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Scene-based nonuniformity correction for 
focal plane arrays by the method of the 
inverse covariance form  
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Jorge E. Pezoa 
Department of Electrical Engineering, University of Concepción, Casilla 160-C, Concepción, Chile. 
Majeed M. Hayat 
University of New Mexico, Albuquerque, New Mexico  

Abstract 
What is to our knowledge a new scene-based algorithm for nonuniformity correction in infrared focal-
plane array sensors has been developed. The technique is based on the inverse covariance form of the 
Kalman filter (KF), which has been reported previously and used in estimating the gain and bias of each 
detector in the array from scene data. The gain and the bias of each detector in the focal-plane array 
are assumed constant within a given sequence of frames, corresponding to a certain time and 
operational conditions, but they are allowed to randomly drift from one sequence to another following 
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a discrete-time Gauss-Markov process. The inverse covariance form filter estimates the gain and the 
bias of each detector in the focal-plane array and optimally updates them as they drift in time. The 
estimation is performed with considerably higher computational efficiency than the equivalent KF. The 
ability of the algorithm in compensating for fixed-pattern noise in infrared imagery and in reducing the 
computational complexity is demonstrated by use of both simulated and real data. 

1. Introduction 
Focal-plane array (FPA) sensors are frequently used in a variety of visible and infrared imaging 
applications.[1] It is well known, however, that the performance of charge-coupled device infrared FPA 
sensors is seriously affected by the random spatial variation in the response of the array elements. The 
spatial nonuniformity in the array output, also referred to as fixed-pattern noise (FPN), is generally due 
to (1) the minute detector-to-detector variations in the optoelectronic characteristics of the detectors 
and (2) factors related to the array’s readout circuitry and architecture. FPN is present even in the most 
advanced mid-wavelength and long-wavelength infrared sensors, and as one expects, it causes the 
broadening of the modulation transfer function and reduces the temperature-resolving capability of 
thermal imaging systems.[2] Moreover, FPN can compromise the effectiveness of multi-sensor systems 
as it reduces the accuracy of the motion-estimation algorithms used by such systems. It is also known 
that FPN is not totally stationary but instead it varies slowly in time. Clearly, this drift in FPN makes a 
one-time laboratory calibration ineffective. Of course, one can calibrate frequently (e.g., by using a 
uniform black-body radiation source as a target), which would unfortunately require halting normal 
imaging operation during each calibration process. 

In contrast to calibration-based nonuniformity correction (NUC), scene-based NUC is the process of 
FPN compensation by use of the very scenes or objects that are being imaged. However, the 
nondisruptive nature of scene-based NUC comes at the expense of compromising radiometric 
accuracy, which may be required in certain applications such as spectral sensing but may be less critical 
in other applications such as thermal imaging. Scene-based NUC methods normally employ an image 
sequence and rely on motion (or changes in the actual scene) to provide diversity in the scene 
temperature per detector. This temperature diversity, in turn, provides a statistical reference point, 
common to all detectors, according to which the nonuniformity in the detectors’ responses can be 
equalized. 

To date, numerous scene-based NUC techniques have been reported in the literature.[3]-[13] Our 
group, in particular, has been active in the development of novel scene-based algorithms for NUC 
based on statistical estimation theory.[14]-[17] We have lately developed a Gauss-Markov dynamical 
model to capture the slow variation in the FPN and utilized the model to adaptively estimate the 
nonuniformity in the gain and bias by use of a Kalman filter (KF).[16],[17] The input to the KF is taken 
as a sequence of fixed-length vectors of readout values representing a block of frames over which no 
significant drift occurs in the detectors’ gains and biases. As drift occurs and as a new vector of 
observations (block of frames) arrives, the KF updates the estimates of the gain and the bias of each 
detector. In this way, the valuable information contained in the old estimates is preserved and 
efficiently used in forming the current state of nonuniformity. 
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In this paper, we develop what is to our knowledge a new version of our earlier KF-based NUC 
technique[17] that is based on the inverse covariance form (ICF) of the KF. The ICF technique is 
computationally far more efficient than the original KF, especially when the dimension of the 
measurements is much greater than the dimension of the state vector (comprising the gain and bias). 
For example, in the ICF approach we require the inversion of a diagonal matrix with dimensions 
dictated by the length of the observation vector (e.g., >100) while in the original KF,[17] the inverse of 
a non-diagonal matrix of the same dimension is required. In addition to its superior computational 
efficiency, the ICF technique is better suited than its KF-based predecessor for situations where no 
reliable knowledge of the initial state of the gain and bias for each detector is available.[18] 

This paper is organized as follows. In Section 2 the original KF-based NUC technique is reviewed. The 
ICF-based NUC technique is developed in Section 3. In Section 4 the ICF-based NUC technique is tested 
with sequences of infrared data with simulated nonuniformity and drift and its equivalence to the KF-
based technique is empirically shown. In Section 5 the technique is applied to six sequences of real 
infrared data. The conclusions of the paper are summarized in Section 6. 

2. Nonuniformity Model and the Kalman Filter 
In this paper we adopt the linear-detector response assumption for which the detector output is 
approximately modeled with a temperature-independent gain and bias.[16],[17] For a single detector 
in the FPA, vectors of readout data are considered corresponding to a series of blocks of frames for 
which no significant drift in the gain and the bias occurs within each block. For the kth block of frames, 
the linear input-output relation of the ijth detector in the nth frame is approximated by[1],[17]  

𝑌𝑌𝑘𝑘
𝑖𝑖𝑖𝑖(𝑛𝑛) = 𝐴𝐴𝑘𝑘

𝑖𝑖𝑖𝑖𝑇𝑇𝑘𝑘
𝑖𝑖𝑖𝑖(𝑛𝑛) + 𝐵𝐵𝑘𝑘

𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑘𝑘
𝑖𝑖𝑖𝑖(𝑛𝑛), 

(1) 

where A k ij and B k ij are the ijth detector’s gain and bias, respectively, at the kth block of frames. T k 
ij(n) represents the average number of photons that are detected by the ijth detector during the 
integration time associated with the nth frame of the kth block. V k ij(n) is the additive readout 
(temporal) noise associated to the ijth detector for the nth frame during the kth block of frames. In 
addition, the vector Y k ij = [Y k ij(1) Y k ij(2) … Y k ij(l k)]T is an l k dimensional vector of readout values for 
the ijth element of the FPA associated with the kth block. For simplicity of notation, the pixel 
superscripts ij will be omitted with the understanding that all operations are performed on a pixel-by-
pixel basis. 

According to the Gauss-Markov model that we introduced in our prior work,[17] we model the slow 
drift in the gain and the bias from one block of frames to another by  

�𝐴𝐴𝑘𝑘+1𝐵𝐵𝑘𝑘+1
� = �

α𝑘𝑘 0
0 β𝑘𝑘

� �𝐴𝐴𝑘𝑘𝐵𝐵𝑘𝑘
� + �1 0

0 1� �
𝑊𝑊𝑘𝑘

(1)

𝑊𝑊𝑘𝑘
(2)�, 

(2) 

which we can write compactly as  

X𝑘𝑘+1 = 𝚽𝚽𝑘𝑘X𝑘𝑘 + G𝑘𝑘W𝑘𝑘. 
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(3) 

Here X k is the state vector comprising the gain A k and the bias B k at the kth block time and Φk is the 2 
× 2 transition diagonal matrix between the states at k and k + 1, and its diagonal elements are the 
parameters αk and βk representing the level of drift in the gain and bias, respectively, between 
consecutive blocks. G k is a 2 × 2 noise identity matrix that randomly relates the driving (or process) 
noise vector W k to the state vector X k. The components of W k are W k (1) and W k (2), the random 
driving noise for the gain and the bias, respectively, at the kth block time. A key requirement that we 
will impose on Eq. (2) is that the state vector must be a stationary random process because, in practice, 
drift in the gain and the bias randomly changes the FPN but it should not alter its severity. All others 
assumptions are shown and justified in detail elsewhere.[17] 

The observation model for a given block of frames is an extension of the linear model (1) and it can be 
cast as  

�
𝑌𝑌𝑘𝑘(1)
⋮

𝑌𝑌𝑘𝑘(𝑙𝑙𝑘𝑘)
� = �

𝑇𝑇𝑘𝑘(1) 1
⋮ ⋮

𝑇𝑇𝑘𝑘(𝑙𝑙𝑘𝑘) 1
� �𝐴𝐴𝑘𝑘𝐵𝐵𝑘𝑘

� + �
𝑉𝑉𝑘𝑘(1)
⋮

𝑉𝑉𝑘𝑘(𝑙𝑙𝑘𝑘)
� 

(4) 

or  

Y𝑘𝑘 = H𝑘𝑘X𝑘𝑘 + V𝑘𝑘, 

(5) 

where H k is the observation matrix of dimension l k × 2 and V k is the additive l k-dimensional temporal 
noise vector. The main assumption in the observation model (4) is that the input T k(n) in the kth block 
in any detector is an independent sequence of uniformly-distributed random variables in the range [T k 
min, T k max] common to all detectors in each block of frames.[17] 

The KF-based NUC algorithm developed earlier[17] will be briefly visited here for completeness and 
comparison with the ICF technique. The algorithm is based on the following iterations[17]:  

𝐗𝐗
ˆ
𝑘𝑘� = 𝚽𝚽𝑘𝑘−1𝐗𝐗

ˆ
𝑘𝑘−1 + M𝑘𝑘−1

𝑇𝑇 , 

(6) 

P𝑘𝑘� = 𝚽𝚽𝑘𝑘−1P𝑘𝑘−1𝚽𝚽𝑘𝑘−1
𝑇𝑇 + G𝑘𝑘−1Q𝑘𝑘−1G𝑘𝑘−1

𝑇𝑇 , 

(7) 

K𝑘𝑘 = P𝑘𝑘�H�𝑘𝑘
𝑇𝑇�H�𝑘𝑘P𝑘𝑘�H�𝑘𝑘

𝑇𝑇 + S𝑘𝑘�
−1

, 

(8) 

S𝑘𝑘 = R𝑘𝑘 + σ𝑇𝑇𝑘𝑘
2 �σ𝐴𝐴0

2 + �̅�𝐴0�I𝑙𝑙𝑘𝑘,𝑙𝑙𝑘𝑘 , 

(9) 
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𝐗𝐗
ˆ
𝑘𝑘 = 𝐗𝐗

ˆ
𝑘𝑘� + K𝑘𝑘 �Y𝑘𝑘 − H�𝑘𝑘𝐗𝐗

ˆ
𝑘𝑘� �, 

(10) 

P𝑘𝑘 = �I2,2 − K𝑘𝑘H�𝑘𝑘�P𝑘𝑘� , 

(11) 

with the initial conditions  

𝐗𝐗
ˆ
0 = 𝐸𝐸[X0] = ��̅�𝐴0

𝐵𝐵�0
� , P0 = 𝚲𝚲 = �

σ𝐴𝐴0
2 0
0 σ𝐵𝐵0

2 �. 

(12) 

In the above, X� k� and X� k are respectively the a priori and the current state estimates, P k� and P k are 
respectively the a priori and the current error covariance matrices, and K k is the Kalman gain matrix. 
The quantities Q k and R k are the auto and cross covariance functions of the driving noise and the 
additive noise, respectively, H�  k is the mean of the observation matrix, M k is a vector containing the 
mean of the driver noise,[16],[17] σTk 2 is the variance of the input infrared signal, and finally, Ā 0 (B� 0) 
and σA0 2(σB0 2) are the mean and variance of the initial condition for the gain (bias), respectively. The 
symbols I 2,2 and I lk ,lk represent identity matrices of designated dimensions. Note that the matrices R k 
and S k are diagonal, square, and l k dimensional. Also, note that Eqs. (6) and (7) are the KF updates, Eq. 
(8) yields the Kalman gain, and Eqs. (10) and (11) are the measurement updates.[17] 

The foregoing Gauss-Markov model for the gain and bias is stable (i.e., it has bounded moments) since 
the drift parameters αk and βk are taken to be strictly less than unity. Moreover, the estimation 
algorithm is also stable in that the error covariance matrix is convergent.[18],[19] In our prior work, the 
convergence of the KF was tested with simulated data by showing that the error covariance matrix P k 
converges to a deterministic matrix.[17],[20] Finally, according to our experience, we have never 
observed any instabilities when applying the algorithm to real infrared imagery. 

With the above KF at hand, we proceed to develop the ICF of the filter. 

3. Inverse Covariance Form of the Kalman Filter 
The KF-based technique described in Section 2 normally estimates the nonuniformity parameters by 
use of a very large number of readout data. To accommodate such large data efficiently, the KF may be 
replaced by an equivalent ICF filter, which is an alternate form of the filter that produces the same 
state estimates but leads to substantial savings in computing operations and also provides improved 
numerical stability.[18] In this paper the ICF is derived following the standard procedures given in 
Minkler and Minkler,[18] which consist of three main steps: (1) definition of the new equivalent state 
variables to be estimated, (2) application of the matrix inversion lemma to the Kalman-filter recursions 
to obtain the dual relationship for X�k�, Pk�, K k, X� k, and P k, and (3) determining the new initial conditions 
by use of the definition given in step 1. 
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A. Definition of the New Equivalent State Variables 
The ICF is an alternative form of the KF for which the inverse of the error covariance matrix, P k -1, is 
propagated in each iteration of the filter. Therefore, the ICF inherits the convergence properties of its 
equivalent KF. Following Minkler and Minkler,[18] the new equivalent variable to estimate, â k, is 
defined as  

𝐚𝐚
ˆ
𝑘𝑘  ≜  P𝑘𝑘−1𝐗𝐗

ˆ
𝑘𝑘, 

where â k is transmitted from one iteration of the filter to another instead of transmitting the error 
covariance matrix P k� and the estimate X� k. 

B. ICF Algorithm 
We begin by recasting the first result of the matrix inversion lemma, which states that for any non-
singular matrices L, M, and N, (L + MN T)-1 =L -1 - L -1 M(I + N T L -1 M)-1 N T L -1. We now apply this result 
to Eqs. (7), (8), and (11) to obtain expressions for (P k� )-1 and P k -1 in terms of the system parameters H 
k, Q k-1,S k-1, and Φ k-1. 

Next, we invoke the second result of the matrix inversion lemma, which asserts that (L + MN T)-1 M = L -
1 M(I + N T L -1 M). Now by applying this result and using the definition in (13), we can rewrite Eqs. (6) 
and (10) to get a recursive expression for â k� and â k in terms of â k-1. With the above calculations, the 
algorithm for the ICF of the KF is obtained and the recursions involved are listed below:  

𝐚𝐚
ˆ
𝑘𝑘� = �I2,2 − D𝑘𝑘−1G𝑘𝑘−1

𝑇𝑇 � �𝚽𝚽𝑘𝑘−1
−1 𝐚𝐚

ˆ
𝑘𝑘−1 + C𝑘𝑘−1M𝑘𝑘−1

𝑇𝑇 �, 

(14) 

(P𝑘𝑘� )−1 = �I2,2 − D𝑘𝑘−1G𝑘𝑘−1
𝑇𝑇 �C𝑘𝑘−1, 

(15) 

C𝑘𝑘−1  ≜  𝚽𝚽𝑘𝑘−1
−𝑇𝑇 P𝑘𝑘−1−1 𝚽𝚽𝑘𝑘−1

−1 , 

(16) 

D𝑘𝑘−1  ≜  C𝑘𝑘−1G𝑘𝑘−1�Q𝑘𝑘−1
−1 + G𝑘𝑘−1

𝑇𝑇 C𝑘𝑘−1G𝑘𝑘−1�
−1

, 

(17) 

𝐚𝐚
ˆ
𝑘𝑘 = 𝐚𝐚

ˆ
𝑘𝑘� + H�𝑘𝑘

𝑇𝑇S𝑘𝑘−1Y𝑘𝑘, 

(18) 

P𝑘𝑘−1 = (P𝑘𝑘� )−1 + H�𝑘𝑘
𝑇𝑇S𝑘𝑘−1H�𝑘𝑘. 

(19) 

Equations (14) and (15) are the time updates of the ICF and the measurement update equations are 
given by Eqs. (18) and (19). 
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Initial Conditions. 
The initial conditions for the ICF of the filter can be derived by use of the definition in Eq. (13) as 
follows. In particular, we have  

P0−1  ≜  𝚲𝚲−1, 

(20) 

a�0  ≜  𝚲𝚲−1X�0. 

(21) 

For estimation problems where no a priori knowledge of the initial system state is available, this 
algorithm is less susceptible to saturation problems within the equations, and in that sense, the 
algorithm may provide a numerically more stable approach.[18] In particular the ICF can be utilized 
with the initial condition P 0 -1 = 0, corresponding to an infinite P 0. Note that in the traditional KF, this 
situation leads to saturation problems that consequently lead to significant (and possibly catastrophic) 
loss in numerical accuracy. 

C. Comments on Computational Efficiency 
We proceed to theoretically compare the number of operations per pixel and per block of frames 
between the ICF and the traditional KF assuming that the temporal readout noise and that the range of 
the input irradiance [T k max, T k min] are both common to all detectors on the FPA, but they may vary 
from block to block. Under the above assumptions, for each iteration k, the KF involves the inversion of 
the l k × l k matrix [ H�  k P k� H�  k T+ S k]-1. However, the ICF involves the inversion of the l k dimension 
diagonal matrix [S k]-1. 

Table 1 shows the number of operations, per pixel and per block of frames at the kth iteration, 
required for the KF and the ICF. Note that for the KF, the relationship obtained between l k and the 
number of operations is a third-order polynomial, while in the case of the ICF filter it is a second-order 
polynomial. Thus, a great reduction in computational load can be achieved. For example, with a block 
length of 500 frames, the KF needs 126,505,038 additions and 126,020,040 multiplications, while the 
ICF calculates 1,247,562 additions and 1,004,100 multiplications. Last, note that in Table 1 are detailed 
the nonstandard operations (in the context of a traditional KF with a deterministic observation matrix) 
that the NUC problem introduced in both the KF and the ICF filter.[17] (These refer to the operations in 
which the statistics of the random observation matrix H are involved.) 

4. Applications to Simulated Infrared Data 
In this Section the performance of the ICF filter is studied and compared with the performance of the 
traditional KF[16],[17] by applying the algorithms to 8-bit infrared image sequences corrupted by 
simulated nonuniformity and drift. In all simulations, the gain and the bias are considered as mutually 
uncorrelated Gaussian random variables with mean values of unity and zero, respectively. Different 
levels of nonuniformity are introduced by varying the standard deviation of the gain and the bias. 
Different levels of drift in these parameters are also considered by modifying the inter-block 
correlation parameters αk and βk. Temporal noise is simulated by use of a zero-mean Gaussian random 
variable that is uncorrelated to both gain and bias. The standard deviation of temporal noise is 
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considered fixed at unity.[11],[14],[15],[17],[21] One hundred trials of each case were generated, and 
each trial included ten blocks, each containing 500 frames. NUC is performed by subtracting the 
estimated bias from the readout data and dividing the outcome by the estimated gain. 

The performance of the ICF is evaluated by means of five metrics. To assess the estimation process, we 
compute the mean-square error (MSE) per block by averaging the square of the differences between 
the true and the estimated gain and bias over the entire array and all frames within each sequence. 
NUC capability is examined in terms of the root-mean-square error (RMSE), the correctability index, c, 
and the roughness parameter, ρ. The RMSE is defined as the square root of the average (over the 
entire array and block of frames) of the square of the difference between the true and the estimated 
collected photons in each pixel. The correctability parameter is computed with simulated flat-field data 
as the square root of the ratio between the FPN and the temporal readout noise.[1],[14],[21] The 
roughness parameter ρ is computed for any image f by use of[14]  

ρ(𝑓𝑓)  ≜  
‖ℎ1 ∗ 𝑓𝑓‖1 + ‖ℎ2 ∗ 𝑓𝑓‖1

‖𝑓𝑓‖1
, 

(22) 

where h 1(i, j) = δi-1, j - δi,j and h 2(i, j) = δi,j-1 - δi,j, respectively, δij is the Kronecker delta, ‖f‖ 1 is the ℓ1-
norm of f, and * represents discrete convolution. Note that ρ is zero for a uniform image, and it 
increases with the pixel-to-pixel variation in the image. Finally, an image-quality index that was 
recently introduced by Wang and Bovik[22]  

𝑄𝑄 =
4𝐼𝐼1̅𝐼𝐼2̅σ𝐼𝐼1σ𝐼𝐼2

(𝐼𝐼1̅2 + 𝐼𝐼2̅2)�σ𝐼𝐼1
2 + σ𝐼𝐼2

2 �
, 

(23) 

is modified and used here to further assess NUC capability. The proposed index is designed to regard 
any image distortion as a combination of two factors: luminance distortion and contrast distortion. 
Mathematically, the modified universal image quality index Q is defined by[22] where I � 1(σI1 2) and I �2(σI2 
2) are the spatial sample mean (spatial sample variance) of the true image and of the corrupted or 
compensated image, respectively. The dynamical range of the index Q is [-1, 1] with 1 representing the 
best performance. 

A. Performance of the ICF and Its Numerical Equivalence to the Kalman Filter 
In this Subsection the performance of the ICF filter in estimating the gain and the bias and its numerical 
equivalence to the KF are studied. We examined cases where the simulated nonuniformity and drift 
are added to blocks of both spatially-diverse and flat-field frames. The first case uses a collection of 
blocks of frames corrupted by simulated nonuniformity generated mainly by the gain. The bias 
nonuniformity was simulated by use of a Gaussian random variable with a fixed standard deviation of 
10, while the standard deviation of the gain nonuniformity was varied from 1% to 20%. Low, moderate, 
and high levels of drift in the gain and the bias were considered by setting the correlation parameters 
αk = βk to 0.95, 0.7, and 0.3, respectively. Figures 1 and 2 show a sample of a true infrared image and 
the corresponding artificially corrupted image (taken from the fifth block). 
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Consistent with our earlier work,[17] the empirical MSE in the estimated gain (MSEA) and bias (MSEB), 
the RMSE, the roughness parameter ρ, and the index Q are all independent of k. Table 2 shows the 
empirical performance parameters calculated for the fifth block (k = 5) for low, moderate, and high 
levels of drift. The equivalence between the NUC capability of ICF and KF is clear from the performance 
metrics shown in the table. For example, both filters behave similarly in that the MSEA and MSEB 
decrease with the decrease in the drift.[17] However, note that the only discrepancy is found when 
high simulated drift is assumed (αk = βk = 0.3) and the error is attributable to numerical precision. In 
such a case, the MSEB associated the ICF is eight times greater than that for the KF. However, it can be 
seen through the performance parameters RMSE, ρ, and Q that the quality of the NUC achieved is 
almost the same for both filters independently of the level of drift between the blocks of frames. 
Furthermore, examination of the index Q shows that the discrepancy between the compensated and 
the true frames is in both luminance and contrast. In particular, we observe an approximate loss of 
13% in both the luminance and contrast in the corrected frames. 

The dependence of the empirical MSE on the level of nonuniformity and drift is shown in Fig. 3. Note 
that when the standard deviation of the simulated gain nonuniformity is greater than 10%, the MSE 
increases with the increase in the level of nonuniformity. However, Fig. 4 shows that such MSE 
increase is not reflected in the image quality parameters Q and ρ, nor is it detected by the naked eye. 
Figures 5 and 6 depict the corrected versions of the image in Fig. 2 obtained by the KF and ICF, 
respectively. 

Similar results were obtained when the FPN was generated primarily by the bias. For brevity, we only 
comment on parts of the results. The parameters RMSE and ρ, computed for the corrected and raw 
sequences of frames (with a medium drift), reveal a reduction in the nonuniformity by 48% and 51%, 
respectively for each parameter; whereas, the Q index increases by 39%. 

Last, we applied the ICF and the KF filters to blocks of 500 frames of noisy flat-field data. Various levels 
of temporal noise were considered, and each block of frames contained different levels of amplitudes 
in the gray-scale range of 60–240.[17] The results indicated that the correctability in the corrected 
block is approximately unity for both the ICF and the KF. In fact, we have found that the so-called 
temporal-noise threshold, which is the standard deviation of the temporal noise that yields a unity 
correctability parameter, is 0.75, which is a number valid for blocks of frames represented in the 
specified gray-scale range.[17],[21] 

B. Dependence on the Initial Condition 
To evaluate the sensitivity of the ICF filter on inaccuracies in the initial condition of the error 
covariance matrix P 0, simulated nonuniformity was added to a sequence of blocks of infrared data and 
initial conditions in which varying errors were considered. Specifically, the diagonal elements of P 0 
were assumed 106, 1, and 10-3, representing high, medium, and small errors, respectively. It was 
observed that with block lengths greater than 500 frames, and regardless of the level of nonuniformity 
and drift, no tangible change was observed in the MSE, RMSE, ρ, and the Q index as the initial 
condition was varied. For example, using the same simulation parameters as in Subsection 4.A (e.g., a 
standard deviation in the gain nonuniformity equivalent to 20% of the mean gain under a high-drift 
condition), we found that ρ and Q were respectively 0.190 and 0.856 for the large initial error and 
0.120 and 0.843 for the small initial error. 
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Moreover, we found that the MSE computed using the parameters estimated by the KF exhibits a small 
increase (approximately 10%) with the increase in the initial error from P 0 = 10-3 to P 0 = 106. However, 
such increase in the MSE is almost not seen on the corrected frames by the RMSE, ρ, Q, and the naked 
eye. 

C. Computational Efficiency 
A theoretical estimate of the CPU time employed by both versions of the filter can be obtained if we 
conveniently assume, for instance, that a floating-point addition takes a unit of time and the floating-
point multiplication takes two units of time.[23] In real computer systems, however, memory 
hierarchy, operating system planning, and many other practical factors must be taken into account and 
a theoretical evaluation is not enough. Figure 7 shows the actual CPU time consumed by the KF and the 
ICF filters versus the block length. Reductions of 55% in time is obtained for block lengths in excess of 
1000 frames. These tests were made with a Pentium IV (1.6 GHz) processor and a 768-MB RAM in 
conjunction with Matlab’s cputime function. 

5. Applications to Real Data 
In this section the ICF algorithm is applied to six blocks of terrestrial mid-wave infrared (3–5 μm) 
imagery that were collected with a 128 × 128 InSb FPA cooled camera (Amber Model AE-4128). Five 
blocks of imagery were collected at different hours of the same day (6:30 AM, 8 AM, 9:30 AM, 11 AM, 
and 1 PM), and each block originally contained 4200 frames captured at a rate of 30 frames per second 
(fps). The sixth set of data, collected much earlier in the day, contains 1200 frames. The blocks will be 
labeled as k = 1, …, 6, corresponding to 6:30 AM, 8 AM, 9:30 AM, 11 AM, 1 PM, and the last block, 
respectively. 

Owing to the fact that the camera readout output was quantized to 16-bit integers, we conveniently 
took the range of the average infrared photon numbers collected by each detector as [T k min, T k max] = 
[0, 216 - 1], where k = 1, …, 6. In addition, the initial inverse of the error covariance matrix P 0 -1 is 
selected to be near zero (which implies severe inaccuracy in the assumed initial condition). The initial 
state vector X 0 was selected within the practical range (16-bit representation) for the gain and the bias 
values for the above infrared FPA camera.[17] Moreover, the following set of initial conditions 
(common to all detectors) were assumed for the gain and bias: A 0 = 1.0, B 0 = 0, σA0 2 = 0.1 and σB0 2 = 
5000. These values were chosen heuristically as follows: Unity and zero mean values for the gain and 
the bias, respectively, were chosen to maintain the dynamical range of the output. On the other hand, 
the initial standard deviations of the gain and bias were arbitrarily chosen within 10% of the assumed 
mean values. Last, because the true drift in the gain and the bias are unknown, the ICF filter was 
repeatedly applied while the drift parameters α and β were allowed to vary from 0.05 to 0.95 in steps 
of 0.15. 

Throughout the calculations, we limited the number of frames used in the algorithm to only 500 
consecutive frames per block (i.e., l k = 500, k = 1, …, 6). The tests performed demonstrated that for αk 
= βk = 0.95, which represents a weak drift between the blocks, a very good NUC was achieved for 
blocks 2 through 5. For example, Figs. 8 and 9 show a raw frame and the corresponding corrected 
frame for the block at k = 5. Note that the ICF filter also compensates for the dead pixels that appears 
in the raw imagery, as they are interpreted by the algorithm as cases of extremely low gain. The 
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computed mean of ρ shows a reduction in the nonuniformity of 58% at k = 2, 39% at k = 3, 36% at k = 4, 
and 19% at k = 5. 

The sequence in the first block (corresponding to 6:30 AM) contains less diversity in the collected 
irradiance than the blocks at k = 2, …, 5. The motion was limited in the first block, and the irradiance 
range was also limited as most of the objects in the scenes were cold. Figures 10 and 11 show the raw 
frame and the corresponding ICF corrected frame, respectively. Note that the quality of the 
compensation is much poorer than the one obtained in the fifth block (corresponding to 1 PM). This 
poor performance is partially due to the fact that in the calculation of the gain and bias in the first 
block, no past knowledge of these parameters is being used. Now, Fig. 12 depicts the corrected version 
of the frame in Fig. 10 when the block at 6:30 is moved from k = 1 to k = 5. The improvement in the 
correction is due to the fact that the ICF filter now uses the information gained in the previous blocks 
(first block through fourth block) for estimating the gain and the bias for k = 5. 

Finally, the sixth block was captured before sunrise and only one target (a jet aircraft) is seen. 
Correction obtained for the sixth block was somewhat satisfactory, but ghosting artifacts appeared 
over the corrected images. Ghosting occurs because most of the objects in the fifth block are not 
present in the sixth block, and moreover, the sixth block is poor in motion and also lacks spatial 
diversity in the infrared scenes. For example, Figs. 13 and 14 depict the raw frame and its correction, 
respectively. The ghosting artifacts can be seen as shadows around the target. We have observed that 
such ghosting artifacts can be reduced using more frames and assuming higher levels of drift between 
the blocks. Figure 15 shows the corrected version of Fig. 13 by use of more frames and higher drift 
than the correction shown in Fig. 14. 

Last, the drift in the estimated gain and the bias between blocks 2 and 3, 3 and 4, and 4 and 5 are 
respectively found to be 5%, 0.5%, and 10% for the gain and 40%, 27%, and 29% for the bias. This 
shows that the drift in the gain is smaller than the drift in the bias, which is consistent with the two-
point calibration results performed earlier.[16],[17] 

6. Conclusions 
In this paper we used the inverse covariance form to develop an equivalent but computationally 
efficient version of the previously reported Kalman filter technique for nonuniformity correction in 
FPAs. Moreover, our simulations and real data evaluations have tested practically that the ICF of the KF 
is better suited for problems where no reliable estimate of the initial condition is available. This feature 
is in accord with the theoretically expected robustness of the ICF to erroneous initial conditions.[18] 
The theoretical evaluation demonstrates that the number of floating-point additions and 
multiplications per pixel and per block of frames in every iteration is a function of the block length l k. 
For the original Kalman filter, the relationship obtained between l k and the number of operations is a 
third-order polynomial while in the case of the inverse covariance form filter it is a second-order 
polynomial. Empirical results have shown that the CPU time consumed by the inverse covariance filter 
is considerably less than the CPU time employed by the Kalman filter, and that time is independent of 
the frame size. For example, for a block length of 1000 frames reductions of 45%, 41%, and 50% in the 
CPU time were obtained for frame sizes of 128 × 128, 64 × 64, and 32 × 32 pixels, respectively. The 
performance of the inverse-covariance-form version of the Kalman filter is demonstrated by use of 

https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F10
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F11
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F12
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F10
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F13
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F14
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F15
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F13
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#F14
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#ref16
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#ref17
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-42-29-5872&id=77587#ref18


simulated and real infrared imagery showing the ability of the technique in updating the estimates of 
the gain and bias nonuniformity as new data arrives. Possible extensions of the technique include 
developing an adaptive method for the estimation of the drift parameters from blocks of infrared 
scene data. 
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project number 1020433, and the National Science Foundation. The authors thank Ernest E. Armstrong 
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Figures and Tables 

 
Fig. 1 Infrared imagery from the fifth block. 

 
Fig. 2 Image of Fig. 1 corrupted with simulated nonuniformity generated with standard deviations of 
0.10 and 10 for the gain and the bias, respectively. 
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Fig. 3 MSE of the gain and the bias as a function of the level of nonuniformity generated mainly by the 
gain. The standard deviation for the bias is 5 (relative to an 8-bit scale). Open circles represent low drift 
(αk = βk = 0.95), open squares represent moderate drift (αk = βk = 0.7), and the asterisks represent high 
drift (αk = βk = 0.3). 

 
Fig. 4 Roughness parameter, ρ, and the Q index as a function of the level of gain-dominated 
nonuniformity. The bias standard deviation is fixed at 5. Open circles represent low drift (αk = βk = 
0.95), open squares represent moderate drift (αk = βk = 0.7), and the asterisks represent high drift (αk = 
βk = 0.3). Open diamonds represent the corresponding parameters for the uncorrected block. 



 
Fig. 5 Frame of Fig. 1 corrected by use of the traditional KF. 

 
Fig. 6 Frame of Fig. 1 corrected by use of the ICF Filter. 
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Fig. 7 CPU time consumed by the traditional KF and the ICF filter as a function of the block index k. 
Open circles and crosses represent the CPU time consumed by the traditional Kalman and the ICF 
filters, respectively. The dotted curve represents a frame size of 32 × 32 pixels, the solid curve 
represents the case of 64 × 64 pixels, and the dashed-dotted curve represents the case of 128 × 128 
pixels. 

 
Fig. 8 Infrared imagery from block 5. 

 
Fig. 9 Frame of Fig. 8 corrected by use of 500 consecutive frames per block with the drift factors taken 
as α5 = β5 = 0.95. 
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Fig. 10 Imagery from the first block (corresponding to 6:30 AM). 

 
Fig. 11 Frame of Fig. 10 corrected by use of 500 consecutive frames per block and correlation factors α1 
= β1 = 0.95. 
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Fig. 12 Frame of Fig. 10 corrected by use of 500 consecutive frames per block, for which we stipulate 
that the first block arrives after the fourth block (in place of the existing fifth block). The drift factors 
are taken as α5 = β5 = 0.95. 

 
Fig. 13 Imagery from the sixth block. 
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Fig. 14 Frame of Fig. 13 corrected by use of 500 consecutive frames per block and correlation factors α6 
= β6 = 0.95. 

 
Fig. 15 Frame of Fig. 13 corrected by use of 800 consecutive frames per block and correlation factors α6 
= β6 = 0.8. 

Table 1. Number of Operations (per Pixel and per Block of Frames)a 
 Kalman Filter Inverse Covariance Form 
Additions l k 2 + 3l k 2 p+ l k (2p 2+ p)+ 3p 3+ p 2(m- 

2)+ p(m 2+ 2m- 1) 
l k 2(2p+ 1)+ l k (p 2- p+ 1)+ 4 p 3+ p 2(4 m- 
1)+ p(2m 2- 3m- 1)+ m 3 

Multiplications l k 3+ 2l k 2 p+ l k (5p 2+ 4 p)+ 3p 3+ p 
2(m+ 2)+ p(m 2+ m) 

2l k 2 p+ l k (p 2+ p+ 2)+ 4 p 3+ p 2(4 m+ 3)+ 
2pm 2+ m 3 

a  Number that the Kalman filter and the inverse covariance form filter require for the kth iteration. p represents the 
dimension of the system state variables (which is 2 in our case) and l k is the length of the observation vector. m represents 
the dimension of the random driving noise (also 2 in our case). 
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Table 2. Performance Parameters MSE, RMSE, ρ, and Q at the k = 5 blocka  
α k = β k = 0.95   α k = β k = 0.70   α k = β k = 0.30   
Parameter  ICF  KF  Parameter  ICF  KF  Parameter  ICF  KF  
RMSEu  0.173 0.173 RMSEu  0.244 0.244 RMSEu  0.301 0.301 
RMSEc  0.147 0.147 RMSEc  0.147 0.149 RMSEc  0.153 0.149 
MSEA  0.021 0.021 MSEA  0.024 0.024 MSEA  0.027 0.024 
MSEB  1.055 0.999 MSEB  1.630 0.999 MSEB  8.824 0.999 
ρ u  0.317 0.317 ρ u  0.317 0.317 ρ u  0.318 0.318 
ρ c  0.180 0.180 ρ c  0.180 0.180 ρ c  0.182 0.180 
Q u  0.649 0.649 Q u  0.651 0.651 Q u  0.651 0.651 
Q c  0.878  0.878  Q c  0.876  0.876  Q c  0.873  0.874  
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