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Abstract: 
Interconnectivity among networks is essential for enhancing communication capabilities of networks such as the 
expansion of geographical range, higher data rate, etc. However, interconnections may initiate vulnerability 
(e.g., cyber attacks) to a secure network due to introducing gateways and opportunities for security attacks such 
as malware, which may propagate from the less secure network. In this paper, the interconnectivity among 
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subnetworks is maximized under the constraint of security risk. The dynamics of propagation of security risk is 
modeled by the evil-rain influence model and the SIR (Susceptible-Infected-Recovered) epidemic model. 
Through extensive numerical simulations using different network topologies and interconnection patterns, it is 
shown that the efficiency of interconnectivity increases nonlinearly and vulnerability increases linearly with the 
number of interconnections among subnetworks. Finally, parametric models are proposed to find the number of 
interconnections for any given efficiency of interconnectivity and vulnerability of the secure network. 

SECTION I. Introduction 
Many communication networks (e.g., military, private, commercial network) consist of a private and secure 
communication infrastructure, which requires interconnections with external networks for enhanced 
communication range, capacity, and redundancy, to name a few. In particular, interconnectivity between a 
small-sized network (consisting of a smaller number of nodes with lower link-bandwidth) and a large-sized 
network (comprising of a larger number of nodes with higher link-bandwidth) is required for expanding the 
communication range and data rate of the small network. For example, a wide range of commercial and non-
commercial communication systems and networks are used to support the military communications [1]. 

An interconnected network that is composed of several interdependent subnetworks of varying sizes and 
security levels is termed as multilevel network [2]. Due to interconnections, these subnetworks become 
interdependent through the gateways due to the exchange of information among each other. However, 
different systems usually have distinct security policies, control structures, and infrastructural vulnerabilities, as 
in the case of military and commercial networks for example [3]. Therefore, interconnections in multilevel 
networks may increase the vulnerability of a secure subnetwork due to the propagation of security threats from 
less secure subnetworks. As a result, the composition of the individually secure systems with different security 
policies is not secure [4]. For instance, due to varying levels of securities, the inter-operation and data sharing 
between military and commercial systems through interconnections may increase the probability of breaching 
the security of the army node [3]. Moreover, in a multilevel network, if attackers compromise a node in a 
subnetwork, then there is a possibility that a node in the other subnetwork may be compromised through the 
interconnected gateways. As an example, interconnecting a highly secure network with the public Internet 
results in an increased vulnerability to the secure system by exposing it to cyber threats such as injection of 
malware (viruses, worms), packet sniffing, denial-of-service (DoS) attacks (Section 1.6, [5]). In wireless networks, 
the internetwork links can be eavesdropped along with a strong possibility of jamming and sniff [5], [6]. In fact, 
attackers may get access to the confidential data [4], analyze traffic [3], and may use the data for their benefit, 
such as extract critical information, locate the mobile nodes or military troops thus endanger their lives, etc. 

Clearly, interconnectivity among subnetworks needs to be addressed in order to compose an efficient and 
resilient multilevel network. In this paper, we define the efficiency of interconnectivity of a multilevel network 
and model the resiliency (1-vulnerability) of a secure subnetwork due to the propagation of security risk (e.g., 
virus and worms) through interconnections. The dynamics of propagation of security risk are modeled by two 
models, namely the evil-rain influence model [7] and the SIR (Susceptible- Infected- Recovered) model [8]. In 
addition’ we formulate two optimization problems that maximize the efficiency of interconnectivity with a 
constraint on the vulnerability/resiliency. We use different network topologies and interconnection patterns in 
our simulation and find the resiliency of a secure military network due to interconnections with less-secure 
commercial systems. Based on simulation data, we propose two parametric models to find the optimal number 
of interconnections that maximizes the efficiency of the interconnectivity of the multilevel network under 
security (resiliency or vulnerability) constraints. 

This paper is organized as follows. The relevant literature is presented in Section II. In Section III, we use the SIR 
model and evil-rain model to model the risk propagation in a network. The efficiency of interconnectivity is 



optimized in Section IV. In Section V, we propose the parametric models based on the numerical simulation 
data. Section VIconcludes the paper. 

SECTION II. Related Work 
The literature of interconnectivity among different networks has mainly been focused on military and 
commercial networks. In [9] the authors discussed the crucial differences between the commercial and military 
system. While interconnecting the military network with commercial networks, Shake et al. suggested using 
highly secure gateway nodes [3]. In [10] the authors proposed to overcome security issues by adding some 
overhead (IPSec protocol) to the military data packets that are routed through commercial networks. 
Surprisingly, the analytical modeling of the propagation of security risk through interconnections has not been 
studied much in literature. The authors in [11], [12] argued that the epidemic models could approximate the 
propagation of computer viruses in networks. Based on the SIR epidemic model, a relatively close work is [13], 
where the authors tested different network topologies (e.g., stars, cliques, cycles) to design the intra-
connectivity structure of a network to maximize the resiliency and connectivity. In contrast, this work deals with 
the interconnection between different independent subnetworks, specifically, between a highly secure network 
and networks with a relatively low level of security. Further, we have formulated constrained optimizations for 
maximizing efficient interconnections among subnetworks. 

On the other hand, there are analytical works on the propagation of failures in cyber-physical systems, where 
the interdependency between networks can lead to a cascading failure [14], [15]. Buldyrev et al. used 
percolation theory to model the propagation of node failure due to the interdependency between power and 
communication networks [16]. In [17] Rahnamay-Naeini optimized the interdependency in a cyber-physical 
network using the evil-rain influence model. The major departure in this work from [17]is that, rather than 
assuming all the nodes are vulnerable to attack, we have considered nodes in the less secure network are 
vulnerable, and the vulnerability is assumed to propagate to the secure network. 

SECTION III. Vulnerability of a Secured Network 
Figure 1 shows the physical architecture of a multilevel network introduced in [2], where we consider a 3-level 
network with low, medium and high securities to represent distinct security policies of the multilevel network. 
The level-l network (e.g., a military system) is used for sensitive tasks such as command and control. These 
networks are typically very well-protected but run at a low and intermittent bandwidth [9]. In contrast, level- 2 
and level- 3 networks may consist of mobile cellular networks, ad-hoc networks, etc. These networks usually 
have high-bandwidth, but low levels of security compared to the level-l network [10]. Here the two nodes, 
namely “Attack” and “Repair-ability,” represent two sources of failures and healing capability of the network, 
respectively. The red question marks in Fig. 1 show the tentative interconnections (i.e., how different 
subnetworks should be connected?). 

The dynamics of the propagation of security risk among subnetworks of a multilevel network can be well-
approximated by the existing SIR epidemic model and evil-rain influence model as explained 
in [11], [12] and [7], [13], [17], respectively. Below we demonstrate how we exploit these two models to model 
the propagation of security risks among subnetworks. 



 
Fig. 1. A multilevel network infrastructure (e.g., 3 levels with military and commercial networks) with external 
attack and repair-ability in each network. 

A. The Sir Epidemic Model 
The epidemic model is a dynamical model that captures the spread of a disease in a network of large 
populations [8]. Among different versions of the epidemic model, we use the SIR model to characterize the 
dynamics of risk propagation in a network. In the SIR model, all the nodes are susceptible to attack initially, as 
such attackers can infect one or more nodes. The infected node compromises its neighbors with a transmission 
probability, denoted by τ (e.g., malware propagation). Further, as done in [13], the infected node is 
recovered/removed at the following time step by the recovery mechanism (the healing capability) of the SIR 
model. It implies that the vulnerability of the removed/recovered node is patched and the node will not be 
infected in future. In the SIR model, we define resiliency of a network 𝐺𝐺 with 𝑁𝑁 nodes as 

𝑅𝑅(𝐺𝐺) = 1 − 𝐄𝐄[𝑁𝑁𝑓𝑓]−𝐄𝐄[𝑁𝑁𝑖𝑖]
𝑁𝑁−𝐄𝐄[𝑁𝑁𝑖𝑖]

, (1) 

where 𝐄𝐄[𝑁𝑁𝑖𝑖] and 𝐄𝐄[𝑁𝑁𝑓𝑓] are the expected number of nodes infected initially and eventually, respectively. 
Moreover, the difference (𝐄𝐄[𝑁𝑁𝑓𝑓] − 𝐄𝐄[𝑁𝑁𝑖𝑖]) is the expected number of newly infected nodes at steady state 
due to the propagation of security risk from the initial compromised nodes. The steady state occurs when the 
propagation of risk stops and all nodes are in either susceptible state or recovered/removed state [13]. 
Here 𝐄𝐄[𝑁𝑁𝑓𝑓] depends on 𝜏𝜏 as such 𝐄𝐄[𝑁𝑁𝑓𝑓] = 𝑁𝑁 if 𝜏𝜏 = 1 and 𝐄𝐄[𝑁𝑁𝑓𝑓] = 𝐄𝐄[𝑁𝑁𝑖𝑖] if 𝜏𝜏 = 0. Hence, 0 ≤ 𝑅𝑅(𝐺𝐺) ≤ 1, 
where 𝑅𝑅(𝐺𝐺) is 0 if all nodes are compromised (𝐄𝐄[𝑁𝑁𝑓𝑓] = 𝑁𝑁). Finally, the vulnerability of the network is (1 −
𝑅𝑅(𝐺𝐺)). 

In the multilevel network, we take the different levels of securities of different subnetworks into account based 
on where the initial attack occurs. We assume the attack can only start at the less secure subnetwork by 
compromising some nodes; then the compromised nodes infect their neighbors with probability 𝜏𝜏. Since the 
secure subnetwork is a part of the multilevel network, the attack also propagates to the secure network. For 
simplicity, we assume 𝜏𝜏 is equal for every node and network, where 𝜏𝜏 can be estimated from the real-world 
virus propagation data as done in [18]. 

B. The Evil-Rain Influence Model 
The influence model is a networked Markov Chain (MC) framework for modeling interactions among nodes in a 
network, where the state evolution of a node depends on its MC, states of its neighbors and the influence from 
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neighbors. The influence received by a node from its neighbor is between 0 and 1, with the total influence 
received by a node from all its neighbors summing up to 1 [7]. A particular case of the binary influence model is 
the “evil-rain model,” which has two autonomous nodes, named “source of failures” and “source of repairs” 
(e.g., the Attack and Repairability nodes shown in Fig. 1). The states of these autonomous nodes are fixed, and 
they are responsible for injecting failures and reparation (the healing capability) in the network, respectively. We 
model the risk propagation from one node to other nodes through influences between the nodes; i.e., the 
probability of propagation of risk between two nodes is equal to the influence among them. 

In a network 𝐺𝐺 of 𝑁𝑁 nodes, we define the vulnerability as the expected number of compromised nodes at 
steady state [7]: 

𝑉𝑉(𝐺𝐺) = 1𝑇𝑇(𝐈𝐈−𝐅𝐅)−1u
𝑁𝑁

, (2) 

where 𝐮𝐮 is an 𝑁𝑁 -dimensional vector that represents the external attack probability of each node, 1 is a column 
vector where all elements are 1, and 𝐈𝐈 is an 𝑁𝑁 × 𝑁𝑁 identity matrix [7]. Moreover, 𝐅𝐅 is the interconnection 

structure that represents influences between nodes. For 3 subnetworks, 𝐅𝐅 = �
𝐅𝐅11𝐅𝐅12𝐅𝐅13
𝐅𝐅21𝐅𝐅22𝐅𝐅23
𝐅𝐅31𝐅𝐅32𝐅𝐅33

�, where 𝐅𝐅𝑖𝑖𝑖𝑖  denotes 

the interconnection matrix between subnetwork 𝑖𝑖 and 𝑗𝑗. In particular, 𝐅𝐅𝑖𝑖𝑖𝑖(𝑙𝑙, 𝑘𝑘) = 𝑐𝑐𝑙𝑙𝑙𝑙
𝑖𝑖𝑖𝑖 , 0 ≤ 𝑐𝑐𝑙𝑙𝑙𝑙

𝑖𝑖𝑖𝑖 ≤ 1, implies 

that there is a connection of influence strength 𝑐𝑐𝑙𝑙𝑙𝑙
𝑖𝑖𝑖𝑖

 between the 𝑙𝑙tb node of network 𝑖𝑖 and 𝑘𝑘th node of 

network 𝑗𝑗. The higher the value of strength 𝑐𝑐𝑙𝑙𝑙𝑙
𝑖𝑖𝑖𝑖  the easier is the propagation of security risk from a 

compromised node to its neighbor, which could be, for instance, due to the lack of security solutions installed in 

their interface. Here we consider uniform influence 𝑐𝑐𝑙𝑙𝑙𝑙
𝑖𝑖𝑖𝑖 = 𝑐𝑐 for simplicity (similar to 𝜏𝜏 in the SIR model). 

Similar to the resiliency in the SIR model, we define the resiliency as the fraction of nodes that are not 
compromised: 

𝑅𝑅(𝐺𝐺): = 1 − 𝑉𝑉(𝐺𝐺). (3) 

SECTION IV.Interconnectivity in Multilevel Networks 
In this section, we maximize the efficiency of interconnectivity of the multilevel network under the security 
constraints. 

A. Efficiency of Interconnectivity 
Recall that the interconnectivity among different types of networks is essential for communicating outside their 
territories, redundant communication medium, etc., thus forming the multilevel network. The efficiency of 
connectivity among nodes for a network 𝐺𝐺 with 𝑁𝑁 nodes is [19] 

𝑊𝑊(𝐺𝐺) = 1
𝑁𝑁(𝑁𝑁−1)

∑  𝑢𝑢∈𝑉𝑉 ∑  𝑣𝑣∈𝑉𝑉−{𝑢𝑢}
1

𝑑𝑑(𝑢𝑢,𝑣𝑣)𝑔𝑔
, (4) 

where 𝑉𝑉 is the set of 𝑁𝑁 nodes, 𝑑𝑑(𝑢𝑢, 𝑣𝑣) is the shortest path distance (i.e., number of edges in the shortest path) 
between node 𝑢𝑢 and 𝑣𝑣, and 𝑔𝑔 is the attenuation of the connection (here 𝑔𝑔 = 1 ). In words, 𝑊𝑊(𝐺𝐺) is the 
efficiency of information exchange among nodes over the network. The efficiency of the connection between 
node 𝑢𝑢 and 𝑣𝑣 is inversely proportional to the shortest path distance between them. Note that, 𝑑𝑑(𝑢𝑢,𝑣𝑣) =
∞ implies there is no connection between node 𝑢𝑢 and 𝑣𝑣, and 𝑑𝑑(𝑢𝑢, 𝑣𝑣) = 1 implies there is a direct connection 



between 𝑢𝑢 and 𝑣𝑣. Moreover, with no connections among any nodes 𝑊𝑊(𝐺𝐺) = 0, i.e., no node can 
communicate with other nodes in 𝐺𝐺. Interconnections enable communications among nodes (e.g., in a network 
where all nodes are directly connected with each other, 𝑊𝑊(𝐺𝐺) = 1). 

Since we are interested in the interconnectivity among subnetworks, we define the efficiency of 
interconnectivity of a multilevel network 𝐺𝐺𝑚𝑚 as 

𝑊𝑊
^

(𝐺𝐺𝑚𝑚): = 𝑊𝑊(𝐺𝐺𝑚𝑚) −𝑊𝑊(𝐺𝐺0), (5) 

where 𝐺𝐺0 represents the multilevel network without any interconnections among the subnetworks. 

B. Maximization of the Interconnectivity 
Since different mathematical formulations are used in the SIR and evil-rain model for modeling the dynamics of 
risk propagation, we formulate two optimization problems based on these two models, which are described 
below. 

First, for the SIR model, we maximize the efficiency of interconnectivity with a constraint on the resiliency as 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖≠𝑖𝑖

𝑊𝑊
^

(𝐺𝐺𝑚𝑚) subject to 𝑅𝑅(𝐺𝐺𝑠𝑠) ≥ 𝑅𝑅𝑠𝑠, (6) 

where 𝑅𝑅𝑠𝑠  is the minimum resiliency that is required for a secure subnetwork 𝐺𝐺𝑠𝑠, 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ {0,1} represents the 
connection between node 𝑖𝑖 and 𝑗𝑗, and 𝐺𝐺𝑚𝑚 is the multilevel network. 

Similarly, using the evil-rain model we maximize the efficiency of interconnectivity under the vulnerability 
constraint, 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐅𝐅𝑖𝑖𝑖𝑖,𝑖𝑖≠𝑖𝑖

𝑊𝑊
^

(𝐺𝐺𝑚𝑚) subject to 𝑉𝑉(𝐺𝐺𝑠𝑠) ≤ 𝑉𝑉𝑠𝑠, (7) 

where 𝑉𝑉𝑠𝑠  is the maximum vulnerability of the secure subnetwork 𝐺𝐺𝑠𝑠, 𝐅𝐅𝑖𝑖𝑖𝑖 is defined in the previous section, and 
here 𝑖𝑖 ≠ 𝑗𝑗 since we optimize interconnection between different networks. 

Note that both optimization problems given by (6) and (7) are nonlinear and non-convex, for which no simple 
analytical solution or optimal algorithm exists. Here we recur to data from the numerical simulations to solve 
these optimization problems parametrically, which we demonstrate in the following section. 

SECTION V. Numerical Simulation 
In this section, we find the efficiency of interconnectivity and resiliency for different number and patterns of 
interconnections using both SIR and evil-rain model. Based on the simulation data, we propose our parametric 
models. 

A. Network Topologies and Interconnection Patterns 
We have considered different types of state-of-the-art network graphs to form a multilevel network, namely, 
Erdos-Renyi (ER) graph [8], Barbasi and Albert (BA) graph [8] and Telia Carrier (TC) network. Unlike ER and BA 
graph, the TC network is a real-world physical network topology with 21 nodes and 25 links, which are located 
over the USA [20]. 

https://ieeexplore.ieee.org/document/#deqn6
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Moreover, we have used the following link patterns to simulate the interconnectivity among 
subnetworks. Assortative Link (AL): Here the nodes with highest-degrees in one subnetwork connects to the 
nodes with highest -degree nodes in the other subnetwork, and so on. Disassortative Link (DL): The highest-
degree nodes in one subnetwork connect to the nodes with the lowest-degree in the other 
subnetwork. Random Link (RL): Here connections among nodes are assigned randomly between two 
subnetworks. 1–1 Link (1-1): Nodes are connected with shortest physical distances, i.e., a node in one 
subnetwork connects with the closest node in other subnetworks. 

B. Multilevel Network Generation 
We generate a 3-level network similar to the one shown in Fig. 1. When all three constituent subnetworks of the 
3-level network are the ER graph, we denote it as the ER-ER-ER network. Similarly, we form the BA-BA-BA 
network and the ER-TC-BA network. Since the TC network has 21 nodes, we have used 21 nodes for generating 
the BA and ER network. Moreover, the TC network is a connected graph, and we generate the BA and ER 
networks so that these networks also form two connected graphs. In particular, for the ER network, we assign 
edges between nodes with probability 𝑝𝑝 such that the generated graph is a connected graph (here we use 𝑝𝑝 =
0.18 and check whether the graph is connected). A connected BA graph is formed by using the algorithm 
proposed in [21] with an average node-degree equal to 3.2, and the power-law exponent is 2.8. As shown in Fig. 
1, we assume that the level-l network is the highly secure military network, whereas level-2 and level-3 
networks are commercial networks with a lower level of security where the attack initiates. While 
interconnecting these subnetworks to form a 3-level network, we have used the same number of 
interconnections to connect the military network with two commercial networks. The connection patterns are 
AL, DL, RL, and 1–1. Here two commercial networks are used as two backup communication infrastructures for 
the military system, which can be scaled to any number of networks. 

C. Simulation Results 
We first discuss the simulation results of the SIR model. A node in the less secure subnetwork (commercial 
network) is attacked (compromised) initially, and then attack propagates with probability 𝜏𝜏. 
Resiliency (𝑅𝑅(𝐺𝐺)) is calculated by using (1), where 𝐄𝐄[𝑁𝑁𝑓𝑓] is computed by averaging over 1,000 realizations of 
the SIR model with one random initial failure (𝐄𝐄[𝑁𝑁𝑖𝑖] = 1). 

Figure 2 shows the resiliency of the military network versus the number of interconnections for the ER-ER-ER, 
BA-BA-BA and ER-TC-BA network. Here the resiliency decreases as we increase the number of interconnections. 
This is because with more interconnections the risk easily propagates to the military system from commercial 
networks. Observe that the DL connection performs better than the AL connection, which is due to the fact that 
the military nodes with smaller degrees are connected to commercial nodes. Hence, even if an interconnected 
military node is compromised, due to its smaller degree the probability of compromising many neighbors is low. 

Figure 3 shows the efficiency of interconnectivity of the 3-level network for different number of 
interconnections, which can be computed by (5). Here, as we increase the number of interconnections the 
efficiency of interconnectivity becomes high which is due to the new communication paths between 
subnetworks. Moreover, with AL connection the efficiency of interconnectivity of the 3-level network is higher 
than that for the DL connection, which is due to the higher node-degrees of the interconnected nodes. 

The vulnerability versus the efficiency of interconnectivity for three multilevel networks is shown in Fig. 4. The 
vulnerability of the military network increases with the efficiency of the network. Moreover, for any given 
efficiency the higher the value of 𝜏𝜏, the vulnerability becomes higher due to the larger propagation probability 
of risks from the compromised nodes. 

https://ieeexplore.ieee.org/document/#deqn1
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Finally, Fig. 5 shows the results using the evil-rain model for the ER-ER-ER network due to space limitations. As 
described in the model, here commercial networks have the “source of failures” with a given probability (0.20 in 
the simulation); thus failures start from the commercial system and propagate to the military network. 
However, the military network has the “source of repairs” with a probability (0.20 in the simulation), which 
prevents the failure of the network entirely. We can observe the similar trend as in the SIR model. Thus we 
conclude that the interconnection increases the vulnerability of the secure military system. At the same time, 
the efficiency of interconnectivity among subnetworks also increases. 

D. Parametric Model for the Resiliency and Efficiency 
Motivated by the observed trends in the simulation data, we propose two parametric models for the efficiency 
of interconnectivity and resiliency for any given number of interconnection. From Fig. 2, observe that the 
resiliency is approximately linear with respect to the number of interconnections. We propose the following 
parametric expression for the resiliency (𝑅𝑅(𝜏𝜏,𝐺𝐺)) with 𝑙𝑙 number of interconnections, 

𝑅𝑅(𝜏𝜏,𝐺𝐺) = 𝛼𝛼(𝜏𝜏,𝐺𝐺) + 𝑙𝑙𝑙𝑙(𝜏𝜏,𝐺𝐺), (8) 

where 𝑚𝑚(𝜏𝜏,𝐺𝐺),𝑙𝑙(𝜏𝜏,𝐺𝐺) are two parameters estimated from simulation data, 𝐺𝐺 represents the network graph, 
and 𝜏𝜏 is the transmission probability. We obtained the following values of the optimally fitted parameters 𝑚𝑚 =
0.997,𝑙𝑙 = −0.007  (ER - ER - ER network); 𝑚𝑚 = 0.998,𝑙𝑙 = −0.017 (BA - BA - BA network); 𝑚𝑚 = 1.001,𝑙𝑙 =
−0.005 (ER- TC-BA network); which were then used to generate the fitted lines in the Fig. 6(a). 

Interestingly, as shown in Fig. 3, the efficiency of interconnectivity follows a nonlinear relationship with the 
number of interconnection (𝑙𝑙), which we approximate as the following, 

𝑊𝑊
^

(𝜏𝜏,𝐺𝐺) = 𝛼𝛼(𝜏𝜏,𝐺𝐺)𝑙𝑙𝛽𝛽(𝜏𝜏,𝐺𝐺) + 𝛾𝛾(𝜏𝜏,𝐺𝐺). (9) 

Here the values of optimally fitted parameters: 𝛼𝛼 = 0.0828,𝛽𝛽 = 0.2984, 𝛾𝛾 = −4 × 10−4 (ER-ER-ER 
network); 𝛼𝛼 = 0.0959,𝛽𝛽 = 0.2678,𝛾𝛾 = −3.2 × 10−3 (BA-BA-BA network); 𝛼𝛼 = 0.0854,𝛽𝛽 =
0.2678,𝛾𝛾 = −4.7 × 10−5 (ER - TC- BA network); which were then used to find the fitted lines in the Fig. 6(b). 

 
Fig. 2. Resiliency of the military network versus the number of interconnection for the ER-ER-er, BA-BA-ba, and 
ER-TC-ba networks with 𝜏𝜏 = 0.3 

 
Fig. 3. The efficiency of interconnectivity versus the number of interconnection for the ER-ER-er, BA-BA-ba, and 
ER-TC-ba networks with 𝜏𝜏 = 0.3 
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Fig. 4. The vulnerability of the military network versus the efficiency of interconnectivity for the ER-ER-er, BA-BA-
ba, and ER-TC-ba networks 

 
Fig. 5. Simulation results using the evil-rain influence model for the ER-ER-er network 

The values of parameters in (8) and (9) are computed by fitting the simulation data so as to minimize the overall 
mean-square-error (MSE). Higher-order polynomials may yield more accurate fitting of the data with added 
complexities and also with a risk of over-fitting the data points [22]. Here we tradeoff the complexity with slight 
inaccuracy to keep the model simple and to avoid possible over-fitting error. We derive the parametric model 
for the SIR model due to space constraints. However, the model parameters may also be tuned for the evil-rain 
model as both models show qualitatively similar trends. 
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Fig. 6. Parametric fitting of the resiliency and efficiency of interconnectivity for different multilevel networks 
with four interconnection patterns. Here 𝜏𝜏 = 0.3. 

Note that, the parametric models have great importance in deriving key insights. For instance, based on the 
given constraints (resiliency or vulnerability), one can obtain the number of interconnections by (8) and 
corresponding efficiency of interconnectivity by (9), that solves both optimization problems. One can also 
compute the efficiency of the multilevel network and resiliency of a secure network provided the number of 
interconnections. Moreover, the solution is independent of interconnection patterns (AL, DL, RL, 1–1) assuming 
the MSE tolerance. 

SECTION VI.Conclusion and Future Works 
This paper has analyzed the dynamics of risk propagation in multilevel networks using the SIR epidemic model 
and evil-rain influence model. The assumptions used in the two models may represent all real-world risk 
propagation simplistically but enable an exact mathematical analysis of the dynamics of risk propagation in a 
multilevel network. We have proposed two parametric models to maximize the efficiency of interconnection 
under security (resiliency/vulnerability) constraints. These models can be used to find the number of 
interconnections for exchanging information within the multilevel network when some subnetworks are 
vulnerable to security attacks. 
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The analysis of the optimality of the proposed optimization problems and the trade-off between accuracy and 
complexity of the parametric model are left as future works. Besides, validating the parametric model with data 
from the real-world network is also a part of our future study. The generalization of this work for modeling the 
non-homogeneous propagation of security risks (i.e., τ and c may vary based on the types of security risks and 
links) would better capture the real-world threat propagation in the multilevel network. 
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