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Abstract 

It has been previously demonstrated that it is possible to perform remote vibrometry using synthetic 
aperture radar (SAR) in conjunction with the discrete fractional Fourier transform (DFrFT). Specifically, the 
DFrFT estimates the chirp parameters (related to the instantaneous acceleration of a vibrating object) of a 
slow-time signal associated with the SAR image. However, ground clutter surrounding a vibrating object 
introduces uncertainties in the estimate of the chirp parameter retrieved via the DFrFT method. To 
overcome this shortcoming, various techniques based on subspace decomposition of the SAR slow-time 
signal have been developed. Nonetheless, the effectiveness of these techniques is limited to values of 
signal-to-clutter ratio ≥5 dB. In this paper, a new vibrometry technique based on displaced-phase-center 
antenna (DPCA) SAR is proposed. The main characteristic of a DPCA-SAR is that the clutter signal can be 
canceled, ideally, while retaining information on the instantaneous position and velocity of a target. In this 
paper, a novel method based on the extended Kalman filter (EKF) is introduced for performing vibrometry 
using the slow-time signal of a DPCA-SAR. The DPCA-SAR signal model for a vibrating target, the 
mathematical characterization of the EKF technique, and vibration estimation results for various types of 
vibration dynamics are presented. 

SECTION I. Introduction 
Synthetic aperture radar (SAR) is a ubiquitous coherent imaging radar that generates high-resolution images. 
SAR operates by illuminating the target scene with electromagnetic pulses, typically in the microwave band, and 
measures the amplitude and phase of the return signal. After substantial signal processing of the collected data, 
the final product is a 2-D image, where each pixel in the image represents the reflectivity of a region at the 
transmitted frequency [1]. The relatively long wavelengths, compared with those of optical sensors, make SAR 
systems capable of remote imaging over thousands of kilometers regardless of weather conditions. The typical 
range of these systems can be anywhere from 25 km for the Lynx radar [2] to well over 800 km for the 
RADARSAT-2 [3]. These SAR-collection platforms can generate images at a variety of resolution scales. For 
example, the Lynx radar has the ability to generate 0.1-m (4-in) resolution images [2]. 

For common imaging applications, a typical airborne SAR platform illuminates the ground scene for at least 
several seconds to create a single SAR image. During the data-collection process, the image formation algorithm, 
often the polar-format algorithm, assumes all targets in the ground scene are static. This assumption makes SAR 
particularly sensitive to low-level target vibrations [4]–[5][6][7][8][9][10][11]. More specifically, ground target 



vibrations introduce a phase modulation, termed the micro-Doppler effect [8], into each returned SAR signal. 
Any vibrating target, with a strong radar cross section relative to its surroundings, will produce observable 
artifacts in the image called ghost targets. These ghost targets degrade the image quality. An example of these 
ghost targets is shown in Fig. 1. On the other hand, while ground target vibrations may introduce distortion in 
some regions of a SAR image [4], [8], they contain vital information about the frequency and amplitude of the 
vibration of a target. In turn, the vibration history, if reliably detected, can aid the identification of the targets 
imaged. 

 
Fig. 1. SAR image that was generated by the GA-ASI Lynx SAR in collaboration with the University of New Mexico 
for various vibrometry experiments. Located in the bottom-right part of the image is a vibrating corner reflector 
with a lateral length of 0.53 m. This target had a vibration amplitude in the range direction of 1.5 cm and a 
vibration frequency of 0.8 Hz. The ghost targets are spread in azimuth at the same range line. The other three 
bright spots in the image are static corner reflectors. 
 

Previously, a vibration-estimation technique was introduced based on the discrete fractional Fourier transform 
(DFrFT) applied to the slow-time SAR signal, which is extracted from the complex SAR image [12]–[13][14][15]. It 
has been shown that the DFrFT method can accurately estimate the instantaneous acceleration of a point target 
when the vibration of interest occurs in the range direction [12]–[13][14][15]. In these cases, the micro-Doppler 
effect manifests itself as an instantaneous linear chirp in the SAR slow-time signal [12]–[13][14][15]. 

While the DFrFT is an effective remote vibration-estimation tool, the reliability of its estimates is adversely 
affected by the ground clutter surrounding the vibrating target, e.g., requiring SAR images with signal-to-clutter 
ratio (SCR) ≥15 dB [16]. In order to overcome this shortcoming, clutter rejection techniques, based on 
decomposition of the SAR slow-time signal into subspaces, have been developed [16], [17]. By employing these 
techniques, the DFrFT can produce reliable estimates of the vibrations of targets in environments with SCR ≥5 
dB [17]. To the best of our knowledge, there is no vibration-estimation technique based on SAR imaging that 
works reliably for high-clutter environments, i.e., ≤5 dB. Fortunately, there is an alternative radar-sensing 
technique, based on displaced-phase-center antenna (DPCA) systems, that is intrinsically insensitive to ground-
field clutter. 

The DPCA systems, normally utilized for ground moving target indication (DPCA-GMTI), have been shown to be 
capable of determining the position and velocity of a moving target in a high clutter environment [3]. In fact, in a 
DPCA-GMTI system, the return of all the static objects in the scene can be canceled by properly processing the 
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return signals acquired by the fore-antenna and the aft-antenna. Typically, the data collection process of a 
DPCA-GMTI system lasts fractions of seconds, but in a SAR, it may last several seconds or more. Therefore, in 
order to have the Doppler resolution of a SAR image with the clutter suppression capability offered by the DPCA-
GMTI system, this paper proposes performing DPCA-GMTI using SAR. The acronym DPCA-SAR is used to 
represent this process. A DPCA-SAR can be seen as a single-pass collection platform where, in effect, two SAR 
images, having only a temporal separation, are combined to provide a ground moving target indicator system. A 
notable advantage over spotlight-mode SAR is that DPCA-SAR systems are robust for detecting moving targets in 
high clutter environments, since the ground clutter can be completely removed from the SAR images captured 
by the two antennas. Thus, DPCA-SAR is a particularly appealing platform for SAR vibrometry. In fact, DPCA and 
other multichannel techniques for detecting vibrating targets have been previously reported and their ability to 
suppress stationary clutter is well established [18]–[19][20][21]. Herein we proceed with DPCA-SAR for clutter 
suppression, choosing it for its simplicity and effectiveness. However, while DPCA-SAR is robust in high clutter 
environments, the process of combining the two images to remove the static background (clutter) also removes 
the instantaneous linear chirp of the SAR slow-time signal. Without this linear chirp characteristic, the DFrFT 
cannot be utilized for performing vibrometry. Therefore, an alternative vibrometry technique is required for a 
DPCA-SAR platform. In this paper, a vibrometry technique based on the extended Kalman filter (EKF) is 
developed for DPCA-SAR. 

The rest of this paper is organized as follows. In Section II, the signal model for the DPCA-SAR system is defined. 
In Section III, an existing vibrometry technique for DPCA-SAR is presented. In Section IV, the proposed EKF-based 
vibrometry technique for the DPCA-SAR system is developed. In Section V, a refinement of the EKF-based 
vibrometry technique for noise immunity is introduced. In Section VI, simulations and results of the improved 
EKF-based vibrometry method are discussed. Finally, the conclusions of this paper are presented in Section VII. 

SECTION II. Signal Model for Displaced-Phase-Center Synthetic Aperture 
Radar 
Fig. 2 shows the data-collection geometry of a DPCA-SAR operating in ping-pong mode [22]. The baseline, 𝐵𝐵 , is 
defined as the along-track spacing between the fore-antenna and the aft-antenna on the collection platform. 
Conceptually, in a ping-pong mode, the fore-antenna collects data at a given location 𝑢𝑢∗, while the aft-antenna 
is OFF. The aft-antenna collects at the same location, 𝑢𝑢∗ , while the fore-antenna is OFF. The time delay between 
the data collection of the two antennas is 𝜏𝜏𝐵𝐵 = 𝐵𝐵/𝑉𝑉𝑎𝑎, where 𝑉𝑉𝑎𝑎 is the average antenna speed. This process 
repeats for the duration of the entire synthetic aperture. In this model, clutter is defined as any other target 
illuminated in the ground scene. For a particular range line, the slow-time signal of the clutter collected by the 
fore-antenna can be written as 

𝑐𝑐1(𝜏𝜏) = ∑ 𝜎𝜎𝑖𝑖exp𝑖𝑖  �−𝑗𝑗𝑘𝑘𝑦𝑦𝑦𝑦𝑖𝑖𝜏𝜏 − 𝑗𝑗 4𝜋𝜋
𝜆𝜆
𝑟𝑟𝑖𝑖 + 𝑗𝑗𝜙𝜙𝑖𝑖� (1) 

where 𝜎𝜎𝑖𝑖, 𝑦𝑦𝑖𝑖  , 𝑟𝑟𝑖𝑖 , and 𝜙𝜙𝑖𝑖 are the average reflectance, azimuthal position, range, and initial phase of the 𝑖𝑖 th 
scatterer, respectively. The wavelength and carrier frequency of the sent pulse are 𝜆𝜆 and 𝑓𝑓𝑐𝑐, respectively. The 
slow time is 𝜏𝜏 = 𝑢𝑢/𝑉𝑉𝑎𝑎, and 𝑘𝑘𝑦𝑦 is a scaling parameter 

𝑘𝑘𝑦𝑦 ≈
4𝜋𝜋𝑓𝑓𝑐𝑐𝑉𝑉𝑎𝑎
𝑐𝑐𝑅𝑅0𝑓𝑓prf

 (2) 

where 𝑐𝑐 is the propagation speed of the sent pulse, 𝑅𝑅0 is the distance from the scene center to the midaperture, 
and 𝑓𝑓prf is the pulse-repetition frequency (PRF). Assuming that the ground clutter is static and since the aft-
antenna is illuminating the ground scene from the same location as the fore-antenna, the clutter signal will 



remain constant at every collection point 𝑢𝑢∗ throughout the entire synthetic aperture. Therefore, for the same 
given range line, the slow-time signal of the clutter collected by the aft-antenna is the same clutter signal 
collected by the fore-antenna with a known time delay, 𝜏𝜏𝐵𝐵 

𝑐𝑐2(𝜏𝜏) = 𝑐𝑐1(𝜏𝜏 − 𝜏𝜏𝐵𝐵)
= ∑ 𝜎𝜎𝑖𝑖exp𝑖𝑖  �−𝑗𝑗𝑘𝑘𝑦𝑦𝑦𝑦𝑖𝑖(𝜏𝜏 − 𝜏𝜏𝐵𝐵) − 𝑗𝑗 4𝜋𝜋

𝜆𝜆
𝑟𝑟𝑖𝑖 + 𝑗𝑗𝜙𝜙𝑖𝑖� . (3) 

 
Fig. 2. Data-collection geometry of the DPCA-SAR operating in ping-pong mode. The baseline, 𝐵𝐵 , is defined as 
the distance between the fore-antenna and the aft-antenna. The aft-antenna collects the data from the same 
points as the fore-antenna with a time delay of 𝜏𝜏𝐵𝐵 = 𝐵𝐵/𝑉𝑉𝑎𝑎. 
 

Now consider a single vibrating target at a given range line. The slow-time signal from a vibrating target 
collected by the fore-antenna is 

𝑑𝑑1(𝜏𝜏) = 𝜎𝜎𝑣𝑣exp �−𝑗𝑗𝑘𝑘𝑦𝑦𝑦𝑦𝑣𝑣𝜏𝜏 − 𝑗𝑗 4𝜋𝜋
𝜆𝜆
𝑥𝑥𝑣𝑣(𝜏𝜏) + 𝑗𝑗𝜙𝜙𝑣𝑣� (4) 

where 𝜎𝜎𝑣𝑣, 𝑦𝑦𝑣𝑣, and 𝑥𝑥𝑣𝑣(𝜏𝜏) are the average reflectance, average azimuthal position, and displacement of the 
vibrating target, respectively. Consequently, the slow-time signal from the vibrating target collected by the aft-
antenna, 𝑑𝑑2(𝜏𝜏), is 

𝑑𝑑2(𝜏𝜏) = 𝜎𝜎𝑣𝑣exp �−𝑗𝑗𝑘𝑘𝑦𝑦𝑦𝑦𝑣𝑣(𝜏𝜏 − 𝜏𝜏𝐵𝐵) − 𝑗𝑗 4𝜋𝜋
𝜆𝜆
𝑥𝑥𝑣𝑣(𝜏𝜏) + 𝑗𝑗𝜙𝜙𝑣𝑣� . (5) 

The first phase term of 𝑑𝑑2(𝜏𝜏) is −𝑗𝑗𝑘𝑘𝑦𝑦𝑦𝑦𝑣𝑣(𝜏𝜏 − 𝜏𝜏𝐵𝐵), as shown in the case of clutter. However, the second phase 
term of 𝑑𝑑2(𝜏𝜏) remains the same as that for 𝑑𝑑1(𝜏𝜏) because the aft-antenna also observes the instantaneous 
vibration displacement 𝑥𝑥𝑣𝑣(𝜏𝜏) at time 𝜏𝜏 . In summary, the two slow-time signals collected by the fore-antenna 
and the aft-antenna, from a ground scene containing a single vibrating target in clutter, can be written as 

𝑠𝑠1(𝜏𝜏) = 𝑑𝑑1(𝜏𝜏) + 𝑐𝑐1(𝜏𝜏) + 𝑤𝑤1(𝜏𝜏) (6) 

and 

𝑠𝑠2(𝜏𝜏) = 𝑑𝑑2(𝜏𝜏) + 𝑐𝑐2(𝜏𝜏) + 𝑤𝑤2(𝜏𝜏) (7) 

where 𝑑𝑑1 and 𝑑𝑑2 represent the signals from the vibrating target, 𝑐𝑐1 and 𝑐𝑐2 represent the clutter signals, 
and 𝑤𝑤1 and 𝑤𝑤2 represent the additive noise due to electronic error and quantization error, etc. Just as in the 
signal model for spotlight SAR mode [12], 𝑤𝑤1 and 𝑤𝑤2 are modeled as zero-mean circularly symmetric complex-
valued white Gaussian (ZMCSCG) noise. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/8344524/8244248/perez2-2782621-large.gif
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Recall that the clutter signal collected by the fore-antenna is the same as the clutter signal collected by the aft-
antenna separated by a time delay, 𝜏𝜏𝐵𝐵, namely, 𝑐𝑐2(𝜏𝜏) = 𝑐𝑐1(𝜏𝜏 − 𝜏𝜏𝐵𝐵). Hence, by taking the difference of the 
signals collected by the two antennas at the same collection location 𝑢𝑢∗ , the clutter signal is totally removed, 
and as a result, the difference signal is modulated by the vibration dynamics in a nonlinear manner. The 
difference signal, 𝑠𝑠(𝜏𝜏), which we call the DPCA signal of interest (SoI), is given by 

𝑠𝑠(𝜏𝜏) = 𝑑𝑑2(𝜏𝜏 + 𝜏𝜏𝐵𝐵) − 𝑑𝑑1(𝜏𝜏) + 𝑤𝑤2(𝜏𝜏 + 𝜏𝜏𝐵𝐵) − 𝑤𝑤1(𝜏𝜏). (8) 

The operation represented by (8) is the DPCA technique [23]. In real-world applications, the removal of the 
clutter signal is subject to the noise floor of the DPCA-SAR system [23]. If we define the difference signal from 
the vibrating target as 

𝑑𝑑(𝜏𝜏) = 𝑑𝑑2(𝜏𝜏 + 𝜏𝜏𝐵𝐵) − 𝑑𝑑1(𝜏𝜏) (9) 

and the residual clutter noise as 

𝑤𝑤(𝜏𝜏) = 𝑤𝑤2(𝜏𝜏 + 𝜏𝜏𝐵𝐵) − 𝑤𝑤1(𝜏𝜏) (10) 

the DPCA-SAR SoI can be recast succinctly as 

𝑠𝑠(𝜏𝜏) = 𝑑𝑑(𝜏𝜏) + 𝑤𝑤(𝜏𝜏). (11) 

In practice, the residual-clutter noise term may also include a portion of the clutter signal that is not canceled 
due to the incoherence between the signals collected by the fore- and the aft-antennas. For a typical DPCA-SAR 
collection platform, 𝜏𝜏𝐵𝐵 is no more than a few milliseconds. If 𝜏𝜏𝐵𝐵 is much shorter than the duration of the 
vibration of interest, then the instantaneous vibration displacement can be approximated linearly as 

𝑥𝑥𝑣𝑣(𝜏𝜏 + 𝜏𝜏𝐵𝐵) ≈ 𝑥𝑥𝑣𝑣(𝜏𝜏) + 𝑉𝑉𝑣𝑣(𝜏𝜏)𝜏𝜏𝐵𝐵 (12) 

where 𝑉𝑉𝑣𝑣(𝜏𝜏) is the instantaneous vibration velocity. With this assumption, 𝑑𝑑(𝜏𝜏) can be expressed as 

𝑑𝑑(𝜏𝜏) ≈ 2𝜎𝜎𝑣𝑣(𝜏𝜏)sin �2𝜋𝜋𝜏𝜏𝐵𝐵𝑉𝑉𝑣𝑣(𝜏𝜏)
𝜆𝜆

�

× exp �−𝑗𝑗 2𝜋𝜋
𝜆𝜆

(2𝑥𝑥𝑣𝑣(𝜏𝜏) + 𝜏𝜏𝐵𝐵𝑉𝑉𝑣𝑣(𝜏𝜏)) − 𝑗𝑗 𝜋𝜋
2
�
 (13) 

where 

𝜎𝜎𝑣𝑣(𝜏𝜏) = 𝜎𝜎𝑣𝑣exp �−𝑗𝑗𝑘𝑘𝑦𝑦𝑦𝑦𝑣𝑣𝜏𝜏 + 𝑗𝑗𝜙𝜙𝑣𝑣�. (14) 

For a simple point target, the value of 𝜎𝜎𝑣𝑣(𝜏𝜏) is simply the scaled pixel value in a complex SAR image, 
where 𝜎𝜎𝑣𝑣 corresponds to the pixel magnitude and 𝜙𝜙𝑣𝑣 corresponds to the pixel phase. The slow-time signal, 𝑠𝑠(𝜏𝜏), 
collected by the SAR platform is automatically sampled with the PRF. Therefore, the observed DPCA-SAR SoI can 
be written in discrete time as 

𝑠𝑠[𝑛𝑛] = 𝑑𝑑[𝑛𝑛] + 𝑤𝑤[𝑛𝑛],𝑛𝑛 = 1, … ,𝑁𝑁 (15) 

and 

https://ieeexplore.ieee.org/document/#deqn8


𝑑𝑑[𝑛𝑛] = 2𝜎𝜎𝑣𝑣[𝑛𝑛]sin �2𝜋𝜋𝜏𝜏𝐵𝐵𝑉𝑉𝑣𝑣[𝑛𝑛]
𝜆𝜆

�

× exp �−𝑗𝑗 2𝜋𝜋
𝜆𝜆

(2𝑥𝑥𝑣𝑣[𝑛𝑛] + 𝜏𝜏𝐵𝐵𝑉𝑉𝑣𝑣[𝑛𝑛]) − 𝑗𝑗 𝜋𝜋
2
�
 (16) 

where 

𝜎𝜎𝑣𝑣[𝑛𝑛] = 𝜎𝜎𝑣𝑣exp �−𝑗𝑗𝑘𝑘𝑦𝑦𝑦𝑦𝑣𝑣𝑛𝑛 + 𝑗𝑗𝜙𝜙𝑣𝑣� (17) 

and 𝑁𝑁 is the total number of the observed signal samples. The sampling interval, Δ𝑡𝑡, is the pulse-repetition 
interval (PRI) of the SAR system. The signal-to-noise ratio (SNRres) of the DPCA-SAR SoI is defined as 

SNRres = 10log10 �𝜎𝜎𝑣𝑣
2

𝜎𝜎𝑤𝑤2
� (18) 

where 𝜎𝜎𝑤𝑤2  is the variance of the residual clutter noise 𝑤𝑤[𝑛𝑛]. 

There are two major differences between the DPCA-SAR SoI shown in (15) and the SoI of a common SAR system 
(see [12, eq. (9)]). First, both the magnitude and phase of 𝑑𝑑[𝑛𝑛] in the DPCA-SAR SoI are nonlinearly modulated 
by the vibration dynamics. However, only the phase of 𝑑𝑑[𝑛𝑛] in the SAR SoI is linearly modulated by the vibration 

displacements. The DFrFT-based method is applicable only when the magnitude of 𝑑𝑑
~

[𝑛𝑛] remains the same (or 
changes very slowly compared with the vibration) [12], [16], [24]. This is not the case for the DPCA-SAR SoI 
because the magnitude of 𝑑𝑑[𝑛𝑛] in the DPCA-SAR SoI changes as fast as the vibration velocity. Therefore, the 
DFrFT-based method is generally not applicable to the DPCA-SAR SoI. Second, the clutter signal is removed 
entirely from the DPCA-SAR SoI, while the SAR SoI suffers from the clutter signal. Because the DPCA-SAR SoI is 
only corrupted by additive noise as the clutter signal is removed, one can apply general signal estimation 
methods to the DPCA-SAR SoI for extracting 𝑥𝑥𝑣𝑣[𝑛𝑛] and 𝑉𝑉𝑣𝑣[𝑛𝑛]. In this paper, these vibration dynamics are 
estimated from the DPCA-SAR SoI using a method based on the EKF. To achieve this, the EKF method must 
exploit the information contained in both the envelope and the phase of the DPCA-SAR SoI. 

SECTION III. Existing Vibrometry Technique for Displaced-Phase-Center 
Antenna Synthetic Aperture Radar 
The robustness of DPCA-SAR in high clutter environments makes this radar configuration highly attractive for 
vibrometry applications. In the case when the vibration of the target is produced by a single-component 
sinusoidal function, the problem of estimating its frequency is relatively simple. In this case, the magnitude of 
the DPCA-SAR SoI can be used to estimate the vibration frequency. This is what we present below as 
the magnitude method. However, while this straightforward approach is simple, it is unlikely to be optimal 
because it utilizes only partial information (i.e., the envelope) of the DPCA-SAR SoI to conduct the estimation. 
Furthermore, this technique is not appropriate for complex vibrations. 

A. Magnitude Vibrometry Method 
From (16), the magnitude of d[n] can be written as 

|𝑑𝑑[𝑛𝑛]| = 2𝜎𝜎𝑣𝑣 �sin �2𝜋𝜋𝜏𝜏𝐵𝐵
𝜆𝜆

𝑉𝑉𝑣𝑣[𝑛𝑛]�� . (19) 

The instantaneous velocity 𝑉𝑉𝑣𝑣[𝑛𝑛] of a single-component vibration can be parameterized as 
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𝑉𝑉𝑣𝑣[𝑛𝑛] = 𝑀𝑀𝑣𝑣cos (2𝜋𝜋𝑓𝑓𝑣𝑣Δ𝑡𝑡𝑛𝑛 + 𝜓𝜓𝑣𝑣) (20) 

where 𝑀𝑀𝑣𝑣 is the magnitude of velocity, 𝑓𝑓𝑣𝑣 is the frequency of the vibration, and 𝜓𝜓𝑣𝑣 is the initial phase. We 
assume that 

𝑀𝑀𝑣𝑣 ≤
𝜆𝜆
4𝜏𝜏𝐵𝐵

 (21) 

or equivalently 

− −𝜋𝜋
2 ≤

2𝜋𝜋𝜏𝜏𝐵𝐵
𝜆𝜆 𝑉𝑉𝑣𝑣[𝑛𝑛]≤ 𝜋𝜋

2 . (22) 

In this case, there is a one-to-one mapping from 𝑉𝑉𝑣𝑣[𝑛𝑛] to |𝑑𝑑[𝑛𝑛]| when 𝑉𝑉𝑣𝑣[𝑛𝑛] > 0, and there is the same one-to-
one mapping from −𝑉𝑉𝑣𝑣[𝑛𝑛] to |𝑑𝑑[𝑛𝑛]| when 𝑉𝑉𝑣𝑣[𝑛𝑛] < 0. This implies that |𝑑𝑑[𝑛𝑛]| repeats itself twice as fast as 𝑉𝑉𝑣𝑣[𝑛𝑛]. 
As such, |𝑠𝑠[𝑛𝑛]| also repeats itself twice as fast as 𝑉𝑉𝑣𝑣[𝑛𝑛] modulo the interference from the additive noise. 
Provided that the SNRres is sufficiently high, 𝑓𝑓𝑣𝑣 can be estimated as a half of the frequency of |𝑠𝑠[𝑛𝑛]|. 

The magnitude of velocity of low-level vibrations is usually small. For instance, the magnitude of velocity of a 2-
mm 10-Hz vibration is approximately 0.13 m/s. On the other hand, the upper bound, 𝜆𝜆/4𝜏𝜏𝐵𝐵, in the right-hand 
side of (21) is more than 1 m/s for typical SAR systems. Therefore, the constraint in (21) will be generally 
satisfied for the low-level vibrations of interest. In the extreme case where 𝑀𝑀𝑣𝑣 > 𝜆𝜆/4𝜏𝜏𝐵𝐵, the mapping 
from 𝑉𝑉𝑣𝑣[𝑛𝑛] to |𝑑𝑑[𝑛𝑛]|, for either 𝑉𝑉𝑣𝑣[𝑛𝑛] > 0 or 𝑉𝑉𝑣𝑣[𝑛𝑛] < 0 cases, is no longer bijective. As a consequence, harmonic 
frequencies of 𝑓𝑓𝑣𝑣 appear in the spectrum of |𝑑𝑑[𝑛𝑛]| that cause ambiguity in estimating the vibration frequency. 

The magnitude method is generally not applicable to multicomponent vibrations. For instance, we can 
write |𝑑𝑑[𝑛𝑛]| for a two-component vibration as 

|𝑑𝑑[𝑛𝑛]| = 2𝜎𝜎𝑣𝑣|sin (𝑘𝑘1𝑣𝑣1[𝑛𝑛] + 𝑘𝑘2𝑣𝑣2[𝑛𝑛])| (23) 

or equivalently 

|𝑑𝑑[𝑛𝑛]| = 2𝜎𝜎𝑣𝑣|sin (𝑘𝑘1𝑣𝑣1[𝑛𝑛])cos (𝑘𝑘2𝑣𝑣2[𝑛𝑛])
+cos (𝑘𝑘1𝑣𝑣1[𝑛𝑛])sin (𝑘𝑘2𝑣𝑣2[𝑛𝑛])|  (24) 

where 𝑘𝑘1 and 𝑘𝑘2 are known scalars, and 𝑣𝑣1[𝑛𝑛] and 𝑣𝑣2[𝑛𝑛] are the instantaneous velocities of the two vibrating 
components. According to (24), the relationship between the frequencies of v1[n] and v2[n] , on the one hand, 
and the frequencies of |𝑑𝑑[𝑛𝑛]| on the other hand, is not trivial; therefore, the magnitude method is not 
applicable in this case. 

SECTION IV. Proposed Vibrometry Method Based on the Extended Kalman 
Filter 
To overcome the shortcomings of the magnitude vibrometry method, an estimation tool, based on the EKF to 
estimate the vibration dynamics by exploiting the full information (both the envelope and the phase) of the 
DPCA-SAR SoI, is presented. As it will be shown in the following sections, the EKF-based vibrometry technique is 
reliable not only for recovering single component vibrations from DPCA-SAR images but also for estimating 
complex vibrations (multicomponent and time varying) from DPCA-SAR images. 

A. One-Step State-Transition Model 
Using the previously presented DPCA-SAR signal model, it is possible to define a state vector as 
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𝐗𝐗𝑛𝑛 = (𝑥𝑥𝑣𝑣[𝑛𝑛],𝑉𝑉𝑣𝑣[𝑛𝑛])𝑇𝑇  (25) 

where 𝑛𝑛 is each slow-time step. The state variables 𝑥𝑥𝑣𝑣[𝑛𝑛] and 𝑉𝑉𝑣𝑣[𝑛𝑛] are the instantaneous position and velocity, 
in the range direction, of the vibrating target, correspondingly. Let 𝐴𝐴𝑣𝑣[𝑛𝑛] denote the instantaneous acceleration 
of the vibrating target. Then, the one-step state-transition model can be written as 

𝐗𝐗𝑛𝑛+1 = 𝐅𝐅𝐗𝐗𝑛𝑛 + 𝐆𝐆𝐴𝐴𝑣𝑣[𝑛𝑛] (26) 

where 

𝐅𝐅 = �1 𝜏𝜏𝐵𝐵
0 1 � (27) 

and 

𝐆𝐆 = (0, 𝜏𝜏𝐵𝐵)𝑇𝑇. (28) 

Consistent with the EKF setting, we assume 𝐴𝐴𝑣𝑣[𝑛𝑛] to be a zero-mean white Gaussian process; this assumption is 
justified in the next paragraph. Note that the state-transition model (26) does not make any assumptions about 
the vibration behavior of the vibrating target other than that it must obey Newton’s laws of motion. Therefore, 
this model applies for complex vibrations that increase or decrease in frequency during the collection process. 

We now justify the assumption on 𝐴𝐴𝑣𝑣[𝑛𝑛] using, for simplicity, a single-component sinusoidal vibration. Note that 
the acceleration signal, 𝐴𝐴𝑣𝑣(𝜏𝜏), in this case is of the form 

𝐴𝐴𝑣𝑣(𝜏𝜏) = 𝐴𝐴𝑑𝑑(2𝜋𝜋𝑓𝑓𝑣𝑣)2cos (𝜔𝜔0𝜏𝜏 + Θ) (29) 

where 𝜔𝜔0 = 2𝜋𝜋𝑓𝑓𝑣𝑣, with 𝑓𝑓𝑣𝑣 being a uniform random variable in [0,𝑓𝑓prf/2], Θ is a uniform random variable 
in [−𝜋𝜋,𝜋𝜋], and 𝐴𝐴𝑑𝑑 is a uniform random variable in [0,𝑑𝑑max], with 𝑑𝑑max being the maximum amplitude of a 
measurable displacement. The random variables 𝑓𝑓𝑣𝑣, Θ, and 𝐴𝐴𝑑𝑑 are assumed to be independent. Next, it can be 
shown that the auto-covariance function of 𝐴𝐴𝑣𝑣(𝜏𝜏) is given by 

𝑅𝑅𝐴𝐴𝑣𝑣𝐴𝐴𝑣𝑣(𝜏𝜏) =
𝑑𝑑max
2 (𝜋𝜋𝑓𝑓prf)3

30
sin (𝜋𝜋𝑓𝑓prf𝜏𝜏)

𝜏𝜏
. (30) 

Therefore, since the sampling time is given by the PRI, and 𝜏𝜏 = 𝑛𝑛Δ𝑡𝑡 = 𝑛𝑛/𝑓𝑓prf, (30) becomes a delta function. 
Thus, it is not unreasonable to consider 𝐴𝐴𝑣𝑣[𝑛𝑛] as a zero-mean white Gaussian process for a sinusoidal 
acceleration in the one-step state-transition model (26). Note, however, if the range of 𝑓𝑓𝑣𝑣 is not [0,𝑓𝑓prf/2], 
then (30) will approximate a delta function. 

B. Observation Model 
For the DPCA-SAR system and the previous one-step state-transition model, the observation model is given by 

𝑠𝑠[𝑛𝑛] = 𝑑𝑑[𝑛𝑛] + 𝑤𝑤[𝑛𝑛]
≡ ℎ(𝐗𝐗𝑛𝑛) + 𝑤𝑤[𝑛𝑛]. (31) 

From (16), it is clear that 𝑑𝑑[𝑛𝑛] (and therefore the observation model) is nonlinear with respect to the state 
vector 𝐗𝐗. In the EKF, the observation matrix 𝐇𝐇𝑛𝑛 is defined as 

𝐇𝐇𝑛𝑛 = ∇ℎ ∣
𝐗𝐗=𝐗𝐗

^
𝑛𝑛∣𝑛𝑛−1

 (32) 
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where 𝐗𝐗
^
𝑛𝑛−1 is the estimation of 𝐗𝐗𝑛𝑛−1. As such, the linearized observation model can be written as 

𝑠𝑠[𝑛𝑛] = 𝐇𝐇𝑛𝑛𝐗𝐗𝑛𝑛 + 𝑤𝑤[𝑛𝑛] (33) 

where 

𝐇𝐇𝑛𝑛 = (4𝜅𝜅𝜎𝜎𝑣𝑣sin (𝜅𝜅𝜏𝜏𝐵𝐵𝐗𝐗
^
𝑛𝑛−1(2))𝑒𝑒𝑗𝑗Φ𝑛𝑛−𝑗𝑗𝑗𝑗/2,

2𝜅𝜅𝜏𝜏𝐵𝐵𝜎𝜎𝑣𝑣cos (𝜅𝜅𝜏𝜏𝐵𝐵𝐗𝐗
^
𝑛𝑛−1(2))𝑒𝑒𝑗𝑗Φ𝑛𝑛

−2𝜅𝜅𝜏𝜏𝐵𝐵𝜎𝜎𝑣𝑣sin (𝜅𝜅𝜏𝜏𝐵𝐵𝐗𝐗
^
𝑛𝑛−1(2))𝑒𝑒𝑗𝑗Φ𝑛𝑛−𝑗𝑗𝑗𝑗/2)

𝜅𝜅 = 2𝜋𝜋
𝜆𝜆

 (34)(35) 

and 

Φ𝑛𝑛 = −𝑘𝑘𝑦𝑦𝑦𝑦𝑣𝑣𝑛𝑛Δ𝑡𝑡 + 𝜙𝜙𝑣𝑣

− 2𝜋𝜋
𝜆𝜆
�2𝐗𝐗

^
𝑛𝑛−1(1) + 𝜏𝜏𝐵𝐵𝐗𝐗

^
𝑛𝑛−1(2)� − 𝜋𝜋

2
.
 (36) 

In our formulation, it is assumed that the variance of the noise 𝑤𝑤[𝑛𝑛] is known. With the one-step state-
transition model given in (26) and the linearized observation model given in (33), the Kalman filter described 
in [25] and [26] can be used to estimate the vibration dynamics with an initial condition. The solution to the 
vibration-estimation problem using the Kalman filter is given as follows. We begin by defining 

𝑠𝑠𝑖𝑖
𝑗𝑗 = (𝑠𝑠[𝑖𝑖], … , 𝑠𝑠[𝑗𝑗])𝑇𝑇 , 𝑖𝑖 < 𝑗𝑗and0 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁. (37) 

Next, let 𝐗𝐗
^
𝑛𝑛+1∣𝑛𝑛 and 𝐗𝐗

^
𝑛𝑛∣𝑛𝑛 be the predicted and corrected state estimates, respectively. Then, the state 

estimates 𝐗𝐗
^
𝑛𝑛+1∣𝑛𝑛 ≐ E[𝐗𝐗𝑛𝑛+1 ∣ 𝑠𝑠0𝑛𝑛] and 𝐗𝐗

^
𝑛𝑛∣𝑛𝑛 ≐ E[𝐗𝐗𝑛𝑛 ∣ 𝑠𝑠0𝑛𝑛] are given recursively by 

𝐗𝐗
^
𝑛𝑛+1∣𝑛𝑛 = 𝐅𝐅𝐗𝐗

^
𝑛𝑛∣𝑛𝑛,𝑛𝑛 = 1,2, …38) 

and 

𝐗𝐗
^
𝑛𝑛∣𝑛𝑛 = 𝐗𝐗

^
𝑛𝑛∣𝑛𝑛−1 + 𝐊𝐊𝑛𝑛 �𝑠𝑠[𝑛𝑛] − 𝐇𝐇𝑛𝑛𝐗𝐗

^
𝑛𝑛∣𝑛𝑛−1� ,𝑛𝑛 = 1,2, … , (39) 

with the initialization 𝐗𝐗
^
0∣−1 = 𝐸𝐸[𝑋𝑋0]. (Here, 𝐸𝐸[𝑈𝑈] is the expected value of the random variable 𝑈𝑈, and 𝐸𝐸[𝑈𝑈|𝑍𝑍] is 

the conditional expectation of the random variable 𝑈𝑈 given the random variable 𝑍𝑍.) In this paper, it is assumed 
that any vibrating target has symmetrical displacements and velocities with respect its central position. 

Therefore, 𝐗𝐗
^
0∣−1 = 𝐸𝐸[𝑋𝑋0] = 0. The Kalman gain, 𝐊𝐊𝑛𝑛, is given by 

𝐊𝐊𝑛𝑛 = 𝚺𝚺𝑛𝑛∣𝑛𝑛−1𝐇𝐇𝑛𝑛
𝑇𝑇(𝐇𝐇𝑛𝑛𝚺𝚺𝑛𝑛∣𝑛𝑛−1𝐇𝐇𝑛𝑛

𝑇𝑇 + 𝜎𝜎𝑤𝑤2)−1 (40) 
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where 𝚺𝚺𝑛𝑛∣𝑛𝑛−1 ≐ Cov(𝑋𝑋𝑛𝑛 ∣ 𝑠𝑠0𝑛𝑛−1) and 𝐇𝐇𝑛𝑛
𝑇𝑇 is the transpose of 𝐇𝐇𝑛𝑛. The covariance matrix, 𝚺𝚺𝑛𝑛∣𝑛𝑛−1, can be 

computed jointly with 𝚺𝚺𝑛𝑛∣𝑛𝑛 ≐ Cov(𝑋𝑋𝑛𝑛 ∣ 𝑠𝑠0𝑛𝑛) from the following recursion: 

𝚺𝚺𝑛𝑛∣𝑛𝑛 = 𝚺𝚺𝑛𝑛∣𝑛𝑛−1 + 𝐊𝐊𝑛𝑛𝐇𝐇𝑛𝑛𝚺𝚺𝑛𝑛∣𝑛𝑛−1,𝑛𝑛 = 1,2, … (41) 

and 

𝚺𝚺𝑛𝑛+1∣𝑛𝑛 = 𝐅𝐅𝚺𝚺𝑛𝑛∣𝑛𝑛 + 𝐅𝐅𝑇𝑇𝐆𝐆𝐐𝐐𝑛𝑛𝐇𝐇𝑇𝑇 ,𝑛𝑛 = 1,2, … (42) 

with the initialization 𝚺𝚺0∣−1 ≐ Cov(𝑋𝑋0), where 𝐐𝐐𝑛𝑛 is the covariance matrix of the instantaneous vibration 
acceleration 𝐴𝐴𝑣𝑣[𝑛𝑛]. Fig. 3 shows the block diagram of the Kalman filter for the vibration estimation problem. 

 
Fig. 3. Block diagram of the Kalman filter for vibration estimation in DPCA-SAR. The variable 𝑠𝑠[𝑛𝑛] is the DPCA-
SAR SoI, 𝐊𝐊𝑛𝑛 is the Kalman gain, 𝐇𝐇𝑛𝑛 is the linearized observation matrix, and 𝐅𝐅 is the one-step state-transition 
matrix. 

SECTION V. Observation Noise Immunity by Averaging Over Several State 
Estimates 
A. Motivation 
Recall that when the state-transition model was defined, no assumptions were made about the vibration 
behavior of the vibrating target other than it was obeying the classical laws of motion. Defining the state-
transition model in this manner permits the vibration dynamics of the vibrating target to change drastically 
between each slow-time step. However, while it is not constrained in the state-transition model, it was assumed 
that the PRI was significantly shorter than the period of the vibration of interest. With this assumption, it is not 
physically possible for the vibrating target to exhibit a drastic change of position between each slow-time step. 
Therefore, any nontrivial changes in the vibration dynamics of the vibrating target in the observed signal, 𝑠𝑠[𝑛𝑛], 
between successive slow time steps, are caused solely by the observation noise. Since the state-transition model 
does not account for this and since the observations are linearized at each slow-time step, the standard 
implementation of the EKF is very susceptible to observation noise. This susceptibility to noise can lead to 
incorrect state-variable estimates and misleading vibration behavior. If the observation noise is suppressed, the 
EKF becomes much more accurate and stable. 

It is widely known that the state estimates of the EKF may diverge when the error covariance becomes 
significantly small. In fact, some variations of the EKF have been developed for compensating the uncertainties 
in the error covariance introduced by the first-order linearization. One of the most popular is the unscented 
Kalman filter (UKF) [27], [28]. The UKF was originally developed under the idea that the linearization step of the 
EKF can produce a highly unstable filter if the assumptions of local linearity are violated. Specifically, the UKF 
employs an unscented transformation to estimate the statistics of the state variables as they pass through the 
nonlinear system. In this way, the UKF produces estimates of third-order accuracy while the EKF produces 
estimates of first-order accuracy [28]. In contrast, in this paper, we present a special modification to the EKF in 
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order to reduce the adverse effect of severe data variability on the piece-wise-linear assumption. Specifically, in 
this paper, we average the state estimates to produce more stable estimates, which, in turn, is used in the 
computation of the linearized observation matrix. 

To motivate this averaging approach, consider the case of a single static target. Each time the static target is 
observed, the observation noise randomly places the target at the incorrect position in the ground scene. If the 
static target is repeatedly observed over an extended period of time, each observation will create a set of 
different possible target locations. This set of all observations will be a scattering of locations, centralized and 
symmetric around the true target location. The centralized and symmetric scattering of observations is because 
the noise is assumed to be ZMCSCG. As the number of observations increases, the expected value of the set of 
all the observations will approach the true target location. Thus, resilience to noise is directly related to the 
number of averaged state estimates. However, in this article, all the targets of interest are vibrating. Thus, 
averaging over too many state estimates while suppressing the noise will also suppress the vibration behavior 
and only the average target position will remain. Therefore, it is critical to average over as many state estimates 
as possible to suppress the noise, while not averaging over too many state estimates to ensure retention of the 
vibration behavior of the target. An analytical expression to determine the number of points to average over is 
developed below. 

If 𝑓𝑓𝑣𝑣 is the vibration frequency of the target of interest, then 1/𝑓𝑓𝑣𝑣 is the time needed for a single complete 
vibration cycle, or period, 𝑀𝑀 is the number of averaged points for noise suppression, and Δ𝑡𝑡 is the PRI. Then, the 
state estimates are being averaged over the time interval, 𝑀𝑀Δ𝑡𝑡. Taking the ratio of these quantities gives the 
ratio of a single vibration that the state estimates are estimated over 

𝑀𝑀Δ𝑡𝑡
1
𝑓𝑓𝑣𝑣

= 𝛽𝛽. (43) 

Setting 𝛽𝛽 ≈ 0.125 ensures that the average is taken over at most 1/8 of the vibrating period. Averaging over 1/8 
or less of the vibrating period appears to ensure the vibration dynamics are not substantially suppressed. As can 
be seen in Section VI, this rule holds for many different target dynamics: sinusoidal and stationary vibrations, 
sinusoidal and linearly increasing in frequency vibrations, and multicomponent sinusoidal vibrations. While 
any 𝛽𝛽 ≤ 0.125 is sufficient to retain the vibration behavior, increasing the time of the averaging will increase the 
noise immunity. Therefore, 𝑀𝑀 should be as large as possible, while ensuring 𝛽𝛽 ≈ 0.125. This condition can be 
expressed mathematically as 

𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑛𝑛 ∈ ℕ:𝑛𝑛 ≤ 0.125
Δ𝑡𝑡𝑓𝑓𝑣𝑣

� . (44) 

Note that for a given vibration frequency, as the PRF increases (i.e., Δ𝑡𝑡 decreases), the number of state 
estimates that can be averaged, 𝑀𝑀, increases. Therefore, for a given target vibration frequency and SNRres value, 
a higher PRF (low Δ𝑡𝑡) increases noise immunity. This is further discussed in Section V-D and Fig. 7. An example of 
the improvement obtained using the state-estimate averaging is shown in Figs. 4 and 5. As can be seen in Figs. 
4 and 5, the averaging technique drastically improves the resemblance of the estimated instantaneous position 
of the target with the ground truth. The introduction of the state-estimate averaging method to the EKF is 
presented in Section V-C. 



 
Fig. 4. Estimated position of a 1-mm 8-Hz vibrating target using the EKF. The DPCA-SAR SoI was contaminated 
with ZMCSCG noise with an SNRres of 15 dB. State-estimate averaging improves the estimated position of the 
vibrating target significantly when using the EKF-based method. In this example, the MSE is reduced by 34%. 
 

 
Fig. 5. Estimated position of a multicomponent vibration. The components are 1 mm, 5 Hz and 0.75 mm and 12 
Hz. The DPCA-SAR SoI was contaminated with ZMCSCG noise with an SNRres of 15 dB. State-estimate averaging 
improves the estimated position of the vibrating target significantly when using the EKF-based method. In this 
example, the MSE is reduced by 76%. 
 

 
Fig. 7. Percentage of reliability in estimating the frequency of the vibrating target within 1 Hz over 1000 SoI for a 
given residual SNRres value. The vibrating target had a frequency of 8 Hz and a magnitude of 1 mm. As can be 
observed, the proposed averaging technique drastically improves the reliability of the EKF when 3 dB ≤ SNRres ≤ 
11 dB. 
 

B. Determining an Approximate fv A Priori 
One of the potential stumbling blocks of the state-estimate-averaging method is that it depends on having some 
prior knowledge of the vibration frequency of the target of interest. However, this is not an entirely 
unreasonable assumption. The vibration dynamics of a target are dependent on the material, geometry, and the 
machinery that is generating the vibrations. For example, if a corporation does remote monitoring of its own 
systems, it will have access to the material, geometry, and the machinery that is generating the vibrations. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/8344524/8244248/perez4-2782621-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/8344524/8244248/perez4-2782621-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/8344524/8244248/perez5-2782621-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/8344524/8244248/perez5-2782621-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/8344524/8244248/perez7-2782621-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/8344524/8244248/perez7-2782621-large.gif


Therefore, a range of expected vibration frequencies will be known. If 𝑓𝑓max(𝑣𝑣) is the maximum expected vibration 
frequency of a given target, then (44) can be restated as 

𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑛𝑛 ∈ ℕ:𝑛𝑛 ≤ 0.125
Δ𝑡𝑡𝑓𝑓max(𝑣𝑣)

� . (45) 

In other scenarios, the geometry, material, and machinery can be determined with other remote sensing 
techniques such as optical, infrared, and multispectral, to name a few. Therefore, in most cases, a maximum 
expected vibration frequency, 𝑓𝑓max(𝑣𝑣), can be estimated. 

C. Refinement of the EKF for Increased Noise Immunity 
Since it is the effect of the observation noise in the EKF model, rather than system noise, that is being mitigated 
with the state-estimate averaging described in Section V-A, the state-transition model, as defined in (26), 
remains unchanged as this is an accurate description for the vibration behavior. Any changes to the state-
transition model in an attempt to gain noise immunity would lead to an incorrect state model. In addition, the 
observation model defined in (31) remains unchanged as the DPCA-SAR collection platform has a fixed imaging 
procedure that cannot be altered. The modification occurs in the linearization of the observation model, as it is 
the linearization that is susceptible to the observation noise. 

Let 𝑁𝑁1 be the total number of state estimates being averaged, where 𝑁𝑁1 is determined by (44). Then, the 
observation matrix, 𝐇𝐇𝑛𝑛, is now defined as 

𝐇𝐇𝑛𝑛 = ∇ℎ ∣
𝐗𝐗=𝐗𝐗

^
avg(𝑛𝑛)

 (46) 

where 

𝐗𝐗
^

avg(𝑛𝑛) =
𝐗𝐗
^
𝑛𝑛∣𝑛𝑛−1+𝐗𝐗

^
𝑛𝑛−1∣𝑛𝑛−2+⋯+𝐗𝐗

^
𝑛𝑛−𝑁𝑁1+1∣𝑛𝑛−𝑁𝑁1

𝑁𝑁1
. (47) 

Here, the initialization of the state estimates is given by 

𝐗𝐗
^
𝑁𝑁1−1∣𝑁𝑁1−2 = ⋯ = 𝐗𝐗

^
1∣0 = 𝐗𝐗

^
0∣−1 = 𝐸𝐸[𝑋𝑋0] = 0. (48) 

This is the sole place in the EKF algorithm at which state estimates averaging is used to provide noise immunity. 
The rest of the EKF algorithm remains as defined from (33) to (42). 

D. Noise Requirements 
One of the potential challenges when implementing the EKF is that under certain conditions, the state 
estimations provided through the EKF algorithm can diverge from the actual state variables. This divergence is 
typically caused by the trace of the error covariance matrix becoming extremely small. When the trace of the 
covariance matrix is very close to zero, the Kalman gain places unreasonable trust in the state prediction and 
ignores subsequent observations [29]. When this occurs, the vibrational dynamics of targets cannot be reliably 
determined. Therefore, for accurate vibrometry, it is necessary to characterize the pervasiveness of this 
divergence and to determine how to reduce the divergence to negligible levels. 

An example of what happens to the state estimate when the estimated state-error-covariance matrix becomes 
unrealistically small is shown in Fig. 6. It is clear that EKF no longer trusts the observations and the state 
estimates are updated only using the predictions from the state-transition model. 
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Fig. 6. Estimated position and estimated frequency of a 1-mm 8-Hz vibrating target using the EKF. The DPCA-SAR 
SoI was contaminated with ZMCSCG noise with an SNRres of 9 dB. Strong successive noisy observations cause the 
Kalman gain to place unreasonable trust in the predicted state estimates and not trust the observations. 
 

For the purpose of characterizing the reliability of the EKF against residual clutter noise, the vibrating target is 
assumed to have a steady (constant frequency) sinusoidal motion of 8 Hz with a 1-mm displacement. The system 
parameters used for this characterization are described in Table II. With these target dynamics, 1000 simulated 
slow-time DPCA-SAR SoIs were generated. Each realization of the slow-time signal was corrupted with a ZMCSCG 
perturbation as residual clutter noise. Then, the previously developed EKF-vibrometry method was applied to 
each slow-time signal. If the EKF-vibrometry method estimated the frequency of the vibrating target within an 
error margin of 1 Hz, then the estimation was considered to be reliable or to have converged; otherwise, the 
method was considered to have produced an unreliable estimate or have diverged. The ratio of converging 
solutions to the total number of slow-time SoI was taken as a reliability indicator. This process was repeated for 
integer SNRres values ranging from 1 to 15 dB. This entire procedure was done with the averaging for noise 
immunity method and without the averaging for noise immunity method. The results are shown in Fig. 7. As can 
be observed, for a given level of residual SNRres, the state-estimate averaging for noise immunity increases the 
occurrence of converging solutions. For example, when the SNRres is 8 dB, the percentage of diverging solutions 
is approximately reduced from 80% to 25% when employing the state-estimate-averaging technique. Therefore, 
for the minimal computational effort, averaging provides not only increased confidence in the vibration 
behavior but also decreases the likelihood of a divergent solution when the residual clutter noise exhibits 
SNRres < 15 dB. When the SNRres exceeds 15 dB, the divergence of the estimates is no longer a concern. In fact, 
the SNRres ≥ 15 dB requirement is quite reasonable since values between 15 and 20 dB of SNRres are typical 
thresholds for target detection in MTI systems [30]. The performance limits of the proposed method are 
summarized in Table I. 

TABLE I Performance Limits of DPCA-SAR Vibration Estimation Using the EKF Method 

Parameter Quantity 
Required SNRres: 15 dB 
Frequency Resolution 1

𝑓𝑓𝑝𝑝𝜏𝜏𝑓𝑓𝑁𝑁
 

Maximum measurable vibration velocity (MMVV): 𝜆𝜆
4𝜏𝜏𝐵𝐵

 

Maximum measurable vibration frequency (MMVF): 
Theoretically 

𝑓𝑓𝑝𝑝𝜏𝜏𝑓𝑓
2 ; with state averaging 

𝑓𝑓𝑝𝑝𝜏𝜏𝑓𝑓
2𝑁𝑁1
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TABLE II DPCA-SAR System Parameters Used in Simulations 

Parameter Quantity 
Center frequency 16 GHz 
Effective PRG 487 Hz 
Propagation velocity 3x108 m/s 
Platform velocity 175 m/s 
Slant range 10km 
Azimuth resolution 0.33 m 
Aperture length 363 m 
SNRres 15 dB 
Baselin 0.3596 m 

 

 

 

E. Signal-to-Clutter Ratio 
In a general sense, clutter can be defined as the collection of all targets or objects that engender undesired 
reflections in the returned radar signal. These undesired reflections often degrade the performance of the radar 
system as the target of interest cannot be separated from the background. Clutter can be placed into one of two 
categories: surface clutter and airborne clutter. Some examples of surface clutter include vegetation, ground 
terrain, ocean surface condition, and jungle canopies. Airborne clutter, sometimes termed volume clutter, 
typically refers to rain, insects, or birds. In this paper, only ground clutter is considered. Since a SAR is designed 
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to be an all-weather imaging system, the majority of airborne clutter typically has minimal, and often negligible, 
effects on the quality of the SAR image [31]–[32][33]. 

One of the distinct advantages of a DPCA-SAR system is that it performs quite well when introduced into a high 
clutter environment. In real-world applications, the removal of the clutter signal is subject to the noise floor of 
the DPCA-SAR system [23]. When the noise increases, residual clutter (from imperfect noise cancellation) will be 
present. However, this residual clutter will be indistinguishable from the noise signal. This noise is generated 
from any incoherence between the two antennas, in addition to the thermal noise [34]. This incoherence is 
generated from a variety of imperfections in the collection platform, as well as natural background radiation. 

One source that produces the stated incoherence is imperfections in the flight path due to turbulence. An 
irregular flight path causes the aft-antenna to be in a slightly different collection location than the fore-antenna. 
As a consequence, the DPCA-SAR system is not capable of producing a perfect cancellation due to the 
differences in the clutter signals collected by the two antennas. Typically on board a SAR platform, there is a GPS 
as well as some type of inertial measurement unit (IMU) or guidance system. These systems track the position of 
the collection platform for the duration of the flight. The GPS and IMU typically help to compensate for the 
irregular flight path; however, their success is limited by their own error margins [35]. Since turbulence can be 
viewed as a random process and the GPS and IMU errors are random, this incoherence can be viewed as noise. 

A second source that causes incoherence is the inconsistency between the fore- and aft-antennas. Any 
misalignment in phase results in a corresponding range error. With the same clutter signal mapped to a different 
range line for each antenna, these clutter signals will not be removed in the DPCA-SAR SoI. Since this phase error 
is due to real-world system limitations, it is random and can also be viewed as noise. 

Therefore, even using adaptive correction techniques, as a practical matter, the clutter can only be canceled 
down to the noise level. Hence, the DPCA-SAR signal to residual-clutter ratio (SCRres) is for all intents and 
purposes equivalent to the SNRres. For vibrometry purposes, the effect of the residual clutter on the DPCA-SAR 
signal may be worse than the effect of the noise. However, the effect of the residual clutter cannot be less 
significant than the effect of the noise. 

SECTION VI. Simulations and Results 
The presented EKF method has the ability to estimate not only the vibration frequency, but can also determine 
the instantaneous position and velocity of the vibrating target during the collection process. Since the EKF 
method is not restricted to a single-component sinusoidal vibration, it can be used to recover complex vibration, 
including multicomponent sinusoidal vibrations and vibrations with time-varying characteristics. In this section, 
the EKF-based vibrometry technique is tested for different vibration dynamics. Specifically, the vibration 
dynamics considered are a single-component sinusoidal vibration, a linearly increasing (and decreasing) 
frequency sinusoidal vibration, and a multicomponent sinusoidal vibration. For the case of a single-component 
sinusoidal vibration, the results of the magnitude method are presented for comparison. The vibrometry 
methods are validated by simulating the DPCA-SAR SoI, as described by (16). It is important to remember that 
the ground clutter present in the SAR images (captured by both the aft- and the fore-antennas) has been already 
suppressed in the DPCA-SAR SoI. However, we do consider residual clutter noise clutter/noise in the following 
simulations. 

The simulated DPCA-SAR system is operating in the 𝐾𝐾𝑢𝑢 -band and the corresponding system parameters are 
listed in Table II. These system parameters are chosen in part to mimic the Lynx radar [2]. The baseline, 𝐵𝐵, and 
the platform velocity, 𝑉𝑉𝑎𝑎, are, however, typical values of a DPCA-SAR system. 
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A. Simple Sinusoidal Vibration Simulation 
The first set of simulations considers a vibrating target whose displacement is described through a sinusoidal 
vibration of constant frequency and constant amplitude. The target had an 8-Hz oscillation with an amplitude of 
1 mm (i.e., a velocity of 50.26 mm/s). Figs. 8 and 9 show the results of applying the magnitude method for 
estimating the instantaneous velocity of the target. As can be observed in Fig. 8, the vibration frequency is 
contained in the spectrum of the DPCA-SAR SoI at the double of the original frequency (i.e., a 16-Hz component 
can be observed). Fig. 9 shows the velocity waveform recovered by solving (19). As can be observed, the 
recovered waveform exhibits the double of the frequency of the original signal due to the effect of the absolute 
value in (19). Meanwhile, Fig. 10 shows the results of the EKF-vibrometry method estimating the position of a 
vibrating target without using the state-estimate-averaging technique described in Section V. As can be 
observed in Fig. 10, the waveform recovered by the EKF-vibrometry method is highly affected by the residual 
clutter noise. This issue is addressed by applying the proposed state-estimate averaging, as shown in Fig. 11. In 
this case, the state-estimate averaging occurred over 10 consecutive terms. It is clear from Fig. 11 that the state-
estimate average improves the position estimate of the vibrating target and, consequently, produces a sharper 
peak in the frequency spectrum of the estimated signal. In fact, when analyzing the mean square error (MSE) of 
the estimated position of the target, the first EKF method produces an MSE of 0.2279 mm2while the MSE of the 
modified method is 0.1503 mm2. Therefore, the modification improved the position estimate of the vibrating 
target by 34%. Finally, it should be noted that even though the magnitude method performs well for a simple 
sinusoidal vibration, the algebraic solution becomes nontrivial as the vibration waveform increases in complexity 
as is explained in Section III-A. Therefore, the study cases shown next will not include this technique. 

 
Fig. 8. Absolute value of the DPCA-SAR SoI and its frequency spectrum for a 1-mm 8-Hz vibrating target. The 
DPCA-SAR SoI was contaminated with ZMCSCG noise with an SNRres of 15 dB. The vibration frequency can be 
estimated directly from the spectrum of the DPCA-SAR SoI. In this case, the 16-Hz peak indicates that the 
vibration frequency is 8 Hz. 
 

 
Fig. 9. Estimated velocity and estimated frequency spectrum of a 1-mm 8-Hz vibrating target using the 
magnitude method. The DPCA-SAR SoI was contaminated with ZMCSCG noise with an SNRres of 15 dB. The 
recovered waveform exhibits a frequency component of twice the value of the original vibration. 
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Fig. 10. Estimated position and estimated frequency spectrum of a 1-mm 8-Hz vibrating target using the EKF. 
The DPCA-SAR SoI was contaminated with ZMCSCG noise with an SNRres of 15 dB. 
 

 
Fig. 11. Estimated position and estimated frequency spectrum of a 1-mm 8-Hz vibrating target using the EKF. 
The DPCA-SAR SoI was contaminated with ZMCSCG noise with an SNRres of 15 dB. The state estimates were 
linearized over seven terms for noise suppression. 
 

B. Sinusoidal Vibration With Linearly Increasing Frequency 
The next simulation considers the case of a vibrating target whose displacement is described through a 
sinusoidal vibration that linearly increases in frequency throughout the duration of the aperture. The target 
oscillations started at 10 Hz and linearly increased to 17 Hz. The displacement of the vibrating target was set to 1 
mm. The position estimate for the linear increasing vibration using the modified-EKF is shown in Fig. 12. As in 
the previous case of a constant frequency sinusoidal vibration, after about two complete oscillations, the 
estimated target position converges to the true target position. 

 
Fig. 12. Position estimation of a vibrating target with time-varying dynamics using the EKF. The vibration 
frequency linearly increased from 10 to 17 Hz. The amplitude of the vibration was 1 mm. The DPCA-SAR SoI was 
contaminated with ZMCSCG noise with an SNRres of 15 dB. The state estimates were linearized over 10 terms for 
noise suppression. 
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C. Sinusoidal Vibration With Linearly Decreasing Frequency 
In this case, we consider a vibrating target whose displacement is described through a sinusoidal vibration that 
linearly decreases in frequency throughout the duration of the aperture. The target oscillations started at 16 Hz 
and linearly decreased to 8 Hz. The displacement of the vibrating target was set to 1 mm. The position 
estimation for the linear increasing vibration using the modified-EKF is shown in Fig. 13. Similar to the previous 
cases, after approximately two oscillations, the estimated position of the vibrating target converges to the true 
target position. 

 
Fig. 13. Position estimation of a vibrating target with time-varying dynamics using the EKF. The vibration 
frequency linearly decreased from 16 to 8 Hz. The amplitude of the vibration was 1 mm. The DPCA-SAR SoI was 
contaminated with ZMCSCG noise with an SNRres of 15 dB. The state estimates were linearized over 10 terms for 
noise suppression. 
 

D. Multicomponent Vibration 
Finally, we considered the case of a vibrating target whose displacement is described as the sum of two 
sinusoids. The first frequency component has a 5-Hz vibration frequency with a displacement of 1 mm. The 
second frequency component has a 12-Hz vibration frequency with a displacement of 0.75 mm. The position 
estimation for the multicomponent vibration without state-estimate averaging is shown in Fig. 14. The position 
estimation for the multicomponent vibration with state-estimate averaging is shown in Fig. 15. As can be 
observed in Fig. 15, the state-estimate-averaging technique is required for accurately estimating the position of 
the vibrating target. Even with the additional vibration component, the estimated position closely matches the 
true target position. Since the highest frequency component is 12 Hz, the state estimates are averaged over five 
consecutive terms. For this scenario, the modification of the EKF reduced the MSE of the estimated target 
position by 76%. 

 
Fig. 14. Position estimation of a vibrating target that exhibits a multicomponent vibration using the EKF. No 
average of state estimates was employed. The vibration frequencies are 5 and 12 Hz, and the vibration 
amplitudes are 1 and 0.75 mm, respectively. The DPCA-SAR SoI was contaminated with ZMCSCG noise with an 
SNRres of 15 dB. 
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Fig. 15. Position estimation of a vibrating target that exhibits a multicomponent vibration using the EKF. Five 
state estimate terms were averaged. The vibration frequencies are 5 and 12 Hz, and the vibration amplitudes 
are 1 and 0.75 mm, respectively. The DPCA-SAR SoI was contaminated with ZMCSCG noise with an SNRres of 15 
dB. 

SECTION VII. Conclusion 
In this paper, a novel vibrometry technique for a DPCA-SAR was presented. In contrast with the traditional SAR-
vibrometry, the proposed vibrometry technique takes advantages of the DPCA-SAR signal model to remove all 
the ground clutter by combining two SAR images. Therefore, the proposed vibrometry technique can potentially 
recover the vibration dynamics of a vibrating target in the presence of heavy clutter. Specifically, the proposed 
vibrometry technique employs an EKF for estimating the instantaneous position and velocity of a target from a 
difference DPCA-SAR image. Since this technique does not impose specific requirements on the dynamics of the 
vibrations exhibited by a target, it can be used to estimate complex vibrations such as multicomponent 
sinusoidal vibrations and others with time-varying characteristics such as increasing (and decreasing) chirped 
sinusoidal vibrations. Furthermore, it has been demonstrated that the implementation of a state-estimate-
averaging technique in the linearization step of the observation function of the EKF algorithm produces a 
profound positive impact on the performance of the vibrometry technique. In fact, the modification to the EKF 
presented in this paper improves the position estimate of the vibrating target by 34% when the SNRres is 15 dB 
for a single-component vibrating target. For the multicomponent vibrations, the MSE of the estimated target 
position is reduced by 76% when the SNRres is 15 dB. Moreover, the state-estimate-averaging technique 
augmented the reliability of the estimates and decreased the likelihood of divergence of the EKF solution for the 
position of the vibrating target. When the SNRresis 8 dB, the percentage of diverging solutions is approximately 
reduced from 80% to 25% when employing the state-estimate-averaging technique. The next step for this 
vibrometry technique is to collect and analyze airborne data relevant to operational SAR systems such as, for 
example, the Lynx SAR. 
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