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Abstract 
Cloud computing is being widely accepted and utilized in the business world. From the perspective of businesses 
utilizing the cloud, it is critical to meet their customers' requirements by achieving service-level-objectives. 
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Hence, the ability to accurately characterize and optimize cloud-service performance is of great importance. In 
this paper a stochastic multi-tenant framework is proposed to model the service of customer requests in a cloud 
infrastructure composed of heterogeneous virtual machines. Two cloud-service performance metrics are 
mathematically characterized, namely the percentile and the mean of the stochastic response time of a 
customer request, in closed form. Based upon the proposed multi-tenant framework, a workload allocation 
algorithm, termed maxmin-cloud algorithm, is then devised to optimize the performance of the cloud service. A 
rigorous optimality proof of the max-min-cloud algorithm is also given. Furthermore, the resource-provisioning 
problem in the cloud is also studied in light of the max-min-cloud algorithm. In particular, an efficient resource-
provisioning strategy is proposed for serving dynamically arriving customer requests. These findings can be used 
by businesses to build a better understanding of how much virtual resource in the cloud they may need to meet 
customers' expectations subject to cost constraints. 

 

SECTION 1 Introduction 
Cloud computing is having a profound effect in today's business world. Many services, including email service, 
application hosting, data storage, e-commerce and so on, have been implemented on cloud infrastructures. 
When a cloud consumer (refers to a business in this paper) is deploying a cloud-based service, it is essential for 
the business to deliver services that satisfy customers’ requirements by having adequate computing resources, 
namely virtual machines (VMs). Meanwhile, it is also important for the business to avoid the cost of having 
unnecessary VMs (i.e., excessive computing power beyond its need). Therefore, an analytical model that can 
accurately predict and optimize cloud-service performance is vital as it would be of great benefit to enhancing 
the quality of service while keeping the cost of the business within a budget. 

In recent years, numerous works have looked at modeling cloud services and analyzing the performance. Several 
performance metrics, such as the response time of a task or a batch of tasks, as well as the throughput and 
power consumption of cloud services have been analytically characterized [1], [2], [3], [4], [5]. In most of these 
existing works, the analysis of the cloud-service performance is based upon queuing theory (a detailed review of 
the related work will be given in Section 2). 

Queuing models have proven their value in studying the response time, throughput and stability for cloud 
services. However, a necessary assumption adopted by the queuing models is that the service rate for all the 
tasks are the same. Due to the business (namely cost) concern, a modern cloud-service virtual infrastructure 
typically contains a cluster of heterogeneous VMs. Although the virtual infrastructure can start with near-
homogeneous VMs, the facility will likely grow more heterogeneous over time due to upgrades and 
replacement [5]. Furthermore, it is of great benefit to have an analytical model that could simultaneously 
address and investigate the essential characteristics and concerns that are critical in operating a cloud service 
including (i) stochastic response time of a customer request with a general probability distribution, (ii) service-
performance optimization by means of workload allocation, and (iii) efficient resource provisioning for serving 
dynamically arriving customer requests. Therefore and to the best of our knowledge, no existing analytical work 
is suitable to solve the problem that we considered in this paper. 

To fill this gap, we develop a general analytical framework to complement existing models for analyzing and 
optimizing the computational performance of cloud services. In the proposed framework, we consider a cluster 
of heterogeneous VMs that are utilized to construct a cloud-service infrastructure and serve customer requests. 



The customer request studied here is assumed to be a large-scale application/program that can be divided into 
several small sub-applications/sub-programs. To serve a customer request, a set of VMs will be utilized to 
execute the sub-applications of the request concurrently. To speed up the completion of a customer request, 
either vertical scaling (i.e., utilizing VMs with higher vCPU speed) or horizontal scaling (i.e., increasing the 
number of vCPUs/VMs to serve the request) can be applied. To make the problem more complicated and 
realistic, we assume that a request will be divided up to a certain number of sub-applications without degrading 
the performance. The execution time of a sub-application in the request is assumed stochastic with a general 
probability distribution. Based on this multi-tenant framework, we analytically characterize two cloud-service 
performance metrics, namely the percentile and the mean of the response time of a customer request, in closed 
form. These two metrics have been widely used in cloud service-level agreements (SLAs) and studied in research 
literature. 

With the two service-performance metrics characterized, we proceed to rigorously prove the optimality of the 
max-min-cloud workload allocation algorithm that was initially proposed (without proof) in our prior work [6]. 
We then conduct extensive experiments and Monte-Carlo (MC) simulations to examine the efficacy of the max-
min-cloud algorithm for executing customer requests with various workload patterns, and for the cases when 
different probability distributions are considered for the execution times of the sub-applications in the requests. 
In light of the max-min-cloud algorithm, we further investigate the resource-provisioning-problem in the cloud. 
In particular, we devise the minimum-provisioning-cost (MPC) provisioning strategy to determine the 
appropriate amount of virtual resources to be scheduled for efficiently serving the dynamically arriving 
customer requests. The performance of the MPC strategy is compared with two other practical resource-
provisioning strategies, termed the greedy-provisioning (GP) strategy and the random-provisioning (RP) strategy. 
This is done for two scenarios when either on-demand VMs or reversed VMs are utilized in the virtual 
infrastructure. To this end, we have utilized the proposed multi-tenant framework to completely address the 
limitations listed above, which have not been simultaneously addressed by the existing work. 

SECTION 2 Related Work 
In this section we review three categories of work related to this paper. The first category is the work on the 
analytical performance modeling of cloud services. The second category of related work is on workload 
allocation (or task scheduling) in heterogeneous computing and cloud computing environments. The third and 
last category is on the resource-provisioning-problem in the cloud. 

Analytical performance modeling for distributed systems under parallel and grid computing environments has 
been the focus of attention for a long time. To the best of our knowledge, however, there are only few works to 
date that have addressed cloud environments. One of the pioneering works was proposed by Xiong et al. [1], 
where the cloud service environment is modeled as an M/M/1 queuing network. In their model, the arrival and 
response times of customer requests were assumed to be exponentially distributed. The probability distribution 
of the response time was characterized by using the Laplace transform. The relationship among the maximum 
number of tasks, minimum service resources and highest level of service was then determined. Subsequently, 
many queuing models were proposed to relax the assumptions in [1]and to consider additional stochastic 
factors that are inherent in the cloud. In [2], Yang et al. used an M/M/m/m+r queue to model the service 
environment of the cloud. The service response time of a customer request is assumed to be composed of 
submission, waiting, service and execution times. The probability density function and the mean of the user's 
response time were derived. Khazaei et al. [3] assumed a general execution time for customer requests as well 
as a large number of servers in the cloud environment. The authors then modeled the cloud service based upon 
a M/G/m queuing system, and proposed an analytical technique for performance evaluation based on an 
approximate Markov-chain model. Due to the fact that statistics of the response time was typically 



characterized by using the inversion of its Laplace transform in the queuing models and such inversion was 
usually done numerically, hence there is generally no closed-form solution by using the queuing models. 

Besides the above works based on queuing models, Yeo and Lee [5] considered the heterogeneity of the servers 
in the cloud. Namely, the authors assumed that the CPU speed of the servers in the cloud are uniformly-
distributed random variables, and as such, the response times for executing a customer request also followed an 
uniform distribution. They then derived statistics (including the mean and variance) of the execution time for a 
given number of requests. The authors also applied regression methods to estimate the relationship between 
power and performance over time, and further performed energy-consumption analysis. Recently, our group 
proposed a multi-tenent model [6] to characterize the mean of the stochastic response time when a group of 
customers submit their requests to the cloud. The model considered certain essential characteristics of cloud 
computing including virtualization and multi-tenancy. The impact of the load ratios at servers on the service 
performance of the cloud was also investigated. We extend our prior multi-tenant model in this paper by 
analytically characterizing the two cloud-service performance metrics, namely the percentile of the response 
time of a customer request and the mean of the response time of a customer request, in closed form. 

As for the second category of the related work, i.e., the workload allocation (or task scheduling) in 
heterogeneous computing and cloud environments. A great volume of heuristic allocation/scheduling algorithms 
based upon queuing models have been proposed for various schemes that are used. For example, Braun et al. 
in [7] provided a comparison of 11 algorithms through experiments. The experimental results indicated that a 
genetic algorithm leads to the best performance for all the cases. The min-min algorithm reported in [7] was the 
second best algorithm but with significantly less computational cost than that of the genetic algorithm. Later, 
Ritchie and Levine embedded a local-search procedure into the min-min algorithm [8]; they proposed the min-
min+LS algorithm that significantly improves the performance of the min-min algorithm but maintains a similar 
computational cost to that for the min-min algorithm. In [9], Maguluri et al. defined a stochastic model for a 
cloud service where tasks are assumed to arrive according to a stochastic process and are subsequently queued. 
The authors focused on studying the stability of the cloud service and developed frame-based non-preemptive 
VM configuration algorithms. These algorithms can be made nearly throughput-optimal by choosing sufficiently 
long frame durations. In [6], our group proposed the max-load-first VM mapping algorithm that smartly places 
the VMs to the physical machines. Simulation results showed that the max-load-first VM mapping algorithm 
enhanced the performance of cloud computing infrastructures compared to the other two algorithms. In this 
paper, we propose the max-min-cloud workload allocation algorithm based on the developed multi-tenant 
model to optimize cloud-service performance. We also provide a rigorous proof to show the optimality of the 
max-min-cloud algorithm. 

As for the third category of related work, we shall discuss the resource-provisioning problem in the cloud. 
Typically, a resource-provisioning strategy is required to schedule a set of computing resources for serving 
dynamically arriving consumer requests. An efficient provisioning strategy is able to serve more customers while 
save on costs. Most of the existing work is based on the macroscopic level [10], [11], [12],[13], i.e., long-term 
provisioning for large-scale workflows. For example, Yang et al.[11] proposed a profile-based approach for 
developing just-in-time scalability for cloud applications. As a result, on-demand resources in cloud can be 
efficiently provisioned. In [12] and [13] , Chaisiri et al. proposed the OVMP algorithm and its refinement, the 
OCRP algorithm, to minimize the total cost of resource provisioning. The authors also applied stochastic 
programming to solve the resource provisioning problem. The uncertainty of the demand and provisioning cost 
is considered in their cloud-service model. The OVMP and OCRP algorithms can optimally adjust the tradeoff 
between reservation of resources and allocation of on-demand resources. In this paper, we devise a 
macroscopic-level resource-provisioning strategy, termed the MPC strategy, to determine the appropriate 



amount of virtual resources to be scheduled for efficiently serving the dynamically arriving customer requests. 
The MPC strategy aims to help service providers maximize their profits. 

For more details on cloud computing and research challenges, we point interested readers to the following 
survey papers [14], [15], [16], [17], [18]. 

SECTION 3 Probabilistic Multi-Tenant Framework for Cloud Services 
In this section, we first describe the cloud-service environment and the high-level modeling of the problem to be 
investigated. The response time of an arbitrary customer request is then analytically characterized. In general, 
the response time is one of the most commonly adopted performance metrics specified in the cloud 
SLAs[19], [20], [21]; it is also considered extensively in the research literature [1], [2], [3], [22]. 

3.1 Cloud Service Environment 
Suppose that a business deploys a virtual cloud-service infrastructure by utilizing on-demand or reserved VMs, 
purchased from cloud providers, to serve its customers. Generally, these VMs are heterogeneous and they may 
belong to different categories. Each category of VMs has several sub-types that are comprised of varying 
combinations of attributes, such as elastic computing unit (ECU), number of virtual CPUs (vCPUs), memory, 
storage, and networking capacity. As an example, Table 1lists four categories of VMs provided by Amazon EC2. 
Depending upon the purpose of a service, the business can choose the corresponding category of VMs or mixed 
categories of VMs to run the service. Since this work focuses on analyzing and optimizing the computational 
performance of cloud services, we assume that the virtual cloud-service infrastructure investigated in this study 
is comprised of only Compute Optimized and General Purpose [23] VMs, as listed in Table 1. 

TABLE 1 Details of VMs Provided by Amazon EC2 
Category Type ECU vCPUs Memory(GB)  Storage Price(per hour) 
 m1.small 1 1 1.7  1x160 $0.022 
General m1.medium 2 1 4  1x410 $0.044 
Purpose m3.large 6.5 2 7.5  1x4 SSD $0.133 
 m4.xlarge 13 4 16  EBSOnly $0.239 
 c1.medium 5 2 1.7  1x350 $0.075 
Compute c3.large 7 2 3.75  2x16 SSD $0.105 
Optimized c4.xlarge 16 4 7.5  EBS Only $0.209 
 c4.2xlarge 31 8 15  EBS Only $0.419 
Memory Optimized r3.xlarge 13 4 30.5  1x80 SSD $0.333 
Storage Optimized i2.xlarge 14 4 30.5  1x800 SSD $0.853 

 

 

The customer requests studied in this paper are assumed to be large-scale applications/programs. To complete 
a customer request in a timely fashion, each request will be divided into several sub-applications/sub-programs 
in advance and executed concurrently. Then, a set of VMs will be scheduled to serve the request. We assume 
that one vCPU in a VM executes one sub-application. This may be due to various reasons, which include the 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/7927510/7742971/wang.t1-2628370-large.gif
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thread locks for accessing data in the same sub-application, the high concurrency and synchronization costs 
among all sub-application or the high overhead for transmitting data stored at different locations, etc. Such 
service model has been widely utilized due to the multi-tenancy characteristic in modern cloud with the 
implementation of MapReduce [24] (e.g., Apache Hadoop [25]). To fulfill a request, all sub-applications in the 
request must be executed. To make the problem more general, the sub-applications may have heterogeneous 
workload sizes. Specifically, the workload size of a sub-application is the quantity that indicates the number of 
computation tasks or the volume of data to be processed. A concrete example of a customer request could be 
the application that collect and process huge amount of data with high variety such as audio, image, video, and 
etc. Other examples include the distributed bioinformatics computing applications such as parallel/cloud 
versions of CAP3 [26], DNA-sequencing [27], RNA-sequencing [28], etc. 

To make our problem more challenging and realistic, we further assume that a request will be divided up to a 
certain number of, say n, sub-applications/sub-programs without degrading the performance. (It is noted that 
how to optimally partition a request is another problem that is out of the scope of this study. We assume that 
such partition has been given in advance by each request.) To this end, the 𝑛𝑛 sub-applications in a customer 
request are allocated to and served concurrently by a set of VMs that has at least 𝑛𝑛 vCPUs. The execution time 
of a sub-application is assumed to be stochastic that follows a general probability distribution with a certain 
mean value. To guarantee the security and privacy of the cloud service, we assume that a VM can only serve the 
sub-applications that belong to the same customer request. When a request is completed, the set of VMs that 
serves the request will be released and becomes available for serving subsequent customer requests. 

For convenience, we give a simple example to illustrate how a request is served in the proposed cloud-service 
environment, which is also shown in Fig. 1. Suppose that a customer submits his/her request consisting of five 
sub-applications with heterogeneous workload sizes for execution. Suppose also that two VMs in the virtual 
infrastructure, say VM 1 with four vCPUs and VM 2 with two vCPUs, are scheduled to serve the request. One 
scenario is that three of the sub-applications in the request are hosted on VM 1 and the other two of the sub-
applications are hosted on VM 2, as shown in Fig. 1b. In fact, there are �51� + �52� = 15 ways in total to allocate 
the five sub-applications to the two VMs. 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/7927510/7742971/wang1-2628370-large.gif


 

Fig. 1. High-level cloud-service environment. 
 

Given the multi-tenant cloud-service environment described above, two challenging questions are raised. 

• Suppose that VM 1 and VM 2 are scheduled to serve the request as illustrated in Fig. 1b, then which 
allocation pattern of the 15 possibilities will result in the best performance of the request? 

• Which VMs (including number and type) in the virtual infrastructure are the most appropriate amount 
of computing resource to serve the request? 

 

We will specifically answer the above two questions in Sections 4 and 6. 

3.2 Cloud-Service Performance Characterization 
From a customer's point of view, the response time of his/her request is one of the most important concerns 
when using the cloud service [29]. We therefore focus on analyzing and minimizing the response times of 
customer requests as detailed next. 

Let 𝐰𝐰 = {𝑤𝑤1, … ,𝑤𝑤𝑛𝑛} be the set representing a customer request. Such a request consists of 𝑛𝑛 arbitrary sub-
applications, where 𝑤𝑤𝑖𝑖 is the workload size of the ith sub-application. Based on the cloud-service environment 
described above, the 𝑛𝑛 sub-applications are executed by 𝑛𝑛 vCPUs concurrently. Let 𝑇𝑇𝑤𝑤𝑖𝑖, for 𝑖𝑖 = 1, … ,𝑛𝑛, 
represent the execution times of the 𝑛𝑛 sub-applications in the request 𝐰𝐰. In this paper, we assume that the 
execution times of the 𝑛𝑛 sub-applications dominate the response time of such a request. Hence, the response 
time of the request 𝐰𝐰 is determined by the sub-application that is completed last, and we can write 

𝑇𝑇𝐰𝐰 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇𝑤𝑤1 , … ,𝑇𝑇𝑤𝑤𝑛𝑛). (1) 

Note that the execution time of the ith sub-application 𝑇𝑇𝑤𝑤𝑖𝑖, for i= 𝑖𝑖 = 1, … ,𝑛𝑛, is assumed to be stochastic. The 
probability distribution of 𝑇𝑇𝑤𝑤𝑖𝑖 is considered to be a general distribution with the execution rate 𝜆𝜆𝑤𝑤𝑖𝑖 that equals 
the reciprocal of the mean of its execution time. 

Next, we analytically characterize two statistics of the stochastic response time of the customer request as key 
performance metrics to evaluate the cloud service. The first metric is the percentile of the response time of the 
customer request before time t, which is defined as the cumulative distribution function (CDF) of the response 
time of the request [1] . In particular, the percentile of the response time gives the probability that 
request w can be completed before time t. This performance metric has also been considered by other 
researchers in prior works [30], [31], [32]. Namely, let 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) represent the percentile of the response time of 
the request w. By definition, we have 

𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) ≜ 𝐹𝐹𝑇𝑇𝐰𝐰(𝑡𝑡), (2) 

where 𝐹𝐹𝑇𝑇𝐰𝐰(𝑡𝑡) is the CDF of 𝑇𝑇(𝐰𝐰). To this end, we can further write the percentile of the response time as 

𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) = � 𝐹𝐹𝑇𝑇𝑤𝑤𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
, (3) 



where 𝐹𝐹𝑇𝑇𝑤𝑤𝑖𝑖(𝑡𝑡) is the CDF of the execution time of the ith sub-application. Note that when a request 𝐰𝐰 =
{𝑤𝑤1, … ,𝑤𝑤𝑛𝑛} is served by two different sets of VMs, 𝐯𝐯 and 𝐯𝐯′, for which the vCPUs in 𝐯𝐯 are pair-wise faster than 
for those in 𝐯𝐯′ (i.e., 𝜆𝜆𝑤𝑤𝑖𝑖 ≥ 𝜆𝜆𝑤𝑤𝑖𝑖

′ for𝑖𝑖 = 1, … ,𝑛𝑛, then 

𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) ≥ 𝑃𝑃𝑇𝑇′(𝐰𝐰; 𝑡𝑡)for all𝑡𝑡 > 0. (4) 

The second performance metric to be characterized is the mean of the response time of a customer request, 
which is another widely-adopted performance metric used in cloud SLAs and prior works [21] , [33], [34], [35]. 
Let 𝐸𝐸𝐸𝐸(𝐰𝐰) represent the mean of the response time of the request 𝐰𝐰. From Equation (1), we can write 

𝐸𝐸𝐸𝐸(𝐰𝐰) ≜ 𝖤𝖤[𝑇𝑇𝐰𝐰] = 𝖤𝖤[𝑚𝑚𝑚𝑚𝑚𝑚{𝑇𝑇𝑤𝑤1 , … ,𝑇𝑇𝑤𝑤𝑛𝑛}]. (5) 

Note that for any non-negative random variable 𝑋𝑋, 

𝖤𝖤[𝑋𝑋] = � (
∞

0
1 − 𝐹𝐹𝑋𝑋(𝑥𝑥))𝑑𝑑𝑑𝑑, 

where 𝐹𝐹𝑋𝑋(𝑥𝑥) is the CDF of random variable 𝑋𝑋. Hence, 𝐸𝐸𝐸𝐸(𝐰𝐰) can be further written as 

𝐸𝐸𝐸𝐸(𝐰𝐰) = ∫ (∞
0 1 − 𝐹𝐹𝑇𝑇𝐰𝐰(𝑡𝑡))𝑑𝑑𝑑𝑑

= ∫ (∞
0 1 −� 𝐹𝐹𝑇𝑇𝑤𝑤𝑖𝑖(𝑡𝑡))𝑑𝑑𝑑𝑑

𝑛𝑛

𝑖𝑖=1
.
 (6) 

Equation (6) can be numerically evaluated given the knowledge of 𝐹𝐹𝑇𝑇𝑤𝑤𝑖𝑖(𝑡𝑡) for 𝑖𝑖 = 1, … ,𝑛𝑛. 

It is important to note that there is a connection between 𝐸𝐸𝐸𝐸(𝐰𝐰) and 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡), which is 

𝐸𝐸𝐸𝐸(𝐰𝐰) = ∫ (∞
0 1 − 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡))𝑑𝑑𝑑𝑑. (7) 

To completely characterize the two performance metrics, it remains to model the CDFs, 𝐹𝐹𝑇𝑇𝑤𝑤𝑖𝑖(𝑡𝑡), of the 

execution times for the 𝑛𝑛 sub-applications. Here, we assume that a set of 𝑚𝑚 available VMs in the virtual 
infrastructure, denoted by the set 𝐯𝐯 = [𝑣𝑣1, … , 𝑣𝑣𝑚𝑚], are scheduled to execute the 𝑛𝑛 sub-applications. Now 
suppose also that the 𝑖𝑖th sub-application is hosted on the 𝑗𝑗th VM, whose ECU per vCPU is denoted by 𝜆𝜆𝑣𝑣𝑗𝑗. Then 
the execution rate, namely the reciprocal of average execution time, of the 𝑖𝑖th sub-application, 𝜆𝜆𝑤𝑤𝑖𝑖, is modeled 
the following two realistic rules: 1) 𝜆𝜆𝑤𝑤𝑖𝑖 is proportional to 𝜆𝜆𝑣𝑣𝑗𝑗; and 2) 𝜆𝜆𝑤𝑤𝑖𝑖 is inversely-proportional to the 
workload size of the sub-application. Hence, we can write 

𝜆𝜆𝑤𝑤𝑖𝑖 = 𝑐𝑐𝑖𝑖
𝜆𝜆𝑣𝑣𝑗𝑗
𝑤𝑤𝑖𝑖

, (8) 

where ci, termed the VM processing coefficient, indicates the rate for serving one unit of workload (e.g., 1 MB 
data) in the ith sub-application by one unit of ECU of a VM. The value of 𝑐𝑐𝑖𝑖 is determined by the details of 
the i th sub-application. Depending upon the specific probability distribution of the stochastic execution times of 
the sub-applications, 𝐹𝐹𝑇𝑇𝑤𝑤𝑖𝑖(𝑡𝑡) can be further characterized given the knowledge of 𝜆𝜆𝑤𝑤𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑛𝑛. 

It is worth noting that 𝑐𝑐𝑖𝑖 may be different for 𝑖𝑖 = 1, … ,𝑛𝑛, due to the possible variety of sub-applications in the 
same request. Specifically, a sophisticated sub-application has the less VM processing coefficient compared to a 
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simple sub-application. Without loss of generality, it is convenient to normalize the workload sizes of the sub-
applications in the same request so that the VM processing coefficients are same for all the sub-applications. For 
example, suppose that a request is consisted of two sub-applications with workload sizes 𝑤𝑤1 and 𝑤𝑤2, and the 
corresponding VM processing coefficients are 𝑐𝑐1 = 1 and 𝑐𝑐2 = 2, respectively. Hence, it takes half the time for a 
VM to execute the second sub-application compared to the first sub-application. In this case, the workload-size 
normalization can be done by doubling the workload size of the second sub-application. To this end, both of the 
two sub-applications have the same rate for serving one unit of workload by one unit of ECU. In the remainder 
of this paper, the workload sizes of the sub-applications in the same request are assumed to be normalized. 

We would also like to clarify that 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) and 𝐸𝐸𝐸𝐸(𝐰𝐰) also depend upon the set of 𝑚𝑚 VMs 𝐯𝐯 as well as the 
workload allocation algorithm that specifies how the 𝑛𝑛 sub-applications are hosted on the 𝑚𝑚 VMs. However, the 
explicit reference to this dependence can be omitted from the notation for convenience. 

SECTION 4 Optimal Workload Allocation 
Workload allocation (or task scheduling) is a critical issue in heterogeneous computing environments such as 
cloud computing. Here, allocating the workloads efficiently can clearly improve service performance. However, 
finding the optimal workload-allocation algorithm in a heterogeneous computing environment is in general an 
NP-hard problem [8]. Hence many heuristic workload-allocation algorithms, such as the minimum completion 
time (MCT), the min-min and the max-min, were proposed in [7] and their efficacy were investigated under 
various schemes [7], [8]. However, to the best of our knowledge, there is little work in the existing literature 
addressing the workload-allocation problem based upon the multi-tenancy principle in the cloud. In fact, the 
proposed algorithms in [7] behave quite differently in the multi-tenant model as illustrated later in this section. 

In the following, we begin by reviewing the max-min-cloud algorithm, whose elementary version was first 
proposed in our prior work [6]. Here we rigorously prove the optimality of the max-min-cloud algorithm 
in Section 4.2. This proof illustrates that the max-min-cloud algorithm gives the best performance in the multi-
tenant cloud-service environment for any arbitrary customer request, i.e., where the optimality is in the sense of 
maximizing the percentile of the response time of the request and minimizing the mean of the response time of 
the request. 

4.1 The Max-Min-Cloud Workload Allocation Algorithm 
In brief, the motivation for devising the max-min-cloud algorithm is based upon the concept of load balancing 
for the case when the execution times of the sub-applications are deterministic. Intuitively, the necessary 
condition for obtaining the minimum response time of a request is that the execution times of the 𝑛𝑛 sub-
applications should be as close to each other as possible. Specifically, the max-min-cloud algorithm follows a 
greedy pattern for allocating the 𝑛𝑛 heterogeneous sub-applications to a fixed set of mVMs (with at least 𝑛𝑛 vCPUs 
by default). It requires that the 𝑛𝑛 sub-applications in request w are sorted from the largest to the smallest, based 
upon their normalized workload sizes, while the 𝑚𝑚 VMs are also sorted in terms of ECU from the fastest to the 
slowest. Next, the sub-application with the largest workload size is allocated to the fastest available VM. If there 
is at least one idle vCPU in a VM, this VM is defined as an available VM. For convenience, details of the max-min-
cloud algorithm are summarized in Algorithm 1. 

Algorithm 1. The Max-Min-Cloud Algorithm 
Initiation: A customer submits his/her request w consisting of arbitrary 𝑛𝑛 sub-applications. Suppose that a set 
of 𝑚𝑚 VMs in the cloud-service infrastructure are scheduled for serving the request, and the 𝑗𝑗th server 
has 𝑘𝑘𝑗𝑗 vCPUs for 𝑗𝑗 = 1, … ,𝑚𝑚, respectively. 



Sort the 𝑛𝑛 sub-applications in the request 𝐰𝐰 from the largest to the smallest based upon the normalized 
workload sizes of the 𝑛𝑛 sub-applications. Let a vector 𝐰𝐰 = [𝑤𝑤1, … ,𝑤𝑤𝑛𝑛] represent the sorted 𝑛𝑛 sub-applications. 

Sort the 𝑚𝑚 VMs in terms of ECU from the largest to the smallest. Let a vector 𝐯𝐯 = [𝑣𝑣1, … , 𝑣𝑣𝑚𝑚] represent the 
sorted 𝑚𝑚 VMs. 

for 𝑖𝑖 = 1 to 𝑛𝑛 do 

for 𝑗𝑗 = 1 to 𝑚𝑚 do 

if the number of sub-applications that are hosted on the 𝑗𝑗 th VM is smaller than 𝑘𝑘𝑗𝑗, then 

allocate the ith sub-application to the 𝑗𝑗th VM; 

break; 

end if 

end for 

end for 

4.2 Optimality Proof of the Max-Min-Cloud Algorithm 
Consider the case when a set of heterogeneous VMs, 𝐯𝐯 = {𝑣𝑣1, … , 𝑣𝑣𝑚𝑚}, that have at least 𝑛𝑛 vCPUs in total, is 
scheduled to serve a customer request 𝐰𝐰 = {𝑤𝑤1, … ,𝑤𝑤𝑛𝑛}. We prove that the maximum 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡), for any 𝑡𝑡 > 0, 
and the minimum 𝐸𝐸𝐸𝐸(𝐰𝐰) will be obtained by utilizing the max-min-cloud algorithm. To make the proof 
tractable, we assume that the stochastic execution times of sub-applications are exponentially distributed. 
Without loss of generality, we also assume that 𝑐𝑐1 = ⋯ = 𝑐𝑐𝑛𝑛 = 1 in our proof. In this case, the formulas 
for 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) and 𝐸𝐸𝐸𝐸(𝐰𝐰), from (2) and (6), become 

𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) = � (𝑛𝑛
𝑖𝑖=1 �1 − 𝑒𝑒−𝜆𝜆𝑤𝑤𝑖𝑖𝑡𝑡� (9) 

and 

𝐸𝐸𝐸𝐸(𝐰𝐰) = � �1 −� �1 − 𝑒𝑒−𝜆𝜆𝑤𝑤𝑖𝑖𝑡𝑡�
𝑛𝑛

𝑖𝑖=1
�

∞

0
𝑑𝑑𝑑𝑑, (10) 

respectively. However, we will also conduct MC simulations to show the optimality of the max-min-cloud 
algorithm when the execution times are assigned with other probability distributions. 

Remark 1. 
Equations (4) and (7) together imply the fact that the mean of the response time of a customer request, 𝐸𝐸𝐸𝐸(𝐰𝐰), 
is minimized when the percentile of the response time of the request, 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡), is maximized for all 𝑡𝑡 > 0. 

Theorem 1. 
For any 𝑡𝑡 > 0, the maximum percentile of the response time of a request 𝐰𝐰 = {𝑤𝑤1, … ,𝑤𝑤𝑛𝑛} is obtained when the 
max-min-cloud algorithm is utilized to allocate the 𝑛𝑛 sub-applications in the request to a set of VMs 𝐯𝐯 =
{𝑣𝑣1, … , 𝑣𝑣𝑚𝑚} that have exactly 𝑛𝑛 vCPUs in total. 

Clearly, Theorem 1 also implies that the minimum mean of the response time is obtained when the max-min-
cloud algorithm is utilized as a consequence of Remark 1. 
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In order to prove Theorem 1, we begin by giving an example to define an operation termed app-swap, which 
helps us introduce Lemma 1 . Suppose that two sub-applications 𝑤𝑤1 and 𝑤𝑤2, with 𝑤𝑤1 > 𝑤𝑤2, are initially hosted 
on two VMs 𝑣𝑣2 and 𝑣𝑣1, with 𝜆𝜆𝑣𝑣1 > 𝜆𝜆𝑣𝑣2, respectively. If we reallocate the sub-application 𝑤𝑤1 to 𝑣𝑣1, and 𝑤𝑤2 to 𝑣𝑣2, 
then this operation is defined as an app-swap between 𝑤𝑤1 and 𝑤𝑤2. In particular, by performing an app-swap 
between 𝑤𝑤1 and 𝑤𝑤2, the sub-application with the larger workload size (i.e., 𝑤𝑤1) will be reallocated to the faster 
VM (i.e., 𝑣𝑣1), while the sub-application with smaller workload size (i.e., 𝑤𝑤2) will be reallocated to the slower VM 
(i.e., 𝑣𝑣2). 

Lemma 1. 
Suppose that a customer request 𝐰𝐰 = {𝑤𝑤1, … ,𝑤𝑤𝑛𝑛} is executed by a set of heterogeneous VMs 𝐯𝐯 =
{𝑣𝑣1, … , 𝑣𝑣𝑚𝑚} that have exactly 𝑛𝑛 vCPUs in total. Suppose also that two of the sub-applications 𝑤𝑤1 and 𝑤𝑤2, 
with 𝑤𝑤1 > 𝑤𝑤2, are allocated to the two VMs 𝑣𝑣2 and 𝑣𝑣1, with 𝜆𝜆𝑣𝑣1 > 𝜆𝜆𝑣𝑣2, respectively. Let 𝑃𝑃𝑇𝑇ini(𝐰𝐰; 𝑡𝑡) denote the 
percentile of response time of the request 𝐰𝐰 associated with the initial allocation pattern. Suppose that we 
reallocate 𝑤𝑤1 and 𝑤𝑤2 by performing an app-swap between them, and let 𝑃𝑃𝑇𝑇swap(𝐰𝐰; 𝑡𝑡) denote the percentile of 
the response time of 𝐰𝐰 after the reallocation. Then, 

𝑃𝑃𝑇𝑇swap(𝐰𝐰; 𝑡𝑡) > 𝑃𝑃𝑇𝑇ini(𝐰𝐰; 𝑡𝑡),for all𝑡𝑡 > 0. 

Proof. 
Note that by performing the app-swap between 𝑤𝑤1 and 𝑤𝑤2, the execution rates of 𝑤𝑤1 and 𝑤𝑤2 change while the 
execution rates for the rest of the 𝑛𝑛 − 2 sub-applications in wremain the same. According to (9), 

𝑃𝑃𝑇𝑇ini(𝐰𝐰; 𝑡𝑡) = �1 − 𝑒𝑒𝜆𝜆𝑤𝑤1𝑡𝑡��1 − 𝑒𝑒𝜆𝜆𝑤𝑤2𝑡𝑡���1 − 𝑒𝑒𝜆𝜆𝑤𝑤𝑖𝑖𝑡𝑡�
𝑛𝑛

𝑖𝑖=3

 

and 

𝑃𝑃𝑇𝑇swap(𝐰𝐰; 𝑡𝑡) = (1 − 𝑒𝑒𝜆𝜆𝑤𝑤1
′ 𝑡𝑡)(1 − 𝑒𝑒𝜆𝜆𝑤𝑤2

′ 𝑡𝑡)�(
𝑛𝑛

𝑖𝑖=3

1 − 𝑒𝑒𝜆𝜆𝑤𝑤𝑖𝑖𝑡𝑡). 

Hence, 

𝑃𝑃𝑇𝑇ini(𝐰𝐰; 𝑡𝑡) −𝑃𝑃𝑇𝑇swap(𝐰𝐰; 𝑡𝑡) = (�1 − 𝑒𝑒𝜆𝜆𝑣𝑣1𝑡𝑡��1 − 𝑒𝑒𝜆𝜆𝑣𝑣2𝑡𝑡�

− �1 − 𝑒𝑒𝜆𝜆𝑣𝑣1′ 𝑡𝑡� �1 − 𝑒𝑒𝜆𝜆𝑣𝑣2′ 𝑡𝑡�)��1 − 𝑒𝑒𝜆𝜆𝑣𝑣𝑖𝑖𝑡𝑡�
𝑛𝑛

𝑖𝑖=3

.
 

Using Proposition 2 (which is shown in the Appendix, which can be found on the Computer Society Digital 
Library at http://doi.ieeecomputersociety.org/10.1109/TPDS.2016.2628370), we conclude that 

�1 − 𝑒𝑒𝜆𝜆𝑤𝑤1𝑡𝑡��1 − 𝑒𝑒𝜆𝜆𝑤𝑤2𝑡𝑡� − �1 − 𝑒𝑒𝜆𝜆𝑤𝑤1
′ 𝑡𝑡��1 − 𝑒𝑒𝜆𝜆𝑤𝑤2

′ 𝑡𝑡� < 0for all𝑡𝑡 > 0. 

Therefore, 

𝑃𝑃𝑇𝑇ini(𝐰𝐰; 𝑡𝑡) < 𝑃𝑃𝑇𝑇swap(𝐰𝐰; 𝑡𝑡),for all𝑡𝑡 > 0. (11) 
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Proof of Theorem 1. 
Let the 𝑛𝑛 sub-applications in the request be allocated to the 𝑚𝑚 VMs in an arbitrary initial allocation pattern. We 
will then implement a sequence of app-swaps between two of the 𝑛𝑛 sub-applications based on a sorting 
algorithm, say bubble sort. After some finite number of app-swaps, there can be no more app-swaps within 
the 𝑛𝑛 sub-applications that can be implemented. At this point, the 𝑛𝑛 sub-applications are reallocated to 
the 𝑚𝑚 VMs following the allocation pattern where the largest sub-applications is hosted on the fastest VMs. 
Note that this final allocation pattern obtained at the end of the sequence of app-swaps is precisely prescribed 
by the max-min-cloud algorithm. 

With the knowledge of Lemma 1, it is clear that each app-swap enhances the performance for serving the 
request 𝐰𝐰. Therefore, we can claim that the maximal percentile of the response time of the request 𝐰𝐰 is 
achieved for all 𝑡𝑡 > 0 by utilizing the max-min-cloud algorithm. 

Next, we extend Theorem 1 by considering the general case when the set of 𝑚𝑚 VMs has more than 𝑛𝑛 vCPUs in 
total. 

Theorem 2. 
Suppose that a request with 𝑛𝑛 sub-applications is to be executed by a set of 𝑚𝑚 VMs that have more 
than 𝑛𝑛 vCPUs in total. Then for any 𝑡𝑡 > 0, the maximum percentile of the response time of the request 𝐰𝐰 is 
obtained when the max-min-cloud algorithm is utilized. 

Proof. 
First, consider the case when the 𝑛𝑛 sub-applications in the request are allocated to the set of 𝑚𝑚′ fastest VMs, 
denoted by 𝐯𝐯mmc, of the 𝑚𝑚 VMs. Without loss of generality, we can assume that the set of VMs in 𝐯𝐯mmc has 
exactly 𝑛𝑛 vCPUs. (For the case when there are more than 𝑛𝑛 vCPUs in 𝐯𝐯mmc , the vCPUs that has the smallest ECU 
per vCPU can be ignored, since they will not be executing any sub-applications.) By Theorem 1, the best 
performance for serving the 𝑛𝑛 sub-applications by the set of VMs 𝐯𝐯mmc is obtained by applying the max-min-
cloud algorithm. In this case, we use the term 𝑃𝑃𝑇𝑇mmc(𝐰𝐰; 𝑡𝑡) to denote the percentile of the response time of the 
request 𝐰𝐰, and the execution rates of the 𝑛𝑛 sub-applications are denoted by 𝜆𝜆𝑤𝑤1

mmc, … , 𝜆𝜆𝑤𝑤𝑛𝑛
mmc. 

Next, consider the other case when a different collection of 𝑚𝑚′′ VMs, denoted by 𝐯𝐯arb, are selected to serve 
the 𝑛𝑛 sub-applications, i.e., 𝐯𝐯arb ≠ 𝐯𝐯mmc. Without loss of generality, we can also assume that the set of VMs 
in 𝐯𝐯arb has exactly 𝑛𝑛 vCPUs. Again by Theorem 1, the best performance is obtained by applying the max-min-
cloud algorithm. Let 𝑃𝑃𝑇𝑇arb(𝐰𝐰; 𝑡𝑡) denote the percentile of the response time of the request 𝐰𝐰  this scenario, and 
the execution rates of the 𝑛𝑛 sub-applications are denoted by 𝜆𝜆𝑤𝑤1

arb, … , 𝜆𝜆𝑤𝑤𝑛𝑛
arb. 

Note that the VMs in 𝐯𝐯mmc are the selection of the fastest VMs. Now when the max-min-cloud algorithm is 
utilized, the vCPU of the VM in 𝐯𝐯mmc is faster than the vCPU of the VM in 𝐯𝐯arb pair-wisely for executing the same 
workload, i.e., 

𝜆𝜆𝑤𝑤𝑖𝑖
mmc ≥ 𝜆𝜆𝑤𝑤𝑖𝑖

arbfor𝑖𝑖 = 1, … ,𝑛𝑛. 
Hence, we have 

𝑃𝑃𝑇𝑇mmc(𝐰𝐰; 𝑡𝑡) > 𝑃𝑃𝑇𝑇arb(𝐰𝐰; 𝑡𝑡)for all𝑡𝑡 > 0 

as a result of (4). The proof of Theorem 2 is completed by noting that the selection of the collection of 𝑚𝑚′′ VMs 
is arbitrary. 
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Theorem 2 also implies that the minimum mean of the response time is obtained when the max-min-cloud 
algorithm is utilized due to Remark 1. To this end, we have rigorously proven the optimality of the max-min-
cloud algorithm in the sense of maximizing the percentile of the response time for any 𝑡𝑡 > 0 as well as 
minimizing the mean of the response time for serving an arbitrary customer request when a fixed set of VMs has 
been scheduled to serve this request. 

SECTION 5 Experimental and Simulation Results 
In this section, we conduct experiments along with MC simulations to validate the efficacy of the max-min-cloud 
algorithm under various scenarios. To do so, we compare its performance to that of a widely-adopted workload-
allocation algorithm termed the MCT-cloud algorithm, which extends the minimum completion time algorithm 
introduced in [8]. The MCT-cloud algorithm allocates the sub-applications in a request 𝐰𝐰, in arbitrary order, to 
the fastest available VM in a scheduled set of VMs 𝐯𝐯. The MCT-cloud algorithm performs well for cloud services 
whose virtual infrastructure consists of near-homogeneous VMs [5]. 

Consider the case for which a customer submits a request whose purpose is to collect and process a total of 450 
MB of data from different resources. By default, such request will be divided into nine sub-applications. We 
assume that four VMs, including one c4.xlarge instance, one c3.large instance, one c1.medium instance and one 
m1.medium instance, are scheduled to serve the request. Furthermore, six workload patterns of the sub-
applications, which are listed in Table 2, of such request are examined. The execution times of the sub-
applications in the request are first assumed to be exponentially distributed. 

TABLE 2 The Mean of the Response Time of Request w with Different Workload Patterns 
Request 
pattern 

workload sizes of sub-apps (MB)  mean of response time 
(in seconds) 

 

 [𝑤𝑤1;  . . . ;  𝑤𝑤9]  theo. prediction sim. max-min-cloud sim. MCT-cloud 
1 [370; 10; 10; 10; 10; 10; 10; 10; 10] 26,522 26,496 37,939 
2 [90; 90; 90; 90; 50; 10; 10; 10; 10] 13,794 13,785 19,332 
3 [50; 50; 50; 50; 50; 50; 50; 50; 50] 13,546 13,547 13,545 
4 [½90; 50; 50; 50; 50; 50; 50; 50; 10] 12,953 12,948 15,367 
5 [90; 80; 70; 60; 50; 40; 30; 20; 10] 12,412 12,403 16,946 
6 [60; 60; 60; 60; 52; 52; 38; 38; 30] 12,104 12,095 14,487 

 

 

To specify the calculation of the VM processing coefficient 𝑐𝑐𝑖𝑖 of the 𝑖𝑖th sub-application in the proposed multi-
tenant model, we take the word-count and the word-median programs given by Hadoop 2.7.2 as two examples 
of the sub-applications. In particular, our experiment is running on a Intel Core 2 Q9550 CPU desktop, whose 
computing power is approximately 80 percent as compared to the m4.xlarge VM provided by Amazon EC2 (i.e., 
the ECU of the desktop equals to 5.2). We conduct a series of experiments processing on a group of text files 
with different sizes. In Fig. 2, we show the experimental results of the execution times of the word-count and 
the word-median programs as a function of the workload size of the text files. We fit the two experimental 
results with two linear functions in order to calculate the corresponding VM processing coefficients of the word-
count program, say 𝑐𝑐1, and the word-median program, say 𝑐𝑐2, respectively. After offsetting the setup overhead 
of the programs, we determine that 𝑐𝑐1 ≈ 0.64 and 𝑐𝑐2 ≈ 1.786. 
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Fig. 2. The execution times of the word-count and the word-median programs as a function of workload size. 

In reality, the value of 𝑐𝑐𝑖𝑖 is determined by the specific cloud service that is provided by a business. Typically, the 
business has the prior knowledge of all the cloud services that are provided to the customers (so as to formulate 
the pricing strategy). Hence, a lookup table can be created by the business to store the values of the VM 
processing coefficients for all kinds of the sub-applications. When a customer submits his/her request, the VM 
processing coefficient 𝑐𝑐𝑖𝑖 of each sub-application for 𝑖𝑖 = 1, … ,𝑛𝑛 in the request can be extracted from the lookup 
table. 

With the knowledge of the VM processing coefficient, we proceed to conduct MC simulations to show the mean 
of response times of the six requests for the cases when the max-min-cloud algorithm and the MCT-cloud 
algorithm are utilized. For convenience, the workload sizes of the nine sub-applications in the simulations have 
been normalized. Furthermore, we assume that 𝑐𝑐1 = ⋯ = 𝑐𝑐9 = 0.0035, which implies that the sub-applications 
considered in the simulations are more sophisticated programs than the word-count or the word-median 
programs. In Table 2, the columns labeled as “theo.” and “sim.” present the results obtained from numerically 
evaluating the analytical characterization of 𝐸𝐸𝐸𝐸(𝐰𝐰) in (6) and after averaging 10,000 realization of independent 
experiments, respectively. It is noted that the execution rates of the sub-applications cannot be determined 
when the MCT-cloud algorithm is utilized. Hence, there is no theoretical prediction of 𝐸𝐸𝐸𝐸(𝐰𝐰) for the MCT-cloud 
algorithm. 

It can be observed from Table 2 that for any of the six patterns, the mean of the response time corresponding 
the max-min-cloud algorithm are less than or equal to that for the MCT-cloud algorithm. Note that the 
theoretical prediction of 𝐸𝐸𝐸𝐸(𝐰𝐰) matches the MC simulation results. It is also important to note that different 
patterns of the request 𝐰𝐰 may lead to variation in the values of 𝐸𝐸𝐸𝐸(𝐰𝐰), even though these patterns have the 
same total workload size. For example, 𝐸𝐸𝐸𝐸(𝐰𝐰) of “pattern 1” is 26,522 seconds, which is about two times longer 
than that of “pattern 6” (i.e., 12,104 seconds). This is because the workloads in “pattern 1” are highly 
unbalanced as compared to the distribution of the ECU per vCPU of the four scheduled VMs that serve the 
request. Meanwhile, the workloads in “pattern 6” have the most similar distribution of ECU per vCPU of the four 
VMs among the six patterns of the request under study. 

Next, in Fig. 3, we show the percentile of the response time of the request 𝐰𝐰 by applying the max-min-cloud 
algorithm and the MCT-cloud algorithm (for the six patterns described earlier). The solid curves representing the 
theoretical predictions are obtained by evaluating (2) numerically when the max-min-cloud algorithm is utilized. 
The MC simulation results marked by squares and crosses are presented respectively for the max-min-cloud 
algorithm, and the MCT-cloud algorithm. Each point in the MC simulations are averaged using 10,000 
independent experiments. As expected, the max-min-cloud algorithm leads to larger values of 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) for 
all 𝑡𝑡 > 0. Here too, our theoretical predictions agree well with the MC results when the max-min-cloud 
algorithm is utilized. It is interesting to observe in Fig. 3 c that all the curves for “pattern 3” coincide. This is 
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because all the nine sub-applications in the request have the same workload size. As such, there is no difference 
for allocating sub-applications in the request when the two algorithms are utilized. 

 
Fig. 3. Percentile of the response time of request (higher value implies a better performance). 

To better illustrate the impact of the workload pattern of the request on 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡) we also show results 
obtained by theoretical predictions for the six workload patterns of the request together in Fig. 4. 

 
Fig. 4. Percentile of the response times for the six patterns. 

Next, we illustrate the optimality of the max-min-cloud algorithm when the execution times of the sub-
applications are not exponentially-distributed (but with the same execution rates as the times are exponentially-
distributed). Specifically, we consider two cases when the execution times are (a) truncated normally-distributed 
whose variance is one third of its mean (as similarly considered in [5]) and (b) Erlang-distributed. The 
corresponding percentile of the response time of the “pattern 4” under these two distributions are shown 
in Figs. 5a and 5 b, respectively. 

 
Fig. 5. Percentile of the response times, where the execution times of the sub-applications in the request are (a) 
truncated normally-distributed and (b) Erlang-distributed. 
 

It can be observed by comparing the results from Figs. 5 and 3d to find that the superiority of the max-min-cloud 
algorithm over the MCT-cloud algorithm is more profound versus the case when the execution times of the sub-
applications are not exponentially-distributed. For example, in Figs. 5a and 5b when 𝑡𝑡 = 8,000 seconds, the 
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max-min-cloud algorithm can lead to approximately 0.5 and 0.6 higher probability for completing the request 
than that for the MCT-cloud algorithm. Meanwhile in Fig. 3d such probability is less than 0.1. 

SECTION 6 Efficient Resource Provisioning 
When a customer submits his/her request, the amount of computing resources (namely a set of VMs) for serving 
this request needs to be determined and scheduled before the execution of the request. To schedule an 
appropriate set of VMs for serving customer requests is a challenging problem, which is typically termed as 
resource provisioning in the cloud [20]. Here the challenge in devising an efficient provisioning strategy is 
twofold. On one hand, the business must provide a service that would not miss the deadlines for customers (i.e., 
avoid under-provisioning). On the other hand, the business must try to maximize its profit or keep the cost at a 
minimum for operating the cloud service (i.e., avoid over-provisioning). 

Therefore, our goal is to find an efficient provisioning strategy that brings as much profit or revenue to the 
business as possible. To this end, in this section we propose the minimum-provisioning-cost resource-
provisioning strategy for serving the incoming customer requests and compare its performance with other 
resource-provisioning strategies via MC simulations. 

6.1 The MPC Resource-Provisioning Strategy 
In brief, the idea is to minimize provisioning costs while guaranteeing the performance for serving customer 
requests. Specifically, suppose that there are 𝑀𝑀 types of VMs that can be chosen by the business to serve a 
customer request 𝐰𝐰 = {𝑤𝑤1, … ,𝑤𝑤𝑛𝑛}. The 𝑗𝑗th type VM has 𝑘𝑘𝑗𝑗 vCPUs and its usage price per unit of time is denoted 
as price𝑗𝑗. The MPC strategy needs to determine the appropriate set of VMs, denoted by 𝐬𝐬 = {𝑠𝑠1, … , 𝑠𝑠𝑗𝑗, … , 𝑠𝑠𝑀𝑀}, 
to be scheduled to serve the request 𝐰𝐰. Here, sjrepresents the number of 𝑗𝑗th type VM in 𝑠𝑠 for 𝑗𝑗 = 1, … ,𝑀𝑀. We 
model the provisioning cost for serving the request 𝐰𝐰 as the product of the total price paid for using the set of 
VMs 𝑠𝑠 and the mean of the response time of the request 𝐰𝐰. Mathematically, we define the provisioning cost as 

𝐶𝐶(𝐬𝐬) = 𝐸𝐸𝐸𝐸(𝐰𝐰)� price𝑗𝑗
𝑀𝑀

𝑗𝑗=1
. (12) 

The set of VMs determined by the MPC strategy is the set 𝐬𝐬 that minimizes 𝐶𝐶(𝐬𝐬) subject to the following three 
constraints: 

(a) � 𝑘𝑘𝑗𝑗𝑠𝑠𝑗𝑗 ≥ 𝑛𝑛
𝑀𝑀

𝑖𝑖=1
, namely the total number of vCPUs of the VMs in 𝐬𝐬 should be greater than or equal to the 

number of sub-applications in the request 𝐰𝐰. 

(b) � 𝑘𝑘𝑗𝑗𝑠𝑠𝑗𝑗 ≤ 𝑛𝑛 + 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=1,…,𝑀𝑀

(𝑘𝑘𝑗𝑗).
𝑀𝑀

𝑖𝑖=1
In light of the optimality proof of the max-min-cloud algorithm given in Section 

4.2, it is clear that the redundant and idle VMs/vCPUs that do not run any workload do not enhance the service 
performance of the customer request. 

(c) 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡𝐷𝐷) ≥ 𝛼𝛼. Given the desired response time 𝑡𝑡𝐷𝐷, the probability of completing the 
request 𝐰𝐰 before 𝑡𝑡𝐷𝐷 should be greater than or equal to a certain confidence factor 𝛼𝛼. Here 𝑃𝑃𝑃𝑃(𝐰𝐰; 𝑡𝑡𝐷𝐷) is 
computed by utilizing the max-min-cloud algorithm. 

To solve this optimization problem required by the MPC strategy, we have to exhaustively check all the 
combinations of possible values of 𝑛𝑛1,𝑛𝑛2, …, and 𝑛𝑛𝑀𝑀 that satisfy the three constraints. The solution is one of the 
elements in the search space that leads to the minimum 𝐶𝐶(𝐬𝐬). However, it is important to note that constraints 



(a) and (b) together reduce the size of the search space. Hence, the computational complexity for finding the 
solution is much lower than a typical combinatorial optimization problem. 

Next, we investigate the efficacy of the MPC strategy under two practical scenarios when the arrival of customer 
requests is unpredictable and predictable. For the unpredictable case, we assume that on-demand VMs are 
utilized to serve the customer requests and the virtual cloud-service infrastructure is elastic. For the predictable 
case, on the other hand, reserved VMs are utilized and the virtual cloud-service infrastructure is fixed. 

6.2 Elastic Virtual Cloud-Service Infrastructure with On-Demand VMs 
Consider a scenario where the arrival of customer requests is highly dynamic and unpredictable. In this case, on-
demand VMs are typically used by the business for serving these requests. The business can take full advantage 
of the elasticity of the cloud, i.e., the VMs in the virtual infrastructure can be unilaterally expanded and reduced 
depending upon the demand [15], [36] . The cost for operating the cloud service on an elastic virtual 
infrastructure is pay-per-use, i.e., the longer a VM is used the more the business pays. 

Next, we present an experimental study to illustrate the efficacy of the MPC strategy. The setting of the 
experiment is similar to what we have in Section 5. In particular, we assume that four types of VMs, including 
c4.xlarge, c3.large, c1.medium and m1.medium, can be chosen to serve the customer requests. The costs for 
utilizing these four VMs (per hour) are listed in Table 1. For one realization of the experiment, we assume that 
100 customers submit their requests to the virtual infrastructure. Here, each request is randomly chosen from 
eight different patterns of a request with 450 MB workload size as listed in Table 3. 

TABLE 3 Eight Patterns of a Request with 450 MB Workload Size 
pattern # workload sizes of sub-apps (MB) 
1 [80; 70; 60; 50; 40; 40; 35; 30; 25; 20] 
3 [80; 80; 45; 45; 45; 45; 45; 45; 10; 10] 
3 [90; 90; 50; 50; 50; 50; 50; 10; 10] 
4 [90; 80; 70; 60; 50; 40; 30; 20; 10] 
5 [90; 80; 70; 65; 55; 40; 30; 20] 
6 [90; 90; 60; 60; 55; 55; 20; 20] 
7 [90; 80; 70; 60; 60; 50; 40] 
8 [90; 85; 65; 65; 65; 50; 30] 

 

 

In this scenario, the metric to be used for evaluating the efficacy of a resource-provisioning strategy is the 
average profit for serving a certain number of customers. We further assume that the business can earn (1) full 
revenue from a customer if his/her request is completed within the desired response time; (2) half revenue if 
the completion time is larger than the desired response time but smaller than or equal to two times of the 
desired response time; (3) nothing if the completion time is larger than two times of the desired response time. 
Hence, the revenue for serving a customer (same for the eight patterns) is written as 
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rev(𝐰𝐰) = �
𝑟𝑟|𝐰𝐰| if𝑇𝑇𝐰𝐰 ≤ 𝑡𝑡𝐷𝐷
𝑟𝑟|𝐰𝐰|/2 if𝑡𝑡𝐷𝐷 < 𝑇𝑇𝐰𝐰 ≤ 2𝑡𝑡𝐷𝐷 .

0 if𝑇𝑇𝐰𝐰 > 2𝑡𝑡𝐷𝐷 .
 (13) 

Here, 𝑟𝑟 is the rated revenue for finishing a unit of workload (e.g., 1 MB data in our experiment) within the 
desired response time. The term |𝐰𝐰| denotes the total workload size of the request 𝐰𝐰, i.e., |𝐰𝐰| = ∑ 𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 . 
Hence the profit for serving a customer is 

profit(𝐰𝐰) = rev(𝐰𝐰) − 𝐶𝐶(𝐬𝐬). (14) 

For comparison, we apply two other commonly-used and straightforward resource-provisioning strategies as 
benchmarks. One is the greedy-provisioning strategy, where the minimum number of VMs with the highest ECU 
that have at least 𝑛𝑛 vCPUs will be scheduled to serve a request. The other is the random-provisioning strategy, 
where VMs that have at least 𝑛𝑛 vCPUs will be randomly chosen and scheduled to serve a request. 

The average profit for serving 100 customer requests as a function of the desired response time are shown 
in Fig. 6. The rated revenue per unit of workload is assumed 𝑟𝑟 = 0.005 (namely 0.5 cent per MB). The three 
curves represent the results obtained from utilizing the GP strategy, the RP algorithm and the MPC strategy, 
respectively. Each point in the three curves is averaged by 1,000 realizations. As expected, the average profit 
increases as tD becomes larger. It is clear that the MPC strategy outperforms the other two strategies in terms 
of generating more profit for the business under any 𝑡𝑡𝐷𝐷. It is also interesting to find that the GP strategy 
outperforms the RP strategy when 𝑡𝑡𝐷𝐷 < 19,000 seconds but falls behind when 𝑡𝑡𝐷𝐷 < 19,000 seconds. The 
reason here is that the RP strategy is not able to guarantee the service performance. As a result, a substantial 
proportion of the requests may be completed beyond 𝑡𝑡𝐷𝐷 when the desired response time is relatively short, and 
this leads to a large loss in revenue. Meanwhile, when the desired response time is relatively long, the main 
factor to determine the revenue is the provisioning cost. Hence the performance of the GP strategy becomes 
worse as 𝑡𝑡𝐷𝐷 increases. In summary, the MPC strategy overcomes the inherent shortcomings of the other two 
resource-provisioning strategies and emerges the best performance in terms of generating the most profit. 

 
Fig. 6. The average profit for serving 100 customer requests as a function of the desired response time. 

The results shown in Fig. 6 are highly helpful for businesses negotiating with their customers on some critical 
attributes of the SLAs, e.g., such as the charge plan and the desired response time for serving the requests. For 
convenience, in Fig. 7 we show a flowchart for efficiently serving dynamically arriving customer requests in an 
elastic virtual cloud-service infrastructure with on-demand VMs. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/7927510/7742971/wang6-2628370-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/7927510/7742971/wang6-2628370-large.gif


 
Fig. 7. Flowchart for efficiently serving dynamically arriving customer requests when the virtual cloud-service 
infrastructure is elastic by utilizing on-demand VMs. 
 

6.3 Fixed Virtual Cloud-Service Infrastructure with Reserved VMs 
Next, we consider another practical scenario when all the VMs in the virtual cloud-service infrastructure are 
reserved, and no on-demand VMs will be added to the virtual infrastructure. Such cloud service is typically used 
when the response time is not the first concern by the customers, and the arrival of the customers follows a 
certain pattern. The advantages of utilizing reserved VMs compared to the on-demand VMs include less cost 
(e.g., a significant discount up to 75 percent in Amazon EC2 [23]) for obtaining the same amount of computing 
power per unit time and the ease of maintenance and management of the VMs in the virtual infrastructure. 

In this case, the virtual cloud-service infrastructure and the cost for operating such cloud service is fixed. When a 
customer submits his/her request, the business can only utilize the available VMs in the fixed virtual 
infrastructure to serve the request. The business also has the right to reject a customer's request [37] if there is 
insufficient computing resource (i.e., number of available VMs). We also assume that the business can earn full 
revenue from a customer as long as his/her request is accepted. 

Note that the MPC strategy proposed in Section 6.1 needs to be slightly modified by adding one more constraint 
in order to suit the fixed virtual infrastructure: 

(d) 𝑠𝑠𝑗𝑗 ≤ 𝑁𝑁𝑗𝑗, 𝑗𝑗 = 1, … ,𝑀𝑀, that is, the number of VMs in 𝐬𝐬 is limited by the number of available VMs, denoted 
by 𝑁𝑁𝑗𝑗  for 𝑗𝑗 = 1, … ,𝑀𝑀, in the virtual cloud-service infrastructure. 

It is possible that there may be no solution to this optimization problem when constraint (d) is added. This 
implies that there is insufficient number of available VMs to serve the request and such request will be rejected. 

Clearly when fixed virtual infrastructure is utilized, an efficient resource-provisioning strategy aims to serve as 
many customers as possible. Hence, we use the rejection rate of customers to be served as a metric to evaluate 
the performance of a resource-provisioning strategy. Next, we present an experimental study to illustrate the 
efficacy of the MPC strategy in the case only the reversed VMs are utilized to serve the dynamically arriving 
customers. 

Suppose that the fixed virtual cloud-service infrastructure consisted of 150 reserved VMs, comprising 15 
c4.xlarge VMs, 30 c3.large VMs, 45 c1.medium VMs and 60 m1.medium VMs. Customers submit their requests 
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sequentially following a Poisson process with arrival rate λc. The rejection rate of the ith customer (averaged 
over 10,000 realizations) is shown in Fig. 8 for 𝜆𝜆𝑐𝑐 = 8.28 hour−1. The three curves represent the results obtained 
by utilizing the GP strategy, the RP strategy and the MPC strategy, respectively. It can be observed that the 
rejection rate starts increasing after the service of about 30 requests and then becomes stable after serving 50 
to 60 requests. The MPC strategy leads to the minimum steady-state rejection rate compared to the other two 
strategies. 

 
Fig. 8. The rejection rate for serving 100 customers as a function of the index of the customers. 

In Fig. 9, we further show the steady-state rejection rate for customer requests as a function of the arrival 
rate, 𝜆𝜆𝑐𝑐. It is noted that the MPC strategy again outperforms the other two strategies in terms of reducing the 
steady-state rejection rate for any 𝜆𝜆𝑐𝑐. The GP strategy has the worst performance in this scenario. The 
difference in the performance of the three strategies is subtle only when 𝜆𝜆𝑐𝑐 < 5 hour−1 and 𝜆𝜆𝑐𝑐 > 50 hour−1. This 
is simply because that either none or all of the customer requests will be rejected if the average time between 
the arrivals of two requests (namely 1/𝜆𝜆𝑐𝑐) is relatively too long or too short compared to the average response 
time of a request, respectively. 
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Fig. 9. (a) The steady-state rejection rate (smaller is better) under three resource-provisioning strategies as a 
function of arrival rate of the customer requests, and (b) the zoomed-in version of left half of Fig. 9a. 
 

As seen in Fig. 9, the GP strategy in general yields the worst performance by having the largest steady-state 
rejection rate among the three strategies. It is also noted that the MPC strategy outperforms the RP strategy 
about 2-5 percent in the sense of reducing the steady-state rejection rate when 5 < 𝜆𝜆𝑐𝑐 < 20 hour−1. The 
superiority of the MPC strategy is not as prominent as in the previous scenario when the virtual cloud-service 
infrastructure is elastic and on-demand VMs are utilized. However, the MPC strategy still gives tremendous 
benefits for this particular scenario, since the cloud service based upon reserved VMs is typically running for 
long terms, i.e., several years. Reducing the steady-state rejection rate by 5 percent directly implies an increase 
in the generated revenue by 5 percent. Overall, investigation of the steady-state rejection rate in the cloud (as 
shown in Fig. 9 ) can help businesses better understand how much VMs they need to purchase in order to 
maintain a high quality of service and satisfy their customers, which implies keeping the rejection rate to a 
minimum. For convenience, we show in Fig. 10a flowchart for efficiently serving dynamically arriving customer 
requests in a fixed virtual cloud-service infrastructure with reserved VMs. 
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Fig. 10. Flowchart for efficiently serving dynamically arriving customer requests when the virtual cloud-service 
infrastructure is fixed by utilizing the reserved VMs. 

SECTION 7 Conclusions and Future Extensions 
In this paper we have proposed a novel probabilistic framework to model the service of customers in the cloud. 
The model considers essential features and concerns in modern cloud services including the multi-tenancy 
characteristic, the heterogeneity of VMs in the virtual infrastructure and the stochastic response times for 
serving a request with general probability distribution. To this end, the percentile and mean of the stochastic 
response times of customer requests have been analytically characterized in closed form. These two quantities 
are widely-used metrics for evaluating the performance of cloud services in the research community as well as 
cloud SLAs. 

Based upon the proposed cloud-service framework, we have devised a max-min-cloud algorithm for allocating 
the sub-applications (i.e., workloads) in an arriving request to VMs. We have rigorously proved the optimality of 
the max-min-cloud algorithm and further conducted extensive experiments and MC simulations to demonstrate 
its optimality under various scenarios. As a byproduct of the max-min-cloud algorithm, we also devised an 
efficient resource-provisioning strategy, termed the MPC strategy, for determining the appropriate amount of 
computing resources in the cloud required to serve dynamically arriving customer requests. Our practical case 
study shows that utilizing the MPC strategy can yield a 10-40 percent increase in profit to businesses compared 
to other resource-provisioning strategies when the cloud service is based upon on-demand VMs. On the other 
hand, when the cloud service is based upon reserved VMs with fixed cost, we have found that the MPC strategy 
outperforms the other strategies by accepting 2-20 percent more requests when customers are submitting their 
requests with a normal pace. 

The results presented in this paper are not limited to the case when cloud-service performance is dependent 
merely on the ECU (i.e., vCPU speed) of the VMs. Namely, our framework can also be extended to scenarios 
when the cloud-service performance is determined and affected by other factors, such as network bandwidth 
and energy consumption. For example, consider the data transmission service in the cloud where data 
throughput is the key performance metric. In this case, the throughput is mainly dependent upon the network 
bandwidth of the VMs that are used to process and transfer data. To improve the utilization of the network 
bandwidth, the network bandwidth in a VM is typically shared by several workloads/tenants. Hence, we can 
replace ECU with network bandwidth in the proposed multi-tenant framework to characterize the cloud-service 
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performance. Here the max-min-cloud algorithm is also useful for optimizing the utilization of network 
bandwidth in the VMs. In cases when energy consumption of VMs dominates the total provisioning cost of the 
VMs, the MPC strategy can also be extended to include energy consumption of the VMs in the cost model. 

Future extensions may include addressing the case when sub-applications are heavily consuming memory or 
storage space. In such a case, the memory/space capacity of VMs has to be taken into account and the max-min-
cloud algorithm may become suboptimal. It is also of interest to examine the performance of the max-min-cloud 
algorithm by considering the performance interference phenomenon in VMs when a large number of sub-
applications are executed in the same VM. 
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