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Abstract:
Eco-labeling of services has become increasingly common, yet little empirical evidence exists concerning its
effectiveness. We address this gap in the literature by analyzing a highly visible eco-label, the American Col-
lege and University Presidents’ Climate Commitment (ACUPCC), in the sector of higher education. We match
information about the ACUPCC to the US Department of Education IPEDS database to examine the impact
of signing on student applications, admissions, and enrollment. We mainly utilize a difference-in-difference
approach to identify the effects of interest but confirm results with an interrupted time series model. We find
that signing the ACUPCC increases applications and admitted students by 2.5–3.5%. However, the evidence
regarding enrollment is weaker with only some specifications finding increases of around 1–2%. Overall, there
is considerable heterogeneity across sectors and selectivity of the institutions. These results show that, at the
minimum, voluntary and information-based approaches (VIBAs) for services can be effective in generating
visibility and influencing less-costly consumer behavior.
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1 Introduction

Examples of eco-labeled goods and services are becoming more and more common in the marketplace. This
practice is typically considered to be an information provision program, in which the label conveys the envi-
ronmental benefits of the product. In contrast to the traditional approaches to environmental regulation that
set mandatory standards or attempt to price the externality, eco-labeling is a voluntary and information-based
approach (VIBA) (Bjorner, Hansen, & Russell, 2004; Kotchen, 2013; Segerson, 2013 ). Such voluntary programs
require some commitment to improve environmental performance beyond those required by existing envi-
ronmental regulations, and continue to grow in popularity, with hundreds of voluntary programs in effect
around the world (Morgenstern and Pizer 2007 ). Theoretical work on the topic has shown that the provision
of such information can positively impact the environmental behavior of individuals (Kennedy, Laplante &
Maxwell, 1994; Petrakis, Sartzetakis & Xepapadeas, 2005 ) and even reduce the required environmental tax rate
(Sartzetakis, Xepapadeas, and Petrakis 2012 ). Likewise, some have argued that market forces for eco-labeled
products could lead to socially beneficial outcomes through allowing consumers to express their preferences
for environmentally-friendly products (Lyon & Maxwell, 2002; Podhorsky, 2008 ).

Empirical work on the topic has yielded limited evidence suggesting the eco-labeling of goods can impact
consumer behavior in both stated preference (Loureiro & Lotade, 2005; Loureiro, McCluskey & Mittelham-
mer, 2001 ) and revealed preference situations (Bjorner, Hansen, & Russell, 2004; Nimon & Beghin, 1999; Teisl,
Roe & Hicks, 2002 ). However, surprisingly little work has been done specifically regarding the eco-labeling
of services.1 In addition, several recent studies argue that VIBAs can be better understood using club theory,
where members voluntarily join the green club to generate credibility and/or visibility (Kotchen, 2013; Potoski
& Prakash, 2005; Potoski & Prakash, 2009; van’t Veld & Kotchen, 2011 ). To this point, however, there is a lack
of empirical evidence of any such visibility impacts. In this paper, we seek to fill these gaps in the literature by
analyzing one major service sector, higher education.

Since 2006, almost 700 institutions of higher education (hereafter IHEs) have signed the American College
and University Presidents’ Climate Commitment (ACUPCC).2 The ACUPCC is a highly visible signal of the
environmental commitment of IHEs that requires signatories to take immediate steps to reduce greenhouse
gases and develop a plan for becoming climate neutral. We match the information about signatories to the US
AndrewG.Meyer is the corresponding author.
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Department of Education’s Integrated Postsecondary Education Data System (IPEDS) database (2002–2013) to
create a 12-year panel of essentially all US 4-year-degree-granting IHEs in the public and private not-for-profit
sectors.We then utilize a difference-in-difference framework to identify the impact on several outcome variables
of interest including the number of applications, admitted students, and enrolled students. Furthermore, we
estimate an interrupted time series model as a robustness exercise and find similar results.

On average, we find that signing the ACUPCC increases student applications by around 2.5% to 3%. There
is also evidence that IHEs then capitalize on these extra applications by similarly increasing the number of
admitted students. However, there is only weak evidence that these extra admissions translate into higher
enrollment. Our point estimates suggest that enrollment increases by 1 to 2% on average, but these enrollment
estimates are significant at conventional levels in only some of the specifications. Examining the subsamples
of public and private IHEs, we see that most of these effects are being driven by the private IHEs. We also find
that less selective IHEs experience stronger effects compared to more selective IHEs.

These findings are an important contribution to the literature in that previously there had only been anec-
dotal evidence that an IHE’s environmental commitment matters.3 We are not aware of any prior evidence
regarding an IHE’s environmental commitment affecting the enrollment decision of those admitted. Our re-
sults indicate that, while the commitment to the environment is a factor that draws interest in the form of
applications, it may not be a big enough factor to sway an individual’s final decision of where to attend overall.
However, the stronger enrollment results for less selective IHEs indicate that at least a subset of institutions do
experience an increase in enrollment from signing.

A large theoretical literature explores firms’ motivations for adopting a VIBA. This literature tries to recon-
cile the standard economic theory, which suggests that individuals and firms will not be willing to incur much
private cost for products that provide benefits to everybody,4 with the empirical observation of the proliferation
of VIBAs. Arora and Gangopadhyay (1995) demonstrate that public recognition can be an important theoretical
motivator to adopt a VIBA because it allows the firm to appeal to environmentally focused consumers with a
higher willingness to pay. Segerson and Miceli (1998) and Maxwell, Lyon, and Hackett (2000) show that firms
may participate to preempt government intervention and hence save on abatement costs. Graff Zivin and Small
(2005) argue that firms are essentially competingwith traditional not-for-profits when they voluntarily improve
environmental performance beyond regulations and are effectively soliciting contributions from customers and
shareholders. Baron (2007) similarly shows that some entrepreneurs are willing to trade away financial gains
for social satisfaction or warm glow. Finally, a pair of papers examine the private provision of public goods
showing that such provision can be profit-maximizing because of the premium that consumers are willing to
pay (Bagnoli &Watts, 2003; Besley & Ghatak, 2007 ). However, there is not as much empirical work in this area
documenting the benefits of adopting a VIBA.5

Most of the empirical work concerning VIBAs has concentrated on the supply side issue of their environ-
mental effectiveness.6 Much of this literature analyzes the environmental impacts of the EPA’s 33/50 program.
Results are mixed with some studies suggesting that the program reduced toxic emissions (Khanna & Damon,
1999; Sam, Khanna & Innes, 2009 ) and others finding no effect or even a positive effect on emissions (Gamper-
Rabindran, 2006; Vidovic & Khanna, 2007 ). Similarly, King and Lenox (2000) find no evidence that the chemical
industry’s Responsible Care program reduces participants’ environmental performance andWelch,Mazur, and
Bretschneider (2000) find that the adoption of the U.S. Department of Energy’s Climate Challenge Program has
no effect on emissions. Morgenstern, Pizer, and Shih (2007) utilize propensity score matching methods to es-
tablish a control group for difference-in-difference estimation of the energy usage effects of the EPA Climate
Wise program and find mainly mixed and insignificant results. Another strand of the empirical literature has
focused on the factors that affect the probability of a firm participating in a VIBA, with again much of evidence
stemming from the EPA’s 33/50 program (Arora &Cason, 1996; Arora &Cason, 1995; Khanna&Damon, 1999 ).
However, there is less research in the economics literature evaluating the impact of VIBAs on consumer demand
for the product. One notable exception is the group of papers documenting price premiums in the residential
(Brounen & Kok, 2011; Deng, Li & Quigley, 2012 ) and commercial (Eichholtz, Kok & Quigley, 2013; Eichholtz,
Kok & Quigley, 2010; Fuerst & McAllister, 2011a; Fuerst & McAllister, 2011b ) real estate markets due to energy
labels. Ultimately, the long-run success of eco-labeling programs requires that firms receive some benefit to
offset the additional abatement cost.

This research also contributes to the literature that explores the determinants of demand for higher educa-
tion. Most commonly, research in this area focuses on factors such as price (Curs & Singell, 2002; Neill, 2009;
Soo & Elliott, 2010 ) and financial aid (DesJardins, Ahlburg &McCall, 2006; Dynarski, 2003; Heller, 1999 ). Many
of the more recent studies in the area, however, have been focused on identifying other attributes that affect
the application and admission decisions of potential students. Some of the factors that have been examined in-
clude rankings and reputation (Alter & Reback, 2014; Luca & Smith, 2013 ), spending on student services (Jacob,
McCall, and Stange 2013 ), athletic success (Pope and Pope 2009 ), and application processes (Liu, Ehrenberg
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& Mrdjenovic, 2007; Smith, Hurwitz & Howell, 2015 ). We add this line of research by considering how an
institution’s commitment to the environment influences student application and enrollment decisions.

2 DataDescription

We utilize two main data sources for this analysis, the IPEDS database and the ACUPCC reporting database.7
The IPEDS data contain institution-level information from the National Center for Education Statistics (US
Department of Education. Institute of Education Sciences, National Center for Education Statistics 2015 ). Any
IHE that participates in any federal financial assistance program in the United States is required to complete the
IPEDS surveys on an annual basis. As a result, there is a large amount of information available on a consistent
annual basis for nearly every IHE.8 In our analysis, we focus on information from the academic years 2002–2003
through 2013–2014.9 The time period for the analysis was selected to include a similar amount of information
from the periods before and after the emergence of the ACUPCC.

The primary information that we obtain from the IPEDS database relates to the applications and admis-
sion variables that represent the outcomes in our empirical analysis. This includes variables for the number of
first-time, degree-seeking undergraduates who applied, were admitted, and enrolled each fall semester. The
enrollment variable includes students that were enrolled full or part-time at the institution. While we imple-
ment a fixed effects analysis to control for time-invariant factors unique to each IHE, we also collect a handful
of variables that vary within institutions over time, and that might be influential in student decisions. To ac-
count for how price influences student behavior, we use IPEDS variables for the undergraduate application fee
charged in a given year, aswell as in-state and out-of-state tuition. To account for how the quality of a schoolmay
be changing, we follow Pope and Pope (2009) in collecting information on the average salary of professors.10
Previous research (Smith, Hurwitz, and Howell 2015 , for example) shows that belonging to the Common Ap-
plication significantly affects applications. Some IHEs join the Common Application during the period of our
panel so we includemembership in the CommonApplication as a potentially important time-variant control.11
Finally, we supplement the IPEDS information by including variables for the number of high school graduates
(from the Digest of Education Statistics), and the real income per capita (from the Census) in the state in which
each IHE is located.

The ACUPCC originated out of planning sessions at the October 2006 meetings of the Association for the
Advancement of Sustainability in Higher Education (AASHE). A group of IHE presidents, Second Nature,
ecoAmerica, and AASHE collaborated to generate the commitment and 12 presidents became founding signa-
tories in December 2006 (ACUPCCMission andHistory 2014 ). As previouslymentioned, almost 700 IHEs have
since signed the ACUPCC. In signing this commitment, IHEs agree to 1) complete an emissions inventory, 2)
within 2 years, set a target date and interim milestones for becoming climate neutral, 3) take immediate steps
to reduce greenhouse gas emissions by choosing from a list of short-term actions, 4) integrate sustainability
into the curriculum and make it part of the educational experience, and 5) make the action plan, inventory and
progress reports publicly available.

In order for the signing of this commitment to plausibly affect applications and admissions decisions, it
must be the case that students are aware of the commitment. There are several avenues by which students
may become aware of this information. First, the media has provided extensive coverage on this commitment
since its inception. Until recently the ACUPCCwebsite maintained an archive of several hundredmedia stories
dated 2006–2014 related to the ACUPCC and its signatories. Any prospective student conducting an internet
search of an IHE’s name was therefore liable to come across any number of these stories. Also, perusal of a
signatory IHE’s website will often provide information about its ACUPCC signatory status.12 Once aware of
the ACUPCC, interested parties can find all of the relevant information about signatories of the ACUPCC on its
publicly availableACUPCCReporting Systemwebsite. Finally, The PrincetonReview’sGuide toGreenColleges
clearly identifies whether or not each IHE in the guide had signed the ACUPCC from the inception of the guide
in 2010 through the end of our study period.

We limit our sample to four-year degree granting public and private-not-for-profit IHEs.13 We further clean
the data to remove IHEs that report implausibly large changes in applications in two consecutive years. To do
this we examine the distribution of year-to-year percentage change in applications among the sample IHEs.
The top 1 percentile of observations display a 1 year increase that is greater than a 114.43% in applications and
the bottom 1 percentile of observations are characterized by a 1 year decrease of more than 47.54%. We remove
all observations from the IHEs falling into either the top or bottom percentile. Not counting 13 singleton ob-
servations, which are dropped from the institution fixed-effects analysis, the final sample for analysis contains
12,353 observations from 1,121 IHEs spanning the years 2002–2013. Table 1 shows summary statistics for these
12,353 observations. We note that approximately 16% of the observations come from ACUPCC IHEs in years
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where they have signed on to the commitment. We also note that there is substantial variation among IHEs in
their number of applications, students admitted, and students enrolled; the standard deviation is slightly larger
than the mean for these three variables.

Table 1: Summary statistics.

Variable Mean Std. Dev. Min Median Max Obs

Applications 5,764.10 7,366.89 9 3,086 72,676 12,353
Admissions 3,307.21 3,821.01 4 1,938 35,815 12,353
Enrollment 1,105.19 1,250.28 1 602 9,082 12,350
Signed 0.16 0.37 0 0 1 12,353
Common
application

0.27 0.44 0 0 1 12,353

In-state
tuition*

18.51 12.55 0 19.34 47.95 12,313

Out-of-state
tuition*

22.31 9.42 0 21.32 47.95 12,313

HS graduates
(1,000’s)

111.28 94.46 3.93 74.78 430.29 12,353

Income per
capita*

44.31 6.62 30.52 43.45 78.31 12,353

Undergradu-
ate
application
fee

47.17 21.54 0 45.63 173.17 12,023

Average
professor
salary*

95.68 26.11 13.23 88.60 232.48 11,197

∗ indicatesmeasured in 1,000's of constant 2014dollars.Undergraduate application fee ismeasured in constant 2014dollars.High school graduates and income
per capita aremeasured for the state in which the institution is located. All of other variables are at the institution level.

The “Signed” column of Table 2 provides a description of the timing of the signing of the ACUPCC for sample
IHEs. Our sample contains 376 IHEs that sign the ACUPCC and report admissions variables to IPEDS. Table
2 shows that the largest number of sample signatories signed on to the ACUPCC in 2007. However, a lesser
number of IHEs continued to sign the ACUPCC throughout the time period of our panel. We also note that
there are nearly equal numbers of public and private not-for-profit IHEs signing the agreement during the
time period of our sample. A challenge to identifying the impact of the signing of the ACUPCC is the timing of
the application cycle. IHEs vary in their application deadlines, with some deadlines as early as November (for
the following fall) and some as late as August (for that fall). Many IHEs have continuous or rolling application
deadlines rather than specific months. We make the assumption that an IHE that signs the ACUPCC in the
first 6 months of the year (by the end of June) could affect applications for the upcoming fall semester. An IHE
signing the ACUPCC in the second 6months of the year (July through December) would not affect applications
until the following fall semester.14 Based on our assumption that signing in the first half of the year affects that
fall’s applications, the “Effective” column of Table 2 provides a description of the variation in the timing of
potential impact among the signatory IHEs.

Table 2: Timing of the signing of the ACUPCC.

Overall Public Private
Year Signed Effective Signed Effective Signed Effective

2006 9 0 6 0 3 0
2007 230 173 118 94 112 79
2008 66 110 37 54 29 56
2009 20 36 12 20 8 16
2010 17 16 6 9 11 7
2011 15 18 6 7 9 11
2012 9 7 2 1 7 6
2013 10 16 4 6 6 10
Total 376 376 191 191 185 185

Note: Table displays frequencies. “Signed” represents the calendar year of signing. “E昀�fective” represents the first potential year a昀�fecting applications/ad-
missions/enrollment numbers.
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3 Empirical Strategy

The IPEDS database provides information on the universe of IHEs, whichmeanswe are able to build a panel in-
cluding both signatories and non-signatories. Clearly, the institution-level decision to become a signatory could
be endogenous; many institutional characteristics are unobservable to the researcher and potentially correlated
with both the signing of the ACUPCC and the outcome measures of interest such as applications and enroll-
ment. A failure to address these unobservable characteristics could lead to biased results regarding the effects
of signing the ACUPCC. Also, as noted by Morgenstern and Pizer (2007) , the challenge in the program evalu-
ation of VIBAs is finding a credible baseline of what would have occurred absent the adoption of the program.
The two general approaches are to either compare participants to a similar group of nonparticipants or to con-
struct a business-as-usual forecast using data on only the participants. We focus on the former approach with a
random-growth difference-in-difference estimator. We also implement the latter approach with an interrupted
time-series estimator as a robustness check in Section 5.

We utilize the regression-adjusted version of the difference-in-difference (hereafter DID) estimator for mul-
tiple time-periods (Angrist & Krueger, 1999; Imbens &Wooldridge, 2009 ). IHE i belongs to a group, Gi ∈ {0, 1}
(where group 1 is the treatment group of signatories), and is observed in time period t ∈ {2002, 2003, … , 2013}.
The regression equation is

Yit = α + τSit + Xit
′δ + γi + λt + εit. (1)

where Sit is an indicator for being a signatory in a post-signing year, Xit is a vector of IHE characteristics, γi
is a time-invariant IHE-specific fixed effect potentially correlated with Gi, and λt is a set of year fixed effects..
The coefficient of interest, τ, is the DID treatment effect. As noted by Angrist and Krueger (1999) , controlling
for IHE characteristics changes our estimate of τ only if Sit and Xit are correlated, conditional on IHE and year
fixed effects. Identification of a causal effect in [1] requires that signatories and non-signatories would have
experienced the same trends in the outcome variables had the signing of the ACUPCC not occurred. This may
not necessarily be the case. Thus, we make a modification to [1] to allow for IHE-specific linear trends, φi, and
have

Yit = α + τSit + Xit
′δ + γi + λt + φit + εit. (2)

Equation [2] is often referred to as the random-trendmodelwhen the dependent variable is in level form and the
random-growth model when the dependent variable is in log form (Wooldridge 2005 ). It is possible that other
unobservable IHE factors changed at the same time as the ACUPCC signing status. This could be problematic
for our identification of the causal effects of signing if these unobservable factors also affect our outcomes of
interest. We return to this issue in more depth in Section 5.2.

Equation [2] is our main econometric specification for the DID estimation. Hence, we are identifying the
treatment effect by comparing deviations from the IHE-specific trend in the pre- and post-signatory years, rela-
tive to the aggregate time effects. We estimate this model for the outcomes of (logged) applications, admissions,
and enrollment. We log the dependent variables for two reasons. First, the distributions are positively skewed
so utilizing the untransformed variables could overweight large schools relative to small schools (Pope and
Pope 2009 ). Secondly, we believe the signing of the ACUPCC is likely to affect the outcome variables by a given
percentage rather than a certain level across IHEs. Recall that IHEs are first able to sign the ACUPCC in 2006
(with the signing first affecting the fall 2007 cohort). Nevertheless, the data are available so we include observa-
tions dating back to fall 2002. This gives more information on the pre-signatory time-period and thus helps to
establish the school-specific growth rates.15 We cluster standard errors at the institution level for all regressions.

Our estimate of τ corresponds to the estimate of the average treatment effect (ATE) if the treatment indica-
tor, Sit, is exogenous given the unobserved IHE-level time-invariant heterogeneity and IHE-level growth rate.
There is a tradeoff here; the results apply to the general population of IHEs only if we utilize a sample that
is representative of the population. On the other hand, the required conditional exogeneity may be more be-
lievable with a subsample of IHEs that are more homogenous. Therefore, we estimate our model with three
different samples to test the impact of theACUPCC signing on demand for an IHE. To begin, we compare across
a set of IHEs that are otherwise identified as having a commitment to the environment, which forms control
and treatment groups that are reasonably similar. To do this, we define our sample to be the IHEs listed in the
2015 Princeton Review’s Guide to Green Colleges.16 Among these schools, some sign the ACUPCC during the
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time period examined, and some do not. In this way, we are able to see if indicating this specific commitment
impacts the decisions of consumers among a set of schools otherwise deemed to be environmentally friendly.
Secondly, we focus only on signatories, and identification of the signing’s impact depends on variation in the
timing of the ACUPCC signing.17 The results for this subsample are interpreted as the impact of signing the
ACUPCC, conditional on being a member of the signatory group. Finally, we utilize the full sample of IHEs
that grant 4-year degrees in the public and private not-for-profit sectors to establish counterfactual common
time-effects. In each of these cases, our empirical strategy involves controlling for IHE-specific time trends and
time-invariant unobservable characteristics.

Appendix Table 11 provides descriptive statistics for each of the different samples we utilize in our DID
analysis. The values in this table are drawn from the 2005–2006 academic year, so that we can examine the sim-
ilarity of the controls in each of our sample specifications with the corresponding treatment group before the
treatment occurs. For each of the three comparison groups, we present the mean values for several variables,
and then indicate when there are significant differences in the means between groups.18 There are few signifi-
cant differences of note in both our Green Guide and signatory samples. When we compare those that sign
to the universe of 4-year IHEs we see highly significant differences in nearly every variable. As subsequently
demonstrated in our first sets of results, the estimates tend to be similar when using the various comparison
groups. For the sake of brevity, we focus on the sample of all 4-year IHEs for subsequent results testing for
heterogeneity, as well as our robustness checks and falsification tests.

4 Results

We first present the main results in Section 4.1 and then investigate heterogeneity in Section 4.2. Subsequently,
we show a variety of robustness checks in Section 5.

4.1 MainResults

We begin our examination of the empirical results by looking at the impact of ACUPCC signing on the number
of students applying to an IHE. These results are presented in Table 3. For each of the samples, we first present
results for a simplified specification that includes no control variables beyond the fixed effects and IHE-specific
linear trends.19 We then present the results from estimating our full model which includes the state and IHE-
level control variables. The first two columns present the results for the sample of schools listed in the Princeton
Review’s Guide to Green Colleges. Columns 3 and 4 present our sample that includes only schools that sign
the ACUPCC agreement over the period sampled, and exploits variation in the timing of signing, and columns
5 and 6 present the results for the full sample of 4-year IHEs. In each case, it is estimated that there is a positive
and significant impact on applications. The magnitudes of the estimated impact are quite similar in each case,
with an estimated increase of between 2.65% and 3.13%, depending on the specification.20

Table 3: Regression results: applications.

(1) (2) (3) (4) (5) (6)
Green guide Signatories All 4-year IHEs

Signed 0.0281** 0.0294** 0.0265* 0.0297** 0.0295*** 0.0313***
(0.0138) (0.0146) (0.0141) (0.0151) (0.0112) (0.0120)

Common
application

0.0722*** 0.0911*** 0.0747***

(0.0227) (0.0233) (0.0162)
HS graduates
(1,000’s)

0.00236*** 0.00379*** 0.00146**

(0.000912) (0.00112) (0.000726)
Income per
capita
(1,000’s)

0.0114** 0.00972* 0.00501

(0.00521) (0.00533) (0.00331)
Undergradu-
ate
application
fee

0.000223 –0.000318 –0.000679*

(0.000637) (0.000647) (0.000379)
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Ln in-state
tuition
(1,000’s)

–0.0952* –0.0117 –0.0298

(lagged 1
year)

(0.0554) (0.0729) (0.0372)

Ln out-state
tuition
(1,000’s)

0.0282 –0.0164 0.0237

(lagged 1
year)

(0.0236) (0.0323) (0.0243)

Ln Avg. Prof.
Salary
(1,000’s)

0.141 0.0883 –0.0466

(lagged 1
year)

(0.0955) (0.0989) (0.0566)

Observations 3,648 3,377 4,205 3,854 12,353 11,216
R-squared 0.990 0.989 0.988 0.987 0.987 0.987

Notes: table presents regression results from models in which dependent variable is ln of applications. Samples vary as described in text. Standard errors, clus-
tered at IHE level, presented in parentheses. All specifications include IHE fixed e昀�fects, IHE-specific linear trends, and year fixed e昀�fects. Allmonetary variables
measured in constant 2014 dollars. ∗ denotes significance at 0.10 level. ∗∗ denotes significance at 0.05 level, ∗∗∗ denotes significance at 0.01 level,

Next,we examine how IHEs respond to the increase in applications received by utilizing the number of students
admitted as the dependent variable in our analysis. Table 4 follows the design of Table 3, with two model
specifications for each of our threeDID samples.Aswith the results for applications, the signing of theACUPCC
is estimated to have a consistently positive and significant impact on admissions for a given institution. The
magnitude of the impact on admissions is estimated to be larger than the impact on applications for both the
signatory only and Green Guide samples, while it is slightly smaller when using the sample of all 4-year IHEs.
The results here indicate that, as potential students respond to an institution’s commitment to the environment
by increasing applications, the institutions are responding by accepting more students. One explanation for
this is that IHEs are willing and able to expand the number of students when they experience an increase in the
number of applicants. Alternatively, it could be that IHEs face increasing competition for students and must
admit more to yield the desired number of enrolled students.

Table 4: Regression results: admissions.

(1) (2) (3) (4) (5) (6)
Green guide Signatories All 4-year IHEs

Signed 0.0361** 0.0327** 0.0334** 0.0374** 0.0263** 0.0279**
(0.0147) (0.0155) (0.0151) (0.0159) (0.0118) (0.0124)

IHE-level
controls

No Yes No Yes No Yes

Observations 3,648 3,377 4,205 3,854 12,353 11,216
R-squared 0.988 0.988 0.985 0.985 0.981 0.982

Notes: Table presents regression results from models in which dependent variable is ln of admissions. Samples vary as described in text. Standard errors, clus-
tered at IHE level, presented in parentheses. All specifications include IHE fixed e昀�fects, IHE-specific linear trends, and year fixed e昀�fects. IHE Level Controls are
commonapplication,HS graduates, incomeper capita, undergraduate application fee, lagged in-state tuition, lagged out-of-state tuition and lagged professor
salary. All monetary variables measured in constant 2014 dollars. ∗ denotes significance at 0.10 level. ∗∗ denotes significance at 0.05 level, ∗∗∗

denotes significance at 0.01 level,

To this point we have consistent evidence across all three samples indicating that IHEs signing the ACUPCC
agreement experience significant increases in applications received and students accepted for admission. The
next logical question to consider is whether or not there will be an actual increase in enrollment at a given IHE
as a result. To examine this, we follow the same format as the previous results, and utilize first-time enrollment
in the fall of each year as the dependent variable in our various specifications. The results of these analyses
are presented in Table 5. In this case, the estimated impact of signing is not consistently significant across our
samples. The models using the Green Guide and signatory only samples show positive results at a moderate
level of significance. The estimated magnitude of the impact on enrollment is smaller than that on applications
and admissions. In the Green Guide sample, for instance, the point estimates for enrollment are almost exactly
half the size of the estimated impacts on admissions displayed in Table 4. The sample of all 4-year IHEs yields
insignificant results.
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Table 5: Regression results: enrollment.

(1) (2) (3) (4) (5) (6)
Green guide Signatories All 4-year IHEs

Signed 0.0182* 0.0150 0.0216* 0.0224* 0.00807 0.00842
(0.00999) (0.0101) (0.0113) (0.0120) (0.00860) (0.00894)

IHE-level
controls

No Yes No Yes No Yes

Observations 3,648 3,472 4,204 3,853 12,350 11,214
R-squared 0.994 0.994 0.990 0.990 0.987 0.988

Notes: Table presents regression results from models in which dependent variable is ln of first-time enrollments. Samples vary as described in text. Standard
errors, clusteredat IHE level, presented inparentheses.All specifications include IHEfixede昀�fects, IHE-specific linear trends, andyearfixede昀�fects. IHE-level con-
trols are common application, HS graduates, income per capita, undergraduate application fee, lagged in-state tuition, lagged out-of-state tuition and lagged
professor salary. All monetary variables measured in constant 2014 dollars. ∗ denotes significance at 0.10 level. ∗∗ denotes significance at 0.05 level,
∗∗∗ denotes significance at 0.01 level,

Overall, there is some evidence of an impact on enrollments, but it is not as strong as the evidence of impacts
on applications and admissions. One possible explanation for this is that the application process may be fairly
low-cost and require little in the way of commitment from the consumer, particularly when compared to the
enrollment decision. The signing of an environmental commitment may draw a potential student’s interest and
entice him or her to apply, but this factor alonemay not be enough to impact the decision of where to ultimately
enroll. Another potential explanation is that IHEs may not have the capacity (or desire) to actually enroll more
students at a particular time. If this is true, and the ACUPCC signing does increase interest from consumers,
then it is possible for the institution to respond in otherways. For example, the institutionmay choose to increase
the quality of its student body, as opposed to the quantity, by beingmore selective. An increase in demandmight
also lead to a decision to increase the price of attending. To investigate these possible responses, we estimated
the same set of models shown in Table 3, Table 4 and Table 5 using the average SAT score of the incoming class,
the real rate of out-of-state tuition, and the admit rate (admissions/applications) as dependent variables. We
did not find any evidence of statistical significance in these models.21 We explore this further in SubSection 4.2
where we look for heterogeneous IHE responses.

4.2 Heterogeneity in theResults

It is important to recognize that different types of IHEs may experience distinct responses to the signing of the
ACUPCC. To begin exploring possible heterogeneity, we follow Pope and Pope (2009) in examining different
impacts for private and public IHEs; these results are displayed in Table 6. To simplify this and all subsequent
tables, we present only the results of the specifications with the full set of control variables and for all 4-year
IHEs.22 The estimated coefficients indicate that the increase in applications due to signing is primarily observed
in private institutions; these differences are statistically significant. Note that this difference does not appear to
be driven by differences in the frequency or timing of signing by sector; the descriptive information in Table
2 reveals strikingly similar patterns in the number of IHEs signing the ACUPCC agreement over time in each
sector. One possible explanation for the differential impact across sectors is that the typical student interested in
attending a private institution has a different set of preferences than the typical student applying to public sector
schools. For example, the decision to apply to IHEs in the public sector may largely be driven by geographic
location, given differentials in tuition between in-state and out-of-state students. The decision to apply to IHEs
in the private sector, on the other hand, may be more likely to be influenced by the specific attributes offered.23
The results in Table 6 seem to indicate that a commitment to the environment may be one such attribute.

Table 6: Regression results: results by sector.

(1) (2) (3) (4) (5) (6)
Ln applications Ln admissions Ln enrollment

Public Private Public Private Public Private

Signed 0.0150 0.0411** 0.0201 0.0367** –0.00279 0.0165
(0.0142) (0.0186) (0.0169) (0.0177) (0.0119) (0.0133)

Observations 4,325 6,891 4,325 6,891 4,325 6,889
R-squared 0.988 0.983 0.982 0.975 0.986 0.977
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Notes: Table presents regression results from sample of all 4-year IHEs. Columns in this table represent resultswhen further restricting samples based on sector
of institution. Standard errors, clustered at IHE level, presented in parentheses. All specifications include IHE fixed e昀�fects, IHE-specific linear trends, year fixed
e昀�fects, common application, HS graduates, income per capita, undergraduate application fee, lagged in-state tuition, lagged out-of-state tuition (public only)
and lagged professor salary. All monetary variables measured in constant 2014 dollars. ∗ denotes significance at 0.10 level. ∗∗ denotes significance at
0.05 level, ∗∗∗ denotes significance at 0.01 level,

When we examine the impact on admissions by sector, displayed in columns 3 and 4 of Table 6, we again see
that the significant increases as a result of signing seem to be limited to IHEs in the private not-for-profit sector.
In columns 5 and 6 of Table 6, we proceed to estimate the impacts on enrollment by sector of institution. Aswith
both applications and admissions, the point estimate is larger for private institutions. However, the coefficients
are not statistically significant.

Furthermore, the IHE response to an increase in student interest may depend upon the position of the
IHE. For example, more selective IHEs may be more likely to be meeting their enrollment targets whereas less
selective IHEs may not be doing so. Thus, we may not expect to see as much of an increase in admissions or
enrollment at more selective IHEs compared to less selective IHEs. To investigate this issue, we divide our
sample by the average admit rate in the years prior to 2007. We classify IHEs with average admit rates below
the median as more selective and IHEs with average admit rates above the median as less selective. We then
estimate 2 on these subsamples for the outcomes of (logged) applications, admissions, and enrollment. These
results are displayed in Table 7. Point estimates for the effect of signing on applications are positive for both
subgroups, but only statistically significant for less selective IHEs. The point estimate is also more than twice
as large for less selective IHEs compared to more selective IHEs. A possible reason for this difference is that
students trying for more selective IHEs may be primarily focused on academic attributes whereas students
applying to less selective IHEs may be relatively more concerned with other non-academic factors such as the
ACUPCC. However, one would likely require student level data to test this explanation. A similar pattern holds
in columns 3 and 4 of Table 7, for the impact of signing on admissions. Finally, as theorized, we find evidence
of an increase in enrollment due to signing only for less selective IHEs. We find essentially no impact of signing
on enrollment for more selective IHEs. We then tested for impacts on admit rates and the SAT score of the
incoming class to see if more selective IHEs capitalize on increased student interest by becoming even more
selective. Coefficients in these regressions are near 0 and not statistically significant.24

Table 7: Regression results: results by selectivity.

(1) (2) (3) (4) (5) (6)
Ln Applications Ln Admissions Ln Enrollment

More
Selective

Less Selective More
Selective

Less Selective More
Selective

Less Selective

Signed 0.0210 0.0473*** 0.0159 0.0418** –0.00656 0.0282**
(0.0163) (0.0181) (0.0168) (0.0186) (0.0130) (0.0125)

Observations 5,419 5,797 5,419 5,797 5,418 5,796
R-squared 0.987 0.984 0.980 0.984 0.987 0.988

Notes: Table presents regression results from sample of all 4-year IHEs. Columns in this table represent results when further restricting samples based on IHE
selectivity. Standard errors, clustered at IHE level, presented in parentheses. All specifications include IHE fixed e昀�fects, IHE-specific linear trends, year fixed
e昀�fects, common application, HS graduates, income per capita, undergraduate application fee, lagged in-state tuition, lagged out-of-state tuition and lagged
professor salary. ∗ denotes significance at 0.10 level. ∗∗ denotes significance at 0.05 level, ∗∗∗ denotes significance at 0.01 level,

5 Alternative Specifications andRobustness Checks

5.1 Robustness of theDIDApplicationResults

We investigate the robustness of our DID estimates regarding the impact of signing the ACUPCC on applica-
tions in a few ways. First, we investigate the use of IHE-specific quadratic time trends. The analyses in Table 3,
Table 4, Table 5, Table 6, Table 7 include linear time trends, but it is possible that a more flexible functional form
better captures IHE-specific trends. Column 1 of Table 8 shows the results when estimating the model with
logged applications as the dependent variable and including IHE-specific quadratic time trends. The results
are similar to those observed in the analogous column 6 of Table 3.25 The second robustness check involves the
assignment of ACUPCC signing to a specific year where we expect an impact on applications. Our primary
analysis assumes IHEs signing in the first half of the year will see an impact (if one exists) in the fall of that
year. Those signing in the second half of the year will see a potential impact the following year. We estimate the
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models using logged applications as the dependent variable, and shift the cutoff to assignment one month in
each direction.26 Columns 2 and 3 of Table 8 display the results for this robustness check; the estimated effect
does not seem sensitive to our choice of the month cutoff.

Table 8: Regression results: robustness checks.

(1) (2) (3) (4) (5) (6) (7)
Quadratic
trends

May cutoff July cutoff Excluding
2007

Additional
IHE
controls

Adding
SAT

Timing of
effects

Signed 0.0242** 0.0273** 0.0282** 0.0427*** 0.0313*** 0.0242**
(0.0118) (0.0114) (0.0120) (0.0148) (0.0120) (0.0121)

Immedi-
ately
after

0.0285**

(0.0112)
1 year after 0.0204

(0.0152)
2 years after 0.0195

(0.0194)
3 years after 0.0101

(0.0233)
≥4 years
after

0.000637

(0.0285)
Observa-
tions

11,216 11,216 11,216 10,235 10,430 8,408 11,216

R-squared 0.991 0.987 0.987 0.987 0.988 0.989 0.987

Notes: Tablepresents regression results fromsampleofall 4-year IHEsandmodels inwhichdependentvariable is lnofapplications. Standarderrors, clusteredat
IHE level, presented in parentheses. All specifications include IHEfixed e昀�fects, IHE-specific linear trends, year fixed e昀�fects, commonapplication,HSgraduates,
incomeper capita, undergraduate application fee, lagged in-state tuition, lagged out-of-state tuition and laggedprofessor salary. ∗ denotes significance at
0.10 level. ∗∗ denotes significance at 0.05 level, ∗∗∗ denotes significance at 0.01 level,

5.2 Alternative Explanations and Falsification Tests

A leading concern for our identification is that the signing of the ACUPCC could have coincided with other
changes at the IHE level. If any such changes led to an increase in student interest and applications, we could
be misattributing this onto the ACUPCC signing. This will not cause problems for identification in the DID ap-
proach if any such changes are common between signatories and non-signatories. If however, any such changes
are unique to signatories, it could be cause for concern. We can never completely rule out this possibility be-
cause there are many unobservable factors that could have changed only for signatories at the time of signing.
However, we take several approaches to assuage this concern.

First, it is clear from Table 2 that the single largest effective signing year was 2007. Perhaps there was some-
thing special happening during this year, common to signatories, that also affected student interest. Therefore,
we exclude all observations from 2007 and re-estimate 2. As seen in column 4 of Table 8, the estimated effect of
signing on applications actually grows in magnitude and is significant at the 1% level.

Next, we expand our list of time-varying IHE controls beyond what is included in Table 3. We add the fol-
lowing one year lags of student demographics: percent female, percent Asian, percent Indian, percentHispanic,
percent Black, and percent non-resident alien. These demographics thus represent the average characteristics
of the IHE student body at the time of application. We also add an indicator to characterize whether or not an
IHE hired a new president effective for the current year. The rationale here is that a new president may change
many unobservable things at an IHE while simultaneously signing the ACUPCC. As shown in column 5 of
Table 8, these additional time-varying controls do not change the results. We then add in the average SAT score
while retaining the controls from column 5 and report these results in column 6 of Table 8. Although the sam-
ple size is considerably smaller when including SAT, the coefficient on signing the ACUPCC remains of similar
magnitude and significant at the 5% level.

Another issue is the timing of the effects. For instance, there could be an immediate jump in applications
after signing that ultimately declines or there could be a delay in prospective students becoming aware of and
responding to the signing. To investigate this issue, we return to 2 and replace the indicator, Sit, with a set
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of indicators representing the number of years that have passed since signing. We create indicators for the
immediate effect, and for 1, 2, 3, and 4 or more years after the ACUPCC signing. The coefficients on these
indicators are then interpreted as relative to the omitted category of the pre-signing years. Column 7 of Table
8 shows that the immediate effect is the largest and the only effect that is separately statistically significant
at conventional levels.27 Also, there appear to be smaller but still positive effects on applications 1 to 3 years
after signing. However, it also seems that the effects dissipate and may eventually disappear after 4 years have
passed. This motivates a falsification test regarding moving the timing of signing. We move the actual signing
date 2 years into the future to create a falsified signing date. Given, the pattern in column 6 of Table 8, it would
be problematic to still find significant impacts of signing with this falsified signing date. Note that, with the
falsified signing date, the first 2 years of actual effects from signing would be treated as occurring during the
pre-signing period. Column 1 of Table 9 shows that we find no effect on applications when using this 2 year
delayed false signing date.28

Table 9: Regression results: falsification tests.

(1) (2) (3) (4) (5)
Delay 2 years
(applications)

Instructional
expenditures

Academic
support

Student services Auxiliary
enterprises

Signed –0.00966 –0.00322 –0.0163 –0.00875 0.00199
(0.0121) (0.0198) (0.0217) (0.0213) (0.0226)

Observations 11,216 10,009 9,980 10,003 9,949
R-squared 0.987 0.995 0.990 0.983 0.984

Notes: Tablepresents regression results fromsampleof all 4-year IHEsandmodels inwhichdependent variable is logged. Standarderrors, clusteredat IHE level,
presented in parentheses. All specifications include IHE fixed e昀�fects, IHE-specific linear trends, year fixed e昀�fects, common application, HS graduates, income
per capita, undergraduate application fee, lagged in-state tuition, lagged out-of-state tuition and lagged professor salary. ∗ denotes significance at 0.10
level. ∗∗ denotes significance at 0.05 level, ∗∗∗ denotes significance at 0.01 level,

Finally, we implement a series of falsification tests to look for changes in observable IHE characteristics thatmay
coincide with signing the ACUPCC. As discussed, we cannot control for every possible confounding variable,
but we can look at a series of key expenditure variables available in IPEDS data. This allows us to determine
whether there seems to be a shift in IHE administration or policy of which signing the ACUPCC is just one
part. We return to equation 2 and replace the outcome variable with expenditures, separately, for each of the
following categories: instructional, academic support, student services, and auxiliary enterprises.29 We choose
these categories because these are the ones that are likely to influence student recruitment. If we find a sig-
nificant coefficient for our ACUPCC signing variable, it might indicate that the signing was indeed coinciding
with other factors driving our findings regarding applications, admissions, and enrollments. As evidenced by
the results in columns 2 through 5 of Table 9, we do not find any significance that would justify this particular
concern.

5.3 Interrupted TimeSeries

As a final robustness check, we estimate an interrupted time series model, which allows the pre-signing and
post-signing trends to differ.30 Prior to presenting the regression results, we first provide some graphical evi-
dence of a discontinuity in applications at the effective signing year. We do the following in Figure 1 to show
the discontinuity for logged applications.31

(1) Take the natural log of applications.

(2) Demean logged applications for each IHE.

(3) Plot average demeaned applications across sample IHEs versus ̂Tit.32

(4) Draw a line of best fit for average demeaned applications on each side of the effective signing year.
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Figure 1: Applications relative to ACUPCC effective signing date.

The difference in the intercepts of the lines of best fit at ̂Tit = 0 gives us an idea of the magnitude of the
discontinuity. This is 0.0231 − (−0.0114) = 0.0345. Thus, on average, applications increase by about 3.5% at the
effective signing year according to this graphical evidence. We also note that the trends of logged applications
in both the pre-signing period and in the post-signing appear linear.

Table 10 presents the results of our interrupted time series analysis using both linear and quadratic controls.
For both linear and quadratic specifications, the results indicate that signing has a positive and significant im-
pact on applications.33 As with the results in the previous section, we find that the signal of environmental
commitment provided by the ACUPCC has a substantial impact on the number of potential students that de-
cide to apply.34 We also look for discontinuities in other factors that could explain the change in applications
simultaneously with the signing of the ACUPCC. Specifically, we estimate eq. 4 for the dependent variables
of real application fee,35 logged real application fee, logged real out-of-state tuition, and percentage of tenure-
track faculty36 and find no evidence of discontinuities. As seen in Appendix Table 13, estimated coefficients are
near 0, with relatively large standard errors. This provides further evidence to solidify our claim that changes
in applications and other outcome variables are driven by potential students responding to the signing of the
ACUPCC, rather than simultaneous changes in other factors.

Table 10: Interrupted time series results: bandwidth of 4 years.

(1) (2) (3) (4) (5) (6)
Applications Admissions Enrollment

Linear Quadratic Linear Quadratic Linear Quadratic

Signed 0.0367*** 0.0311* 0.0403** 0.0145 0.00619 0.00839
(0.0136) (0.0174) (0.0162) (0.0247) (0.0115) (0.0227)

Observations 2,727 2,727 2,727 2,727 2,726 2,726
R-squared 0.487 0.487 0.346 0.346 0.118 0.118
Number of
IHEs

319 319 319 319 319 319

Notes: Table presents result from interrupted time series models. The bandwidth of 4 years in these models means we include IHEs signing in 2009 or ear-
lier. Standard errors, clustered at IHE level, presented in parentheses. Dependent variables in each regression are in natural logarithmic form. Each regression
includes year and IHEfixed e昀�fects. ∗ denotes significance at 0.10 level. ∗∗ denotes significance at 0.05 level, ∗∗∗ denotes significance at 0.01 level,

Brought to you by | Marquette University
Authenticated

Download Date | 2/1/17 4:02 PM



DEGRUYTER Hickman andMeyer

6 Conclusion

The eco-labeling of products is increasingly used as a way for firms to send a signal to consumers about the
firm’s level of commitment to the environment, and is a leading example of a VIBA. To this point, however,
little empirical research has investigated how successful VIBAs have been in impacting consumer behavior.
This is especially true when it comes to the case of the eco-labeling of services. In this study, we analyze the
student response to the American College and University Presidents’ Climate Commitment, an eco-label in
higher education.

In this case, the primary response that we investigate is whether or not the decision to apply to a particular
institution is influenced by the institution’s signing of this agreement. Using both difference-in-difference and
interrupted time-series strategies,we find consistent evidence of a significant positive response in the number of
applications received after signing the agreement. We also find evidence that the IHEs respond to this increase
in interest from students by significantly increasing the number of students they admit. However, we find
weaker evidence regarding the impact of the eco-label on the ultimate decision of whether or not to enroll in
a particular IHE. Higher education is an example of a costly service with many attributes; thus we may expect
the IHE’s green commitment to not be as influential in the enrollment decision. In contrast, the marginal cost of
sending an application is rather low so studentsmay bewilling to act on environmental information. In relation
to the theory of green clubs, evidence does firmly suggest that the club increases the visibility of member IHEs.
However, it is less clear that this increased visibility translates into changes in individuals’ costly decisions.

The strongest enrollment effects are concentrated in less selective IHEs. One explanation is that these same
institutionsmay not have as firm of a capacity constraint compared tomore selective IHEs –which likely receive
plenty of applications to reach enrollment targets. Another possible explanation is that a green commitment
may simply not be as important to students as other factors when choosing among more selective IHEs but an
effective differentiator for less selective IHEs. Data at the prospective student level could help determine the
ultimate reasons for the heterogeneous enrollment impacts.

There are two important dimensions to consider when assessing the potential of VIBAs to be effective en-
vironmental management programs. The first dimension, environmental effectiveness, has received somewhat
more attention. There, results are mixed as to whether or not VIBAs generate significant public benefits. Re-
gardless of the extent of public benefits, however, we would not expect specific VIBAs to survive if they do
not generate sufficient private benefits to offset the private cost of their adoption. Our results show that VIBAs
can be effective along this dimension in at least generating more attention for the service. However, the open
question is under what circumstances this extra attention then translates intomore lasting changes in consumer
behavior.

Notes
1We are aware of only one working paper in this area. Sipic (2010) finds a substantial price premium for the Blue Flag label for marinas

and beaches within a hedonic framework. The author utilizes instrumental variables to address the endogeneity of certification in the
cross-sectional analysis.

2As of October 2015, the ACUPCC has been renamed the “Carbon Commitment.” Second Nature now also offers IHEs the ability to
sign additional commitments to climate resilience. This change has no bearing on the study at hand because it occurred after our sample
period.

3For example, according to Princeton Review’s 2014 “College Hopes and Worries Survey,” 62% of college applicants say that having
information about an IHE's commitment to environmental issues would impact their decision to apply to a school.

4An entire literature has been devoted to explaining why individuals voluntarily contribute to public goods.
5There are many papers in the finance literature that examine the effect of environmental performance (often referred to as Corpo-

rate Social Responsibility) on firm financials. The results there are mixed; for reviews of these studies see Graff Zivin and Small (2005),
McWilliams and Siegel (2000), and Stefan and Paul (2008) .

6Alberini and Segerson (2002) provide an excellent analysis of the earlier theoretical and empirical literature related to VIBAs.
7We are grateful to Second Nature for providing us with the ACUPCC data in spreadsheet format.
8While all institutions participating in federal financial aid programs are required to complete IPEDS surveys, not all surveys are re-

quired from all types of institutions every year, and not all information on a given survey will be completed by each IHE in each year. As a
result, the number of IHEs forwhich information is available depends on the variables used in our analysis, and the number of observations
will vary with each model specification.

9In any given survey year, some IHEs report information on applications in the current year, and some report for the previous year. In
order to include the most recent information, we include data for the IHEs that have reported for the 2013–14 academic year, despite the
fact that not all institutions have reported.

10We also gather SAT information where it is available. We sum the average of the 25th and 75th percentiles of math and verbal scores for
incoming first-year students. These scores are missing for over 25% of our observations but we include it as a robustness check in Section
5.

11We obtain this information directly from the Common Application (www.commonapp.org).
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12As examples, we found articles in local media (http://www.startribune.com/several-colleges-push-for-eco-friendly-
campuses/124808624/), on IHE websites (http://www.pugetsound.edu/news-and-events/campus-news/details/245/), and in more
general environmental news sources (http://www.environmentalleader.com/2013/04/08/colby-college-achieves-carbon-neutrality/)

13This corresponds to the 2000 Carnegie Classifications of 15-32, sectors 1-2.
14We conduct some robustness tests on this assumption in Section 5.
15Leaving out observations prior to 2006 does not substantially change results. Point estimates and p-values change only slightly and are

available upon request.
16The complete guide we used to construct our sample can be found online at http://www.princetonreview.com/college-

rankings/green-guide?rankings=green-colleges. This guide lists 353 IHEs the Princeton Reviewdetermined to be “…thosewith the highest
Green Ratings, featuring green initiatives that enhance students' academic experience and quality of life in ways that truly merit recogni-
tion.” Green Rating scores are determined based on surveys regarding institutional policies. The guide presents these IHEs in alphabetical
order without numerical ranking (or specific Green Rating), though those in the top 50 of Green Rating scores are highlighted.

17Note that the variation in timing of signing is important here because, if all signatories had signed at the same time, any effects on the
outcome variables would be subsumed into the year fixed-effects.

18For the “signatories only” sample, we test for differences between those that signed in 2007 and those that signed later. A little under
half of those that sign do so in 2007.

19In addition to reducing sample size, the primary reason for not including these variables in all specifications is that there is also a
potential endogeneity issue. For example, it is possible that cost of attendance is decided, in part, based on the number of applicants a
school expects to receive. Because of this, we present results with and without these controls, and lag the total cost of attendance and
average professor salary variables by one year. We also estimated the simple specification using the restricted sample size that results from
including the control variables. The significance and magnitude did not change in any meaningful way when the sample size is restricted.
The results of these specifications (as well as the analogous results for admissions and enrollment) are available upon request.

20To give a sense of the magnitude of the results, we present the results of our main specifications using the level of applications, admis-
sions, and enrollment (rather than the logged values) in Appendix Table 12. The results are less statistically significant when estimating in
levels, with the coefficient on signing not significantly impacting admissions at conventional levels. The signing of ACUPCC is estimated
to increase the number of applications, all else equal, by around 187.

21The results of these analyses are available upon request.
22The results do not vary substantially in either magnitude or significance of the estimated coefficients when examining the simple

specification without controls for each of the models, or when limiting the sample to green guide or signatory comparison groups. Full
results are available upon request.

23One piece of evidence that supports this theory can be found by comparing the coefficients on the state-level control variables. Ap-
plications to public IHEs are significantly positively influenced by income and the number of high school graduates in the state, whereas
applications to private institutions have no statistical relationship with these state-level controls.

24These results are available upon request.
25We also estimate the quadratic trends models with admissions and enrollment as the dependent variables, and obtain results qualita-

tively similar to those in Table 4 and Table 5, respectively.
26To clarify, the standard cutoff we use to assign signing to year of impact on applications is the end of June. In this specification we

change the cutoff to the end of May and the end of July in separate models.
27We also estimated the same model adding an interaction between indicators for signing during the fall application season (Aug.-Dec.)

and being in the year immediately following signing. The point estimate on the coefficient of the interaction term is –0.00897 with a p-value
of 0.608 so we do not find any evidence that the season of signing matters.

28We also do the same estimation when moving the signing date 1 year into the future. The estimated coefficient on “signed” is 0.00354
and insignificant with a standard error of 0.0119.

29The IPEDS website lists the description of this category as operating expenditures related to operations in the IHE that are generally
self-supporting, such as residence halls and student health services.

30We provide the details of this empirical model in the appendix.
31We also created analogous figures for the outcomes of admissions and enrollment but omit them here. The admissions graph shows a

similar discontinuity whereas the enrollment graph shows a change in slope but no visible discontinuity at the signing date. These figures
are available upon request.

32Note that this is equivalent to plotting the average residuals from the regression of the logged outcome on a set of IHE fixed-effects.
33We also estimated with a bandwidth of 3 years, instead of 4. As an additional robustness check, we limited our sample to those IHEs

that created a balanced panel using a bandwidth of 4 years. The significance levels and general conclusions are similar to those found in
Table 10. These tables are available upon request.

34For the admissions variable, we find a significant positive impact of signing using linear controls, but no significant impact when
including quadratic controls. We find no evidence of a significant impact on enrollment in either specification.

35We include the level of real application fee in addition to logged real application fee because there are some IHEs with $0 application
fees. These schools are dropped in the logged analysis.

36Many IHE observable characteristics relating to the student profile such as average SAT score are likely impacted by the pool of appli-
cants received by the IHE and hence impacted by the signing of the ACUPCC. Thus, we choose IHE characteristics relating to the faculty
as a plausibly exogenous factors that should not display discontinuities.
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Appendix: Interrupted Times SeriesDetails

For each signatory IHE, i, define the ACUPCC effective signing year37 as ki. Normalize by the effective signing
year so that

̂Tit = Tit − ki (3)

represents the year relative to the effective signing year. We specify a bandwidth, b, and include all IHEs in the
sample that are observed for b years prior to and post signing. Then, for ∣ ̂Tit∣ ≤ b, the baseline38 econometric
model is

Yit = α + γi + τ × I ( ̂Tit > ki) + β1 × ̂Tit + β2 × ̂Tit × I ( ̂Tit > ki) + φt + εit, (4)

where γi are IHE fixed-effects, I(.) represents the indicator function, and φt are year fixed-effects (to account for
common changes in the dependent variable over calendar years). For the baseline results, we set b=4; therefore,
we include all IHEs with an effective signing year of 2009 or earlier so that each IHE has an equal number
of observations prior to and post signing. Thus, τ is the effect of signing on the outcome variable, β1 is the
pre-signing slope, and β2 is the change in the slope in the post-signing period relative to the pre-signing period.

Appendix Tables

Table 11: Summary statistics of DID sampling groups.
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Green Guide Signatories All 4-year IHEs
All IHEs Signed Not 2007 2008–2013 Signed Not

Applica-
tions

4,925.4 8,521.5 10,354.5* 7,652.2 6,172.6* 6,857.8 3,931.0***

Admissions 2,986.3 5,145.2 5,408.5 4,598.1 3,747.0* 4,141.1 2,392.0***
Enrolled 1,072.1 1,728.3 2,007.3 1,537.2 1,300.0 1,409.8 898.2***
Common
application

0.219 0.385 0.362 0.36 0.34 0.35 0.15***

In-state
tuition

16.99 17.4 20.5* 16.2 17.4 16.9 17.0

Out-of-state
tuition

20.7 23.7 25.4 22.7 22.0 22.3 19.9***

HS
graduates
(1,000s)

106.8 113.3 133.7* 113.8 101.9 107.4 106.4

Income per
capita
(1,000s)

43.4 44.9 45.0 45.1 44.8 44.9 42.7***

Undergrad-
uate
application
Fee

53.3 64.3 67.9 61.7 58.7 60.1 49.6***

Average
professor
salary
(1,000’s)

94.39 109.6 118.9*** 104.2 101.8 102.9 89.9***

Private 0.61 0.48 0.54 0.47 0.53 0.50 0.66***
Number of
IHEs

1036 208 105 163 189 352 684

Notes: Statistics come from the 2005–2006 academic year, before the impact of ACUPCC signing takes place. Tuition, income, application fee and professor
salary variables measured in constant 2014 dollars. The number of observations is slightly lower for the tuition, application fee, and professor salary variables.
∗ indicatesmeans di昀�ferent at 10% level, ∗∗ indicatesmeans di昀�ferent at 5% level, ∗∗∗ indicatesmeans di昀�ferent at 1% level.

Table 12: Regression results: levels.

(1) (2) (3) (4) (5) (6)
Applications Admissions Enrollment

Signed 183.68* 186.51* 87.63 76.83 19.50* 13.66
(96.10) (101.52) (55.21) (52.50) (11.82) (12.13)

IHE-level
controls

No Yes No Yes No Yes

Observations 12,353 11,216 12,353 11,216 12,350 11,214
R-squared 0.988 0.987 0.984 0.987 0.989 0.990

Notes: Table presents regression results from sample of all 4-year IHEs. Standard errors, clustered at IHE level, presented in parentheses. All specifications in-
clude IHEfixede昀�fects, IHE-specific linear trends,andyearfixede昀�fects. IHE-level controlsarecommonapplication,HSgraduates, incomepercapita,undergrad-
uate application fee, lagged in-state tuition, lagged out-of-state tuition and lagged professor salary. All monetary variables measured in constant 2014 dollars.
∗ denotes significance at 0.10 level. ∗∗ denotes significance at 0.05 level, ∗∗∗ denotes significance at 0.01 level,

Table 13: Interrupted time series falsification tests.

(1) (2) (3) (3)
Application fee Ln application fee Ln tuition % tenure track

Signed 0.475 –0.00540 –0.00527 –0.000495
(0.837) (0.0105) (0.0122) (0.00700)

Observations 2,698 2,582 2,697 2,638
R-squared 0.348 0.392 0.21 0.035
Number of IHEs 319 313 319 309
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Notes: Table presents result from interrupted time series models, with dependent variable listed. Undergraduate application fee is measured in constant 2014
dollarsandtuition ismeasured in thousandsof constant2014dollars. Eachspecification includes linear trendvariables.Thebandwidthof4years in thesemodels
means we include IHEs signing in 2009 or earlier. Standard errors, clustered at IHE level, presented in parentheses. Each regression includes year and IHE fixed
e昀�fects. ∗ denotes significance at 0.10 level. ∗∗ denotes significance at 0.05 level, ∗∗∗ denotes significance at 0.01 level,
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