
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Automated Shaped Charge Design: Applying
Dakota Optimization to CTH Kinetic Energy
Results
Sebastian Arcangelo Konewko
Marquette University

Recommended Citation
Konewko, Sebastian Arcangelo, "Automated Shaped Charge Design: Applying Dakota Optimization to CTH Kinetic Energy Results"
(2019). Master's Theses (2009 -). 542.
https://epublications.marquette.edu/theses_open/542

https://epublications.marquette.edu
https://epublications.marquette.edu/theses_open
https://epublications.marquette.edu/diss_theses

AUTOMATED SHAPED CHARGE DESIGN:

APPLYING DAKOTA OPTIMIZATION TO CTH KINETIC ENERGY

RESULTS

By

Sebastian Arcangelo Konewko

A Thesis Submitted to the Faculty of the Graduate School, Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Mechanical Engineering

Milwaukee, Wisconsin

August 2019

ABSTRACT

AUTOMATED SHAPED CHARGE DESIGN:

APPLYING DAKOTA OPTIMIZATION TO CTH KINETIC ENERGY RESULTS

Sebastian Arcangelo Konewko

Marquette University, 2019

Advances in computational power present an opportunity to further optimize the

design of an engineered energetic system. This work presents the application of a

proposed optimization scheme which combines the shock-physics hydrocode CTH with

the DAKOTA optimization package to automate shaped-charge jet design. The formation

of an explosively driven hypervelocity jet is highly dependent on the original shaped

charge liner geometry. By parameterizing this geometry, and by developing a

characteristic objective function from CTH simulations, a process can be established

where the Dakota code iteratively builds an optimal shaped charge.

This work attempts to use this methodology to reproduce a reference geometry.

This is done by characterizing the liner geometry with two parabolas and post-processing

an objective function from the kinetic energy profile of the resulting jet. Multi-

dimensional parameter studies, gradient optimizations and genetic algorithms are used to

probe the parameter space.

 i

ACKNOWLEDGMENTS

Sebastian Arcangelo Konewko

I would like to thank my committee members Dr. John Moore, Dr. Geremy

Kleiser and especially my advisor Dr. John Borg for taking the time to mentor and

patiently support me. Additionally, I would like to thank the Air Force Research

Laboratory and Dr. Geremy Kleiser again, for funding this research.

This work represents the support from family and friends (especially those in the

Shock Physics lab) that I have received my whole life.

 Finally, a special thanks to my parents, Mark and Simonetta Konewko, and my

brother, Leonardo Konewko, who have always managed to lift my spirits through the

difficult times. This work could not have been accomplished without their presence in my

life.

 ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS…………………………………………………………………i

LIST OF TABLES……………………………………………………………………….iii

LIST OF FIGURES………………………………………………………………………iv

1 INTRODUCTION……………………………………………………………………....1

2 COMPUTATIONAL ENVIRONMENT……………………………………………….4

 2.1 HPC HARDWARE……………………………………………………...……4

 2.2 COMPUTATIONAL TOOLS………………………………………………...4

 2.3 COMPUTATIONAL FRAMEWORK…………………….….………....……6

3 OPTIMIZATION SCHEMES…………………………………………………………..9

 3.1 MULTIDIMENSIONAL PARAMETER STUDY……………………………9

 3.2 GRADIENT DECENT………………………………………………………11

 3.3 SINGLE OBJECTIVE GENETIC ALGORITHM…………………………..13

4 OPTIMIZATION SETUP……………………………………………………………...19

 4.1 OBJECTIVE FUNCTIONS………………………………………………….19

 4.2 SHAPED CHARGE PARAMETERIZATION……………………………...24

 4.3 DEBUGGING CTH………………………………………………………….29

5 RESULTS AND ANALYSIS………………………………………………………….33

 5.1 NORMALIZED ANGLE…………………………………………………….34

 5.2 REGRESSION ANALYSIS…………………………………………………47

6 CONCLUSION AND FUTURE WORK……………………………………………...52

7 BIBLIOGRAPHY……………………………………………………………………...54

8 APPENDIX…………………………………………………………………………….56

 iii

LIST OF TABLES

1 A comprehensive list of shell and python scripts used to execute an optimization

study……………………………………………………………………………….6

2 A list of comparisons between biological events and genetic algorithm steps......15

3 The reference parameters used to generate the target shaped charge geometry…24

4 A comparison between variable liner thickness and corresponding jet lengths,

kinetic energies and linear curve fit parameters…………………………………26

5 A list of the optimal parameters found by the parametric study…………………37

6 A list of the optimal parameters found by varying the initial points using a

gradient decent optimization…………………………………………..…………38

7 The optimal parameters found by the Soga study…………………………….….39

8 A comparison between optima found while varying only two parameters……...41

9 A comparison between the degenerate solution set of liner geometries and their

respective linear curve fit parameters…………………...……………………….46

 iv

LIST OF FIGURES

1 A schematic of the optimization study…………………………………………….7

2 A schematic of a genetic algorithm……………………………………………...14

3 A schematic of the reproduction step in a genetic algorithm…………………….16

4 A comparison between a KE profile and a normalized KE profile…………...…21

5 A normalized kinetic energy profile with corresponding normalized angle

metric………………………………………………………………………....….22

6 A plot with a normalized energy profile and reference profile with corresponding

regression value………………………………………………………………….23

7 An illustration of the reference shaped charge geometry and corresponding jet...25

8 Illustrations of shaped charge jets from varying liner thickness…………………26

9 Plots comparing density versus distance of shaped charges with varying

thickness………………………………………………………………………….27

10 Illustration of a poor shaped charge geometry and corresponding jet…………...31

11 A plot of a tracer’s y - velocity along the jet’s centerline……………….........….32

12 A comparison of normalized kinetic energy profiles from extremal

geometries.….……………………………………………………………………33

13 Figures showing the a and b normalized angle solution surface, varying c….….35

14 A scatterplot showing the trail points chosen by the Soga optimizer……………40

15 A solution surface keeping c constant…………………………………………...42

16 A scatterplot showing the trial points chosen by the Soga optimizer, keeping c

constant……………………………………………………………………….….42

17 The a and b surface with corresponding degenerate set of solutions………….…43

18 A set of degenerate solution geometries…………………………………………45

19 Normalized kinetic energy profiles generated by a set of degenerate solution

geometries…………………………………………………………………….….46

 v

20 Figures showing the a and b regression analysis solution surfaces, varying c.….45

21 A scatterplot showing the trial points chosen by the Soga optimizer……………50

22 The two-variable surface shown calculated by the regression analysis

criterion…………………………………………………………………………..51

1-A The original normalized angle solution surfaces………………………………...56

2-A The original regression analysis solution surfaces……………………………….58

3-A A plot of the parabolic liner……………………………………………………...60

4-A A schematic showing all steps taken by shell and python scripts every

optimization…………………………....………………………………………...73

 1

1 INTRODUCTION

The advent of computational power has greatly increased the potential for

optimization design processes. In the field of explosive design, this can be a very useful

tool. Traditionally, explosives have been designed through an iterative experimental

process. This is particularly time-consuming for shaped charge design as slight changes

in liner geometry can have extensive impacts on the hypervelocity jets.

 The shaped charge’s hypervelocity jet is highly dependent on the initial liner

geometry. Extensive experimental research has been done characterizing different

geometries and their corresponding jets (P.Y. Chanteret, 1984) (U.S. Army Materiel

Command). Additionally, hydrocodes are being increasingly used to simulate different

shaped charge geometries to compare simulated and experimental results (Wickert,

2013)(Woodley, 2016) (Coddet, 2015). However, seeing as this work has industrial and

military applications, the intellectual property regarding the design of modern shaped

charge geometries is a closely held secret.

 Today, the presence of high performance computers allows one the ability to

iteratively simulate different shaped charge geometries and compare their results.

Therefore, the ability to couple an optimization package, such as Dakota, to CTH, a

hydrocode, has extreme potential. In a practical setting, one can choose a reference metric

produced by the CTH simulation and optimize it by varying the geometry of the liner.

To this end, this study is unique in that the optimization target is not the maximization of

a property of the shaped charge jet. As a proof of concept, the goal of the study is to

reproduce a reference shaped charge geometry. To do this, one must architect an

objective function such that its global minima uniquely maps to a set of reference

 2

parameters. This process and its mathematic implications is discussed in much more

detail further in the body of work.

When conducting an optimization one has, almost literally, an infinite set of parameters

that can constrain a problem. To reduce computational load, this work specifically

focuses on the geometric implications of changing a shaped charge liner.

 Equally numerous are the number of metrics one can use to assess the validity of

the iterative parameters. Advances in optimization have produced techniques which can

evaluate the legitimacy of a design based on multiple objective functions. Once again, to

simplify the optimization problem, this study forces the assessment of parameters on one

objective function.

In concurrence with the previous constraint, this broadly defines the system in

question as:

𝑂𝐹 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

where 𝑥𝑛 are variables that represent the geometry of a liner and OF is the objective

function.

In many ways, this study can be thought of the continuation of work done by

Logan Beaver (Beaver, 2017). His optimization study concerned the optimization of a

cylindrical explosive charge and involved coupling Dakota to a hydrocode.

This problem was unique in that, due to the geometry of the system, it was possible to

reduce the optimization to a 1D problem. In parameter space, this corresponded to two

dimensions, the inner and outer radius of the liner. In addition, analytic solutions exist

that describe the behavior of the cylindrical charge. Solutions outlined by Gurney provide

a surface relating the two liner values to the kinetic energy that the charge can produce.

 3

This work differs from that study mainly in the level of pre and post processing

needed to accurately simulate the energetic material system. First a shaped charge is

inherently a multi-parameter object. The simplest liner geometry, a “V” shape with

constant thickness, requires at least three parameters to create it (Baker, 2011). These

include the thickness, the slope and the height of the liner. Therefore, when

parameterizing the geometry of the charge, an additional pre-processing step is needed

where a “geometry script” takes the parameters to be optimized and outputs a set of

points that define the shaped charge liner.

Second, the creation of an objective function is more involved. One can look to

many different metrics to assess the legitimacy of a liner geometry. Therefore, additional

post-processing needs to be done on the results of the CTH simulation.

Finally, Beaver allows for the variation of materials in his study. It would be very

interesting to see the relationship between material properties, specifically how a material

reacts differently to principle versus shear stress, influences the design of the shaped

charge liner. However, this introduces too much non-linearity to the problem and would

shift the focus from a geometric optimization to a study on material properties. Therefore,

it is outside the scope of this work.

 4

2 COMPUTATIONAL ENVIRONMENT

2.1 HPC HARDWARE

The optimization study was designed to be run on a United States High

Performance Computer (HPC). Specifically, the Topaz machine was used to run the

optimization studies (SGI ICE X (TOPAZ) USER GUIDE). It is built with a total of

3,456 standard computing nodes each with two 2.3-GHz Intel Xeon Haswell 18-core

processors (36 cores) and 128 GBytes of DDR4 memory. As its operating system, Topaz

uses SGI's Performance Suite. This is a combination of Linux and SGI-specific tools.

More information can be found in SGI ICE X (TOPAZ) USER GUIDE.

Optimization jobs were submitted on these computation nodes and stored in work

directories. Data was post-processed in these directories and visualized locally.

2.2 COMPUTATIONAL TOOLS

This work relies on the coupling of the CTH and Dakota projects.

CTH is a shockphysics based hydrocode developed out of Sandia Natinal

Laboratories and is used to simulate the shaped charge event (McGlaun, 1990). It is

primarily an Eulerian code with the exeption of an intermediate Lagrangian step where

cells deform to track material motion. CTH conatins one, two and three dimensional

rectiliner, cylindrical and spherical meshes. CTH uses a second order convection scheme

to advect material, flux thermodynamic quantities and material properties through cells.

The Jones-Wilkins-Lee and other equatons of state are availible to model the reaction

products of explosives.In addition, the CTH employs a variable time step determined by

 5

the Courant stability criterion (Simon G. Edwins, 2002) (Crawford). In a two dimenional

calculation, a saftey factor of 0.6 is multiplied by the minimal allowed time step.

Dakota is an optimization suite also based out of Sandia National Laboratories

(Adams). The Dakota software provides a flexible environment for the user to explot

when optimizing systems. One can “loosly couple” Dakota to any input and output

system and use the various optimization schemes to search for optima. The Dakota toolkit

includes gradient and non-gradient based schemes, stochastic expansion methods,

surrogate optimization and others.

Dakota and CTH were “loosly coupled” so that Dakota fed parameters controling

liner geometry into a “black-box function” and optimized the resulting objective function.

CTH was used to simulate the various shaped charge geometries. The shaped charge jet

kinetic energy was parsed from the simulation, characterized and developed into the final

objective function.

To maximize computational efficency, ideally, Dakota and CTH would both be

run in parallel together. However this is currently not possible on an HPC. Due to quirks

of PBS on Topaz, if Dakota launches a parallel CTH job, this job will not run on the

computer nodes that are already reserved by the Dakota launch. Instead, the parallel CTH

job is submitted to the PBS queue were more time would be spent waiting for a job to

launch. This is a problem which can be remeiated however it lies outisde the scope of this

work.

Therefore, for this study, a parallel Dakota is optimization is launched.

Subsequently, Dakota will spawn concurrent serial CTH simulations. This prevents the

user from fully exploiting the node.

 6

All shell scripts were written in bash. Any script that involved mathematic

operations was written in python3 (version 3.6.7). Numpy (version 1.14.2), Scipy

(version 1.1.0) and Matplotlib (version 1.4.3) modules were used to support the python

libraries. The Topaz GCC version of these codes was used.

2.3 COMPUTATIONAL FRAMEWORK

The Dakota/CTH coupling was executed using several scripts. These can be

classified into three groups: governing scripts, executables and template scripts.

Governing scripts are scripts that are only run once and meant to control the entire

optimization environment. Executables are scripts that are run every time a new

simulation is needed and finally, template scripts are shell scripts that are modified every

time a new simulation is launched.

Dakota/CTH Scripts
Governing

Scripts

Rundak: This bash script submits the optimization job to the PBS

queue.

Dakota.in: This is the Dakota input script. It contains information about

the optimization scheme and the parameters that are being controlled.

Cth_simulation.sh: This script controls the interface between Dakota

and CTH. It can be thought of as a “black-box” which takes inputs from

Dakota to CTH and outputs from CTH to Dakota.

Executables Cth.processor.sh: This bash script controls and launches each CTH

simulation. From it, geometry is updated, CTH is launched and post-

processing is performed.

CurveFit.py: This python script post-processes the CTH results and

produces an objective function that Dakota can optimize.

Template

Scripts

Geometry.template.py: This python script produces the geometry that

is unique to every CTH simulation. Dakota directly changes the

parameters in this script.

Cth.template: This is the CTH input script. Every simulation, new

geometries are inserted in this script.

Table 1: A list of scripts and their functions used in the optimization study

 7

As previously explained, a “black-box” style interface was used to couple

Dakota’s optimization toolkit with CTH’s simulations. For this technique, Dakota

interacts with a “black-box” function by changing allotted parameters. These variables

control the CTH simulation. Once the simulation has concluded, post-processing is done

on the results and an objective function is found. This is fed back into the Dakota

optimization and the parameters are changed according to whichever optimization

scheme is used. This framework is illustrated below.

Figure 1: A schematic of the optimization study

Depending on the optimization scheme, different levels of parallelization could be

accomplished. This depends on how strict the order of simulations must be. For example,

a local gradient method calculates one “absolute point” and the derivative of each

 8

dimension around it. Therefore, it can only run 2n+1 parallel simulations (where n is the

number of dimensions). On the other hand, a gradient-free, evolutionary algorithm

requires a large sample size each iteration for its optimization scheme. Therefore, the

parallelization is equal to the iteration’s sample size. A basic scheme, such as a parameter

study, does not make informed decisions based on past function evaluations. These types

of schemes can run all CTH processes independently.

In theory, one could compile all of these processes coupling the codes in a more

rigous way however this would not give the user much computational releif. This is

because the vast amount of computational resourcees used in the optimization are

dedicated to the various CTH simulations. Minimal post processing is needed to form the

objective function and any calculations that Dakota performs are equally trivial.

More information on how the scripts interact can be found in the Appendix.

 9

3 OPTIMIZATION SCHEMES

Three optimization schemes were used to examine the parameter space of the

shaped charge. The architecture of the Dakota schemes (and subsequent objective

functions) is such that the optima is defined to be the minima of the objective function.

 Many modern numerical optimization techniques exist [(Rao, 2009)]. This study

exploits three main schemes.

The underlying assumption throughout all of this is that the objective function can

explicitly be expressed as a function of the chosen parameters

𝑂𝐹 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

3.1 MULTIDIMENSIONAL PARAMETER STUDY

 The most basic of the optimization schemes, this technique involves partitioning

the domain of the parameters and evaluating the objective function at these points. Then,

one can manually select the maximum from the resulting points. The Dakota call for this

optimization scheme is “multidim_parameter_study” and an example of the required

input for three variables is shown below (ADAMS):

method,
multidim_parameter_study

 partitions = 9 10 15

 The number of partitions indicates how many times the domain is divided evenly.

This means, for this example, the first variable is evaluated at ten different locations, the

second variable is evaluated at 11 and the third variable is evaluated at 16 different

locations. In all, this results in 1,760 different function evaluations. One can see that the

 10

number of total evaluations climbs very fast. This is especially true as the number of

variables increase.

To use this method as a reliable optimization scheme, one must partition the

domain finely so that a smooth surface is established and the optima is evident. This is

computationally very expensive. In addition, the drawback is that the multidimensional

study does not use past evaluations to inform decisions on what parameters to test in the

future. Therefore, it will spend time testing points that are not in an optimal domain. To

reduce the number of “bad” iterations, one could reduce the number of partitions along

the domain. However, this would result in a poorly resolved parameter space and a low

fidelity optima.

 However, computationally speaking, a silver lining can be drawn from this. Since

all the test points are determined a priori, the concurrency of this optimization method is

very high. In fact, this is an embarrassingly parallel process as no iteration requires

information from past simulations.

Regardless, this optimization scheme is good to use as a launching pad for future

simulations. One can resolve a sparse parametric space to find a rough optimal domain.

Then, one can use a secondary optimization scheme that focuses on the constrained

domain. In the case of gradient methods, one can use the optima found by the parameter

study as the initial point of the scheme. In general, these types of two stage techniques are

referred to as hybrid schemes (ADAMS).

 11

3.2 GRADIENT DECENT

A more efficient optimization scheme is the gradient decent method. To call this

optimizer the “conmin_frcg” call is placed in the input deck (Adams). The conmin_frcg

optimization scheme uses a Taylor expanded, central difference technique to calculate the

gradient at a point (J Haslinger, 2003). One assumes that the function being optimized is

continuous and differentiable. The infinitesimal interval (h) is found by multiplying the

initial variable value by 10-4 then adding or subtracting appropriately. The central

difference gradient used is shown below:

𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ

This is operation applied to each dimension independently. The gradient is formed

by assessing these values along their respective dimensions.

𝑓′(𝑥⃑) = [𝑓′(𝑥1), 𝑓′(𝑥2) … 𝑓′(𝑥𝑖)]

The process for selecting a new point involves two steps. First an intermediate test

point is selected along each dimension. The new value along the dimension in question is

determined by using Newton’s method (Ahmad Shukri Nazri, 2017):

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

 However, the rest of the dimensions are given by subtracting their appropriate

central difference values from the previous point such that the function is minimized. In

totality, this can be expressed as (Adams):

 12

𝑥𝑖,𝑛+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ =

𝑥1,𝑛 −
𝑓(𝑥1,𝑛)

𝑓′(𝑥1,𝑛)

𝑥2,𝑛 − 𝑓′(𝑥2,𝑛)

⋮
𝑥𝑖,𝑛 − 𝑓′(𝑥𝑖,𝑛)

 Once an intermediate test point has been found for each dimension, the objective

function is calculated. Finally, the parameters that correspond to the optimal objective

function are selected as the initial point for the new iteration.

Even if a forward or backward difference scheme is more computationally

efficient, the central difference scheme is used to ensure greater fidelity in the resulting

gradient (Rhinehart, 2018).

 Since a central difference scheme is used to determine the gradient, the objective

function must be calculated 2n + 1 times per iteration (where n is the number of

dimensions in the function space). This means that the concurrency of this optimization

scheme alternates between 2n + 1 for the gradient step and n when the algorithm is

searching for a new initial point. This is evident as each iteration informs the location for

where the subsequent iteration will be calculated. There is no way to separate the order of

the optimization and therefore it is an inherent drawback to using a gradient method.

An example of the input used for subsequent optimizations is show below:

method,

conmin_frcg
convergence_tolerance = 1e-8

 max_iterations = 100

In this example, two optional stopping calls are added to the input. For the

convergence tolerance option to be satisfied and stop the optimization, the given value

 13

must be greater than the difference in objective function divided by the previous

objective function.

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 >
𝑂𝐹𝑖−1 − 𝑂𝐹𝑖

𝑂𝐹𝑖−1

The second call is more straight forward. For the optimization to be terminated

because of this flag the program must complete more than the listed number of iterations.

Note that this is not referencing individual evaluations of objective function rather total

calculations needed to establish a gradient. Therefore, if a function’s parameter space has

three dimensions, seven calculations of objective function are needed to establish the

gradient and another three are required to find a new initial point. However, these ten

objective function evaluations would only count as a single iteration.

 In general, this method is extremely efficient at finding minima. However, it is

vulnerable and subject to get stuck in local solutions (J Haslinger, 2003). Without an

informed initial guess, it is hard to find global optima.

Even with a reasonable initial condition, if the function being optimized is not

well behaved, it is very difficult to converge on a reasonable solution. This is subject to

happen especially in computational studies (such as this one) where the simulations

themselves are subject to noise. This introduces many local optima that will likely trip up

this gradient optimization scheme.

3.3 SINGLE OBJECTIVE GENETIC ALGORITHM

To combat the local solutions one converges upon in the previous method one can

move away from a gradient based method. An example of a “gradient-free” optimizer is

 14

the genetic algorithm. In Dakota, this optimization scheme is called “Soga” or Single-

Objective Genetic Algorithm.

The concept for this algorithm is based on the genetics seen in everyday life

(Michaeli, 2003). It likens the parameters that make up a function to the genes that make

up life forms.

𝑂𝐹 = 𝑓(𝑔𝑒𝑛𝑒1, 𝑔𝑒𝑛𝑒2, … , 𝑔𝑒𝑛𝑒𝑛)

Comparable to natural selection, once a new objective function is calculated, it is

compared to other iterations. Typically, the parameters which produced less optimal

objective functions are discarded. The general approach to a genetic optimization is

shown below.

Figure 2: A schematic of a genetic algorithm

 15

Where the genetic algorithm mostly resembles natural selection is in the

reproduction step. These comparisons are shown in the table below.

Principle Biology Optimization

Replication Asexual Reproduction Copying existing parameters

Mutation Random changes in genetic

material

Changing random

parameters randomly

Birth Creation of new genetic

string

Selecting a new parameter

set

Life Survival in an environment Evaluation of the new

parameter set

Selection Selection of most adapted

organism

Discarding select parameters

Table 2: A list of comparisons between biology and the genetic optimizer. Table adopted

from Michaeli, 2003.

Using these steps, one can create a schematic for a reproduction step. This is

shown in the graphic below. The objective of the example shown below is to maximize

height in the population.

 16

Figure 3: A schematic of the reproduction cycle in a genetic algorithm. Adapted from the

Dakota Reference Guide.

 This “spawning process” can be expressed more formally. First, any number of

parents (up to the total number of variables) are selected. In this scenario, two parents

will be used.

𝑂𝐹𝑃𝑎𝑟𝑒𝑛𝑡 1 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑂𝐹𝑃𝑎𝑟𝑒𝑛𝑡 2 = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑛)

 Now a child is spawned. The crossover step is implemented and variables from

both parents are selected for the child.

𝑂𝐹𝐶ℎ𝑖𝑙𝑑 = 𝑓(𝑥1, 𝑦2, … , 𝑦𝑛)

 17

 Next, the mutation step occurs. In this step, a user supplied probability dictates the

likelihood that a “mutation” will occur in the child’s genes. This is manifested by

replacing a parent variable with a mutation value.

𝑂𝐹𝑀𝑢𝑡𝑎𝑛𝑡 𝐶ℎ𝑖𝑙𝑑 = 𝑓(𝑥1, 𝑦2, … , 𝑀𝑖 , … , 𝑦𝑛)

The purpose of the mutation step is to create some artificial noise in the optimization

scheme. This is vital to avoid focusing on local minima.

 One exerts control over the optimization by manipulating the different levels of

the reproduction (Nikos D. Plevris, 2013).

 For example, one can control the way that crossover occurs. One can choose a bit

crossover method where the list of parental parameters are exchanged N number of times.

This is the type that was shown above. However, one can choose a more stochastic

approach where child parameters are chosen randomly from any parent above a fitness

threshold.

 Additionally, one can control the mutation that occurs within the child population.

Besides simply changing the likelihood of a mutation occurring, one can control how it

manifests in the “child genome” (Adams). One can specify the distribution of the variable

domain so that some values are more statistically likely than others. Distributions

included uniform, normal and Cauchy. Furthermore, one can even choose to convert a

variable’s value into binary. In this case, the mutation manifests by “flipping” a random

bit.

 Finally, one can control the portion of the population that can crossover and the

portion that is eliminated at the end of the reproduction. Traditionally, only the fittest are

allowed to contribute variables to the next population and the least fit are eliminated.

 18

However, this can encourage local solutions and does not include “genetic variety”

outside of the domain that was initially provided. Therefore, a more sophisticated

approach is to select a random distribution weighted towards the fit population for

crossover and the least fit for elimination.

 19

4 OPTIMIZATION SETUP

4.1 OBJECTIVE FUNCTIONS

Finally, one must find an objective function to optimize. Maximum jet kinetic

energy, penetration length or even spall angle are valid examples of objective function. In

theory, this can be something completely arbitrary and “loosely coupled” to the

parameters that control it. In other words, it is not mandatory to have full control over the

all parameters contributing to functionality of the objective function when looking for

optima.

𝑂𝐹 = 𝑓(𝑥𝑘𝑛𝑜𝑤𝑛, 𝑥𝑢𝑛𝑘𝑛𝑜𝑤𝑛)

In this case, leaving relevant variables “free” creates a family of solutions whose

dimension is equal to the number of unknown variables. However, the purpose of this

study is to reproduce a unique result not a family of solutions. Therefore, to create an

objective function whose global minima is uniquely defined, one must list and optimize

all parameters controlling the objective function. This section discusses the formation of

the two objective functions used in this study, the next section outlines the methodology

used to select the full scale of representative variables for the objective function. These

points will be further discussed when parameterizing the shaped charge.

In addition, it is equally important to create an objective function that emphasizes

the physics of the shaped charge system over numerical artifacts in the CTH code. For

example, while one may find some solutions by maximizing the peak kinetic energy in

the domain, most Dakota solutions will be of liners producing low mass flecks of high

velocity material; a fundamentally poor shaped charge design. To this end, it is more

 20

advantageous to post-process global CTH results into objective functions. It is also useful

for the post-processing itself to introduce some functionality so that the CTH noise is

minimized. This noise is mainly attributed to the low resolution of the CTH simulations.

Essentially, some noise in the results was chosen as a tradeoff for computational speed.

As previously explained, since the goal of this study is to converge on a set

design, information from both the reference and iterative designs must be included in the

objective function. Therefore, the general structure of the OF is to select a metric and

subtract the iterative result from the reference result. This way the objective function

space converges on the reference parameters.

This study focuses primarily on the “kinetic energy profile” of the shaped charge

jet. After a CTH simulation is run, a data dump file is generated containing the values of

kinetic energy along the centerline of the jet. The kinetic energy profile is created by

pairing the kinetic energy values with their respective location along the jet. To create a

normalized profile, the kinetic energy values are normalized with the reference run’s

maximum kinetic energy and the y values are normalized with the reference run’s jet

length. An example of these profiles is shown below.

 21

Figure 4: A comparison between a kinetic energy profile built from raw data and a kinetic

energy profile whose axes have been normalized.

 Further post processing parses metrics from the normalized profile to be used for

objective functions.

 The first metric used to formulate the objective function is a normalized angle of

the kinetic energy profile. The following steps are used to parse this value from the

normalized kinetic energy profile.

1. Curve fit a linear profile to the normalized plot. This will yield the slope of the fit.

2. Convert the slope to radians and normalize this value with 𝜋 2⁄

3. Construct the final objective function by subtracting the iterative normalized

angle from the reference normalized angle. Square this difference.

𝑂𝐹 = (𝜃𝑟 − 𝜃𝑖)2

 22

 An example of this is illustrated below.

Figure 5: An illustration of a normalized kinetic energy profile and corresponding

normalized angle

 This objective function is useful as it directly describes the differences in slope

between the reference and iterative CTH simulations. One can easily observe that if the

iterative normalized angle is equal to the reference value the function is zero and is

considered “optimized.”

 In addition, this process is thought to minimize CTH noise. Firstly, the root values

that form the objective function are pulled from global CTH phenomena. Secondly, the

combination of linear and non-linear scaling introduces a “post-processing” layer of

functionality that also smooths the objective function.

 23

 Exploiting a linear regression, the second objective function is even more of a

functional “black box” as the first. The following steps are taken to calculate it.

1. Curve fit a linear profile to the normalized plot of the reference kinetic energy

profile. This will yield reference values for the slope and y-intercept.

2. Every iteration, find the R2 value between the iterative normalized KE profile and

the curve fit reference profile.

3. Construct the final objective function by subtracting this value from one.

𝑂𝐹 = 1 − 𝑅𝑖
2

 An example of this is shown below.

Figure 6: An illustration of the linear regression between two normalized kinetic energy

profiles. The blue is the normalized KE profile and the green is the reference KE profile

generated by the target shaped charge geometry.

 24

 Just like the first OF, this objective function exploits a global trend of kinetic

energy, reducing possible noise from CTH.

4.2 SHAPED CHARGE PARAMETERIZATION

 As previously stated, the goal of this study is to reproduce a “reference” SC

geometry by characterizing its kinetic energy profile. To begin, the SC liner was

parameterized by characterizing it as two equal parabolas separated by a constant

thickness. Specifically, the parameterized liner profile is given by:

𝑦1 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑦2 = 𝑎𝑥2 + 𝑏𝑥 + (𝑐 − Δℎ)

 Arbitrary values of coefficients a, b and c are selected (and show below) to

construct the “target design.” The goal of the Dakota optimization will be to reproduce

these coefficients.

a b c

0.30 0.40 5.00

Table 3: The list of reference parameters used to generate the reference shaped charge

metrics. These will be the target parameters for the Dakota optimization

 The parabolas range from 0 to 3 cm and when they are inserted in the CTH input

deck they are expressed by 15 evenly spaced points. An example of a SC with this

parabolic geometry is shown below.

 25

Figure 7: An illustration of the reference shaped charge geometry corresponding jet.

Thickness is 0.20 cm a=0.30 b=0.40 c=5.00

One could argue that Δℎ is a natural fourth parameter for Dakota to optimize.

However, due to the added computational cost this would cause, the liner thickness was

chosen to be constant. In addition, and perhaps more important, leaving the thickness of

the parabolic liner constant grants the optimization conservation of mass throughout each

simulation. In other words, no matter how a, b and c vary, the mass will stay the same.

This counterintuitive result is shown to be true in the appendix.

Choosing a value for the liner thickness requires an iteratively informed decision.

Preliminary CTH simulations were run varying the thickness of the liner. Then, metrics

were compared to assess the quality of the resulting jet. These include maximum and

 26

total kinetic energies, jet length, and candidate reference values for future objective

function. These comparisons are shown in the table below:

 Δℎ
(cm)

L

(cm)
Δ𝐿

(cm)

MKE (KJ) Σ𝐾𝐸 (MJ) a,b 𝜃𝑛

Parabolic

Geometry

0.05 62.95 34.0 33.60 9.21 0.869, -0.660 0.45530

0.1 58.25 29.9 27.43 9.11 0.857, -0.687 0.45111

0.2 50.65 23.2 20.39 5.58 0.818, -0.790 0.43658

0.3 44.45 17.3 15.17 3.40 0.749, -0.905 0.40929

0.4 39.75 13.2 11.69 2.16 0.670, -0.985 0.37594

0.5 35.95 9.6 9.27 1.36 0.568, -1.085 0.32899

Table 4: A comparison between different liner thicknesses and corresponding max jet

length, jet length, maximum kinetic energy, total kinetic energy, coefficients to the linear

fit of the normalized kinetic energy profile and normalized angle.

Shown below are CTH images of jet profiles and corresponding density plots for

select thicknesses.

Figure 8: Illustrations of the shaped charge jet procured from various thicknesses. From

left to right, thicknesses of 0.05, 0.10, 0.20, 0.50 cm

 27

Figure 9: A comparison of density versus distance of shaped charge jets of varying

thickness. Upper left, t= 0.05 cm, upper right t=0.20 cm, lower left t=0.10 cm, lower right

t=0.50 cm

 The criterion for selecting a constant thickness was to maximize the metrics

shown in the table above. Naturally, the lower thicknesses, having less mass, were

accelerated much faster. This results in higher kinetic energy. However, creating well-

formed jets each simulation is an additional concern. Besides the obvious reduction in

efficiency that occurs when jet breakup occurs in real world applications, this

phenomenon cripples the numerical methods as it reduces the sample size of points from

which an objective function is parsed.

 28

Observing the images above, for the lower thicknesses it becomes evident that jet

breakup is prevalent. Therefore, it is important to choose a value that will consistently

result in well-formed jets regardless of the range of geometries that the optimization

requires.

 Keeping the above in mind, a value of 0.20 cm was chosen both to maintain

quality and to maximize length and kinetic energy values of the jet. Between the 0.10 and

0.20 cm thickness run, one observes jet breakup in both simulations. The 0.20 cm

thickness value was favored as the breakup occurs to separate the jet from the slug. This

contrasts with the thinner thickness where breakup occurs in the body of the jet.

 In conclusion, the shaped charge geometry has been parameterized as two

parabolas separated by a constant thickness of 0.20 cm. The target parameters that the

Dakota optimization will attempt to reproduce are:

𝑎 = 0.30
𝑏 = 0.40
𝑐 = 5.00

 In conjunction with the objective function formulation, one has assumed that the

objective function can explicitly be expressed a function of a, b and c.

𝑂𝐹 = 𝑓(𝑎, 𝑏, 𝑐)

 Additionally, one can imagine what an ideal solution space would look like. In an

applied setting, it is usually allowed for an objective function to have multiple solutions.

In other words, if the objective function characterizes penetration, the presence of

multiple geometric solutions is not a problem.

 However, given that this particular optimization problem is to reproduce a

specific geometry, the presence of multiple solutions would indicate a failure to capture

the relevant physics in the objective function. As was alluded to in the previous section,

 29

this would indicate that there is hidden functionality in the objective function that is not

represented due to the absence of relevant parameters.

𝑂𝐹 = 𝑓(𝑎, 𝑏, 𝑐, 𝑥𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠)

 An idea case is a space which is a bijection between a, b, c and the metric being

measured (Cormen, 2009). By subtracting all the values of the space from the reference

value of the metric, one centers the space with the reference geometry. Finally, the

objective function is found by squaring the space.

𝑂𝐹 = (𝑓(𝑎, 𝑏, 𝑐)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑓(𝑎, 𝑏, 𝑐)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)2

The resulting objective function solution space uniquely defines the reference

geometry and sets it at zero.

0 = 𝑓(𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟)

 In other words, an ideal solution space is one where the OF has only one zero that

is uniquely mapped by the reference parameters.

Realistically, one should expect a surjective map between a, b, c and the objective

function. Then, it is the user’s job to find the appropriate global minima of the solution

space.

4.3 DEBUGGING CTH

 A challenge to this optimization problem, and algorithmic optimization in general,

is that if a single evaluation of the objective function is not properly calculated the entire

scheme fails. In other words, if the black box CTH simulation does not produce an

objective function the Dakota optimizer will abort the optimization. Therefore, it is of the

utmost importance to keep CTH functioning properly.

 30

 Post detonation, flecks of material can come off the main body of the jet. These

flecks are very small and have proportionally low mass. As they advect through the

domain, numerical instabilities within the CTH code will propose un-physical conditions

for them. These can be entertaining as the hydrocode can propose temperatures well

above that of the sun or material sound speeds that are higher than the speed of light.

 As these instabilities present themselves, the CTH will increase its time step.

Once the lowest allowable time step is achieved, CTH aborts the simulation prematurely.

Since the data dump file is written only after the first and last time step, the post-

processing scripts will fail to produce an objective function. This obviously presents

problems for Dakota as it will not receive an output to further the iterative process.

Therefore, what started as a numerical instability manifesting on a tiny little fleck of

material results in the total shutdown of the optimization.

 To debug this issue, the first recourse should be to use the CTH discard section. In

the CTH input deck, one can use this section to judiciously eliminate problematic

material based on thermodynamic values. While this may work for individual CTH runs,

developing discard conditions that asses all numerical instability for the entire domain of

geometries is very difficult. In fact, as optimization studies were conducted, about one in

five hundred runs was stopped because of this problem.

 Instead, a different methodology was used, in conjunction with the discards, to

combat this problem. If the simulation terminates unexpectedly, a sub-routine in the black

box cth_simulator.sh file is activated. This process generates new liner geometry using

parameters that are composed from original input added to a perturbation. A second

simulation is run with the new liner. A maximum of two additional runs can be simulated

 31

after the original has failed. If CTH does not conclude the third simulation, the problems

are likely deeper than a numerical instability.

Effectively, the accuracy of the objective function parsed from the simulation is scarified

for the health of the entire optimization. Since the discards take care of most of the

DTMIN issues, prevailing sentiment is that the sparse use of this technique is justified.

 A second issue with broadly defining the parameter space is that not all parabolic

liners will produce a suitable jet. This is inherently different from the first issue. First, the

simulation runs to completion. Therefore, the data dump file is created and the

perturbative geometry sub-process is not run. Second, and more important, it is generated

by user error not numerical instability.

 An example of a problematic shape charge with this issue is shown below.

Figure 10: An illustration of poor liner geometry and corresponding jet. Observe the

underdeveloped shaped charge jet. The parameters used for this simulation were a = 0.10,

b = 0.20, c = 3.00.

 32

Figure 11: A plot showing the y - velocity profile (from a tracer) of the problematic SC

jet. Observe that it does not meet the three km/s minima to write to the data dump file.

 To solve this problem, this study proposes the simple solution of shrinking the

domain in question. If one restricts the domain to a comfortable range of values the

problem is eliminated. However, this prohibits the user from exploring the limits of the

domain and it does not elucidate the stark transition from the null to jet producing shaped

charge design.

 A more sophisticated solution would be to create an additional discrete parameter

for Dakota to optimize. This can be a simple binary output that describes whether a well-

developed jet is formed. Of course, this requires an additional level of post-processing

and the computational power to explore the added initial parameter domain.

 This is left as future work.

 33

5 RESULTS AND ANALYSIS

Before one even starts with the optimization process, it is important to see that

varies enough to be optimized. In case of this study, both objective functions are based on

the normalized kinetic energy profile. One can plot the KE profiles generated by the

extremal cases of the geometric domain. This acts as a check to make sure there is

enough variation between the cases.

Figure 12: A comparison of kinetic energy profiles from various geometries. Sharp

Geometry: a = 1.00, b=1.50, c=3.00 Reference Geometry: a = 0.30, b = 0.40, c=5.00 Flat

Geometry: a = 0.13, b = 0.255 c = 7.00

 34

 By inspection, one observes that the extremal cases vary significantly. Therefore,

assuming the OF is smooth, this is a space that can be optimized.

5.1 NORMALIZED ANGLE

The first objective function used to analyze the parabolic shape charge was the

normalized angle metric. A parametric study was run on this space. A sample of the input

file is shown below:

method,
multidim_parameter_study
partitions = 9 9 9

variables,

continuous_design = 3
lower_bounds 0.13 0.255 3.00
upper_bounds 1.0 1.50 7.0
descriptor 'A' 'B' 'C'

 As one can see, nine partitions are called for each dimension. This divides the

space 1000 times. In addition, one can see the domain that the variables can span.

Reiterating what was stated in the Reference Run section, the target parameters are:

𝑎 = 0.30

𝑏 = 0.40

𝑎 = 5.00

 This study was run on ten nodes with ten parallel calculations allowed on each

node. This means that 100 concurrent CTH simulations could be run. The results from

this initial calculation are shown in the images below:

 35

 36

Figure 13: A collection of surfaces varying c showing relationships between a, b and OF.

Recall that one seeks to minimize the OF therefore dark blue areas are target points. The

first plot’s axis has been changed to match the rest of the plots. Original plots are shown

in the appendix.

Immediately, one observes that the functionality of the surface is comparable

across all plots. One can describe the surface as a curved sheet with its ends pointing

upwards. It appears that by varying the parameter “c” one affects two things. First, the

general trend is that by increasing c the function is scaled. Specifically, as the left point

decreases the right gradually increases. The exception to this is the shift seen between the

last two plots. Here the right point is decreased while the left is increased.

 37

Secondly, as these extremal points move, the “optimal valley” seems to shift

accordingly. If the leftmost point is high the valley shifts away from it while if it moves

down, the valley is attracted. This behavior is reminiscent of placing weights on a bed

sheet and moving the edges of the sheet up and down. If one holds an edge of the sheet

up high, the weight will travel away and vice versa.

 By parsing through the array of test points, this optimization scheme found an

optima at:

af bf cf OF

0.3233 0.3933 4.7778 0.1266e-8

Table 5: The optimal parameters as found by the parametric study

Using this insight, a gradient optimization scheme was used to probe the solution

space and attempt to reproduce the reference result. An example input that flags this

gradient method is shown below:

method,
conmin_frcg

convergence_tolerance = 1e-8
max_iterations = 100

variables,

continuous_design = 3
cdv_initial_point .6 0.1 6.50
lower bounds 0.0 -1.0 3.00

 upper bounds 1.5 1.00 7.0
 descriptor 'A' 'B' 'C'

As one can see, the domain for a, b and c has been increased. This should not

influence the results as the gradient should keep the function bounded. However, if the

function does escape the parameter study domain, this would indicate an unknown

process is occurring. In other words, it is a good check.

 38

Displayed below is a table of seven different optimization studies.

Run ai bi ci af bf cf OF

1 0.60 0.10 6.50 0.6001 0.0772 6.5009 0.3046e-2

2 0.50 0.20 6.00 0.4972 0.1986 6.0003 0.1658e-2

3 0.50 0.50 5.00 0.4864 0.5129 4.9734 0.2835e-2

4 0.15 0.30 3.25 0.1513 0.3006 3.2501 0.1988e-1

5 0.30 0.40 5.00 0.3054 0.4003 5.0032 0.5356e-5

6 0.3233 0.3933 4.7778 0.3241 0.3933 0.4778 0.1266e-8

7 0.1167 0.8632 6.5468 0.1142 0.9142 6.5446 0.3895e-8

Table 6: A comparison of a gradient optimization study run with different initial

parameters. Run 1-3 are arbitrary points. Run 4 is on the “Hill” to the lower left of the

domain. Run 5 is run on the reference point. Run 6 is on the minima found by the

multidim param study. Run 7 is run on the Soga point (shown later).

 These results are largely unsatisfactory. When examining the Dakota output files,

the low objective function value suggests that all results have converged upon a valid

solution. However, scrutinizing the final a, b and c values, it is evident that the

optimization scheme did not march far and that every solution that is displayed is caught

in some local minima. Additionally, the small variation between the input and output

parameters indicates that these are not minima characteristic to the objective function,

rather they are valleys caused by the noise of the CTH simulations.

Additionally, it is concerning that even Run 5, which was initialized at the target

coordinates, traveled to an objective function that was greater than objective function

values at supposed non-solutions. However, this may be explained by some numerical

artifact.

In summary, since this gradient method is too susceptible to converge on local

minima, a new methodology that searches for global minima needs to be implemented.

 39

 Therefore, the natural optimization scheme to use next is a gradient-free genetic

algorithm. For this particular case study, a single objective function genetic algorithm (or

evolutionary algorithm) is used.

method,
 soga
 max_iterations = 1000
 population_size = 50

variables,

continuous_design = 3
 lower_bounds 0.1 0.2 3.00

upper_bounds 1.0 1.50 7.0
descriptor 'A' 'B' 'C'

 For this run, the number of maximum iterations is set to 1000 and the initial

population size is set to 50. Additionally, one can see, the domain is once again

constricted. This is due to the problems outlined in the Debugging CTH section. To

summarize, a larger domain introduces geometries that do not produce valid jets.

Therefore, instead of developing methodologies to deal with these “bad” geometries, the

geometries are omitted from the domain.

 On these settings, the Soga optimizer uses all 1000 iterations. The optimal

geometry that the Soga optimizer selected is as follows:

af bf cf OF

0.1167 0.8632 6.5468 3.0377e-10

Table 7: The optimal parameters found by the Soga study

Below a figure reporting the various Soga iterations is displayed. The color

scheme represents the calculated objective function at each point. Once again, dark blue

is considered optimal.

 40

Figure 14: A scatterplot illustrating the trial points chosen by the Soga algorithm. The

color scale displays the value of the normalized angle objective function

 While one can say that the Soga algorithm does a good job focusing on areas

where the global min might be, there is still the problem that the target parameters are not

being reproduced.

 Therefore, a shift in approach is necessary. Perhaps the most enlightening

optimization was the parameter study. If it is true that c is just a scaling factor, then it can

be removed from the objective function.

Indeed, the Soga run also supports this conclusion. Looking at the Soga scatter

plot, there appears to be a column of test points that originate from the a-b plane and rise

 41

along the c axis. This would be a clear indicator that the objective function is independent

of c.

A possible technical explanation could revolve around the fact that the actual

shape of the liner is independent from c. When the liner is defined, c is just the length

where the liner is created. Therefore, there exists a family of identically shaped liners

who are just being raised or lowered along the y axis. In effect, the only role c has is to

increase the amount of explosive below the liner. It is fathomable to think that the

objective function is independent of c.

Therefore, one can reformulate the optimization problem as a two-variable

minimization! Now, keeping c constant at 5.00, one redefines the objective function as:

𝑂𝐹 = 𝑓(𝑎, 𝑏)

 One can repeat the parameter study and Soga optimization. The gradient based

optimization is not repeated as it will still be influenced by local noise. The optima from

both simulations are shown in the table below:

 af bf OF

Parameter Study 0.3100 0.3733 2.7342e-7

Soga 0.1910 0.7659 3.4237e-9

Table 8: A comparison showing the optima obtained by the parameter study and Soga

optimizer on the a and b space.

 42

Figure 15: The normalized angle objective function surface with respect to a and b

Figure 16: The scatter plot of test points chosen by the Soga algorithm in a and b space.

 43

 Looking at both plots (especially the parameter study surface) it becomes evident

that, unfortunately, a unique minima is not defined. Instead the objective function

exhibits a family of solutions that lie in the “optimal valley.” One can slice the surface

into multiple a, OF planes and select the minima of each plot. By fitting a linear curve to

the minimal values, an expression is obtained explicitly relating the relationship between

optimal a and b. This correlation is illustrated on the graph below.

Figure 17: The a and b surface of the normalized angle objective function with a linear fit

of minima

 The solution space is visibly degenerate as the minima of the objective function is

not uniquely represented by ar and br.

 44

The equation of the line expressing the degenerate solution set is given by:

𝑏 = ∅𝑎 + 𝜏

For ∅ = −3.291 𝑎𝑛𝑑 𝜏 = 1.424

In other words, going back to how the objective function is defined, any a and b

parameters that lie along that line produce a shaped charge jet whose kinetic energy

profile has the same slope as the reference kinetic energy profile.

 While this is not the result that was expected, mathematically, it is a very

interesting outcome. It would be one thing if there existed a set of points that expressed

local or global minima. However, this case does not produce those kinds of unique

solutions. What is observed instead is a linear solution space between a and b.

 Usually, this type of space is characterized by a system which is under-

constrained (Shilov, 1977). In other words, there is a missing parameter which was not

considered.

 A second, more probable explanation, is that the functionality of this solution

space is naturally produced by the physics of the CTH code. Reference the objective

function.

𝑂𝐹 = (𝜃𝑟 − 𝜃𝑖)2

 Considering 𝜃𝑟 is a constant and 𝜃𝑖 can be expressed as a CTH function of a and

b, this can be rewritten as:

𝑂𝐹 = (𝜃𝑟 − 𝐶𝑇𝐻(𝑎, 𝑏))2

Looking through this result, one can reinterpret the a, b and OF surface as a

paraboloid with some CTH functionality at its minima. What is interesting is that it

 45

appears like the parabola is rotated from the a, OF plane to incorporate some

functionality in b.

In any case, one can gain insight by selecting from the family of solution

geometries to analyze the respective KE profiles. Six different shaped charge geometries

are shown below.

Figure 18: Displayed above are different shaped charge geometries with their respective a

and b values generated from 𝑏 = −3.291 𝑎 + 1.424.

 Pictured below are different comparisons displaying the resulting normalized

kinetic energy profiles.

 46

Figure 19: Illustrated above are the plots of each normalized KE profile. Observe that

while the slopes are all very similar, there are differences with the length of the profile.

KE=mx+b a=0.20 a=0.25 a=0.30 a=0.35 a=0.40 a=0.45

m 0.8226 0.8176 0.8276 0.8256 0.8191 0.8198

b 0.8026 -0.7920 -0.8050 -0.7990 -0.7867 -0.7843

Table 9: Above a comparison of the coefficients of the linear curve fit of the normalized

KE profile. Observe that, while the values of the slope stay uniform, there are differences

in the y-intercept values.

 These comparisons are very illuminating. It appears that, while the slope of the

KE profiles is the same, the total kinetic energy is different! This makes sense as the

objective function is a measure of the slope of the KE profile, not its magnitude. Using

the KE profile’s y-intercept as the “missing parameter” one can explain the degeneracy in

 47

the solution space. Therefore, one can describe the functionality of the objective function

by the geometric parameters a and b and the y-intercept of the KE fit.

𝑂𝐹 = 𝑓(𝑎𝑔𝑒𝑜𝑚, 𝑏𝑔𝑒𝑜𝑚, 𝑏𝐾𝐸 𝑦−𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)

 Therefore, by constraining the additional y-intercept parameter, one can uniquely

define a relationship between the shaped charge geometry and the kinetic energy profile

of the resulting jet. Unfortunately, this parameter cannot be established before to the

shaped charge’s detonation. There is no way to know the magnitude of the jet kinetic

energy a priori. Since the only way to measure this value is after the detonation, this is a

natural setup for a multiple objective function optimization problem. However, since this

study focuses solely on single objective problems, this next step is left as future work.

5.2 REGRESSION ANALYSIS

 A secondary group of studies was conducted using the linear regression metric to

gauge to the parameter space. The procedure for this study is like the first however no

gradient schemes are employed.

The results from a multidimensional parameter study are shown below.

 48

 49

Figure 20: Surface plots of a, b versus linear regression OF at different c values. The OF

axis has been changed to properly compare the solution surface. Original plots are shown

in the appendix.

 These results are interesting because they strongly resemble the surfaces produced

by the normalized angle criterion. This suggests that the behavior of the objective

function is governed by the physics of the CTH simulation and not the mathematical

processes of the post-processing.

 Additionally, one can run a Soga optimization across them domain. This result is

displayed below.

 50

Figure 21: A scatterplot illustrating the trial points chosen by the Soga algorithm. The

color scale displays the value of the linear regression objective function

These results are also comparable to the Normalized Angle Soga run. Once again,

it appears that the c parameter does not influence the overall functionality of the system.

This is best illustrated in the Soga scatter plot by the column of data points that are

chosen.

All together, these results either suggest that the linear regression objective

function is much more related to the normalized angle objective function or that the

physics in the CTH simulation dominates the functionality of these objective functions.

This point is reinforced by the two-variable parameter study shown below.

 51

Figure 22: The two-variable surface calculated from the linear regression objective

function.

Once again, this surface strongly resembles the two-variable surface that was

generated by the Normalized Angle criterion.

 52

6 CONCLUSION AND FUTURE WORK

In conclusion, the way that the shaped charge liner was parameterized and the

methodology used to architect the objective functions has produced a relationship

between parameters defining liner geometry. This relationship outlines how different

geometries can produce similar shaped charge jets.

 This result was surprising as the objective function minima was not unique to the

reference geometry used originally used to create it. However, by looking at the kinetic

energy profiles generated by the family of solutions, one can conclude that the missing

parameter producing the degeneracy is related to the maximum kinetic energy in the jet.

This sets up a multiple objective optimization problem where both the slope and the y-

intercept of the KE profile are optimized.

 While the result hypothesized by this work was not reached, an optimization

methodology has been established that can be wieldy applied to the design of future

energetic material systems. Ideally, one could choose an objective function (such as

maximum kinetic energy) and the optimization would produce the ideal design. To this

end, future work can be done to improve the methodologies that were used.

One can always introduce techniques that improve computational efficiency. With

regards to the CTH simulations, resolving the computational mesh with AMR would give

the user the ability to increase resolution around areas in question without sacrificing

computational time. Additionally, the ability to run individual CTH simulations in

parallel would greatly impact computational efficiency.

 However, most improvements primarily regard the parameterization and post-

processing techniques used to create an objective function. Future work should increase

 53

the number of parameters that control the shaped charge’s liner. This could be as simple

as increasing the order of the polynomial that defines the liner however this approach will

always impose a constrained family of shapes on the liner. Alternatively, one can define

the liner with several points but leave the x and y locations variable. This approach would

yield a wider range of solutions.

Work can be done to develop more sophisticated objective functions. One can

always choose to optimize a metric when designing a liner however, it would be

interesting to exploit different optimization techniques that explore multiple objective

functions. An easy next step could be to exert control over both thickness and length of

the jet.

 Finally, one could study the impact of different EOS and strength models has on

the geometry of a shaped charge. This would combine many different parametric inputs,

controlling EOS models and liner geometry, with a set of outputs measuring jet kinetic

energy or shape as well as thermodynamic states of the jet.

 54

7 BIBLIOGRAPHY

Adams, B. M. (n.d.). Dakota, A Multilevel Parallel Object-Oriented Framework for

Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity

Analysis: Version 6.9 User’s Manual.

Ahmad Shukri Nazri, e. a. (2017). Engineering Calculus - 2.9 Numerical Methods:

Newton-Raphson. Penerbit Universiti Sains Malaysia.

Baker, E. T. (2011). Ballistics 2011 - 26th International Symposium on Ballistics, Miami,

Florida, 12-16 September 2011, Volume 1 and 2 - 17.3 Detonation Velocity Dependence

on the Explosive Massdensity in the Numerical Simulation. DEStech Publications.

Beaver, L. E. (2017). A Parametric Investigation and Optimization of a Cylindrical

Explosive Charge. Marquette University.

Coddet, C. (2015). Metal, Ceramic and Composite Materials - Selected, Peer Reviewed

Papers from the 2015 International Conference on Metal, Ceramic and Composite

Materials (ICMCCM 2015), January 24-25, 2015, Shanghai, China - 24.4.1 Flash X-ray

Radiography (FXR) Setup.

Cormen, T. H. (2009). Introduction to Algorithms (3rd Edition) - B.3 Functions. . MIT

Press.

Crawford, D. (n.d.). CTH Course Notes. Sandia National Laboratories.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and

Engineering.

Ian Woodley, C. C. (n.d.). Ballistics 2016 - 29th International Symposium on Ballistics,

Edinburgh, Scotland, UK, 9-13 May 2016 - 162.6 Anisotropic Distribution of Dislocation

Densities in the Axial Plane of the Jet. DEStech Publications.

J Haslinger, e. a. (2003). Introduction to Shape Optimization - Theory, Approximation,

and Computation - 4.1 Gradient Methods for Unconstrained Optimization. Society for

Industrial and Applied Mathematics.

McGlaun, J. M. (1990). CTH: A three-dimensional shock wave physics code.

International Journal of Impact Engineering.

Michaeli, W. (2003). Extrusion Dies for Plastics and Rubber - Design and Engineering

Computations (3rd Edition) - 4.7.3.4 Evolutionary Methods. Hanser Publishers.

 55

Nikos D. Plevris, e. a. (2013). Design Optimization of Active and Passive Structural

Control Systems - 11.3.1.1 Evolutionary Optimization, Terms, and Definitions. IGI

Global.

P.Y. Chanteret, F. J. (1984). Quasi Non-Stretching Hypervelocity Jets.

Rao, S. S. (2009). Engineering Optimization - Theory and Practice (4th Edition) - B.6

Computer Programs for Modern Methods of Optimization. John Wiley & Sons. .

Rhinehart, R. R. (2018). Engineering Optimization - Applications, Methods, and Analysis

- 4.3.1 Newton's Methods. John Wiley & Sons.

SGI ICE X (TOPAZ) USER GUIDE. (n.d.). Retrieved June 4, 2019, from DoD

Supercomputing Resource Center: https://www.erdc.hpc.mil/docs/topazUserGuide.html

Shilov, G. E. (1977). Linear Algebra - 4.6 The Range and Null Space of a Linear

Operator. Dover Publications.

Simon G. Edwins, e. a. (2002). Encyclopedia of Vibration, Volumes 1-3 - Boundary

Conditions. Elsevier.

U.S. Army Materiel Command. (n.d.). Engineering Design Handbook - Elements of

Terminal Ballistics, Parts One and Two: (AMCP 706-160, 706-161) - 2.15 Introduction.

Retrieved from https://app.knovel.com/hotlink/pdf/id:kt00UCTD91/engineering-design-

handbook/advantages

Wickert, e. a. (2013). Ballistics 2013 - 27th International Symposium on Ballistics,

Freiburg, Germany, 22-26 April 2013, Volume 1 and 2 - 162.3.2 Numerical Simulation

on Penetration Process of EFPs. DEStech Publications.

 56

8 APPENDIX

Original Plots

 Below are the original parameter study plots generated with the normalized angle

objective function.

 57

Figure 1-A: The original, non-scaled surface plots of the normalized angle objective

function

 58

Below are the original parameter study plots generated with the linear regression

objective function.

 59

Figure 2-A: The original, non-scaled surface plots of the linear regression objective

function

 60

Conservation of Mass

 The following derivation will prove that due to the way the shaped charge liner is

parameterized, mass will always be conserved for variable a, b and c and constant Δℎ.

Displayed below is the parabolic geometry that defines the shaped charge liner.

Figure 3-A: A plot of the parabolic shaped charge liner

Since the material remains constant then the density thought the liner is constant

as well. Therefore, when one discusses conservation of mass, one discusses conservation

of “volume” or area contained between the two curves.

 61

To calculate the area contained between both curves one can set up an integral as

following:

𝐴 = ∫ 𝑦1 𝑑𝑥 − ∫ 𝑦2 𝑑𝑥

Inserting known values, this becomes:

𝐴 = ∫ (𝑎𝑥2 + 𝑏𝑥 + 𝑐)
3

0

 𝑑𝑥 − ∫ (𝑎𝑥2 + 𝑏𝑥 + 𝑐 − Δℎ)
3

0

 𝑑𝑥

By inspection, the identical terms cancel and this simplifies down to:

A = 3 ∗ Δℎ

Therefore, one can concluded that the area has no dependence on variables a, b

and c. This result may seem very counter-intuitive at first however it can be explained

simply. If one imagines a rectangle whose length is separated into infinitesimal strips,

one can offset these strips and create any “double profile” if it is separated by a constant

value. This is exactly the case presented by the double parabola problem. In fact, the area

derived from the two parabolas is identical to the area of a rectangle.

Input Scripts

 The entire optimization study is launched with a PBS launch script. This script is

responsible for submitting the optimization job to the PBS queue and for establishing the

 62

environment for the shell scripts to run in. This includes setting a path for Dakota, CTH

and loading the appropriate python modules.

 This script is displayed below.

 1 #!/bin/bash
 2 #PBS -l select=10:ncpus=36:mpiprocs=5
 3 #PBS -l walltime=18:00:00
 4 #PBS -q standard
 5 #PBS -A ERDCS97270PET

 6 #PBS -N R_Squared
 7 #PBS -j oe
 8 #
 9 source ${MODULESHOME}/init/bash
 10 cd $PBS_O_WORKDIR
 11
 12 module load dakota/6.6_parallel
 13 module load cth/12.0
 14
 15 module swap compiler compiler/gcc
 16 module load costinit
 17 module load python3/gnu/3.6.7
 18 module load numpy/gnu/1.14.2
 19 module load scipy/gnu/1.1.0
 20
 21 export CTHPATH="/p/home/apps/cth/CTHV12.0"
 22 export CTHBINPATH="/p/home/apps/cth/CTHV12.0/bin"
 23 export CTHMPIBINPATH="/p/home/apps/cth/CTHV12.0/bin"
 24 export CTHDATA="/p/home/apps/cth/CTHV12.0/data"
 25 export MPIRUN="mpiexec_mpt -np"
 26 export ncpus=$BC_MPI_TASKS_ALLOC
 27 export input=dakota_cth_SC.in
 28 export output=output.out
 29
 30 $MPIRUN $ncpus dakota -i $input -o $output

 Lines 2 through 7 set PBS variables. These include the wall time, the priority and

name of the job. In addition, one must specify the number of nodes and the number of

parallel processes allowed on each node. Multiplying these two numbers together one can

figure out the total number of CTH jobs that can be run at once. As previously defined in

 63

the body of this work, this is the concurrency of the optimization. Therefore, it cannot

exceed the concurrency limit set by the optimization scheme.

In this example, the number of nodes is 10 and the number of parallel processes

allowed on each node is 5. In total, this supports 50 concurrent simulations. The ncpus

value represents the number of cores per node. For Topaz, this is set constant at 36.

Lines 12 through 19 load the modules necessary for the optimization. These include

Dakota, CTH and the various python modules. Lines 21 through 24 set the paths for

CTH. Finally, the rest of the sets the global variables and Dakota input script.

Once the optimization study finally starts running, Dakota is initiated via the input

script. The following script is a broad representation of the various controls used to

initiate the Dakota optimization.

 1 environment
 2 tabular_data
 3 tabular_data_file = 'cth_dakota_simulations.dat'
 4
 5 method,
 6 multidim_parameter_study
 7 partitions = 9 9 9
 8
 9 conmin_frcg
 10 convergence_tolerance = 1e-8
 11 max_iterations = 100
 12
 13 soga
 14 max_iterations = 1000
 15 population_size = 50
 16
 17 variables,
 18 continuous_design = 3
 19 cdv_initial_point .5 1.00 3.5
 20 lower_bounds 0.1 0.2 3.00
 21 upper_bounds 1.0 1.50 7.0
 22 descriptor 'A' 'B' 'C'
 23
 24 interface,
 25
 26 fork,
 27 parameters_file = 'params.in'

 64

 28 results_file = 'results.out'
 29 work_directory
 30 named = 'workdir'
 31 directory_tag
 32 directory_save
 33 file_save #Comment out later
 34 analysis_driver = 'cth_simulator.sh'
 35
 36 responses,
 37 num_objective_functions = 1
 38 no_gradients
 39 numerical_gradients
 40 method_source dakota
 41 interval_type central
 42 no_hessians

 Since this is a broad representation of what was used lines must be commented

out according to the type of optimization being conducted. Lines 6-15 control the type of

optimization scheme. One must comment out everything except lines outlining the

methodology one desires.

The next section controlling the type of variables being optimized generally stays

the same from optimization to optimization. However, the command specifying an initial

point at line 19 must be commented out when not using a gradient scheme.

The “environment” and “interface” sections control the directory structures of an

optimization and how data gets written to files. Therefore, this remains unchanged

throughout all optimization studies.

Finally, the last section controls settings regarding the objective function. As was

outlined in previous sections, line 37 will always stay the same as this study focuses on

optimizing one objective function. Depending on whether one is conducting a gradient

study, lines 39-41 alternate getting commented out with line 38. Hessian analysis was not

performed in this work.

 65

 As one sees in line 34, what Dakota will be interacting with is a program called

cth_simulator.sh. This shell script is meant to act as the CTH “black box.” Dakota will

pass its iterative parameters to it through a file called params.in and it will receive the

objective function from results.out (lines 27 and 28). This shell script is shown below.

 1 #!/bin/bash
 2
 3 ############
 4 #Geometry and CTH step
 5 cp ../cth.template.in ../Geometry.template ../CurveFit

../cth.processor.sh ./
 6 dprepro params.in Geometry.template Geometry
 7 ./Geometry 1
 8 ./cth.processor.sh
 9 #############
 10 #PATCHING STEP
 11 #if maximum.out does not exist cth failed. Rerun with noise

params
 12 FILE=maximum.out
 13 if test -f "$FILE"; then
 14 echo "$FILE does exist"
 15 max=$(cat maximum.out)
 16 echo 'THIS IS THE MAXIMUM'
 17 echo $max
 18 #Formats results.out
 19 echo $max" f" >> results.out
 20
 21 else
 22 echo "$FILE does not exist"
 23 rm rscth
 24 rm spcth
 25 rm *.jpg
 26 rm shape.in
 27 rm hscth
 28 rm octh
 29 rm cthout.
 30 rm *.dat
 31 ./Geometry 2
 32 ./cth.processor.sh
 33
 34 if test -f "$FILE"; then
 35 max=$(cat maximum.out)
 36 echo 'THIS IS THE MAXIMUM ON SECOND TRY'
 37 echo $max
 38 echo $max" f" >> results.out
 39
 40 else

 66

 41 echo "$FILE STILL DOES NOT EXIST"
 42 rm rscth
 43 rm spcth
 44 rm *.jpg
 45 rm shape.in
 46 rm hscth
 47 rm octh
 48 rm cthout.
 49 rm *.dat
 50 ./Geometry 3
 51 ./cth.processor.sh
 52 max=$(cat maximum.out)
 53 echo 'THIS IS THE MAXIMUM ON THIRD TRY'
 54 echo $max
 55 echo $max" f" >> results.out
 56 fi
 57 fi

The cth_simulator.sh script is divided in two main parts. Lines 4-8 set up a

regular Dakota iteration. When Dakota launches a new iteration by running this script, it

creates a new work directory to run the individual simulation. Therefore, line 5 goes back

into the original directory and copies the necessary files.

Line 6 exploits the dprepro program that is built into Dakota. This program passes

the parameters that Dakota outputs into the Geomoetry.template file creating the

Geometry executable. Once executed, a set of files containing the coordinate defining the

liner and corresponding explosive shape are created.

The cth.processor.sh script is executed. This script is responsible for the actual

CTH simulation and post-processing. It will be shown later.

The second portion of cth_simulator.sh concerns the existence of a maximum.out

file. As was explained in the body of the work, the existence of this file indicates if CTH

simulation ran to completion or if it was terminated due to a time step issue. Therefore,

lines 12 and 13 test the validity of the simulation. If there are no problems, the objective

function is printed to screen and a results.out file is created for Dakota to iterate on. The

 67

“f” that is inserted after the OF communicates that what is displayed is a floating-point

number. The simulation continues smoothly.

However, if the conditional at line 13 fails, the CTH simulation will be rerun with

new values generated by the Geometry executable. Before this happens, an error message

is printed to screen and the CTH output files are removed so that new files can be created.

The Geometry and cth.processor.sh scripts are executed as usual with the exception that

the flag “2” is used when generating the liner points. This indicates it is the second time

CTH is being run and the corresponding adjusted values should be used.

This test is repeated a second time. A maximum of three CTH simulations can be

run before the program “gives up” and the optimization fails.

Displayed below is the Geometry.template python script.

 1 #!/usr/bin/env python3
 2
 3 import sys
 4 import numpy as np
 5 ###########################
 6 #Conditional For Patch
 7 ##########################
 8 runtype = sys.argv[1]
 9 if runtype == 1:
 10 #####################
 11 #VARIABLES
 12 ####################
 13 #Parabolic curve
 14 a = {A}
 15 b = {B}
 16 c = {C}
 17 elif runtype == 2:
 18 a = {A}+np.random.uniform()/10000
 19 b = {B}+np.random.uniform()/10000
 20 c = {C}+np.random.uniform()/10000
 21
 22 else:
 23 a = {A}+np.random.uniform()/10000
 24 b = {B}+np.random.uniform()/10000
 25 c = {C}+np.random.uniform()/10000
 26
 27 t = .2

 68

 28 w = c-t
 29
 30 ####################
 31 #UPPER LINE Liner
 32 with open('Xval', 'w') as f:
 33 for item in xupper:
 34 f.write("%s\\n" % item)
 35
 36 yupper = a*xupper**2+b*xupper+c
 37
 38 with open('Yval', 'w') as f:
 39 for item in yupper:
 40 f.write("%s\\n" % item)
 41
 42 #####################
 43 #LOWER LINE Liner
 44 xlower = xupper[::-1]
 45
 46 with open('Xval', 'a') as f:
 47 for item in xlower:
 48 f.write("%s\\n" % item)
 49
 50 ylower = a*xlower**2+b*xlower+w
 51 with open('Yval', 'a') as f:
 52 for item in ylower:
 53 f.write("%s\\n" % item)
 54
 55 ##########################
 56 #Creates Coordinate file
 57
 58 with open('Coordinates', 'w') as file3:
 59 with open('Xval', 'r') as file1:
 60 with open('Yval', 'r') as file2:
 61 for line1, line2 in zip(file1, file2):
 62 print(line1.strip(),

line2.strip(), file = file3)
 63
 64 #############################
 65 #Explosive
 66 #############################
 67 exlower = xupper
 68
 69 with open('xexplosive', 'w') as f:
 70 for item in exlower:
 71 f.write("%s\\n" % item)
 72
 73 eylower = a*exlower**2+b*exlower+w
 74 with open('yexplosive', 'w') as f:
 75 for item in eylower:
 76 f.write("%s\\n" % item)
 77
 78 with open('Explosive', 'w') as file3:
 79 with open('xexplosive', 'r') as file1:

 69

 80 with open('yexplosive', 'r') as file2:
 81 for line1, line2 in zip(file1, file2):
 82 print(line1.strip(),

line2.strip(), file = file3)

Lines 3 and 4 import the necessary modules for the script to run. Lines 8 and 9

identify what type of simulation is being run and point to the appropriate parameters that

are used to generate the shaped charges geometry. These parameters are defined at lines

14 through 25. One can see that for the second and third CTH runs, the original variables

are perturbed by a small random value.

Dakota’s dprepro searches for variables in brackets and substitutes its values

accordingly. An idiosyncrasy of dprepro is that it also eliminates the first occurrence of

the forward slash. For this reason, on lines 34, 40, 48, 53, 71 and 76 a second forward

slash is inserted.

The upper and lower liner geometries are defined by parabolas on lines 36 and 50.

Naturally, the order that these points are listed in is important therefore, the x values on

the lower parabola are reversed on line 44. Lines 56 through 62 create a file named

Coordinates with all of the generated points.

Similarly, lines 67 through 76 yield the points needed to define the upper surface

of the explosive and lines 78 through 82 create a file named Explosive with these points.

Now one must open the Coordinates and Explosive file and insert the points in the

cth.template.in file. This is done in the first steps of the cth.processor.sh script displayed

below.

 1 #!/bin/bash
 2
 3 ##############
 4 #Add the word "point" to Coordinates then creates POINTS

 70

 5 for number in {1..30}
 6 do
 7 line=$(sed -n "$number p" Coordinates)
 8 point="point $line"
 9 echo "$point" >> POINTS
 10 done
 11
 12 for number in {1..15}
 13 do
 14 line=$(sed -n "$number p" Explosive)
 15 point="point $line"
 16 echo "$point" >> EXPLOSIVE
 17 done
 18 #################################
 19 #Adds POINTS to cth.template.in
 20 li=$(awk '/*insertliner/{ print NR; exit }' cth.template.in)
 21 awk 'NR>'$li'{while((getline a < "POINTS") > 0){print a}}1'

cth.template.in>> liner
 22
 23 li=$(awk '/\insertexplosive/{ print NR; exit }' liner)
 24 awk 'NR>'$li'{while((getline a < "EXPLOSIVE") > 0){print a}}1'

liner>> shape.in
 25
 26 rm Coordinates Xval Yval liner POINTS xexplosive yexplosive

Explosive EXPLOSIVE
 27 ##############
 28 #Executes
 29 echo cth shape.in
 30 $CTHBINPATH/cth shape.in >& cthout.$num
 31 ###############
 32 #Clean up excess data dump files
 33 for file in $(ls *.dat); do if [[! -s $file]]; then rm $file;

fi; done
 34
 35
 36 #FOR DATA DUMP
 37 #Sorts files and combines processor files into 1 timestep file
 38 files=$(ls DataDump*)
 39 fileindex=$(echo "${files}" |cut -c 9-14)
 40 index=$(echo "$fileindex" | xargs -n1 | sort -u | xargs)
 41
 42 for i in $index; do
 43 list=$(echo "DataDump$i")
 44 cat $list* >> File.$i
 45
 46 if [$i -eq 0]; then
 47 rm File.$i
 48 else
 49 sed -i '1d' File.$i
 50 # awk '{ print $1 }' File.$i >> XLOC.File.$i
 51 awk '{ print $2 }' File.$i >> YLOC.File.$i
 52 # awk '{ print $3 }' File.$i >> DX.File.$i
 53 # awk '{ print $4 }' File.$i >> DY.File.$i

 71

 54 awk '{ print $5 }' File.$i >> KEFile.$i
 55 #########
 56 #Optimization STEP
 57 ./CurveFit KEFile.$i YLOC.File.$i >> maximum.out
 58 ###########
 59 rm *File.$i
 60 fi
 61 done

 Lines 4 through 24 accomplish this task. Due to CTH input deck format, the first

section (4-17) adds the word “point” to each line in the Coordinates and Explosive files.

Then, lines 20 through 24 search the CTH input deck for the insertliner and

insertexplosive flags and insert the geometries respectively. This process changes

cth.template.in to the final input deck: shape.in.

 After cleaning up excess files, the CTH simulation is launched on line 30 with the

appropriate input deck.

 The CTH simulation will produce a data dump files that divide the computational

domain at the beginning and at the end of the simulation. Lines 32 through 40 sort

through these files, and combine them into one complete file. Lines 46 through 54 break

the complete dat file into the required data sets for the optimization. In this case, the y

location and respective kinetic energy is used. If one creates a more involved objective

function one could uncomment lines 50, 52 and 53 to post process the full data set.

 Finally, on line 57 the CurveFit python script is launched post-processing the data

into the desired objective function. This result is written on the maximum.out file. The

CurveFit script is shown below.

 1 #!/usr/bin/env python3
 2
 3 import sys
 4 import numpy as np
 5 from scipy.optimize import curve_fit

 72

 6 from scipy import stats
 7
 8 xdata = np.loadtxt(sys.argv[2])
 9 ydata = np.loadtxt(sys.argv[1])
 10
 11 ynorm = ydata/203862000000.0 #Obtained from Reference Run
 12 xnorm = xdata/23.2 #Obtained from Reference Run
 13
 14 def func(x, a, b):
 15 return a*x+b
 16
 17 ################################
 18 #Normalized Angle
 19 refangle = 0.43657940317644234 #Obtained from Reference Run
 20 popt, pcov = curve_fit(func, xnorm, ynorm)
 21 theta = np.arctan(popt[0])*2/np.pi
 22 print((refangle-theta)**2)
 23
 24 ####################
 25 #R_SQUARED
 26 A = 0.81826164 #Obtained from Reference Run
 27 B = -0.78969017 #Obtained from Reference Run
 28 yref = func(xnorm, A, B)
 29
 30 slope, intercept, r_value, p_value, std_err =

stats.linregress(ynorm, yref)
 31
 32 print(1-r_value**2)
 33
 34 #For Scaled Version
 35 OB = (1-r_value**2)**.5
 36 print(OB)

 Lines 3 through 6 load the necessary modules and lines 8 and 9 load the data fed

in by the cth.processor.sh script. Subsequently, this data is normalized as previously

described. Depending on what objective function the study demands, the second and third

sections are commented out accordingly. At the end of the routine, the objective function

is printed and this result ends up written on the maximum.out file.

Altogether, the full schematic of how all shell scripts and input decks interact is

illustrated below.

 73

Figure 4-A: A full schematic of the optimization study

Finally, and perhaps most importantly, the cth.template.in script is displayed

below.

 1 **
 2 *eor* cthin
 3 **
 4 *
 5 * CTH template script
 6 *
 7 **
 8 *
 9 control
 10 tstop=80.e-6
 11 mmp
 12 endcontrol
 13 *
 14 **
 15 *

 74

 16 mesh
 17 block geometry 2dc type e
 18 x0=0.0
 19 x1 dxf 0.03 dxl 0.03 w 3.5
 20 x2 dxf 0.05 dxl 0.35 w 1.5
 21 endx
 22 y0=0.0
 23 y1 dyf 0.25 dyl 0.05 w 3.0
 24 y2 dyf 0.03 dyl 0.03 w 10.0
 25 y4 dyf 0.1 dyl 0.1 w 50.0
 26 endy
 27 xact=0.0,1.0
 28 yact=0.0,5.0
 29 endblock
 30 endmesh
 31 *
 32 **
 33 *
 34 spy
 35 Save("M,VOLM,VX,VY,P,KE");
 36 SaveTime(0, 80e-6);
 37 PlotTime(0, 80e-6);
 38
 39 ImageFormat(1024,768);
 40
 41 define main()
 42 {
 43 pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME);
 44 XBMirror(ON);
 45 XLimits(-5,5);
 46 YLimits(0,20);
 47
 48 Image("shap-Pressure");
 49 Window(0,0,0.75,1);
 50 MatColors(DIM_GRAY,LIGHT_GRAY);
 51 Plot2DMats(0.0001);
 52 ColorMapRange(2e6,1e9,LOG_MAP);
 53 ColorMapClipping(ON,OFF);
 54 Label(sprintf("Pressure Time=%0.2f |c03BC|cs",TIME*1.E6));
 55 Plot2D("P");
 56 Draw2DTracers(3);
 57 Draw2DMatContour;
 58 DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9);
 59 EndImage;
 60
 61 XLimits(-20,20);
 62 YLimits(0,74);
 63
 64 Image("shap-Mats");
 65 Window(0,0,0.75,1);
 66 MatColors(PERU,YELLOW);
 67 Label(sprintf("Materials Time=%0.2f |c03BC|cs",TIME*1.E6));
 68 Plot2DMats;

 75

 69 MatNames("Copper","PBX-9404");
 70 DrawMatLegend("",0.75,0.2,0.99,0.9);
 71 EndImage;
 72
 73 Image("shap-Density");
 74 Window(0,0,0.75,1);
 75 ColorMapRange(1,9);
 76 ColorMapClipping(ON,OFF);
 77 Label(sprintf("Density Time=%0.2f |c03BC|cs",TIME*1.E6));
 78 Plot2D("DENS");
 79 DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9);
 80 EndImage;
 81
 82 Image("shap-1d-YV");
 83 Fix1D(0,0,0,74);
 84 Label(sprintf("Y-Velocity Time=%0.2f |c03BC|cs",TIME*1.E6));
 85 Plot1D("VY",ON,AUTOSCALE);
 86 EndImage;
 87
 88 Image("shap-1d-dens");
 89 Fix1D(0,0,0,74);
 90 Label(sprintf("Density Time=%0.2f |c03BC|cs",TIME*1.E6));
 91 Plot1D("DENS",ON,AUTOSCALE);
 92 EndImage;
 93
 94 XLimits(0,0.05);
 95
 96 DataOut("DataDump","KE");
 97 DataOutFilter("VY",3e5,1e99);
 98 }
 99
100 SaveHis("GLOBAL,VX,VY,P,DENS");
101 SaveTracer(ALL);
102 HisTime(0,1.e-8);
103
104 define spyhis_main()
105 {
106 HisLoad(1,"hscth",OFF);
107 HisImageName("shap_history");
108 Label("Y velocity at tracer 1");
109 TPlot("VY.1",1,ON);
110 }
111 endspy
112 *
113 **
114 *
115 diatoms
116 *
117 package 'CU LINER - 1'
118 material 1
119 pressure 1.0e6
120 insert uds
121 *insertliner

 76

122 endinsert
123 endpackage
124 *
125 package 'COMP A3 CHARGE - 1'
126 material 2
127 pressure 1.0e6
128 insert uds
129 point 0.0 0.0
130 *insertexplosive
131 point 3.00 5.40233
132 point 1.59385 0.0
133 endinsert
134 endpackage
135 *
136 enddiatoms
137 *
138 **
139 *
140 eos
141 mat1 mgrun COPPER
142 mat2 jwl PBX-9404-3
143 endeos
144 *
145 **
146 *
147 heburn
148 material 2 d 8.8e5 pre 1.0e12
149 dp 0.0 0.01 ti 0.0 radius 20.0
150 endheburn
151 *
152 **
153 *
154 *tracer
155 * add 0.0 5.19003
156 *endtracer
157 *
158 **
159 *
160 convct
161 interface=high
162 endc
163 *
164 **
165 *
166 discard
167 material 1 denl=20 dens=1e99 volf=1e-6
168 material 1 denl=15 dens=1e99 volf=1e-6 templ=1e3
169 material -1 dens=1e-4 densl=0.0 templ=1e4
170 endd
171 *
172 **
173 *
174 edit

 77

175 shortt
176 tim=0. dt=5e-6
177 ends
178 longt
179 tim=0. dt=10000.
180 endl
181 restt
182 time=0. dtfreq=30e-6
183 endr
184 endedit
185 *
186 **
187 *
188 mindt
189 time=0. dtmin=1.0e-11
190 time=20.0e-6 dtmin=1.0e-10
191 endm
192 *
193 **
194 *
195 epdata
196 matep 1 eppvm user yield 3.5e9 poisson 0.33
197 mix 3
198 endep
199 *
200 **
201 *
202 fracts
203 stress
204 pfrac1=-15.0E9
205 pfrac2=-1.0E9
206 pfmix =-5.0E20
207 pfvoid=-5.0E20
208 endf
209 *
210 **
211 *
212 boundary
213 bhydro
214 block=1
215 bxbot 0
216 bxtop 2
217 bybot 2
218 bytop 2
219 endb
220 endh
221 endb
222 *
223 **

 78

 The input deck is largely inspired by the example CTH shaped charge file.

However, some small modifications were made.

First, the resolution was increased. Now there are almost seven computational

cells spanning the length of the shaped charge in its non-detonated position. While this is

an improvement, the standard for this type of study is to have ten computational cells

within the material. The reason for this is that when CTH does strength modeling, it takes

information from its nearest neighbors to develop a good value. However, if there aren’t

enough cells defining the material, one effectively gets a hydrodynamic solution.

Additionally, a low-resolution simulation will not properly distinguish the varying

geometries. Therefore, when optimizing the charge, it is possible that many different

curves produce the same objective function.

However, while the resolution used for this study is less than optimal, these

problems are overlooked. If indeed the resolution was so low that many curves formed

the same objective function, the data would seem much more stepwise. Therefore, even if

the observed data suggests that there are multiple solutions, it is unlikely to be caused by

a problem with low resolution.

Insofar as the accuracy of the strength model is concerned, the resolution still is

not alarming. If this was an optimization study with the ultimate scope of designing a

proper shape charge then accurate strength models would be of importance. However,

seeing as this work could be considered as a proof of concept, any inaccuracies in the

strength models can be “swept under the rug” and considered part of the “CTH black

box.” This is not to say that a higher accuracy result would not improve the optimization

by reducing noise. However, for the purposes of this study, it is considered unessential.

 79

The materials that were simulated were PBX-9404 and copper. The PBX relied on

a JWL model and the copper used a Mie-Gruneisen equation of state. The total

simulation time was 80 microseconds and the Spyplot section was changed to include a

command to output data dumps with the kinetic energy along the centerline. Here an

additional discriminator was used that prevented centerline cells with material traveling

slower than 3e5 cm/s to be written.

In addition, flags were added to the diatom section. These flags were used to

specify where the cth.processor.sh script would output the trial geometries. Finally, the

discard section was updated to include a broader spectrum of bad values. These primarily

concern the copper’s temperature, density and volume fraction.

	Marquette University
	e-Publications@Marquette
	Automated Shaped Charge Design: Applying Dakota Optimization to CTH Kinetic Energy Results
	Sebastian Arcangelo Konewko
	Recommended Citation

	tmp.1564426670.pdf.a6VDz

