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Abstract  
The mean avalanche current impulse response in an avalanche photodiode exhibits an initial transient and then 
grows or decays, above or below breakdown, at exponential rates which depend only on the probability 
distributions of the electron and hole ionization events. The process continues while the electric field profile 
remains unchanged by the applied bias or the evolving space charge. Below breakdown the distribution in the 
avalanche duration also exhibits an initial transient and then decays exponentially at the same rate as the mean 
current. Below breakdown the standard deviation in current decays exponentially at one half of the rate of the 
mean current, while above breakdown it grows exponentially at the same rate as the mean. Consequently the 
jitter in a Geiger mode avalanche photodiode becomes independent of time after the initial transients have 
decayed away. This behavior is quite general and independent of the electric field profile or of the presence of 
heterojunctions in the multiplication region. Using simple models for carrier transport we find the predicted 
enhancement in the velocity to ionization of those carriers which ionise shortly after their ballistic dead space 
significantly speeds up the avalanche dynamics in short devices. 

SECTION I. Introduction 
Impact ionization generates internal gain in an avalanche photodiode (APD). However, the multiple carrier 
transits of the avalanche region from ionization feedback processes delay the recovery of the diode, following 
optical excitation, to an extent which increases with the gain. Above breakdown the APD operates in the Geiger 
mode, so that a single absorbed photon can generate a measurable current. The avalanche build-up time is then 
also governed by these feedback processes, as is the standard deviation in the time taken to reach a 
predetermined threshold current chosen to register a breakdown event. This “jitter” increases the uncertainty in 
the time to breakdown and hence in the arrival time of the photon which may have triggered this event. These 
aspects of the time response of APDs are important features in determining the performance of the detection 
systems which they comprise. 

Hayat and Saleh have shown analytically [1] that the mean avalanche current impulse response in an APD and its 
mean square value decay exponentially at long times, with an exponential rate given by the Malthusian 
parameter [2]. Their analysis assumed a multiplication region with a uniform electric field, that carriers travel 
always at constant speeds down the field and that the carrier ionization path length probability distribution 
functions (pdfs) are represented by exponentials, displaced to include the effects of dead space. We also 
observe this exponential decay at long times in our numerical modeling of APDs under more general conditions 
which relax the assumption of constant carrier velocities, and using a variety of techniques. These include Monte 
Carlo calculations of varying degrees of sophistication [3]–[4][5][6][7] and a recurrence equation technique [8] 
which allows for arbitrary carrier speeds to ionization and also for random fluctuations about these mean 
speEds., corresponding to diffusion. 

Hayat and Dong [9] showed how to calculate the pdf of avalanche duration, the distribution in times for the last 
avalanche carrier to exit the multiplication region, under the same restrictive conditions as used in [1]. Ng et al. 
[10] generalized this technique by relaxing the conditions to those used in [8]. Both groups found that the pdfs 
of avalanche duration decay exponentially at long times. 

Carrier diffusion appears to have only a small effect on the shapes of the current impulse response [3], [8] and of 
the avalanche duration pdf [10]. However, our modeling work [3]–[4][5][6], [11]–[12][13] predicts that those 
carriers which ionise at a distance shortly after the ballistic dead space, d travel to this early ionization event at 
an average speed which is considerably higher than for carriers which ionise further downstream. We expect the 
effect to be important in thin APDs and that it more than compensates [5] for the slowing effect of dead space 



[1] which increases the number of carrier excursions back and forth across the multiplication region to maintain 
gain [7]. 

We have shown [14] that this speed enhancement can be explained in terms of the reduction in scattering which 
causes carriers to ionise at short distances. We have also argued [14], using simple models, that the mean 
speed, v(z) to ionization at a distance z after the carrier is injected cold can be written approximately as 
v(z)=v0(1−d/z)−1, where v0 is the limiting value of v(z) at long ionization path lengths. Indeed, this simple 
expression describes very well the behavior which we observe in our numerical simulations. 

In this note we generalize the technique of Hayat and Saleh [1], relaxing some of their restrictive assumptions, 
to show how both the mean and the mean squared avalanche current impulse response in an APD depend 
exponentially on time, following the initial transients, and how these exponential rates are related to the 
probability distributions of the ionization events. The arguments apply both below breakdown and also above it, 
when the device operates in Geiger mode, resulting respectively in exponential decay and growth, provided the 
effects of space charge and of external quenching processes can be ignored. The behavior of the standard 
deviation in the current is examined below and above breakdown, as is the behavior of jitter, which is predicted 
to become independent of time in Geiger mode operation. We also show that, following the initial transients, 
the pdf of avalanche duration decays at the same exponential rate as the mean avalanche current. 

We demonstrate that this behavior is to be expected, irrespective of the electric field profile in the 
multiplication layer, thus allowing for the effects of residual, unintentional doping, of depletion into the p- and 
n-contacts and for the presence of heterojunctions. We assume the most general form for ionization event pdfs 
and require only that the arbitrary field profile remain constant during the avalanche process. The results 
therefore hold only while the avalanche space charge remains small, since this will have a significant effect on 
the field profile at macroscopic current levels, and before external quenching reduces the applied bias. These 
exponential rates are then evaluated numerically for specific cases, assuming constant carrier velocities and also 
allowing for the predicted enhancement in velocity to early ionization. It should be noted that the model 
presented is one dimensional and therefore does not consider jitter associated with lateral diffusion of carriers 
to the edge of the breakdown region. 

SECTION II. Mean Current Response 
When the ionising electric field depends upon position in the multiplication region then the ionization event 
pdfs depend on the time, τ elapsed between carrier injection and ionization and also on its position, z of 
injection, as well as its position, z′ of ionization [15], and not only on their difference, z′−z. The ionization event 
pdf for electrons (holes) then takes the form he(h)(z,z′,τ) instead of the simpler, conventionally assumed form, 
he(h)(|z′−z|,τ) appropriate for a uniform field. 

Tan et al. [8] derive equations [their (1) and (2)] for the mean current impulse response at time t,⟨Ie(h)(z,t)⟩, 
resulting from injection of an electron (hole) at position z and time t=0 into a multiplication region with uniform 
electric field and width w. We can generalize their equations to nonuniform field to find  

(1a) top 

(1b) bottom 
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⟨𝐼𝐼𝑒𝑒(𝑧𝑧, 𝑡𝑡)⟩ = 𝑃𝑃𝑒𝑒(𝑧𝑧, 𝑡𝑡)⟨𝐼𝐼𝑒𝑒0(𝑧𝑧, 𝑡𝑡)⟩ + �𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎ𝑒𝑒(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)
𝑡𝑡

0

𝑤𝑤

𝑧𝑧
⋅ (2⟨𝐼𝐼𝑒𝑒(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)⟩ + ⟨𝐼𝐼ℎ(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)⟩)

⟨𝐼𝐼ℎ(𝑧𝑧, 𝑡𝑡)⟩ = 𝑃𝑃ℎ(𝑧𝑧, 𝑡𝑡)⟨𝐼𝐼ℎ0(𝑧𝑧, 𝑡𝑡)⟩ + �𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎℎ(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)
𝑡𝑡

0

𝑧𝑧

0
⋅ (2⟨𝐼𝐼ℎ(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)⟩ + ⟨𝐼𝐼𝑒𝑒(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)⟩).

 

Here electrons are imagined to drift from left to right and holes from right to left. The first terms on the right-
hand side of these equations represent the contributions from the injected, primary currents, ⟨Ie(h)0(z,t)⟩, and  

(2a) top 

(2b) bottom 

𝑃𝑃𝑒𝑒(𝑧𝑧, 𝑡𝑡) = 1 −� 𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎ𝑒𝑒(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)
𝑡𝑡

0

𝑤𝑤

𝑧𝑧

𝑃𝑃ℎ(𝑧𝑧, 𝑡𝑡) = 1 −�𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎℎ(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)
𝑡𝑡

0

𝑧𝑧

0

 

are the probabilities that the injected carriers avoid ionising before exiting the multiplication region before time 
t. 

After these primary current contributions have died away we can, following Hayat and Saleh [1], seek 
asymptotic, exponentially decaying solutions for the remaining currents, ⟨𝐼𝐼𝑒𝑒,ℎ(𝑧𝑧, 𝑡𝑡)⟩ = 𝑖𝑖𝑒𝑒,ℎ(𝑧𝑧)exp (−𝛾𝛾𝑡𝑡), which 
result only from carriers generated by impact ionization. Substituting this form in (1), in the absence of the 
primary current terms we find  

(5a) and (5b) 

𝑖𝑖2𝑒𝑒(𝑧𝑧) = �𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎ𝑒𝑒(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)exp
𝑡𝑡

0

 (𝛿𝛿𝑑𝑑)

𝑤𝑤

𝑧𝑧

(
2𝑖𝑖2𝑒𝑒(𝑧𝑧′) + 𝑖𝑖2ℎ(𝑧𝑧′)

+{2𝑖𝑖𝑒𝑒2(𝑧𝑧′) + 4𝑖𝑖ℎ(𝑧𝑧′)𝑖𝑖𝑒𝑒(𝑧𝑧′)}exp {−(2𝛾𝛾 − 𝛿𝛿)(𝑡𝑡 − 𝑑𝑑)})

𝑖𝑖2ℎ(𝑧𝑧) = �𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎℎ(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)exp
𝑡𝑡

0

𝑧𝑧

0

 (𝛿𝛿𝑑𝑑)(
2𝑖𝑖2ℎ(𝑧𝑧′) + 𝑖𝑖2𝑒𝑒(𝑧𝑧′)

+{2𝑖𝑖ℎ2(𝑧𝑧′) + 4𝑖𝑖𝑒𝑒(𝑧𝑧′)𝑖𝑖ℎ(𝑧𝑧′)}exp {−(2𝛾𝛾 − 𝛿𝛿)(𝑡𝑡 − 𝑑𝑑)})
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(3a) and (3b) 

𝑖𝑖𝑒𝑒(𝑧𝑧) = � 𝑑𝑑𝑧𝑧′𝑔𝑔𝑒𝑒(𝑧𝑧, 𝑧𝑧′; 𝛾𝛾){2𝑖𝑖𝑒𝑒(𝑧𝑧′) + 𝑖𝑖ℎ(𝑧𝑧′)}
𝑤𝑤

𝑧𝑧

𝑖𝑖ℎ(𝑧𝑧) = �𝑑𝑑𝑧𝑧′𝑔𝑔ℎ(𝑧𝑧, 𝑧𝑧′; 𝛾𝛾){2𝑖𝑖ℎ(𝑧𝑧′) + 𝑖𝑖𝑒𝑒(𝑧𝑧′)}
𝑧𝑧

0

 

 Where 

(4a) 

𝑔𝑔𝑒𝑒,ℎ(𝑧𝑧, 𝑧𝑧′; 𝛾𝛾) ≡ � ℎ𝑒𝑒,ℎ(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)exp (𝛾𝛾𝑑𝑑)𝑑𝑑𝑑𝑑
∞

0

. 

View Source Here we have used the fact that, since the ranges of z and z′ are limited, he,h(z,z′,τ) vanishes for 
large τ and we can replace the upper limit, t in the integral by ∞. 

The consistency of the coupled, homogeneous, linear (3) constitutes a condition which determines the value of 
γ, the Malthusian parameter [2] which depends only on the form of the he,h(z,z′,τ). When this condition is 
satisfied the solutions, ie,h(z) are also determined to within an arbitrary, multiplicative constant. 

SECTION III. Mean Squared Current Response 
Tan et al. [8] also derive equations [their (3) and (4)] for the mean squared current impulse response, 
⟨I2e(h)(z,t)⟩ at time t. Again, generalizing to nonuniform field and after the primary currents have died away, we 
can extract the asymptotic exponential behavior by writing ⟨I2e(h)(z,t)⟩∼i2e(h)(z)exp(−δt), to find (5), shown at 
the bottom of the page. Here the ie(h)(z) are as defined earlier and given by (3). 

For an APD biased below breakdown γ>0. If we suppose that 2γ−δ>0 then the terms involving exp{−(2γ−δ)(t−τ)} 
are asymptotically small and (5) can be cast in the form of (3), with i2e(h)(z) replacing ie(h)(z). It follows that δ=γ, 
confirming our supposition that 2γ−δ>0 and consistent with [1]. 

The standard deviation in the currents, given by  

(6) 

𝜎𝜎𝑒𝑒(ℎ)(𝑧𝑧, 𝑡𝑡) ∼ �𝑖𝑖2𝑒𝑒(ℎ)(𝑧𝑧)exp (−𝛿𝛿𝑡𝑡) − (𝑖𝑖𝑒𝑒(ℎ)(𝑧𝑧))2exp (−2𝛾𝛾𝑡𝑡)
 

with δ=γ, behaves asymptotically as ∼exp(−γt/2), since the second term under the square root decays faster 
than the first. 

In the case of an APD biased above breakdown to operate in Geiger mode then γ<0 and the mean asymptotic 
impulse response current grows exponentially. If we again suppose that 2γ−δ>0, then again we find δ=γ, for the 
same reasons as before. However, this time it follows that 2γ−δ=γ is negative, contrary to our supposition, which 

https://ieeexplore.ieee.org/document/#deqn3c-3d
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https://ieeexplore.ieee.org/document/#deqn3c-3d
https://ieeexplore.ieee.org/document/#deqn5a-5b
https://ieeexplore.ieee.org/document/#deqn3c-3d


therefore cannot be correct. If, on the other hand, we suppose that 2γ−δ<0, then the terms involving 
exp{−(2γ−δ)(t−τ)} diverge at long times and dominate the right-hand side of (5), which increase as exp(−2γt), in 
contrast to the left-hand sides, which are independent of time, also ruling out this supposition. There remains 
only the possibility that δ=2γ, when (5) become inhomogeneous integral equations for i2e(z) and i2h(z). Thus, 
for an APD biased above breakdown with γ<0, we find that δ=2γ, so that the standard deviation in the current in 
(6) in this case behaves asymptotically as σe(h)(z,t)∼exp(−γt). 

We arrive at the curious result that below breakdown σ∼exp(−γt/2), whereas above breakdown σ∼exp(−γt), 
where γ is the Malthusian parameter [2] describing the decay or growth of the mean current. Interestingly, this 
type of asymmetrical asymptotic behavior in the second moment, above and below breakdown, is also seen in 
other models of population dynamics (see [2]). 

SECTION IV. Avalanche Duration 
Ng et al. [10] derive equations for the probability, Fe(h)(z,t) that, below breakdown, an avalanche, initiated by 
injecting an electron (hole) at position z in a uniform multiplication region at time t=0, terminates before time t 
[their (2) and (3)]. Again we can generalize these equations to the case of nonuniform fields, so that  

(7a) top 

(7b) bottom 

𝐹𝐹𝑒𝑒(𝑧𝑧, 𝑡𝑡) = 𝑃𝑃𝑒𝑒(𝑧𝑧, 𝑡𝑡)𝑄𝑄𝑒𝑒(𝑧𝑧, 𝑡𝑡) + �𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎ𝑒𝑒(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)
𝑡𝑡

0

𝑤𝑤

𝑧𝑧
⋅ 𝐹𝐹𝑒𝑒2(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)𝐹𝐹ℎ(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)

𝐹𝐹ℎ(𝑧𝑧, 𝑡𝑡) = 𝑃𝑃ℎ(𝑧𝑧, 𝑡𝑡)𝑄𝑄ℎ(𝑧𝑧, 𝑡𝑡) + �𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎℎ(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)
𝑡𝑡

0

𝑧𝑧

0
⋅ 𝐹𝐹ℎ2(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)𝐹𝐹𝑒𝑒(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑).

 

Here Qe(h)(z,t) represents the probability that an electron (hole) injected at position z escapes the multiplication 
region before time t has elapsed. In fact the original (2) and (3) in [10] are in error and the Pe,h depend also on t, 
as well as on z, as correctly acknowledged here in our (2). 

The pdfs of avalanche duration following electron (hole) injection are given by fe(h)(z,t)=∂Fe(h)(z,t)/∂t and can 
be evaluated by differentiating (7). After waiting sufficiently long (of the order of a carrier transit time) for the 
inhomogeneous terms on the right of these equations to die away we find, for the electron initiated avalanche 
duration pdf,  

(8) 

https://ieeexplore.ieee.org/document/#deqn5a-5b
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𝑓𝑓𝑒𝑒(𝑧𝑧, 𝑡𝑡) = ∫ 𝑑𝑑𝑧𝑧′ℎ𝑒𝑒(𝑧𝑧, 𝑧𝑧′, 𝑡𝑡)𝐹𝐹𝑒𝑒2(𝑧𝑧′, 0)𝐹𝐹ℎ(𝑧𝑧′, 0)𝑤𝑤
𝑧𝑧

+� 𝑑𝑑𝑧𝑧′ ∫ 𝑑𝑑𝑑𝑑ℎ𝑒𝑒(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)𝑡𝑡
0

𝑤𝑤

𝑧𝑧

× (
2𝑓𝑓𝑒𝑒(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)𝐹𝐹𝑒𝑒(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)𝐹𝐹ℎ(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)

+𝑓𝑓ℎ(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)𝐹𝐹𝑒𝑒2(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑) ).

                                                                                                   

At time t=0 the probabilities Fe(h)(z,t) are zero so that the first term on the right-hand side of (8) is also zero. At 
long times these probabilities approach unity so that the equation then simplifies to  

(9a) 

𝑓𝑓𝑒𝑒(𝑧𝑧, 𝑡𝑡) = �𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎ𝑒𝑒(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)
𝑡𝑡

0

𝑤𝑤

𝑧𝑧
⋅ {2𝑓𝑓𝑒𝑒(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑) + 𝑓𝑓ℎ(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)}.

 

View Source Similar arguments for hole injection yield  

(9b) 

𝑓𝑓ℎ(𝑧𝑧, 𝑡𝑡) = �𝑑𝑑𝑧𝑧′ �𝑑𝑑𝑑𝑑ℎℎ(𝑧𝑧, 𝑧𝑧′, 𝑑𝑑)
𝑡𝑡

0

𝑧𝑧

0
⋅ {2𝑓𝑓ℎ(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑) + 𝑓𝑓𝑒𝑒(𝑧𝑧′, 𝑡𝑡 − 𝑑𝑑)}.

 

 These equations are identical in form to (1), after the primary currents have decayed away, with ⟨Ie,h(z,t)⟩ 
replaced by fe,h(z,t). It follows that the avalanche duration pdfs decay exponentially in time at the same 
exponential rate as the mean avalanche current. 

When the multiplication region is uniform then the he(h)(z,z′,τ) depend only on the difference z−z′ and not 
separately on z and z′, so that we can write he(z,z′,τ)=he(z′−z,τ) and hh(z,z′,τ)=hh(z−z′,τ). It follows from (3a) and 
(3b) that  

(3c) top 

(3d) bottom 

𝑖𝑖𝑒𝑒(𝑧𝑧) = � 𝑑𝑑𝑧𝑧′𝑔𝑔𝑒𝑒(𝑧𝑧′ − 𝑧𝑧; 𝛾𝛾){2𝑖𝑖𝑒𝑒(𝑧𝑧′) + 𝑖𝑖ℎ(𝑧𝑧′)}
𝑤𝑤

𝑧𝑧

𝑖𝑖ℎ(𝑧𝑧) = �𝑑𝑑𝑧𝑧′𝑔𝑔ℎ(𝑧𝑧 − 𝑧𝑧′;𝛾𝛾){2𝑖𝑖ℎ(𝑧𝑧′) + 𝑖𝑖𝑒𝑒(𝑧𝑧′)}
𝑧𝑧

0
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where  

(4b) 

𝑔𝑔𝑒𝑒,ℎ(𝜁𝜁𝛾𝛾) ≡ � ℎ𝑒𝑒,ℎ(𝜁𝜁, 𝑑𝑑) exp(𝛾𝛾𝑑𝑑)𝑑𝑑𝑑𝑑.
∞

0

 

In the general case we could attempt to find γ by discretizing the integrals in (3) to generate a set of linear 
equations from which we could find numerically the value of γ which gave nontrivial solutions for ie,h(x). 
However, as shown by Hayat and Saleh [1], for simple forms of he(h)(ζ,τ) we can make further analytical 
progress. 

SECTION V. Models for he,h 
A. Dead Space and Constant Carrier Velocity 
Hayat and Saleh [1] used a displaced exponential model for the spatial part of he and assumed that electrons 
travel always at their constant speeds ve so that  

ℎ𝑒𝑒(𝜁𝜁, 𝑑𝑑) = 0,for𝜁𝜁 < 𝑑𝑑𝑒𝑒
ℎ𝑒𝑒(𝜁𝜁, 𝑑𝑑) = 𝛼𝛼exp {−𝛼𝛼(𝜁𝜁 − 𝑑𝑑𝑒𝑒)}𝛿𝛿(𝑑𝑑 − 𝜁𝜁/𝑣𝑣𝑒𝑒),for𝜁𝜁 > 𝑑𝑑𝑒𝑒

 

where de represents the electron dead space. It follows that  

(10a) and (10b) 

𝑔𝑔𝑒𝑒(𝜁𝜁; 𝛾𝛾) = 0,for𝜁𝜁 < 𝑑𝑑𝑒𝑒
𝑔𝑔𝑒𝑒(𝜁𝜁; 𝛾𝛾) = 𝛼𝛼exp {−𝛼𝛼(𝜁𝜁 − 𝑑𝑑𝑒𝑒) + 𝛾𝛾𝜁𝜁/𝑣𝑣𝑒𝑒},for𝜁𝜁 > 𝑑𝑑𝑒𝑒 . 

B. Dead Space and Enhanced Carrier Velocity 
Assuming a conventional displaced exponential for the spatial part of he but that the electron velocity to 
ionization at position ζ downstream from the injection point is given by 𝑣𝑣𝑒𝑒(𝜁𝜁) = 𝑣𝑣𝑒𝑒(1 − 𝑑𝑑𝑒𝑒/𝜁𝜁)−1, then we find  

ℎ𝑒𝑒(𝜁𝜁, 𝑑𝑑) = 0,for𝜁𝜁 < 𝑑𝑑𝑒𝑒
ℎ𝑒𝑒(𝜁𝜁, 𝑑𝑑) = 𝛼𝛼exp {−𝛼𝛼(𝜁𝜁 − 𝑑𝑑𝑒𝑒)}𝛿𝛿(𝑑𝑑 − (𝜁𝜁 − 𝑑𝑑𝑒𝑒)/𝑣𝑣𝑒𝑒)𝜁𝜁 > 𝑑𝑑𝑒𝑒

 

So that 

(11a) and (11b) 

𝑔𝑔𝑒𝑒(𝜁𝜁; 𝛾𝛾) = 0,for𝜁𝜁 < 𝑑𝑑𝑒𝑒
𝑔𝑔𝑒𝑒(𝜁𝜁; 𝛾𝛾) = 𝛼𝛼exp {−(𝛼𝛼 − 𝛾𝛾/𝑣𝑣𝑒𝑒)(𝜁𝜁 − 𝑑𝑑𝑒𝑒)},for𝜁𝜁 > 𝑑𝑑𝑒𝑒 . 

We can summarize the results of both of these models by defining α∗=α−γ/ve. Then  

(12a) and (12b) 

𝑔𝑔𝑒𝑒(𝜁𝜁; 𝛾𝛾) = 0,for𝜁𝜁 < 𝑑𝑑𝑒𝑒
𝑔𝑔𝑒𝑒(𝜁𝜁; 𝛾𝛾) = 𝑎𝑎exp (−𝛼𝛼 ∗ 𝜁𝜁),for𝜁𝜁 > 𝑑𝑑𝑒𝑒
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where for the constant velocity model a=αexp(αde) and for the enhanced velocity model a=αexp(α∗de). 

When de=0 both of these models collapse into the conventional, local, constant velocity model, giving  

(13) 

𝑔𝑔𝑒𝑒(𝜁𝜁; 𝛾𝛾) = 𝛼𝛼 exp �𝜁𝜁 �
𝛾𝛾
𝑣𝑣𝑒𝑒
− 𝛼𝛼�� . 

The corresponding expressions for holes throughout are found by replacing 𝑔𝑔𝑒𝑒(𝜁𝜁; 𝛾𝛾),𝛼𝛼,𝛼𝛼 ∗,𝑎𝑎, 𝑣𝑣𝑒𝑒 , and de and 
with 𝑔𝑔ℎ(𝜁𝜁; 𝛾𝛾),𝛽𝛽,𝛽𝛽 ∗, 𝑏𝑏, 𝑣𝑣ℎ . 

SECTION VI. Solution for γ 
Substituting (12) and the corresponding expressions for holes into (3) we find  

(14a) and (14b) 

𝑖𝑖𝑒𝑒(𝑧𝑧) = � 𝑎𝑎exp {𝛼𝛼 ∗ (𝑧𝑧 − 𝑥𝑥)}{2𝑖𝑖𝑒𝑒(𝑥𝑥) + 𝑖𝑖ℎ(𝑥𝑥)}𝑑𝑑𝑥𝑥
𝑤𝑤

𝑧𝑧+𝑑𝑑𝑒𝑒

𝑖𝑖ℎ(𝑧𝑧) = � 𝑏𝑏exp {𝛽𝛽 ∗ (𝑥𝑥 − 𝑧𝑧)}{2𝑖𝑖ℎ(𝑥𝑥) + 𝑖𝑖𝑒𝑒(𝑥𝑥)}𝑑𝑑𝑥𝑥
𝑧𝑧−𝑑𝑑ℎ

0
.
 

Multiplying these equations respectively by exp(−α∗z) and exp(β∗z) and differentiating with respect to z we find  

(15a) and (16b) 

𝑖𝑖𝑒𝑒′ (𝑧𝑧) − 𝛼𝛼 ∗ 𝑖𝑖𝑒𝑒(𝑧𝑧) = −𝑎𝑎exp (−𝛼𝛼 ∗ 𝑑𝑑𝑒𝑒){2𝑖𝑖𝑒𝑒(𝑧𝑧 + 𝑑𝑑𝑒𝑒) + 𝑖𝑖ℎ(𝑧𝑧 + 𝑑𝑑𝑒𝑒)}

𝑖𝑖ℎ′ (𝑧𝑧) + 𝛽𝛽 ∗ 𝑖𝑖ℎ(𝑧𝑧) = 𝑏𝑏exp (−𝛽𝛽 ∗ 𝑑𝑑ℎ){2𝑖𝑖ℎ(𝑧𝑧 − 𝑑𝑑ℎ) + 𝑖𝑖𝑒𝑒(𝑧𝑧 − 𝑑𝑑ℎ)}.  

 The boundary conditions on ie,h are found from the integral equations (14)  

(16a) and (16b) 

𝑖𝑖𝑒𝑒(𝑤𝑤 − 𝑑𝑑𝑒𝑒) = 0
𝑖𝑖ℎ(𝑑𝑑ℎ) = 0. 

Equations (15) admit solutions of the form  

(17a) and (17b) 

𝑖𝑖𝑒𝑒(𝑧𝑧) = 𝐸𝐸exp (𝑚𝑚𝑧𝑧)
𝑖𝑖ℎ(𝑧𝑧) = 𝐻𝐻exp (𝑚𝑚𝑧𝑧) 

where the equation for m 

(18) 
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{(𝛼𝛼 ∗ −𝑚𝑚)exp {(𝛼𝛼 ∗ −𝑚𝑚)𝑑𝑑𝑒𝑒} − 2𝑎𝑎}
{(𝛽𝛽 ∗ +𝑚𝑚)exp {(𝛽𝛽 ∗ +𝑚𝑚)𝑑𝑑ℎ} − 2𝑏𝑏} − 𝑎𝑎𝑏𝑏 = 0 

is found by substituting (17) into (15) and eliminating E and H. Where the roots of (18) are complex these occur 
in conjugate pairs since (18) is a real equation for m. 

(22) 

((𝛼𝛼 ∗ −𝑚𝑚_1)exp {𝛼𝛼 ∗ 𝑑𝑑_𝑒𝑒 + 𝑚𝑚_1 (𝑑𝑑_ℎ − 𝑤𝑤)} − 2𝑎𝑎exp {𝑚𝑚_1 (𝑑𝑑_ℎ + 𝑑𝑑_𝑒𝑒
− 𝑤𝑤)} − (𝛼𝛼 ∗ −𝑚𝑚_2)exp {𝛼𝛼 ∗ 𝑑𝑑_𝑒𝑒 + 𝑚𝑚_2 (𝑑𝑑_ℎ − 𝑤𝑤)}
+ 2𝑎𝑎exp {𝑚𝑚_2 (𝑑𝑑_ℎ + 𝑑𝑑_𝑒𝑒 − 𝑤𝑤)} = 0. 

 

When de,h=0 (18) turns into a quadratic equation for m with two roots, m=m1,2. We find (18) also has two roots 
when de,h≠0, though we must find these solutions, m1,2 numerically. 

 
Fig. 1. γ∗ versus αw for de/w=0 (circles), 0.1 (squares), and 0.2 (triangles), for the constant (filled) and enhanced 
velocity (open) models. ve=vh,de=dh, and α=β in all cases. The constant and enhanced velocity models coincide 
at de=0=dh, as do their results. 
 

We can then seek general solutions for (15) of the form 

(19a) and (19b)  

𝑖𝑖𝑒𝑒(𝑧𝑧) = 𝐴𝐴exp (𝑚𝑚1𝑧𝑧) + 𝐶𝐶exp (𝑚𝑚2𝑧𝑧)
𝑖𝑖ℎ(𝑧𝑧) = 𝐵𝐵exp (𝑚𝑚1𝑧𝑧) + 𝐷𝐷exp (𝑚𝑚2𝑧𝑧). 

Substituting these solutions into (15a) and equating the coefficients of the terms in exp(m1z) and in exp(m2z) 
we find  

(20a) and (20b) 

𝐵𝐵
𝐴𝐴

=
[(𝛼𝛼 ∗ −𝑚𝑚1) exp{(𝛼𝛼 ∗ −𝑚𝑚1)𝑑𝑑𝑒𝑒} − 2𝑎𝑎]

𝑎𝑎
𝐷𝐷
𝐶𝐶

=
[(𝛼𝛼 ∗ −𝑚𝑚2) exp{(𝛼𝛼 ∗ −𝑚𝑚2)𝑑𝑑𝑒𝑒} − 2𝑎𝑎]

𝑎𝑎
.
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Applying the boundary conditions (16) to the solutions (19) gives  

(21a) and (21b) 

𝐴𝐴
𝐶𝐶

= − exp{(𝑚𝑚2 −𝑚𝑚1)(𝑤𝑤 − 𝑑𝑑𝑒𝑒)}

𝐵𝐵
𝐷𝐷

= − exp{(𝑚𝑚2 −𝑚𝑚1)𝑑𝑑ℎ} .
 

Finally we combine (20) and (21), eliminating A, B, C, and D, to find (22), shown at the bottom of the page. 
Equation (22) constitutes an equation for γ, whose solution can be found numerically. 

An alternative and equivalent condition on γ may also be found by substituting (19) into (15b) and again using 
(21) to eliminate the coefficients. When the roots m1 and m2 of (18) are complex conjugates the real part of the 
left-hand side of (22) is identically zero and γ is found from the zero of the imaginary part. 

SECTION VII. Results 

 
Fig. 2. γ∗ versus β/α for αw=0.5 (squares), 1.0 (circles), and 1.5 (triangles), for the constant (filled) and enhanced 
velocity (open) models. ve=vh and dew=0.1=dhw in all cases. 

 
Fig. 3. γ∗ versus vh/ve for (circles) αw=0.5, (triangles) 1.0, and (squares)2.0, for the constant (filled) and enhanced 
velocity (open) models. β=α and dew=0.1=dhw in all cases. 
 

Equation (22) was solved numerically to find the Malthusian parameter γ for a range of values of multiplication 
region width w, enabled ionization coefficients α and β for electrons and holes, velocities to ionization ve and vh, 
and dead spaces de and dh. Results were derived using both the models for constant [(10)] and enhanced [(11)] 
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velocities to ionization and are plotted in terms of the dimensionless quantity γ∗≡γw/ve, the Malthusian 
parameter normalized to the electron “transit” time, w/ve. 

Fig. 1 shows γ∗ as a function of the dimensionless electron ionization coefficient, αw, plotted for a range of 
values of de/w and assuming equal ionization parameters for electrons and holes. When de/w=0 the constant 
and enhanced velocity models coincide, as do the corresponding results. For smaller values of αw, 
corresponding to weaker ionization, γ∗ is positive so that the current impulse response to injected carriers 
ultimately decays with time, as in an APD. As αw is increased γ∗ falls, changing sign when the device breaks 
down (corresponding to αw=1 when the dead space is zero) so that the current impulse response ultimately 
grows exponentially with time, as in a SPAD. The value of αw at breakdown increases with de/w, as might be 
expected since, as dead space is increased, a greater portion of the avalanche region is denied to multiplication 
and the ionization coefficients must increase to compensate. For any values of αw and de/w the absolute value 
of γ∗ is always larger for the enhanced velocity model than for the constant velocity model of ionization, 
confirming that the velocity enhancement accelerates both the decay in the current response in an APD 
operated below breakdown and its growth in an APD operated in Geiger mode. The breakdown value of αw 
(where γ∗=0) is the same for both models, as might be expected since multiplication depends only on the 
number of ionization events and not on the speed with which they happen.  

 
Fig. 4. (Full lines) Dimensionless mean current, (dashed lines) mean squared current and (dash-dot lines) current 
standard deviation, assuming constant (faint) and enhanced (bold) velocities to ionization versus dimensionless 
time, tve/w, assuming equal ionization parameters for electrons and holes, with de/w=0.1. (a) Below breakdown, 
with αw=0.5 and (b) above breakdown, with αw=2.5. 
 

Fig. 2 shows curves of γ∗ against β/α, assuming equal values for other electron and hole ionization parameters, 
at a value of de/w=0.1 and for a range of values of αw. For any value of αw the current decays for small values of 
β/α but increasing this ratio pushes the device through breakdown, as does increasing αw. 
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Fig. 3 shows the effect on γ∗ of the hole/electron velocity ratio, vh/ve with other electron and hole ionization 
parameters equal, for de/w=0.1 and for a range of values of αw. As vh decreases, so that vh/ve falls toward zero 
for fixed ve, so the dynamical behavior, asymptotic decay below breakdown or growth above, depending on the 
value of αw, becomes slower. The asymptotic behavior described here depends on the cooperation of both 
electrons and holes and when one set of carriers becomes fixed the process stops. As vh/ve becomes large the 
rates saturate since they are then limited only by the speed of the electrons. 

Fig. 4 shows the mean impulse current response to pure electron injection, normalized to the injected primary 
current, qve/w, the mean of the square of this quantity and the normalized current standard deviation, 
calculated by solving numerically the recurrence equations derived in [8]. We assume equal ionization 
parameters for electrons and holes, take de/w=0.1,ve=105 m/s and w=1 μm and calculate the responses for 
αw=0.5 (below breakdown) in Fig. 4(a) and αw=2.5 (above breakdown) in  

 
Fig. 5. RPL calculations of distributions of times to reach avalanche currents of (full line) 0.01 mA, (dotted line) 
0.1 mA, and (dashed line) 1 mA assuming de/w=0.1 with αw=2.5 and identical ionization parameters for 
electrons and holes. 
 

Fig. 4(b). Both above and below breakdown the curves show transient behavior at early times and then settle 
down to exponential growth and decay respectively. Including velocity enhancement in the model for the 
ionization process clearly speeds up the dynamical behavior at long times and detailed inspection shows that the 
exponential rate constants are as predicted by (22). These numerical solutions also confirm the analytical 
predictions that the mean current and the mean squared current exhibit the same exponential decay rate, γ 
below breakdown, so that the standard deviation in the current decays as γ/2. By contrast, above breakdown 
the mean squared current grows with an exponential rate twice that of the mean current, so that the standard 
deviation in current grows with the same exponential growth rate as its mean, also as predicted analytically. 

The jitter, defined here as the standard deviation in time before reaching a predetermined threshold current 
chosen to register a breakdown event, limits the precision with which this event, and hence the arrival of any 
photon which stimulated it, can be located in time. This jitter can be estimated by dividing the standard 
deviation in current, σe(h)(z,t) by the slope of the mean current response, ∂⟨𝐼𝐼𝑒𝑒(ℎ)(𝑧𝑧, 𝑡𝑡)⟩/ ∂𝑡𝑡. Since these two 
quantities increase exponentially at the same rate we expect the jitter in a Geiger mode APD to be independent 
of time at long times. It follows that the jitter first undergoes a transient behavior, following initiation of the 
breakdown event, and then becomes independent of current when this is growing exponentially. 

This analytical prediction is supported by the numerical calculations in Fig. 4(b) of the mean impulse response 
current and its standard deviation. It is also supported by independent random path length (RPL) calculations 
[13] of the distributions of times taken to reach threshold currents spanning two decades, an example of which 
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is shown in Fig. 5. In this example a Monte Carlo scheme is used to select the random positions and times of the 
ionization events in an avalanche process according to the displaced exponential, constant velocity ionization 
event pdfs leading to (10). This independence of jitter on time in a device operated above breakdown has also 
been observed in earlier Monte Carlo simulations [16]. Below breakdown the jitter is predicted to grow 
exponentially, at a rate 𝛾𝛾/2. 

SECTION VIII. Summary and Discussion 
A technique was derived to calculate the rates of exponential growth or decay of the mean impulse response 
current and its standard deviation in an APD biased above or below breakdown, together with the pdfs of 
avalanche duration below breakdown. The exponential rate γ is found by requiring the consistency of 
homogeneous integral equations whose kernels are the Laplace transforms of the pdfs of ionization events for 
the ionising carriers. The exponential behavior described here is quite general and is independent of the 
electrical field profile of the multiplication region and of the presence of heterojunctions, provided the field 
profile remains independent of time. Moreover the (3) from which γ is calculated are independent of the initial 
injection conditions, as is the asymptotic behavior which γ describes. 

These rate constants are evaluated ignoring the effects of carrier diffusion and the results are compared for the 
cases when carrier velocities to ionization are assumed constant, and also allowing for the velocity enhancement 
to ionization associated with the reduced scattering predicted for carriers which ionise shortly after their 
ballistic dead space. For short multiplication regions designed for high speed the velocity enhancement leads to 
significantly faster dynamical behavior, both above and below breakdown. 

The exponential time behavior discussed here strictly applies asymptotically. However, it is apparent from Fig. 4 
that it appears to become well established after an initial transient which lasts a few carrier transit times of the 
multiplication region and corresponds to a decade or so of current increase. In an APD biased below breakdown 
exponential current decay can be expected to continue until chance fluctuations stop the current and the 
multiplication process terminates, although, strictly speaking we are here concerned with the mean current, 
averaged over many trials, which continues to decay indefinitely. 

In a Geiger mode device other factors intervene to limit the exponential growth in mean current above 
breakdown. Conventionally the avalanche current is quenched with a series ballast resistor, or active quenching 
circuit, chosen so that the saturated avalanche current does not exceed ∼20 μA [17] so that a statistical 
fluctuation is then likely to terminate the avalanche process. The primary current due to the injected carrier is 
given by Ramo's theorem as qv/w, where v is the carrier velocity. In a “thin” device [17], where w∼1 μm this 
corresponds to ∼16nA so that the current can be expected to grow in its exponential mode by a couple of 
decades or so before saturating and by perhaps four decades in a “thick” device, where w∼100 μm. 

Alternatively, if the ballast resistor is small then the increasing space charge associated with the avalanche 
current will eventually start to distort the electric field profile in the multiplication region and the current will 
again saturate. The current carried by N carriers of charge q in the depletion region is given by I=Nqv/w. If these 
charges are spread uniformly across the diode cross sectional area A then the resulting electric field dropped 
across the depletion region is given from Poisson's equation by ΔE=Nq/(Aε)=Iw/(Aεv), where ε is the electrical 
permeability. This field becomes comparable with the breakdown field, VB/w when I∼VBAεv/w2, where VB is 
the breakdown voltage, by which time the current has increased by a factor ∼VBAε/(qw) over its primary value. 
In a “thin” device of diameter ∼10 μm say, where VB∼10 V the current can grow exponentially by some three 
orders of magnitude before it begins to saturate because of space charge effects. In fact carriers of opposite 
charges will partially cancel in the resulting the space charge so that the exponential current range estimated 
here represents a lower bound. 

https://ieeexplore.ieee.org/document/#deqn10a-10b
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When an APD is operated below breakdown, in analogue multiplication mode, its frequency response is 
determined both by the initial transient behavior of the impulse response current, which depends on the carrier 
injection conditions, and also by the exponential decay, discussed here. In this case the transient behavior 
dominates the speed since the response at longer times is de-weighted by the exponential decay of the current. 
Conversely, when the device is used above breakdown in the Geiger mode the initial transient behavior is 
relatively insignificant. The exponential growth of the mean current impulse response then dominates the 
speed, since the current must grow by several orders of magnitude before a breakdown event is registered. 
Numerical simulations of the mean current impulse response in both modes, using a technique which allows for 
nonuniform carrier velocities, illustrate these arguments and show that in Geiger mode an order of magnitude 
estimate of the time dependence of the mean impulse response current may be obtained from the exponential 
growth rate, assuming that its initial value is given by the injected primary current. 

Our analytical arguments show that both the pdf of the avalanche duration and the mean squared impulse 
response current below breakdown fall with the same exponential decay rate as the mean current, so that the 
current standard deviation falls at one half of this rate. By contrast, above breakdown the mean squared current 
increases with twice the exponential growth rate of the mean current, so that the standard deviation in current 
grows at the same rate as the mean. 

The jitter, taken here as the standard deviation in time before the mean current reaches some predetermined 
value, is predicted, at long times, to fall below breakdown at an exponential rate γ/2. Above breakdown, after 
the initial transients have died away and the avalanche current triggered by absorption of a single photon rises 
to measurable values, this jitter becomes independent of time, and hence of the mean current, while this is still 
growing exponentially. 
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