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The balance between excitation and inhibition is considered to be of significant importance
for neural computation and cognitive function. Excitatory and inhibitory functional
connectivity in intact cortical neuronal networks in wakefulness and graded levels
of anesthesia has not been systematically investigated. We compared monosynaptic
excitatory and inhibitory spike transmission probabilities using pairwise cross-correlogram
(CCG) analysis. Spikes were measured at 64 sites in the visual cortex of rats with
chronically implanted microelectrode arrays during wakefulness and three levels of
anesthesia produced by desflurane. Anesthesia decreased the number of active units,
the number of functional connections, and the strength of excitatory connections.
Connection probability (number of connections per number of active unit pairs) was
unaffected until the deepest anesthesia level, at which a significant increase in the
excitatory to inhibitory ratio of connection probabilities was observed. The results suggest
that the excitatory–inhibitory balance is altered at an anesthetic depth associated with
unconsciousness.

Keywords: consciousness, cross-correlogram analysis, cortical monosynaptic connectivity, excitatory–inhibitory

balance, connection strength

INTRODUCTION
Local computations within neuronal networks constitute the
foundation for information processing that ultimately leads to
conscious experience and behavior (Buzsaki, 2006, 2007; Buzsaki
et al., 2007). The balance between excitation and inhibition in
local networks is also considered to be of significant impor-
tance for neural computation, cognitive function, and regula-
tion of global firing activity (Bartho et al., 2004; Buzsaki, 2006,
2007). Parallel recording of extracellular activity using microelec-
trodes is the principal technique to investigate neuronal com-
munication within localized areas. Accordingly, there has been
a strong interest in reliable approaches to extract neuronal con-
nectivity from multichannel unit recordings in both awake and
anesthetized animals. How the derived neuronal interactions
depend on the level of consciousness including waking, sleep,
and anesthesia is a principal question that may shed light on the
neuronal mechanisms underlying neuronal computations that
support cognitive functions. To date, relatively little is known
about the nature of anesthetic dose-dependent changes in func-
tional interactions in intact neuronal networks. The modulation
of neuronal communication by anesthetic agents is of partic-
ular interest because anesthetics can be applied to investigate
the emergence and breakdown of consciousness in a controlled
manner.

Several studies suggest that the brain’s ability to process and
integrate information across remote and local areas in the cerebral

cortex gives rise to conscious experience (Tononi and Edelman,
1998; Alkire et al., 2008). We suggested that long-range functional
communication within the cerebral cortex is disrupted during
loss of consciousness as produced by various anesthetics (Hudetz,
2002; Hudetz et al., 2003; Imas et al., 2005a,b, 2006). Likewise,
a loss of cortical effective connectivity has been demonstrated
in humans at an anesthetic depth associated with unconscious-
ness (Lee et al., 2009; Ferrarelli et al., 2010; Langheim et al.,
2011). Furthermore, a recent study using local field potential
recordings, found a concentration-dependent effect of several
anesthetics on intracortical functional connections, suggesting
that anesthetics modulate neuronal communication in local cir-
cuits (Kreuzer et al., 2010). Thus, functional communication in
neuronal networks may be a primary target of anesthetics.

Anesthetic agents have been shown to exert graded suppressive
effects on both spontaneous and evoked neuronal activity (Detsch
et al., 2002; Villeneuve and Casanova, 2003; Hudetz et al., 2009;
Sleigh et al., 2009). Moreover, most common anesthetics suppress
excitatory and facilitate inhibitory synaptic transmission (Pearce
et al., 1989; Pittson et al., 2004). Whereas the effect of anesthe-
sia on single unit activity (UA) has been studied extensively, how
the observed synaptic changes influence communication in the
intact neuronal network remains unclear. Elucidation of the latter
requires an estimation of functional neuronal connectivity from
the simultaneous recording of a large number of active units,
in vivo, across multiple states of arousal.
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Numerous techniques have been recently applied to estimate
functional connectivity in intact neuronal networks (Brown et al.,
2004; Kass et al., 2005). Putative monosynaptic connections
can be identified in local networks of extracellularly recorded
units by estimating spike transmission probabilities from cross-
correlogram (CCG) analyses (Csicsvari et al., 1998; Bartho et al.,
2004; Fujisawa et al., 2008). Results showed that spike trans-
mission probabilities were state-dependent in rat hippocampal
cells: highest during exploration and rapid-eye movement (REM)
sleep, as observed by the presence of theta waves, and low-
est during sharp-wave bursts associated with slow-wave sleep
(Csicsvari et al., 1998). Fujisawa et al. further demonstrated
behavior-dependent changes in short-term functional connectiv-
ity as measured by monosynaptic interactions in the medial pre-
frontal cortex (Fujisawa et al., 2008). These studies demonstrate
that the efficacy of spike transmission within a neural network
may depend on brain state, and consequently, the animal’s level
of consciousness.

The studies conducted using CCG analysis have been mainly
performed in intact cortical neuronal networks during wakeful-
ness, sleep or deep anesthetic levels (McGaraughty and Reinis,
1993; Csicsvari et al., 1998; Bartho et al., 2004; Fujisawa et al.,
2008; Fujiwara et al., 2008). However, deep anesthesia associated
with nociceptive immobility (Rampil, 1994; Antognini and Kien,
1995) does not inform us about dose-dependent changes asso-
ciated with the loss and return of consciousness (Gugino et al.,
2001). To understand the critical changes in network function
associated with loss of consciousness, there is a need to determine,
in a controlled manner, how spike transmission probabilities are
altered at multiple graded levels of anesthesia. In this study, we
compare excitatory and inhibitory spike transmission probabili-
ties in rat cerebral cortex during wakefulness and under graded
levels of anesthesia.

RESULTS
BEHAVIORAL OBSERVATIONS
Experiments were performed on seven rats at three levels of
inhaled desflurane anesthesia (6, 4, and 2%) and wakefulness. At
the 6% level, spontaneous movement was absent. As the anes-
thetic was withdrawn, rats exhibited a gradual increase in their
level of alertness. At moderate depth of anesthesia (4%), they dis-
played sporadic and brief behaviors such as, temporary whisker
twitching or chewing, but for the most part, they remained
immobile. During light sedation (2%), most rats displayed head
and limb movements, and postural changes that lasted for several
seconds. Finally, during wakefulness (0%), rats displayed typi-
cal intermittent grooming and exploratory behaviors as well as
quiet (absence of movement) alertness. The return of righting
reflex suggested that consciousness was regained at 4% anesthetic
concentration.

UNIT ACTIVITY AND MONOSYNAPTIC CONNECTIONS
Spontaneous extracellular spikes were recorded using 64-contact
multishank neural probes chronically implanted in the primary
visual cortex (Figure 1A). Each electrode shank spanned the
entire depth of the cortex, recording from eight equally spaced
depths and eight equally spaced positions. Spikes were detected at

approximately half of the electrode contacts (54 ± 16%). Spike
sorting yielded one to three units from each electrode contact
(Figure 1B). In seven rats during wakefulness, 434 active units
with spike rates of at least 1 s−1 were recorded. The number and
spike rate of units decreased with the anesthetic concentration
(p < 0.05, linear trend, Table 1).

Putative excitatory and inhibitory monosynaptic connections
were identified by CCG analysis from the counts of correlated
spiking between each possible pair of units at various time lags.
Examples of CCG corresponding to excitatory, inhibitory, and
reciprocal functional connections are illustrated in Figure 1C.
The mappings of classified monosynaptic connections found
between and within electrode contacts in wakefulness and at
the deepest anesthesia level are illustrated in Figures 1D and
1E. In wakefulness, a total of 94 connections were found. This
number represents approximately 0.5% of all possible unit pairs.
The majority of connections were excitatory (ratio: 1.82 ± 0.71).
Anesthesia reduced the number of all connections (p < 0.05,
linear trend, Table 1).

The CCG analysis also classifies the presynaptic unit as a puta-
tive pyramidal cell or interneuron depending on whether it forms
an excitatory or inhibitory connection. Putative pyramidal cells
fired at a lower rate (median: 3.76, 95% CI: 3.25–5.48) than
interneurons (median: 6.27, 95% CI: 4.87–7.91) during wakeful-
ness, and their spike rate distributions were significantly different
(p < 0.01, K–S, data not shown). In addition, a significant dif-
ference (p < 0.05, M–W) between the spike rates of putative
pyramidal cells and interneurons was present after one outlier was
removed (>3 SD). The number of both cell types was reduced
with deepening anesthesia (Table 1).

SPATIAL DISTRIBUTION OF MONOSYNAPTIC CONNECTIONS
During wakefulness, most connections were short-range, within
200 um (Figure 2A), and most inhibitory and excitatory con-
nections were confined to the same electrode contact at 73 and
64%, respectively (Figure 2B). This was similar at the deepest
anesthetic level (6% desflurane, Figure 2E), where short-range
excitatory and inhibitory connections were present at 81 and
69%, respectively. However, the number of long-range connec-
tions was noticeably smaller than in wakefulness (Figure 2D).
During wakefulness, most excitatory connections projected from
deeper to more superficial layers, whereas inhibitory connections
were widespread, spanning nearly all cortical layers (Figure 2C).
During anesthesia, the connections were limited to a shorter
intralaminar span (Figure 2F).

To investigate if a reduction in active units contributed to the
paucity of long-range connections, we compared the statistical
distribution of the Euclidean distance of all possible connections
among the measured units in wakefulness and anesthesia (data
not shown). We found that the distributions were essentially iden-
tical (p = 0.74, K–S) implying that the reduction in connection
distances was not due to a reduction in the number of active units.

CONNECTION PROBABILITY AND CONNECTION STRENGTH
An unbiased measure of functional connectivity is connection
probability, defined as the number of observed monosynaptic
connections relative to the number of all possible pairs of the
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FIGURE 1 | Schematic of electrode placement and examples of

recorded units and connection types. (A) Electrode placement of the
64-contact neural probe in the rat primary visual cortex monocular region
(V1M) in the right hemisphere. Each dot represents the approximate
location of an electrode shank. Schematic is overlaid on a stereotaxic
drawing obtained from the Paxinos rat brain atlas. (B) Example of recorded
spike waveforms from 12 channels in one experiment. Color waveforms
represent online sorting of units during acquisition. (C) Spike
cross-correlograms for excitatory, inhibitory and reciprocal connections.
Thresholds are represented for excitatory connections (blue line), inhibitory
connections (red line), and jittered mean displayed as gray trace. Bin size

is 1.3 ms. The gap in the center bin reflects the blanking period of
spike sampling for connections observed within the same electrode
contact. (D) Illustration of excitatory (blue) and inhibitory (red) connections
superimposed on a map of electrode contacts during wakefulness
(0% desflurane) and unconsciousness (6% desflurane) from all
experiments. Presynaptic cell putatively defined as pyramidal cell (blue
triangle), interneurons (red circle), or unclassified (gray square). In some
cases multiple units are shown at the same contact. For greater clarity,
connections between electrode contacts only are shown. (E) Number of
classified within-contact excitatory and inhibitory (E,I) connections during
wakefulness (left) and unconsciousness (right).
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Table 1 | Properties of classified units and connections used for CCG analysis from seven experiments.

Desflurane concentration

0% 2% 4% 6%

ALL

Units* 434 309 346 271

Spike rate, 1/s* 5.5 (4.9, 6.5) 4.2 (3.6, 4.8) 3.3 (2.9, 3.7) 2.8 (2.4, 3.2)

CLASSIFIED

Connections, all* 94 67 53 44

Excitatory 60 (64%) 39 (58%) 28 (53%) 31 (71%)

Inhibitory 34 (36%) 28 (42%) 25 (47%) 13 (30%)

Putative cells, all 90 47 50 42

Pyramidal cell 58 (64%) 28 (60%) 27 (54%) 31 (74%)

Interneuron 32 (36%) 19 (40%) 23 (46%) 11 (26%)

Pyramidal spike rate, 1/s 3.8 (3.3, 5.5)** 3.5 (2.5, 6.2) 3.5 (2.2, 3.9) 2.6 (1.7, 3.4)

Interneuron spike rate, 1/s 6.3 (4.9, 7.9) 3.4 (1.6, 5.8) 4.0 (2.5, 5.2) 3.6 (1.4, 5.2)

Number in parentheses indicates percent of all connections and cells. Spike rates are median with 95% confidence intervals. A significant linear decrease in the

number of units and unclassified spike rates with desflurane was present. A significant difference in the spike rates of putative pyramidal cells and interneurons

was observed at wakefulness.
*p < 0.05, linear trend; **p < 0.05, Mann–Whitney.

recorded units (Figure 3A). Anesthesia exerted a differential effect
on excitatory and inhibitory connection probabilities, as indi-
cated by a significant interaction term (p < 0.05, RM-ANOVA).
This effect was due to a significantly higher probability of exci-
tatory vs. inhibitory connections (ratio: 2.95, p < 0.01, T–K) at
the 6% desflurane level. The higher excitatory to inhibitory con-
nection probability at 6% resulted from a significant increase in
the excitatory connection probability from the 4% concentration
level (p < 0.05, Bonferroni). There was no difference in connec-
tion probability between wakefulness and the two lighter levels of
anesthesia.

We also examined connection strength, measured by the nor-
malized height of the CCG peaks (Figure 3B). This quantity
characterizes the efficacy of monosynaptic spike transmission.
Anesthesia reduced excitatory connection strength in a dose-
dependent manner (p < 0.05, linear trend). There was no change
in the strength of inhibitory connections.

We considered the possibility that excitatory connection
strength might decrease because of the reduced spike rate, reduc-
ing the height of the correlation peaks in the CCG. We examined
this by constructing a correlation plot of the connection strength
and the corresponding spike rate of each connected unit or unit
pair (Figure 4). The results showed a very low correlation between
connection strength and spike rate (source: R2 = 0.07, target:
R2 = 0.05, combined: R2 = 0.08).

To examine this question further, we sought to determine if
a decrease in spike rate of either the presynaptic (source) or the
postsynaptic (target) unit alone or both could alter the detectabil-
ity of excitatory connections. To this end, we chose 13 classified
excitatory connections of highly spiking source or target units,
and decimated the number of spikes in the source, target or both
units by 0, 50, 80, 90, or 95%. The CCG analysis was then repeated
on all decimated data. The results showed that even at relatively
low spike rates (<4 spikes/s), the range of connection strength

remained large (5–35, standardized peak height) suggesting an
independence of the connection strength from spike rate (data
not shown).

DISCUSSION
This study applied CCG analysis for the first time to investigate
the concentration-dependent effects of desflurane anesthesia on
putatively classified monosynaptic excitatory and inhibitory func-
tional connections in vivo. We found that anesthesia decreased
the number of active units and the absolute number of func-
tional connections they formed. Anesthesia also reduced exci-
tatory connection strength that reflects the efficacy of synaptic
transmission. Nevertheless, at a depth of anesthesia that pur-
portedly corresponds to unconsciousness, a significant increase
in the ratio of excitatory and inhibitory connection probabilities
occurred. The latter change suggests an imbalance of excitatory
and inhibitory functional connectivity that may indicate abnor-
mal synaptic communication patterns in the state of suppressed
consciousness.

Desflurane was chosen for this study because it is a modern
and commonly used anesthetic with favorable pharmacokinetic
and pharmacodynamic properties and minimal cardiovascular
side effects (Eger and Johnson, 1987). The anesthetic actions of
desflurane are in most respects similar to those of isoflurane
(Rehberg et al., 1999; Murrell et al., 2008), with the exception
of its rapid equilibration, which makes desflurane a preferred
choice for experiments to be performed at multiple steady-state
anesthetic depths in the same experimental setting.

The effect of anesthesia on spike transmission probabil-
ities in intact cortical neuronal networks, in vivo, has not
been investigated. Previous studies using in vitro, whole cell or
single-channel recordings have established that most anesthetics
enhance inhibitory and suppress excitatory synaptic transmis-
sion by modulating ligand-gated ion channels (Pearce et al.,
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FIGURE 2 | Excitatory and inhibitory connections at wakefulness and

under anesthesia. (A) Matrix of observed excitatory and inhibitory
connections for all rats combined at wakefulness arranged by order of
mapping. Cells were numbered from 1 to 127 based on their position of their
electrode contact within the array, and arbitrarily within electrode contacts,
with the result that consecutive numbers are mapped to neighboring cells.
Points on the diagonal represent within-electrode connections, points near
the diagonal represent within-shank connections, and points far off the
diagonal represent between-shank connections. Most excitatory (blue) and
inhibitory (red) connections are found along the diagonal representing
connections within or near the same contact. (B) Distribution of distance
between source and target units during wakefulness. The number of

connections in each bin is normalized to the total number of observed
connections (excitatory + inhibitory). Most excitatory and inhibitory
connections are found within the same electrode contact (73 and 64%,
respectively). (C) Distribution of depth (source depth—target depth) of
excitatory and inhibitory connections from different electrode contacts at
wakefulness, corrected for angle of insertion. Excitatory connections project
to superficial layers. (D) Connection matrix during unconsciousness.
(E) Distance distribution of functionally connected neuron pairs at
unconsciousness normalized to total number of connections. Similar to the
wakeful condition, both excitatory and inhibitory connections are mainly found
within the same electrode contact (81 and 69%, respectively). (F) During
unconsciousness the connection depth was limited to shorter distances.

1989; Ries and Puil, 1999; Pittson et al., 2004). Our results
are consistent with these observations in that inhibitory con-
nection strength was resistant to desflurane, whereas excitatory
connection strength was decreased in a concentration-dependent
manner. Minor differences with the in vitro data, such as the lack
of enhancement of inhibitory connection strength, are under-
standable due to the recurrent nature of excitatory and inhibitory
interactions in local circuits in vivo.

In contrast, the significantly higher excitatory to inhibitory
connection probability (E/I balance) at 6% desflurane anesthesia
was unexpected. This effect could be due to a change in spike pat-
terns or circuit properties, perhaps to a reduced absolute number
(but not strength or efficiency) of inhibitory connections. The dif-
ference between the changes in excitatory connection probability

and excitatory connection strength is understandable given the
different nature of the two parameters. Connection probability
measures the frequency of occurrence of functional connec-
tions relative to the number of all possible pairs of active units.
Connection strength, on the other hand, characterizes the efficacy
of spike transmission for each identified functional connection.
Thus, it is possible to encounter higher connection probability at
lower transmission efficiency.

We also found that the decrease in connection strength could
not be directly accounted for by the decrease in spike rate
of either the source or the target cells. One explanation for
the decreased connection strength may be the change in fir-
ing pattern of the presynaptic cell. Short interspike-intervals
between pairs of spikes in the presynaptic cells have been shown

Frontiers in Integrative Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 90 | 5

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Vizuete et al. Wakeful and anesthetized neuronal connectivity

FIGURE 3 | Concentration-dependent effect of desflurane on

connection probability and connection strength. (A) Effect of desflurane
concentration on the percent connected over all possible connections. A
significant difference on excitatory and inhibitory connections at 6%
desflurane is observed, 3:1 (#p < 0.01, Tukey–Kramer). At 6% desflurane,
significant increase in excitatory connection probability is observed from
the 4% concentration level (∗p < 0.05, Bonferroni). Data are represented as
mean ± SEM. (B) Desflurane effect on connection strength. A significant
linear decrease in excitatory connections strength (∗p < 0.05, linear trend)
with desflurane is present. A significant difference between the strength of
excitatory and inhibitory connections is present at all desflurane
concentrations (#p < 0.001, RM-ANOVA). Data are represented and
mean ± SD.

to more robustly discharge their postsynaptic target (Usrey
et al., 1998; Kara and Reid, 2003). Anesthetic modulation of
spike pattern variability and its consequent effect on connection
strength and connection probability may be investigated in the
future.

The change in E/I balance observed at 6% desflurane con-
centration is important. It has been suggested (Shew et al.,
2011) that information transmission and information capac-
ity are maximized at intermediate E/I. An alteration of the E/I
balance, in particular elevated E/I, may impair information pro-
cessing as observed in psychiatric disorders (Yizhar et al., 2011),
suppress memory retrieval and recall (Wang and Zochowski,
2012) and reduce sensory-motor integration as observed in
evoked responses with lower doses of anesthetics (Populin,
2005). An elevation of E/I from its optimal value may rep-
resent insufficient suppression of excitation by inhibition, and
was shown to result in excessive correlation, also referred to as

FIGURE 4 | Relationship between connection strength and spike rate.

Scatterplot of excitatory connection strength and source (top), target
(middle) and combined (bottom) spike rates from all experiments. Source
spike rate (R2 = 0.07), target spike rate (R2 = 0.05), or combined spike rate
(R2 = 0.08) is not an indicator of connection strength.

hypersynchrony, between neurons (Shew et al., 2011). In fact,
our results revealed an increase in excitatory connection prob-
ability at the deepest anesthetic level. As suggested by Buzsaki
and colleagues, the lack of inhibition could create an unsta-
ble system resulting in an avalanche of excitation (Buzsaki,
2006; Buzsaki et al., 2007) that is incompatible with meaning-
ful information processing. Stereotypic hypersynchronous activ-
ity is commonly observed in deep anesthesia characterized by
electroencephalography (EEG) burst-suppression and is thought
to have limited information capacity (Alkire et al., 2008). In
burst-suppression, the cortex displays brief periods of increased
activity followed by electrically silent periods. It is accompanied
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by cortical hyperexcitability through reduced inhibition, there-
fore causing a shift in the E/I balance (Hudetz and Imas,
2007; Amzica, 2009; Ferron et al., 2009). In our experiments
at desflurane concentrations up to 6%, there was no burst-
suppression in recorded local field potentials, suggesting that
the state of hyperexcitability was not attained. It is possible
that neuronal firing may have acquired a bursting pattern—as
another form of hyperexcitability, although this was previously
observed under deep urethane anesthesia only (Erchova et al.,
2002). This possiblity should be tested in additional studies in the
future.

The present results demonstrate that CCG analysis can
extract putative monosynaptic connections of functionally inter-
acting neuron pairs at distances up to 1200 μm in the rat
visual cortex in both wakefulness and under anesthesia. We
also observed a more pronounced deflection in the jittered
CCG histogram of inhibitory than excitatory connections. This
is consistent with previous in vivo and in vitro studies and
reflects the slower timecourse of inhibitory postsynaptic poten-
tials (PSPs) relative to excitatory PSPs (Thomson et al., 1996;
Tamas et al., 1997; Bartho et al., 2004; Fujisawa et al., 2008).
Similar to previous studies (Bartho et al., 2004; Buzsaki, 2004;
Fujisawa et al., 2008), most functional connections were close-
range (<200 μm) and found within the same electrode con-
tact. During wakefulness, most excitatory connections pro-
jected upward toward more superficial layers consistent with
that seen in the auditory cortex of identified pyramidal cells
(Crochet and Petersen, 2009; Sakata and Harris, 2009). In the
anesthetized condition, the spread of excitatory activation was
confined to smaller cortical depths suggesting a reduction in
information transmission across cortical layers. The reduction
in the spatial dispersion of monosynaptic connections may
therefore be another indication of reduced cortical communi-
cation and integration associated with the anesthetic induced
unconsciousness.

We referred to anesthesia at 6% desflurane as a state of uncon-
sciousness. Arguably, consciousness cannot be directly assessed;
we can only measure a behavioral surrogate. In rats, the right-
ing reflex is a widely used behavioral index of consciousness
because it is abolished at equivalent anesthetic concentrations
to those that abolish response to verbal commands in human
subjects (Franks, 2008). The desflurane concentration that sup-
presses the righting reflex has been previously determined as
4.6 ± 0.45% (Imas et al., 2005b). The experiments were con-
ducted starting with the anesthetized condition and finishing
with the wakeful condition. We chose this order of conditions
to the initial threshold selection for spike detection under anes-
thesia, when signal-to-noise ratio was optimal. Thus, strictly
speaking, we investigated the neuronal events associated with
regaining as opposed to losing consciousness. During emergence
from anesthesia, the threshold for righting reflex may be slightly
lower than during induction (Friedman et al., 2010), indicat-
ing hysteresis or “neuronal inertia”. Because our experiments
were conducted under steady-state conditions with relatively long
equilibration periods before each recording, a hysteresis effect
was very unlikely. In preliminary studies with similar equili-
bration periods, we observed no significant difference in spike

rate or interspike intervals between induction and emergence
conditions at the same anesthetic concentration. Therefore, 4–6%
is a good estimation of range of desflurane concentration at which
a reversible transition between consciousness and unconscious-
ness occurred.

In general, anesthetic drugs target various ligand-gated and
voltage-gated ion channels that regulate synaptic transmission
(Rudolph and Antkowiak, 2004; Franks, 2006; Alkire et al., 2008)
and it is difficult to extrapolate the effect of one agent to that of
another. Depression of neuronal excitability has been observed
with various anesthetics (Hentschke et al., 2005; Schumacher
et al., 2011), thought to be primarily caused by enhanced synap-
tic inhibition at γ-aminobutyric acid A (GABAA) receptors
(Banks and Pearce, 1999; Bieda and Maciver, 2004) producing
hyperpolarization. A suppression of inhibitory neurotransmitter
release (Maclver et al., 1996) and the anesthetic modulation of
sodium and potassium channels (Hemmings et al., 2005) may
also contribute to reduced excitability. Previously, we showed
a suppression of baseline and long-latency cortical neuronal
responses to stimuli under desflurane in vivo (Hudetz et al.,
2009). Inhalational anesthetics such as isoflurane and sevoflu-
rane, as well as intravenous anesthetics propofol and midazolam,
and perhaps α-chloralose (Garrett and Gan, 1998), primarily
GABAA potentiators similar to desflurane, may produce compa-
rable results. Generalization to other types of anesthetics, such
as ketamine or urethane, with substantially different ionic mech-
anisms and targets (Harrison and Simmonds, 1985; Hara and
Harris, 2002; Sceniak and Maciver, 2006) is not straightforward.

As with all similar studies, a recognized technical limitation
is the undersampling of the neuronal population. Although we
were able to simultaneously record approximately 70 units dur-
ing wakefulness in each experiment, this number represents a
small percentage of active neurons in the sampled region. Because
recorded spike amplitudes are attenuated exponentially with dis-
tance, 60–100 neurons could be reliably recorded within a 60 μm
radius in the rat hippocampus and medial prefrontal cortex
(Buzsaki, 2004; Fujisawa et al., 2008). Assuming similar spike
amplitude attenuation in the visual cortex, under optimal con-
ditions, we were able to isolate 1–3 units per electrode contact,
representing 1–3% of the total possible units. Possible reasons
for the relatively low number of recorded cells in our exper-
iments include the potential damage to cells by insertion of
the electrode and the possible insulated nature of silicon probe
shank that reduces the number of observable neurons (Moffitt
and McIntyre, 2005). Furthermore, the spike rate decreased in a
concentration-dependent manner, thus reducing the number of
active units (>1 s−1) used for CCG analysis. The limited number
of recorded cells and concentration-dependent change in spike
rate may also account for the relatively low percentage of classi-
fied monosynaptic connections relative to all possible connected
cell pairs as identified by CCG analysis, consistent with previous
findings (Csicsvari et al., 1998; Fujisawa et al., 2008). Another
limitation of the pairwise CCG analysis is that it cannot account
for the effects of possible indirect connections (Gerstein and
Perkel, 1969) although the time scale of interactions (∼1–5 ms)
makes the contribution of multi-synaptic effects unlikely. Recent
studies have shown that pairwise analysis may represent the
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correlated states of a network surprisingly well both in vitro
(Schneidman et al., 2006; Shlens et al., 2006; Tang et al., 2008)
and in vivo (Yu et al., 2008). Therefore, the pairwise CCG method
should represent a reasonable first approximation of population
activity.

In summary, our results demonstrate that general anesthesia
by desflurane at a concentration that induces unconsciousness
alters the excitatory/inhibitory balance of monosynaptic interac-
tions in rat visual cortex neurons in vivo. The elevation of the
excitatory-inhibitory balance may result from altered spike firing
variability, therefore reducing the efficacy of excitatory transmis-
sion among the neurons. Overall, elucidating the effect of general
anesthesia on functional communication between cortical neu-
ronal cells should help better understand how changes in spikes
modulate population activity as a function of cortical state and
awareness.

MATERIALS AND METHODS
The proposed experimental procedures and protocols were
reviewed and approved by the Institutional Animal Care and Use
Committee. All procedures conform to the Guiding Principles in
the Care and Use of Animals of the American Physiologic Society
and are in accordance with the Guide for the Care and Use of
Laboratory Animals (National Academy Press, Washington, DC,
1996). All efforts were made to minimize the number of animals
used and their suffering.

ELECTRODE IMPLANTATION
Seven adult male Sprague-Dawley rats were kept on a reversed
light–dark cycle in dedicated rooms of the Animal Resource
Center for at least one week prior to physiological experi-
ments. On the day of the aseptic surgery, the rat (260–440 gm)
was anesthetized using isoflurane (Abbott Laboratories, Chicago,
IL) in an anesthesia box. The animal’s head was then secured
in a rat stereotaxic apparatus (Model 900, Kopf Instruments,
Tujunga, CA) and a gas anesthesia adaptor (Stoelting Co., Wood
Dale, IL) was placed over the snout to continue anesthesia
at ∼2.0% isoflurane. Body temperature was rectally monitored
and maintained at 37◦C via an electric heating pad (TC-1000,
CWE Inc., Ardmore, PA). The antibiotic, Enrofloxacin (10 mg/kg
s.c.), was administered prior to surgery onset. The dorsal sur-
face of the head was prepared for sterile surgery with beta-
dine and alcohol. Bupivicaine, a local anesthetic, was injected
under the skin prior to surgery. A midline incision was then
made and the skin was laterally reflected. The exposed cranium
was gently scraped of connective tissue and any bleeding was
cauterized.

A multishank, 64-contact microelectrode array (5 mm length,
200 μm electrode spacing, 200 μm shank spacing, Neuronexus
Technologies, Ann Harbor, MI) was chronically implanted stereo-
taxically within the monocular region of the visual cortex, V1M
(7.0 mm posterior, 3–3.5 mm lateral, relative to bregma) as illus-
trated in Figure 1A. To implant the microelectrode array, a
craniotomy of rectangular shape of approximately 2 × 4 mm was
prepared using a low speed, compressed air-driven dental drill
and bur No. FG 1 (Sullivan/Schein Dental, Melville, NY). The
exposed dura mater was resected and the electrode array was
inserted using a micromanipulator. The array was subsequently

advanced at increments of 10 μm to a depth of approximately
2.1 mm below the brain surface. To secure the neural probe,
the perimeter surrounding the electrode probe was covered with
silicone gel (Kwik-Sil, World Precision Instruments, Sarasota,
FL). A reference wire attached to the neural probe was wrapped
around a cranial steel screw located between bregma and lambda
(∼4.0 mm posterior, ∼2.0 mm lateral, relative to bregma) in the
opposite hemisphere.

In addition to the implanted electrode, sterilized stainless steel
screws (MX-080-2, #0−80 × 1/8′′, Components Supply Co Inc,
Fort Meade, FL) were placed in the cranium as anchors. The
whole assembly was embedded into a nontoxic skull fixture adhe-
sive, Cerebond (MyNeurolab, Saint Louis, MO), with only the
IC connectors protruding from the skull fixture adhesive cap.
Analgesic (5 mg/kg carprofren s.c.) was administered postsurgery.
The animal was then returned to the housing cage in the animal
facility. Carprofren (5 mg/kg s.c. once daily) was administered for
2 days and enrofloxacin (10 mg/kg s.c. once daily) for 7 days. The
animal was then observed for 7–10 days for any infection or other
complications.

EXPERIMENTAL PROTOCOL
Following recovery, the rat was placed in a cylinder anesthe-
sia chamber. The chamber was then sealed and ventilated with
a heated, humidified gas mixture of 30% O2, balance N2. The
room was then darkened and the rat was allowed to freely move
around in the box for about 1 h to accommodate to the environ-
ment. After the accommodation period, the electrode array was
then connected to a headstage with its wire bundles connected
to a preamplifier (Blackrock Microsystems, Salt Lake City, UT)
outside the anesthesia box.

Spontaneous UA was recorded using a 128-channel neural
acquisition system (Blackrock Microsystems, Salt Lake City, UT).
Extracellular neural activity was auto-thresholded using a root
mean square multiplier of −6.25 and kept constant throughout
the experiment. Spiking activity was analog filtered from 250 to
7500 Hz and digitally sampled at 30 kHz.

Recording was performed first under anesthetized conditions
and then in wakefulness. Three anesthetic concentrations were
used at which rats were either unconscious (6%), moderately
anesthetized (4%), or lightly sedated (2%). Continuous monitor-
ing of the anesthetic concentration was performed using a POET
II monitor (Criticare Systems, Waukesha, WI). Since monitoring
accuracy is 0.1%, an indication of the target or target ±0.1% con-
centration was accepted. An equilibration time of 15–20 min after
a decrease in concentration was allowed before recording of spon-
taneous activity. In each condition, spontaneous UA was recorded
for 10 min.

SPIKE TRAIN ANALYSIS
Movement artifacts were identified as synchronous time seg-
ments across all channels and manually removed. On average,
4.9 ± 1.3% of the data contained signal artifacts due to chew-
ing, twitching, or grooming. An 8–10 min segment of artifact-free
spontaneous extracellular UA was extracted from the recordings
at each state for postprocessing and further analysis.

At each concentration, PowerNAP (OSTG, Inc., Fremont, CA),
an open-source software, was used to sort the spike waveforms
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at each contact into individual neuronal units. This offline spike
sorter software applies principal component analysis (PCA) along
with various clustering methods for sorting. PCA determines the
linearly dependent factors in the spike waveform data and trans-
forms them into an ordered set of orthogonal basis vectors that
capture the direction of the largest variation (Fee et al., 1996;
Hudetz et al., 2009). A scatterplot using the first two princi-
pal components was then constructed, and K-means clustering
analysis was used to define the cluster boundaries of individual
units. Occasional remaining outliers were removed manually, if
necessary.

CROSS-CORRELOGRAM ANALYSIS
CCG analysis is a linear statistical assessment of the interde-
pendencies between pairs and represents how two signals relate
with one another as a function of time displacement. It has
been applied to indirectly classify monosynaptic connections as
either excitatory or inhibitory based on the functional interac-
tion dynamics between neuronal cell pairs (Csicsvari et al., 1998;
Bartho et al., 2004; Fujisawa et al., 2008). CCG is calculated as the
time difference of spike occurrences (cross-interspike interval)
between a reference spike and the target spike train. Here we used
a time window interval of [−20, +20] ms with a 1.3 ms bin size
to produce a count histogram of the calculated cross-interspike
intervals.

In order to eliminate short-time scale chance correlations
while retaining larger-time scale (i.e., spike rate) information,
a jitter resampling method was performed (Fujisawa et al.,
2008; Quilichini et al., 2010). A simulated randomized spike
train was produced by independently and randomly “jittering”
or shifting the occurrence time of each spike in the target
spike train within a small uniformly distributed time inter-
val of −5 to +5 ms. CCG analysis was then performed on
the reference spike train and the jittered spike train. The jit-
tering method was performed 1000 times, yielding 1000 sur-
rogate data sets. The variation produced by the jittered CCG
data sets provided the confidence intervals for the number of
counts in each bin. Global thresholds of 97% confidence inter-
val were determined from the maximum and minimum of each
jittered surrogate CCG and used for classification of signifi-
cant monosynaptic connections. Monosynaptic connections were
identified by the presence of a significant CCG peak height or
trough observed within the delay interval of [+1.3, +5.2] ms.
Significance was determined with respect to the global thresh-
olds (Csicsvari et al., 1998; Bartho et al., 2004; Fujisawa et al.,
2008). The count values in original CCG histogram that sur-
passed or fell below twice the global threshold within this
short latency interval indicated a direct excitatory or inhibitory
monosynaptic connection, respectively. For the units that were
recorded from the same electrode contact, the time zero bin was
excluded from the analysis due to the built in blanking period
of the spike detection system. CCG was calculated using the sig-
Tool toolbox (Lidierth, 2009) in MATLAB R2007b (Mathworks,
Natick, MA).

The effect of desflurane anesthesia on excitatory and inhibitory
connections was determined as the total number of putatively
identified monosynaptic connections normalized to the total

number of possible connections at each anesthetic concentra-
tion. The Euclidean distance of the connected neuronal pairs was
determined based on their electrode locations. A histogram of the
distance lengths for each connection type was then created and
normalized to the total count of excitatory and inhibitory con-
nections. The vertical distance from the source to the target cell,
representing the connection depth, was also calculated for exci-
tatory and inhibitory connections at each concentration and a
histogram was produced.

Connection strength represents the efficacy of spike transmis-
sion between each pair of cells and was defined as the standardized
peak height in the CCG. Specifically, the absolute difference
between the number of spikes in the peak or trough of the CCG
histogram and the jittered mean was taken and divided by the
jittered standard deviation (Fujisawa et al., 2008). Based on the
type of connections revealed by the CCG analysis, each presy-
naptic cell was indirectly classified as a putative pyramidal cell
or interneuron. The majority of pyramidal cells fire at lower
frequencies than do interneurons (Csicsvari et al., 1998). The dis-
tribution of spike rates of the two putatively classified cell types
was compared.

STATISTICAL ASSESSMENT
The effects of desflurane on baseline firing rates and number of
active units, excitatory and inhibitory connections were estimated
using RM-ANOVA test with the anesthetic concentration as a
fixed factor and the subject (rat) as a random factor. Deviation
from the zero slope was tested using a linear trend planned com-
parison test. The spike rate distribution of classified pyramidal
cells and interneurons at waking across all rats were compared
using a Kolmogorov–Smirnov (K–S) test. A significant difference
in the spike rates of putative pyramidal cells and interneurons was
tested using a Mann–Whitney (M–W) test. The concentration-
dependent effects of desflurane on the percentage and strength
of connections was tested with RM-ANOVA with type (excitatory
or inhibitory) and desflurane concentration as within-factors, the
subject (rat) as random variable, and the percentage of connec-
tions or connection strength as the response variable. When the
interaction term was significant, the component effects were fur-
ther examined using Tukey–Kramer Multiple-Comparison test
(T–K) or a Bonferroni test. Statistical analyses were performed
using NCSS 2007 (NCSS, Kaysville UT). Data are presented as
± standard deviation (SD) from the mean or median with 95%
confidence intervals.
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