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Abstract 
Simple, approximate formulas are developed to calculate the mean gain and excess noise factor for avalanche 
photodiodes using the dead-space multiplication theory in the regime of small multiplication width and high 
applied electric field. The accuracy of the approximation is investigated by comparing it to the exact numerical 
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method using recursive coupled integral equations and it is found that it works for dead spaces up to 15% of the 
multiplication width, which is substantial. The approximation is also tested for real materials such as GaAs, InP 
and Si for various multiplication widths, and the results found are accurate within ∼ 15% of the actual noise, 
which is a significant improvement over the local-theory noise formula. The results obtained for the mean gain 
also confirm the recently reported relationship between experimentally determined local ionization coefficients 
and the enabled non-local ionization coefficients. 

1. Introduction 
Avalanche photodiodes (APDs) play an important role in detecting low-level light due to their greater sensitivity 
as compared to PIN diodes, and for this reason they are used extensively in many optical systems [1, 2]. The 
increased sensitivity comes from the APD’s gain that is the outcome of the chain of electron/hole impact 
ionizations in a high-field depletion (multiplication) region. Although the APD’s high gain is an advantage, the 
accompanying excess noise, which results from the stochastic nature of the impact ionization process, is an 
undesirable effect that undermines the benefits of the gain. For an APD, the dead space is defined as the 
minimum distance that a newly-generated carrier must travel in order to attain enough energy to be able to 
impact ionize [3]. When the APD multiplication-region dimension is in submicrons, the dead space becomes an 
important factor and needs to be included in the calculation of the excess noise [4,5]. 

One of the first analytical models to calculate the multiplication gain and the excess noise for APDs was 
developed by McIntyre [6] without taking the dead-space effect into account. This model, also known as the 
local ionization model, assumed that an electron (hole) at position xwill impact ionize regardless of its ionization 
history. Consider a multiplication region extending from x = 0 to x = w, with an electric field applied in the 
negative x-direction and a photo-generated electron-hole pair at x inside the multiplication region. This electron-
hole pair will start a chain of ionizations inside the multiplication region, and all electrons [holes] will undergo, 
on average, α(x′)dx [β(x′)dx] impact ionizations per unit distance, dx, where 0 ≤ x′ ≤ w. The multiplication 
factor, M(x), for this device is the average total number of electron-hole pairs generated in the depletion layer 
from a single electron-hole pair at x. The formula for the multiplication factor was derived by McIntyre [6] as 

(1) 𝑀𝑀(𝑥𝑥) =
exp(− ∫ [𝛽𝛽(𝑥𝑥′)−𝛼𝛼(𝑥𝑥′)]𝑑𝑑𝑥𝑥′𝑤𝑤

𝑥𝑥 )

1−� [𝛽𝛽(𝑥𝑥′)exp(− ∫ [𝛽𝛽(𝑥𝑥″)−𝛼𝛼(𝑥𝑥″)]𝑑𝑑𝑥𝑥″𝑤𝑤
𝑥𝑥′ )]𝑑𝑑𝑥𝑥′𝑤𝑤

0

. 

Here, M(0) is the overall mean gain, labeled 〈G〉, for a device with electron injection at location x = 0. In the 
special case when the electric field is constant across the multiplication region and the ionization coefficients are 
equal, we obtain 

〈𝐺𝐺〉 =
1

1 − 𝛼𝛼𝛼𝛼. 

The excess noise factor, used as a measure of APD’s gain fluctuation [7], is denoted as Fand was found to be [6] 

(2) 𝐹𝐹 = 𝑘𝑘〈𝐺𝐺〉 + (1 − 𝑘𝑘)(2 − 1
〈𝐺𝐺〉

), 

where 𝑘𝑘 is the ionization ratio, 𝛽𝛽/𝛼𝛼. Since this model lacked the inclusion of the dead space, it failed to give an 
accurate representation of excess noise factor for devices with smaller multiplication regions [4], [8,9]. 

To account for the dead-space effect in APDs, Hayat et al. [3] developed the dead-space multiplication theory 
(DSMT) where they derived pairs of recurrent coupled integral equations to find the mean gain and excess noise 
factor. This model, called the non-local model, incorporated the carrier history in its calculations. Once the 
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carriers have traversed the dead space, they are called enabled, with enabled ionization 
coefficients, 𝛼𝛼 ∗ and 𝛽𝛽 ∗, for electrons and holes [8], respectively. These recursive integral equations were 
solved numerically [3], [9], using an iterative approach, referred to in this paper as the exact numerical method 
(ENM), with results confirmed subsequently by both Monte Carlo simulations [10] as well as experimental data 
[4], [8,9]. Unlike McIntyre’s local-theory model, however, there was a lack of closed-form formulas for the mean 
gain and excess noise factor using the DSMT. Analytical expressions for mean gain and excess noise factor are 
useful in calculating other characteristics of the APD such as the signal-to-noise ratio and the error probability in 
optical receivers [11]. 

To address the need for analytical expressions for avalanche multiplication in the presence of dead space, 
Spinelli et al. solved the DSMT equations analytically using the first-order expansion of the recursive integral 
equations. Although their work included the analytical solution for the mean gain [12], it did not handle any 
excess noise calculations. Hayat et al. found an approximate solution to the DSMT equations and obtained 
closed-form approximate formulas for the mean gain and excess noise factor for the case of unequal ionization 
coefficients (𝑘𝑘 ≠  1) [13]. This approach has been termed as the characteristic method (CM) [13] and although 
the formula for the mean gain is relatively simple, the expression for excess noise factor involves the inversion 
of 9 by 9 matrix. 

In this paper, we extend the CM approach and obtain the formulas for the mean gain and excess noise factor 
from [13] by assuming 𝑘𝑘 =  1. This is a valid assumption for APDs where the multiplication width is small and 
the applied electric field is high. This phenomenon is depicted in Fig. 1, where the ionization parameters for Si, 
InP and GaAs have been plotted as a function of the electric field. It can be seen that as the applied electric field 
increases to the order of ∼106 V/cm, the ionization ratio, 𝑘𝑘, can be approximated as 1. This approximation is 
useful in providing us with a simple analytic expression to estimate the mean gain and the excess noise factor in 
APDs. 

 
Fig. 1 The enabled ionization parameters, 𝛼𝛼 ∗ and 𝛽𝛽 ∗, as a function of the inverse applied electric field for Si, InP 
and GaAs [14]. The encircled area highlights the ionization coefficients and electric field across the APD devices 
where the assumption 𝑘𝑘 ≈  1 is valid. As an example, for a GaAs APD with the multiplication width = 0.05 − 
0.1μm [4], which has 𝑘𝑘 =  0.86 and mean gain = 8, the assumption of 𝑘𝑘 ≈  1 may be used to get an estimation 
of the mean gain and the excess noise. 
 
We will also use the formulas derived in this work to confirm the relationship between the enabled electron and 
hole ionization coefficients, α* and 𝛽𝛽 ∗, and the experimental electron and hole ionization coefficients, 𝛼𝛼 and 𝛽𝛽. 
This relationship was initially found by Spinelli et al. [12] and recently refined by Cheong et al. [14] with the 
inclusion of a physical interpretation. This connection is useful in extracting enabled ionization parameters, 
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which cannot be measured directly, from the experimental ionization parameters, which are readily available in 
literature [14]. 

2. Formula for mean gain 
We consider an electron (hole), born at location 𝑥𝑥 inside a multiplication region, with a constant electric field 
applied in the negative x-direction. The electron can impact ionize after traveling the dead space, 𝑑𝑑𝑒𝑒 (𝑑𝑑ℎ in case 
of a parent hole), with enabled ionization coefficients, α* and 𝛽𝛽 ∗, as given in [3]. After the ionization event 
happens, both the parent electron and secondary electron and hole must travel a dead space 𝑑𝑑𝑒𝑒 (𝑑𝑑ℎ) before 
they may impact ionize. By applying the CM technique, Hayat et al. determined the first and second moments of 
the random counts 𝑍𝑍(𝑥𝑥) and 𝑌𝑌(𝑥𝑥), the total number of carriers generated by an initial electron or hole, 
respectively, at position x in the multiplication region [13]. The random gain is then 𝐺𝐺 =  0.5(𝑍𝑍(0)  +  𝑌𝑌(0)), 
which can be simplified to 𝐺𝐺 =  0.5(𝑍𝑍(0)  +  1) using the initial condition, 𝑌𝑌(0)  =  1 [3]. After determining the 
first and second moments of the random counts, 𝑧𝑧(𝑥𝑥)  =  〈𝑍𝑍(𝑥𝑥)〉,  𝑦𝑦(𝑥𝑥)  =  〈𝑌𝑌(𝑥𝑥)〉,  𝑧𝑧2(𝑥𝑥)  =  〈𝑍𝑍2(𝑥𝑥)〉 
and 𝑦𝑦2(𝑥𝑥)  =  〈𝑌𝑌2(𝑥𝑥)〉, the mean gain and the excess noise factor can be expressed as 

(3)  〈𝐺𝐺〉 = 0.5(𝑧𝑧(0) + 1) 

and 

(4) 𝐹𝐹 = 〈𝐺𝐺2〉

〈𝐺𝐺〉2 = (𝑧𝑧0(0)+4〈𝐺𝐺〉−1)
4〈𝐺𝐺〉2 . 

To find the mean gain for the case, 𝛼𝛼 ∗  =  𝛽𝛽 ∗, we will solve the DSMT recursive integral equations using a 
method similar to that used in [13]. We find the mean of the random counts by starting with the differential 
form of the recurrence equations (1) and (3) from [13], 

(5) 𝑧𝑧′(𝑥𝑥) − 𝛼𝛼∗[𝑧𝑧(𝑥𝑥) − 2𝑧𝑧(𝑥𝑥 + 𝑑𝑑𝑒𝑒) − 𝑦𝑦(𝑥𝑥 + 𝑑𝑑𝑒𝑒)] = 0 

and 

(6) 𝑦𝑦′(𝑥𝑥) + 𝛽𝛽∗[𝑦𝑦(𝑥𝑥) − 2𝑦𝑦(𝑥𝑥 − 𝑑𝑑ℎ) − 𝑧𝑧(𝑥𝑥 − 𝑑𝑑ℎ)] = 0, 
with the boundary conditions 𝑧𝑧(𝑥𝑥)  =  1 if 𝛼𝛼 −  𝑑𝑑𝑒𝑒 ≤  𝑥𝑥 ≤  𝛼𝛼 and 𝑦𝑦(𝑥𝑥)  =  1 𝑖𝑖𝑖𝑖 0 ≤  𝑥𝑥 ≤  𝑑𝑑ℎ. 
Replacing β*with α* and assuming that the electron and hole dead spaces are equal (𝑑𝑑𝑒𝑒 =  𝑑𝑑ℎ  =  𝑑𝑑), we obtain 

(7) 𝑧𝑧′(𝑥𝑥) − 𝛼𝛼∗[𝑧𝑧(𝑥𝑥) − 2𝑧𝑧(𝑥𝑥 + 𝑑𝑑) − 𝑦𝑦(𝑥𝑥 + 𝑑𝑑)] = 0 

and 

(8) 𝑦𝑦′(𝑥𝑥) + 𝛼𝛼∗[𝑦𝑦(𝑥𝑥) − 2𝑦𝑦(𝑥𝑥 − 𝑑𝑑) − 𝑧𝑧(𝑥𝑥 − 𝑑𝑑)] = 0. 
Here, to be able to find an analytical solution, we enforce the boundary conditions only at 𝑥𝑥 =  𝛼𝛼 −  𝑑𝑑 for 𝑧𝑧(𝑥𝑥) 
and at 𝑥𝑥 =  𝑑𝑑 for 𝑦𝑦(𝑥𝑥). This simplification is the reason why, for the CM technique, the formulas obtained are 
approximate in nature. By applying this assumption, we can now take the general solutions to 
be 𝑧𝑧(𝑥𝑥)  =  𝑐𝑐1𝑒𝑒𝑟𝑟𝑥𝑥 and 𝑦𝑦(𝑥𝑥)  =  𝑐𝑐2𝑒𝑒𝑟𝑟𝑥𝑥 , and solve for 𝑐𝑐1 and 𝑐𝑐2. For a non-zero solution to 𝑐𝑐1 and 𝑐𝑐2, we arrive at 
the following characteristic equation: 

(9) (𝑟𝑟 − 𝛼𝛼∗ + 2𝛼𝛼∗𝑒𝑒𝑟𝑟𝑑𝑑)(𝑟𝑟 + 𝛼𝛼∗ − 2𝛼𝛼∗𝑒𝑒−𝑟𝑟𝑑𝑑) + 𝛼𝛼∗2 = 0. 
The solution to this equation gives a double root at 𝑟𝑟 =  0, which leads to solutions of the 
form, 𝑧𝑧(𝑥𝑥)  =  𝑐𝑐1 +  𝑥𝑥𝑐𝑐′1 and 𝑦𝑦(𝑥𝑥)  =  𝑐𝑐2 +  𝑥𝑥𝑐𝑐′2. By inserting this solution into Eqs. (5) and (6) and comparing 
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coefficients, we obtain 𝛼𝛼∗𝑐𝑐′1 +  𝛼𝛼∗𝑐𝑐′2 =  0 and 𝑐𝑐′1 +  𝛼𝛼∗𝑐𝑐1 +  𝛼𝛼∗𝑐𝑐2 +  2𝛼𝛼∗𝑐𝑐′1𝑑𝑑 +  𝛼𝛼∗𝑐𝑐′2𝑑𝑑 =  0. Next, by 
applying the boundary conditions, 𝑧𝑧 (𝛼𝛼 −  𝑑𝑑)  =  1 and 𝑦𝑦(𝑑𝑑)  =  1, and solving for the unknown coefficients, 
we find 𝑧𝑧 (0). By substituting 𝑧𝑧 (0) in Eq. (3), we finally arrive at the expression for mean gain: 

〈𝐺𝐺〉 =
1 + 2𝛼𝛼∗𝑑𝑑

1 + 3𝛼𝛼∗𝑑𝑑 − 𝛼𝛼∗𝛼𝛼, 

which can be rewritten as 

(10) 

〈𝐺𝐺〉 =
1 + 2𝛼𝛼�∗𝑑𝑑′

1 + 3𝛼𝛼�∗𝑑𝑑′ − 𝛼𝛼�∗, 

where 𝛼𝛼𝛼∗ =  𝛼𝛼∗𝛼𝛼 is the normalized enabled ionization coefficient and 𝑑𝑑′ =  𝑑𝑑/𝛼𝛼 is the normalized dead space. 
This formulation for the mean gain also follows directly from the mean gain expression using CM in [13] by 

applying the limit, lim 𝛼𝛼∗ → 𝛽𝛽∗〈𝐺𝐺〉, where 〈𝐺𝐺〉 = 𝜌𝜌+exp(𝑟𝑟𝑑𝑑)
𝜌𝜌exp(𝑟𝑟(𝑤𝑤−𝑑𝑑))+exp(𝑟𝑟𝑑𝑑)

 and 𝜌𝜌 = −𝛼𝛼∗exp(𝑟𝑟𝑑𝑑)
(𝑟𝑟−𝛼𝛼∗+2𝛼𝛼∗exp(𝑟𝑟𝑑𝑑))

. On the 

other hand, by applying the same limit to the analytical mean gain developed by Spinelli et al. [12], obtained 
from applying the first order approximation to the recursive equations, we get 

(11) 〈𝐺𝐺〉 = 1
1+2𝛼𝛼�∗𝑑𝑑′−𝛼𝛼�∗, 

which differs in form and is less accurate than the expression developed in Eq. (10), as can be seen in Fig. 2, 
even for 𝑑𝑑′ =  0.1. 

 
Fig. 2 Mean gain, found from ENM and CM techniques, is shown as a function of the ionization parameter, 𝛼𝛼∗𝛼𝛼, 
for 𝑑𝑑′ =  𝑑𝑑/𝛼𝛼 =  0, 0.1 and 0.15. These results hold for any avalanche region for which the assumption, 𝑘𝑘 =  1 
is justified. The mean gain found from Spinelli analytical formulation is also shown for the case of 𝑑𝑑′ =  0.1 for 
comparison. 
 

We can isolate the effect of the dead space on the mean gain by writing Eq. (10) in terms of McIntyre’s local-
theory formula and a correction term, which contains the dead-space effect, and obtain 

(12) 〈𝐺𝐺〉 = 1
1−𝛼𝛼�∗ + 𝛼𝛼�∗𝑑𝑑′(1+2𝛼𝛼�)

(𝛼𝛼�∗−1)(3𝛼𝛼�∗𝑑𝑑′−𝛼𝛼�∗+1)
. 
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Clearly, for the special case of negligible normalized dead space (𝑑𝑑′ ≈  0), the expressions for the mean gain 
from Eqs. (11) and (12) take the well-known form, shown in Eq. (13), and also match the formula from [6] 

(13) 〈𝐺𝐺〉 = 1
1−𝛼𝛼∗𝑤𝑤

. 

3. Formula for excess noise factor 
We now derive the expression for the excess noise factor for the case, 𝑘𝑘 =  1. To do this, we need the second 
moments of 𝑍𝑍(𝑥𝑥) and 𝑌𝑌(𝑥𝑥), 𝑧𝑧2(𝑥𝑥) and 𝑦𝑦2(𝑥𝑥), respectively. We start by taking the differential form of the 
recursive equations (2) and (4) from [13] and substitute 𝛽𝛽∗ =  𝛼𝛼∗ to get 

(14) 𝑧𝑧2
′ (𝑥𝑥) − 𝛼𝛼∗[𝑧𝑧2(𝑥𝑥) − 2𝑧𝑧2(𝑥𝑥 + 𝑑𝑑) − 𝑦𝑦2(𝑥𝑥 + 𝑑𝑑)] = −2𝛼𝛼∗𝑧𝑧(𝑥𝑥 + 𝑑𝑑)(2𝑦𝑦(𝑥𝑥 + 𝑑𝑑) + 𝑧𝑧(𝑥𝑥 +

𝑑𝑑)) 

and 

(15) 𝑦𝑦2
′ (𝑥𝑥) + 𝛼𝛼∗[𝑦𝑦2(𝑥𝑥) − 2𝑦𝑦2(𝑥𝑥 − 𝑑𝑑) − 𝑧𝑧2(𝑥𝑥 − 𝑑𝑑)] = 2𝛼𝛼∗𝑦𝑦(𝑥𝑥 − 𝑑𝑑)(2𝑧𝑧(𝑥𝑥 − 𝑑𝑑) + 𝑦𝑦(𝑥𝑥 −

𝑑𝑑)). 
The general, homogeneous and particular, solution of such a pair of inhomogeneous differential equations is a 
superposition of polynomials given by z2(x) = p1 + p2x + p3x2 + p4x3 + p5x4 and y2(x) 
= q1 + q2x + q3x2 + q4x3 + q5x4. By substituting these proposed solutions in Eqs. (14) and (15), comparing 
coefficients, and using the boundary conditions, z2(w − d) = y2(d) = 1, we obtain twelve equations with ten 
unknowns. By eliminating the redundant equations and solving the remaining independent equations, we find 
that the higher-order coefficients p4, p5, q4 and q5 are zero, which makes z2(x) = p1 + p2x + p3x2 and y2(x) 
= q1 + q2x + q3x2. By solving for p1, p2 and p3, along with q1, q2 and q3, we obtain 

𝑧𝑧2(0) =
3𝛼𝛼∗3𝑑𝑑3 + 5𝛼𝛼∗3𝑑𝑑2𝛼𝛼 + 𝛼𝛼∗3𝑑𝑑𝛼𝛼2 − 𝛼𝛼∗3𝛼𝛼3 + 7𝛼𝛼∗2𝑑𝑑2 + 6𝛼𝛼∗2𝑑𝑑𝛼𝛼 − 𝛼𝛼∗2𝛼𝛼2 + 𝛼𝛼∗𝑑𝑑 + 5𝛼𝛼∗𝛼𝛼 + 1

(3𝛼𝛼∗𝑑𝑑 − 𝛼𝛼∗𝛼𝛼 + 1)3  

Next, by substituting z2(0) and the expression for the mean gain in Eq. (10) into Eq. (4), we finally arrive at the 
approximate form of the excess noise factor: 

𝐹𝐹 =
12𝛼𝛼∗3𝑑𝑑3 − 4𝛼𝛼𝛼𝛼∗3𝑑𝑑2 + 16𝛼𝛼∗2𝑑𝑑2 − 4𝛼𝛼𝛼𝛼∗2𝑑𝑑 + 6𝛼𝛼∗𝑑𝑑 + 1

(2𝛼𝛼∗𝑑𝑑 + 1)2(3𝛼𝛼∗𝑑𝑑 − 𝛼𝛼∗𝛼𝛼 + 1) , 

which can be written in terms of the normalized quantities, α𝛼 * and d′, as 

(16) 𝐹𝐹 = 12𝛼𝛼�∗3𝑑𝑑′3−4𝛼𝛼�∗3𝑑𝑑′2+16𝛼𝛼�∗2𝑑𝑑′2−4𝛼𝛼�∗2𝑑𝑑′+6𝛼𝛼�∗𝑑𝑑′+1
(2𝛼𝛼�∗𝑑𝑑′+1)2(3𝛼𝛼�∗𝑑𝑑′−𝛼𝛼�∗+1)

. 

To isolate the effect of the dead space on the excess noise factor, we rewrite Eq. (16) in terms of McIntyre’s 
local-theory formula and a correction term, which contains the dead-space effect, and obtain 

(17) 𝐹𝐹 = 1
1−𝛼𝛼�∗ + 𝑖𝑖(𝑑𝑑′), 

where the correction term, f(d′), is 

−12𝛼𝛼�∗4𝑑𝑑′3 + 4𝛼𝛼�∗4𝑑𝑑′2 − 16𝛼𝛼�∗3𝑑𝑑′2 + 4𝛼𝛼�∗3𝑑𝑑′ − 6𝛼𝛼�∗2𝑑𝑑′ − 𝛼𝛼�∗𝑑𝑑′

𝑑𝑑′3(−12𝛼𝛼�∗4 + 12𝛼𝛼�∗3) + 𝑑𝑑′2(4𝛼𝛼�∗4 − 20𝛼𝛼�∗3 + 16𝛼𝛼�∗2) + 𝑑𝑑′(4𝛼𝛼�∗3 − 11𝛼𝛼�∗2 + 7𝛼𝛼�∗) + 1 − 2𝛼𝛼�∗ + 𝛼𝛼�∗2. 
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Again, for the special case of negligible normalized dead space (d′ ≈ 0), the expressions for excess noise factor 
from Eqs. (16) and (17) take the familiar form of Eq. (13), from [6], as expected. 

To check the accuracy of Eq. (17), we computed the excess noise factor from both the CM and ENM techniques, 
as a function of the mean gain for normalized dead spaces, 𝑑𝑑′ =  0, 0.1 and 0.15, as shown in Fig. 3. The 
effective McIntyre ionization ratio, keff, stated in Eq. (2), is fitted to the data from the different normalized dead 
spaces considered and also shown. As the normalized dead space becomes non-negligible, error is introduced in 
the excess noise factor obtained from the CM technique. For example, for 𝑑𝑑′ =  0.15, we observe an error of 
15% in the excess noise factor for a mean gain value of 20. Therefore, we can say that there is good agreement 
between the excess noise factor values found from the CM and ENM techniques up to normalized dead spaces 
of 𝑑𝑑′ =  0.15. 

 
Fig. 3 The excess noise factor, 𝐹𝐹, as a function of the mean gain, 〈𝐺𝐺〉, is shown for both the ENM and CM 
techniques. The normalized dead spaces of 𝑑𝑑′ =  𝑑𝑑/𝛼𝛼 =  0,  0.1 and 0.15 are considered for comparison and 
the effective McIntyre ionization coefficient, 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 is noted for each case and stated in the legend. 
 

We note here that not only is the formula for excess noise factor found using the modified CM much simpler 
than solving the 9 by 9 matrix in the traditional CM [13], it also matches the ENM results better than the 
traditional method for cases when 𝑘𝑘 can be approximated as 1, as shown in Fig. 4 for 𝑘𝑘 =  0.9. The 
improvement in the approximation is because the 𝑘𝑘 =  1 assumption in the modified CM formula tends to 
increase 𝐹𝐹, which, in turn, compensates for the underestimation that the traditional CM approach is known to 
exhibit. In addition, there are two ways to enforce the 𝑘𝑘 =  1 condition in practice: by calculating the electron 
ionization coefficient and equating it to the hole ionization coefficient, or vice versa. When the ionization 
parameters for the dominant ionization parameters are chosen, a reduction in the excess noise factor is seen 
(up to 15%); hence we choose the ionization coefficients for the dominant mechanism in the material. 
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Fig. 4 The excess noise factor as a function of the mean gain is shown for the ENM and traditional CM [13] 
method for 𝑘𝑘 =  0.9 and compared to the modified CM (𝑘𝑘 =  1). The normalized dead space, 𝑑𝑑′ =  𝑑𝑑/𝛼𝛼, is 
taken to be 0.15. It can be seen that the modified CM gives a better approximation than the traditional method. 
 

To see how the formula for 𝐹𝐹, as shown in Eq. (16) or (17), works for estimating the noise in real devices, we 
calculate the excess noise factor as a function of the mean gain for different materials. The methodology is as 
follows: we fix the multiplication width of the device in consideration, use the ionization coefficients of the 
dominant carrier and assume 𝑘𝑘 =  1. The dead spaces are calculated for the dominant carrier as a function of 
the applied field and Eqs. (10) and (16) are then applied to obtain the approximate mean gain and excess noise 
factor. This is done for different applied fields and hence the approximate 𝐹𝐹 𝑣𝑣𝑣𝑣.〈𝐺𝐺〉 graph for that particular 
multiplication width is obtained. This methodology is then repeated for different multiplication widths and we 
obtain approximate curves for excess noise factor as a function of the mean gain. For comparison, the mean 
gain and excess noise factor are found for the 𝑘𝑘 =  1 case of McIntyre’s local-theory model, while for ENM 
technique we consider the scenario of unequal ionization coefficients (𝑘𝑘 ≠  1). The results are shown in Fig. 
5 for the case of GaAs, using the enabled ionization parameters and ionization threshold energies reported in 
[14], for different multiplication widths, along with experimental data from real GaAs APD devices [15], with 
multiplication widths of 500 and 800 nm, respectively, for comparison. 

 
Fig. 5 The excess noise factor, 𝐹𝐹, shown as a function of the mean gain for various multiplication widths of GaAs. 
The CM technique predicts the excess noise far better than McIntyre’s local-theory (LT) model with equal 
ionization coefficients assumption. Data is also shown for experimental GaAs APDs of widths 500 and 800 nm, 
respectively, as reference [15]. 
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For a more accurate analysis, we consider the 𝑘𝑘 ≠  1 case for both the ENM and McIntyre’s local-theory model 
and document the relative errors in noise (defined as the difference in the excess noise factor with respect to 
that from the ENM technique divided by the excess noise factor from ENM) for the CM technique and 
McIntyre’s local-theory model. We do this for GaAs, InP and Si, with results shown in Fig. 6 for a gain of 22. For 
smaller multiplication widths (≤ 700nm), the relative error between the McIntyre’s local-theory model as 
compared to the ENM is greater than or equal to 50%, and hence it fails to predict the excess noise factor 
accurately for smaller multiplication widths of these materials. The CM technique, on the other hand, provides 
an excess noise value within 15% of the ENM for a range of multiplication widths for GaAs, InP and Si APDs, even 
though the normalized dead space exceeds 15%. 

 
Fig. 6 Relative errors between the excess noise factors, found by comparing the ENM to McIntyre’s local-theory 
model (with 𝑘𝑘 ≠  1) and the CM technique, are shown. The errors are plotted as a function of various 
multiplication widths of GaAs, InP and Si APD devices for a mean gain of 22. We use these values to determine 
the multiplication widths for which the CM approximation may be used practically. 
 

The expectation, while calculating the mean gain and excess noise, is that the approximation should work well 
for materials with 𝑘𝑘 ≈  1 (such as GaAs), and that we should attain lower multiplication widths using such 
materials. However, not only are the mean gain and excess noise factor dependent on the set of ionization 
parameters chosen from literature (and hence differing k), they are also sensitive to the 𝑑𝑑′ value at which the 
calculation is performed. For all materials considered, the minimum multiplication width that gives excess noise 
within 15% of the ENM is found when 𝑑𝑑′ is no larger than 0.24. The range of materials and multiplication widths 
for which the CM approximation may be used to predict the mean gain and excess noise factor are listed 
in Table 1. The range of widths listed here are reasonable for thin APD devices such as the silicon CMOS-
compatible pn devices developed in [16] by Hossain et al. 

Table 1. Material widths for which the CM techniques predicts noise within 15% of the ENM. The upper limit 
of d′ corresponds to the lower limit of the multiplication width and vice versa. From [14], the second set of 
ionization parameters are used for GaAs and Si whereas the third set is used for InP. 

Material Multiplication widths (nm) 𝑑𝑑′ 
GaAs [9] 220 – 475 0.107 – 0.180 
GaAs [14] 400 – 680 0.135 – 0.195 
InP [9] 137 – 200 0.176 – 0.210 
InP [14] 230 – 400 0.142 – 0.200 
Si [14] 110 – 140 0.210 – 0.240 
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Next, for a particular device width, we look at the dependence of the relative error in noise on the mean gain for 
the CM technique as well as the McIntyre’s local-theory model. The results for GaAs, InP and Si are shown in Fig. 
7. For the CM technique, the relative error becomes constant after a mean gain of 20, and hence, it can predict 
the excess noise for the APD devices listed in Table I for even higher gains without increasing the relative error 
in the excess noise calculation. 

 
Fig. 7 Relative errors in the excess noise calculated from McIntyre’s local-theory (LT) model (𝑘𝑘 ≠  1) and the CM 
technique, as compared to ENM technique for three different widths of (a) GaAs, (b) InP and (c) Si [14]. As the 
gain increases, the relative error associated with the CM technique approaches a constant value. 
 

Finally, we summarize the three main factors that govern the accuracy of the reported simplified formula for the 
excess noise factor in real devices. First, any violation of the 𝑘𝑘 =  1 assumption causes the approximate CM 
formula to overestimate the excess noise factor, 𝐹𝐹, assuming that the dominant carrier, i.e., the carrier with the 
higher ionization coefficient, initiates the avalanche process. Second, our choice to set the ionization coefficient 
of the non-dominant carrier to be equal to that of the dominant carrier makes the effect of dead space more 
significant (since a smaller field is required to achieve the same ionization coefficient value, which leads to a 
larger dead space) and, in turn, forces 𝐹𝐹 to decrease. Of course, the opposite choice will lead to an 
overestimation of 𝐹𝐹. Third, the increased value of the normalized dead space (e.g., when the width of the 
multiplication region is reduced by design) also helps underestimate 𝐹𝐹. Together, these inter-playing factors 
limit the widths for which the excess noise factor approximation may be successfully used. Consequently, for a 
given material there exists a range of multiplication-region widths (e.g., as shown in Table 1) over which all three 
competing factors balance out and we obtain a good accuracy in the approximation of the excess noise factor. 

4. Relationship between the enabled and experimental ionization parameters 
The first attempt at finding the relationship between the enabled (𝛼𝛼 ∗ and 𝛽𝛽 ∗) and experimental (𝛼𝛼 and 𝛽𝛽) 
ionization coefficients was made by Spinelli et al. [12], where they equated the multiplication factor found from 
the first-order approximation of the DSMT and the experimental results. However, they could not explain the 
physics behind the relationship developed in their findings. Recently, Cheong et al. have developed a similar 
relationship between the two kinds of ionization coefficients by taking into account the physics of the ionization 
events. This was done by equating the mean ionizing lengths from the DSMT and the local model and comparing 
them for the same electric field in identical p-i-n structures [14]. Their results are confirmed here, for the special 
case of 𝑘𝑘 =  1. We start with the equation to evaluate mean gain in an APD using the local ionization theory and 
with the assumption of equal experimental coefficients [6] 

(18) 〈𝐺𝐺〉 = 1
1−𝛼𝛼𝑤𝑤

. 
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Next, we equate Eq. (18) to the mean gain from Eq. (10), and simplify the expression to obtain 

(19) 𝛼𝛼 = 1−(𝑑𝑑/𝑤𝑤)
(𝛼𝛼∗)−1+2𝑑𝑑

. 

Here, 𝛼𝛼 is called 𝛼𝛼𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒 by Cheong et al. [14], and Eq. (19) matches the relationship found in [14]. 

The device ionization coefficient in Eq. (19) can be used in the traditional formula in Eq. (18) to find a mean gain 
value that matches the value found through the CM but it fails to predict the excess noise factor correctly, which 
is as expected. Therefore, to find the excess noise factor in thin APDs with non-negligible normalized dead 
spaces, we must either use the ENM technique to solve the DSMT recursive integral equations, or the formula 
given in Eq. (17) for a good approximation for which we require the enabled ionization coefficients. 

One way to find the enabled ionization coefficients is by fitting the gain and noise data to the DSMT directly 
[8, 9]. Using this method, we can search for the values of 𝛼𝛼 ∗ and 𝛽𝛽 ∗ (by solving for 〈𝐺𝐺〉 and 𝐹𝐹 after 
varying 𝛼𝛼 ∗ and 𝛽𝛽 ∗) that yield specified gain and excess noise factor. A simpler way to find the enabled 
ionization parameters is by using the relationship between the enabled and experimental ionization coefficients, 
found by Cheong et al. [14]. Once the enabled ionization coefficients are known, we can easily predict the mean 
gain and excess noise factor, using Eqs. (10) and (16), respectively. 

5. Conclusions 
We have found simple approximate formulas to calculate the mean gain and excess noise factor for APDs using 
the dead-space multiplication theory under the assumption of equal ionization coefficients for electrons and 
holes. The electric field was assumed to be constant across the multiplication region and the formulas derived 
require the use of enabled ionization coefficients. The formulas for the excess noise factor, shown in Eqs. 
(16) or (17), perform very well for a range of multiplication widths and materials (listed in Table 1), yielding 
errors that are below 15% when compared to the exact values for the excess noise factor. By using the enabled 
ionization coefficients in the approximate formulas derived in this work, the mean gain and the excess noise 
factor in APDs can be easily estimated. 
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