

;;-------------- ---------- ---------- ---------- ---------- ---------- 

J1               68         0          0          0          0          

 

[OUTFALLS] 

;;Name           Elevation  Type       Stage Data       Gated    Route To         

;;-------------- ---------- ---------- ---------------- -------- ---------------- 

Out1             57         FREE                        NO                        

 

[STORAGE] 

;;Name           Elev.    MaxDepth   InitDepth  Shape      Curve Name/Params            

N/A      Fevap    Psi      Ksat     IMD      

;;-------------- -------- ---------- ----------- ---------- ---------------------------- -------- ---

-----          -------- -------- 

ST1              48.79    12.79      9          TABULAR    FINAL_POND_STORAGE           

0        0        0        0.025    0.01     

ST2              57       6          0          TABULAR    Tank                         0        0.5      

0        0.03     0        

 

[CONDUITS] 

;;Name           From Node        To Node          Length     Roughness  InOffset   

OutOffset  InitFlow   MaxFlow    
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;;-------------- ---------------- ---------------- ---------- ---------- ---------- ---------- ------

---- ---------- 

C2               J1               ST1              268        0.01       68         57         0          0          

C3               ST1              ST2              5.5        0.01       *          *          0          0          

 

[ORIFICES] 

;;Name           From Node        To Node          Type         Offset     Qcoeff     Gated    

CloseTime  

;;-------------- ---------------- ---------------- ------------ ---------- ---------- -------- ------

---- 

O1               ST2              Out1             SIDE         57.79      0.6        NO       0          

 

[XSECTIONS] 

;;Link           Shape        Geom1            Geom2      Geom3      Geom4      Barrels    

Culvert    

;;-------------- ------------ ---------------- ---------- ---------- ---------- ---------- ---------- 

C2               CIRCULAR     4                0          0          0          1                     

C3               CIRCULAR     3                0          0          0          1                     

O1               CIRCULAR     0.83             0          0          0 

 

[POLLUTANTS] 

;;Name           Units  Crain      Cgw        Crdii      Kdecay     SnowOnly   Co-

Pollutant     Co-Frac    Cdwf       Cinit      
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;;-------------- ------ ---------- ---------- ---------- ---------- ---------- ---------------- -----

----- ---------- ---------- 

TSS              MG/L   0.0        0.0        0.0        0.0        NO         *                0.0        

0.0        0.0        

 

[LANDUSES] 

;;               Sweeping   Fraction   Last       

;;Name           Interval   Available  Swept      

;;-------------- ---------- ---------- ---------- 

ParkingLot       0          0          0          

 

[COVERAGES] 

;;Subcatchment   Land Use         Percent    

;;-------------- ---------------- ---------- 

S1               ParkingLot       100        

 

[LOADINGS] 

;;Subcatchment   Pollutant        Buildup    

;;-------------- ---------------- ---------- 

 

[BUILDUP] 

;;Land Use       Pollutant        Function   Coeff1     Coeff2     Coeff3     Per Unit   

;;-------------- ---------------- ---------- ---------- ---------- ---------- ---------- 
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ParkingLot       TSS              EXP        28.12      0.76       1.26       AREA       

 

[WASHOFF] 

;;Land Use       Pollutant        Function   Coeff1     Coeff2     SweepRmvl  

BmpRmvl    

;;-------------- ---------------- ---------- ---------- ---------- ---------- ---------- 

ParkingLot       TSS              EXP        5.91       1.46       0.0        0.0        

 

[TREATMENT] 

;;Node           Pollutant        Function   

;;-------------- ---------------- ---------- 

ST1              TSS              C=STEP(100-FLOW)*(3+(TSS-3)*exp(-

0.5/DEPTH*DT/3600)) 

ST2              TSS              C=STEP(100-FLOW)*(3+(TSS-3)*exp(-

0.5/DEPTH*DT/3600)) 

 

[CURVES] 

;;Name           Type       X-Value    Y-Value    

;;-------------- ---------- ---------- ---------- 

; 

FINAL_POND_STORAGE Storage    0          0          

FINAL_POND_STORAGE            2          5000       

FINAL_POND_STORAGE            7.21       20000      



84 
 

FINAL_POND_STORAGE            9          32000      

FINAL_POND_STORAGE            9.19       33500      

FINAL_POND_STORAGE            9.59       33864      

FINAL_POND_STORAGE            9.99       34053      

FINAL_POND_STORAGE            10.39      35284.9    

FINAL_POND_STORAGE            10.79      37085.5    

FINAL_POND_STORAGE            11.19      39004.1    

FINAL_POND_STORAGE            11.59      40800.8    

FINAL_POND_STORAGE            11.99      42626.8    

FINAL_POND_STORAGE            12.39      44754.3    

FINAL_POND_STORAGE            12.79      47156.7   

; 

Tank             Storage    0          21.42      

Tank                        4          21.42    

 

[TIMESERIES] 

***This TIMESERIES was added from the generated rainfall realization from 

MBLRPM. 
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A4. Source Code Modification 

 

 

SWMM 

 

 

These lines to be added in the following files 

File name: toolkitAPI.c 

Line: 859 

            case SM_NEWQUAL: 

                if (Nobjects[POLLUT] > 0) 

                { 

                    for (int p = 0; p < Nobjects[POLLUT]; p++) { 

                     

                        result[p] = (Node[index].newQual[p]); 

                        if (Pollut[p].units == COUNT)  

      { 

                            result[p] = LOG10(result[p]); 

                        } 

 

 

     } 

                } 

                break; 
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            default: errcode = ERR_API_OUTBOUNDS; break; 

        } 

    } 

    return(errcode); 

} 

 

 

File name: toolkitAPI.h 

Line: 151 

SM_NEWQUAL        = 8 
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PySWMM 

 

 

File name: node.py 

Line: 663 

    def pollut_conc(self): 

        """ 

        Get Node Pollutant Concentration 

        Works for One Pollutant Only 

         

        """ 

        return self._model.getNodeResult(self._nodeid, 

                                         NodeResults.newQual.value) 

 

 

 

File name: toolkitAPI.py 

Line: 91 

    newQual = 8 
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A5. PySWMM Control Application Python Codes 

 

Detention Control 

 

 

### DETENTION TIME CONTROL ### 

 

import pyswmm 

pyswmm.lib.use("libswmm5") 

from pyswmm import Simulation, Links, Nodes 

 

## The pond is emptied after the detention time objective met after the 

storm ## 

## This whole control is divided into five rules ## 

 

def WL_control_1 (WL_current, WL_lower, Valve_close_time, Det_time, 

Valve_setting): 

    if WL_current > WL_lower and Valve_close_time < Det_time and 

Valve_setting == 0: 

        return True 

    ## This rule closes the valve for on going storm 

def WL_control_2 (WL_current, WL_lower, Valve_close_time, Det_time, 

Valve_setting): 

    if WL_current > WL_lower and Valve_close_time == Det_time and 

Valve_setting == 0: 

        return True 

    ## This rule opens the gate after detention criteria is reached 
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def WL_control_3 (WL_current, WL_previous_step, Valve_close_time, 

Det_time, Valve_setting): 

    if WL_current < WL_previous_step and Valve_close_time < Det_time and 

Valve_setting == 1: 

        return True 

    ## This rule keeps the gate open untill lower bound of pond water 

level unless a intermediate event occurs 

def WL_control_4 (WL_current, WL_previous_step, Valve_close_time, 

Det_time, Valve_setting): 

    if WL_current > WL_previous_step and Valve_close_time < Det_time and 

Valve_setting == 1: 

        return True 

    ## This rule closes the valve for intermediate event 

def WL_control_5 (WL_current, WL_lower): 

    if WL_current < WL_lower: 

        return True 

    ## This rule closes the valve after lower bound water level is 

reached 

 

 

### Initialization of the model with the INP file          

with Simulation(#show path to SWMM INP file#") as sim: 

    ### Evaluating control after every 300 sec. details at 

http://pyswmm.readthedocs.io/en/stable/tutorial/tutorial.html ### 

     dt = 300 

     sim.step_advance(dt) 

 

     ### Loading SWMM objects ### 
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     link_object = Links(sim) 

     node_object = Nodes(sim) 

      

     O1 = link_object["O1"]      

     ST1= node_object["ST1"] 

     OUT1 = node_object["Out1"] 

     J1 = node_object["J1"] 

 

     ### Initial values ### 

     O1.target_setting = 0.00 

     WL_lower = 9.03 

     Time_counter = 0 

     Previous_depth = 0 

     ST1_DEPTH = [] 

     ST1_TSS = [] 

     ST1_INFLOW = [] 

     ST1_FLOODING = [] 

     O1_FLOW = [] 

     OUT1_TSS = [] 

     VALVE_OPENING = [] 

     JUNCTION_FLOW = [] 

     JUNCTION_TSS = [] 

     k=[] 

     i=0 

 

     ### Set the target detention time in hr. 

     Target_detention_time = 24 

     Det_time = Target_detention_time*3600/dt 
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     for step in sim: 

         i=i+1 

         if WL_control_1(ST1.depth, WL_lower, Time_counter, Det_time, 

O1.target_setting): 

            O1.target_setting = 0.00 

            Time_counter = Time_counter + 1 

            Previous_depth = ST1.depth 

         if WL_control_2(ST1.depth, WL_lower, Time_counter, Det_time, 

O1.target_setting): 

            O1.target_setting = 1.00 

            Time_counter = 0 

            Previous_depth = ST1.depth 

         if WL_control_3(ST1.depth, Previous_depth, Time_counter, 

Det_time, O1.target_setting): 

            O1.target_setting = 1.00 

            Time_counter = 0 

            Previous_depth = ST1.depth 

         if WL_control_4(ST1.depth, Previous_depth, Time_counter, 

Det_time, O1.target_setting): 

            O1.target_setting = 0.00 

            Time_counter = Time_counter + 1 

         if WL_control_5 (ST1.depth, WL_lower): 

            O1.target_setting = 0.0 
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On/off Control 

 

 

### On-off Control ### 

 

import pyswmm 

pyswmm.lib.use("libswmm5") 

from pyswmm import Simulation, Links, Nodes 

import matplotlib.pyplot as plt 

import numpy as np 

 

### The pond is empteyed after it reaches a certain water level ### 

### This whole control is divided into five rules ### 

 

def WL_control_1 (WL_current, WL_upper, WL_lower, Valve_opening): 

    if Valve_opening == 0 and WL_current < WL_upper: 

        return True 

def WL_control_2 (WL_current, WL_upper, WL_lower, Valve_opening): 

    if Valve_opening == 0 and WL_current > WL_upper: 

        return True 

def WL_control_3 (WL_current, WL_upper, WL_lower, Valve_opening): 

    if Valve_opening == 1 and WL_current > WL_upper: 

        return True 

def WL_control_4 (WL_current, WL_upper, WL_lower, Valve_opening): 

    if Valve_opening == 1 and WL_current < WL_lower: 

        return True 

def WL_control_5 (WL_current, WL_upper, WL_lower, Valve_opening): 

    if Valve_opening == 0 and WL_current < WL_lower: 
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        return True 

 

 

### Initialization of the model with the INP file          

with Simulation(#show path to SWMM INP file#") as sim: 

    ### Evaluating control after every 300 sec. details at 

http://pyswmm.readthedocs.io/en/stable/tutorial/tutorial.html ### 

     sim.step_advance(300) 

 

     ### Loading SWMM objects ### 

     link_object = Links(sim) 

     node_object = Nodes(sim) 

      

     O1 = link_object["O1"]      

     ST1= node_object["ST1"] 

     OUT1 = node_object["Out1"] 

     J1 = node_object["J1"] 

 

     ### Initial values ### 

     O1.target_setting = 1.00 

     WL_upper = 11.5 

     WL_lower = 9.05 

      

     ST1_DEPTH = [] 

     ST1_TSS = [] 

     ST1_INFLOW = [] 

     ST1_FLOODING = [] 

     O1_FLOW = [] 
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     OUT1_TSS = [] 

     VALVE_OPENING = [] 

     JUNCTION_FLOW = [] 

     JUNCTION_TSS = [] 

     k=[] 

     i=0 

      

     for step in sim: 

         i=i+1 

         if WL_control_1 (ST1.depth, WL_upper, WL_lower, 

O1.target_setting): 

            O1.target_setting = 0.00            

         if WL_control_2 (ST1.depth, WL_upper, WL_lower, 

O1.target_setting): 

            O1.target_setting = 1.00 

         if WL_control_3 (ST1.depth, WL_upper, WL_lower, 

O1.target_setting): 

            O1.target_setting = 1.00           

         if WL_control_4 (ST1.depth, WL_upper, WL_lower, 

O1.target_setting): 

            O1.target_setting = 0.00 

         if WL_control_5 (ST1.depth, WL_upper, WL_lower, 

O1.target_setting): 

            O1.target_setting = 0.00 
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TSS Control 

 

 

### TSS Control ### 

 

import pyswmm 

pyswmm.lib.use("libswmm5") 

from pyswmm import Simulation, Links, Nodes 

import matplotlib.pyplot as plt 

import numpy as np 

 

###Active Control based on pond TSS### 

 

def Test_Control (tss, tss_threshold): 

    if tss > tss_threshold: 

        return True 

    else: 

        return False 

 

 

### Initialization of the model with the INP file          

with Simulation(#show path to SWMM INP file#") as sim: 

    ### Evaluating control after every 300 sec. details at 

http://pyswmm.readthedocs.io/en/stable/tutorial/tutorial.html ### 

     sim.step_advance(300) 

 

     ### Loading SWMM objects ### 

     link_object = Links(sim) 
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     node_object = Nodes(sim) 

      

     O1 = link_object["O1"]      

     ST1 = node_object["ST1"] 

     OUT1 = node_object["Out1"] 

     J1 = node_object["J1"] 

 

     ### Initial values ### 

     O1.target_setting = 1.00 

     tss_threshold = 14 

     ST1_DEPTH = [] 

     ST1_TSS = [] 

     ST1_INFLOW = [] 

     ST1_FLOODING = [] 

     OUT1_FLOW = [] 

     OUT1_TSS = [] 

     VALVE_OPENING = [] 

     JUNCTION_FLOW = [] 

     JUNCTION_TSS = [] 

     k=[] 

     i=0 

     for step in sim: 

         i=i+1 

         if Test_Control (ST1.pollut_conc, tss_threshold): 

             O1.target_setting = 0 

 

         else: 

             O1.target_setting = 1 
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